2019年山东省济南市高三3月模拟考试(文科)数学试题及答案

合集下载

山东省济南市2024高三冲刺(高考数学)部编版测试(备考卷)完整试卷

山东省济南市2024高三冲刺(高考数学)部编版测试(备考卷)完整试卷

山东省济南市2024高三冲刺(高考数学)部编版测试(备考卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知抛物线的焦点为,过且斜率为的直线交抛物线于,两点,若,则( )A.B .1C .D .2第(2)题已知全集,集合,则( )A .B .C .D .第(3)题已知向量,,且,则A.B .C .D.5第(4)题的展开式中,项的系数为( )A .1B .6C .20D .15第(5)题在复平面内,复数对应的向量分别是,其中是坐标原点,则向量对应的复数为( )A .B .C .D .第(6)题在等差数列中,,则( )A .9B .11C .13D .15第(7)题闰月年指农历里有闰月的年份,比如2020年是闰月年,4月23日至5月22日为农历四月,5月23日至6月20日为农历闰四月.农历置闰月是为了农历年的平均长度接近回归年:农历年中的朔望月的平均长度为29.5306日,日,回归年的总长度为365.2422日,两者相差10.875日.因此,每19年相差206.625日,约等于7个朔望月.这样每19年就有7个闰月年.以下是1640年至1694年间所有的闰月年:1640164216451648165116531656165916611664166716701672167516781680 1 6831686168916911694则从2020年至2049年,这30年间闰月年的个数为A .10B .11C .12D .13第(8)题已知函数与的图象有交点,则的取值范围为( )A.B .C .D .二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题在数列中,(为非零常数),则称为“等方差数列”,称为“公方差”,下列对“等方差数列”的判断正确的是( )A .是等方差数列B .若正项等方差数列的首项,且是等比数列,则C .等比数列不可能为等方差数列D .存在数列既是等差数列,又是等方差数列第(2)题函数的部分图像如图所示,在上的极小值和极大值分别为..,,下列说法正确的是( )A.的最小正周期为B.C.的图像关于点对称D .在上单调递减第(3)题甲、乙两人6次模拟考试英语成绩(不含听力)的统计折线图如下图所示,下列说法中正确的是()A.若甲、乙两组成绩的平均数分别为,则B.若甲、乙两组成绩的方差分别为,则C.甲成绩的中位数大于乙成绩的第三四分位数D.甲成绩的极差大于乙成绩的极差三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在的展开式中,的系数为__________.第(2)题已知变量,满足约束条件,则的最大值为______.第(3)题某中学的A、B两个班级有相同的语文、数学、英语教师,现对此2个班级某天上午的5节课进行排课,2节语文课,2节数学课,1节英语课,要求每个班级的2节语文课连在一起,2节数学课连在一起,则共有__________种不同的排课方式.(用数字作答)四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题函数,为的导函数.(1)讨论的单调性;(2)若在三个不同的极值点.(i)求的取值范围;(ii)证明.第(2)题如图,在四棱锥中,,,,,,分别为,的中点,.(1)求证:平面平面;(2)设,若三棱锥的体积,求实数.第(3)题记实数、中的较大者为,例如,.对于无穷数列,记(),若对于任意的,均有,则称数列为“趋势递减数列”.(1)根据下列所给的通项公式,分别判断数列是否为“趋势递减数列”,并说明理由.①,②;(2)设首项为的等差数列的前项和为、公差为,且数列为“趋势递减数列”,求的取值范围;(3)若数列满足、均为正实数,且,求证:为“趋势递减数列”的充要条件为的项中没有.第(4)题在三棱柱中,是和的公垂线段,与平面成角,,.(1)求证:平面;(2)求到平面的距离;(3)求二面角的正切值.第(5)题如图,直三棱柱中,,,,D为BC的中点,E为上的点,且.(1)求证:BE⊥平面;(2)求二面角的大小.。

(完整版)山东省春季高考数学试题及答案

(完整版)山东省春季高考数学试题及答案

山东省 2019 年一般高校招生(春天)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120 分,考试时间120 分钟。

考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。

2.本次考试同意使用函数型计算器,凡使用计算器的题目,除题目有详细要求外,最后结果精准到。

卷一(选择题共60 分)一、选择题(本大题 20 个小题,每题 3 分,共 60 分。

在每题列出的四个选项中,只有一项切合题目要求,请将切合题目要求的选项字母代号选出.并填涂在答题卡上)1. 已知会合 M={0,1} ,N={1,2},则 M∪ N 等于()A. {1}B. {0,2}C. {0,1,2}D.2. 若实数 a, b 知足 ab>0 , a+b>0 ,则以下选项正确的选项是()A. a>0 , b>0B. a>0 , b<0yC. a<0 , b>0D. a<0 , b<03. 已知指数函数y=a x,对数函数 y=log b x的图像如下图,则以下关系式正确的选项是(y)y=log b y=a xA. 0<a<b<1B. 0<a<1<bO x C. 0<b<1<a D. a<0<1<b4. 已知函数 f(x)=x 3 +x ,若 f(a)=2 ,则 f(-a) 的值是()第 3 题图A. -2B. 2C. -10D. 105. 若等差数列 {a n }的前 7 项和为 70 ,则 a 1+a 7等于()A. 5B. 10C. 15D. 20uuur uuur6. 如下图,已知菱形ABCD 的边长是 2 ,且∠ DAB =60 °,则AB AC 的值是()A. 4B. 4 2 3C. 6D. 4 2 3DA CB第 6 题图7. 对于随意角α,β,“ α = β ”是“ sinα =sin β”的()A. 充足不用要条件B. 必需不充足条件C. 充要条件D. 既不充足也不用要条件8. l⊥ OP ,则直线 l 的方程是(y如下图,直线)A. 3x - 2y=0B. 3x+2y - 12=0 3PC. 2x - 3y+5=0D. 2x+3y - 13=0 O2 x9. 在( 1+x )n的二项睁开式中,若全部项的系数之和为64 ,则第 3 项是(第 8 题图)A. 15x 3B. 20x 3C. 15x 2D. 20x 210. 在 RtV ABC 中,∠ ABC =90 °,AB=3 , BC=4 , M 是线段 AC 上的动点 . 设点 M 到 BC 的距离为 x ,V MBC的面积为y,则y对于x的函数是()A. y=4x , x ∈(0, 4]B. y=2x , x ∈(0,3]C. y=4x , x ∈(0, )D. y=2x , x ∈(0,)11.现把甲、乙等 6 位同学排成一排,若甲同学不可以排在前两位,且乙同学一定排在甲同学前方(相邻或不相邻均可),则不一样排法的种树是()A. 360B. 336C. 312D. 24012. 设会合 M={-2 , 0 , 2 , 4} ,则以下命题为真命题的是()A. a M , a 是正数B. b M , b是自然数C. c M , c 是奇数D. d M , d 是有理数13. 已知 sin1α的值是()α=,则 cos22A. 8B. 8C. 7D. 79 9 9 914. 已知 y=f(x) 在 R 上是减函数,若f(| a|+1)<f(2) ,则实数 a 的取值范围是()A. (-∞,1 )B. (-∞, 1 )∪( 1 ,+∞)C. (- 1 , 1 )D.(-∞,- 1 )∪( 1, +∞)15.已知 O 为坐标原点,点 M 在 x 轴的正半轴上,若直线 MA 与圆 x2 +y 2=2 相切于点 A ,且 |AO|=|AM| ,则点 M 的横坐标是()A. 2B.2C.22D. 416.如下图,点E、F、 G、 H 分别是正方体四条棱的中点,则直线EF 与 GH 的地点关系是()A. 平行B. 订交C.异面D. 重合FGHE第16 题图x y 2 ≥017.如下图,若x,y知足线性拘束条件x ≤0,y≥1则线性目标函数z=2x-y获得最小值时的最优解是()A. ( 0 , 1 )B. ( 0 , 2 )C. ( -1 ,1 ) D . ( -1 , 2 )18. 箱子中放有 6 张黑色卡片和 4 张白色卡片,从中任取一张,恰巧获得黑色卡片的概率是()A. 1B. 1C. 2D. 36 3 5 519. 已知抛物线的极点在座标原点,对称轴为坐标轴,若该抛物线经过点 M( -2 ,4 ),则其标准方程是()A. y 2=-8xB. y 2= - 8x 或 x2=yC. x 2=yD. y 2=8x 或 x2 = - y20. 已知V ABC的内角A,B,C的对边分别是a,b,c,若a=6,sinA=2cosBsinC ,向量 m = ( a, 3b) , 向量 n =( - cosA , sinB) ,且 m ∥ n ,则V ABC 的面积是()A. 18 3B. 9 3C. 3 3D. 3卷二(非选择题共 60 分)二、填空题(本大题 5 个小题,每题 4 分,共 20 分。

2024年山东省春季高考济南市第三次模拟考试数学试题

2024年山东省春季高考济南市第三次模拟考试数学试题

2024年山东省春季高考济南市第三次模拟考试数学试题一、单选题1.设集合{}{}{}1,0,11,3,5,0,2,4A B C =-==,,则()A B C ⋂⋃=( ) A .{}0B .{0,1,3,5}C .{0,1,2,4}D .{0,2,3,4}2.对于命题,p q 、若p q ∨⌝是假命题,则下列说法正确的是( ) A .p q 、都是真命题 B .p q 、都是假命题 C .p 是真命题,q 是假命题 D .p 是假命题,q 是真命题3.在ΔABC 中,“π3B =”是“角A ,B ,C 成等差数列”的() A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.设奇函数()f x 的定义域为[]5,5-,若当[]0,5x ∈时,函数()f x 图象如图所示,则不等式()0f x ≤的解集为A .[][]5,22,5--UB .[][]2,02,5-UC .[]22-,D .[][]5,20,2--U5.如图中的图象所表示的函数的解析式为( )A .31(02)2y x x =-≤≤ B .331(02)22y x x =--≤≤ C .31(02)2y x x =--≤≤ D .11(02)y x x =--≤≤6.一个水平放置的三角形的斜二测直观图是等腰直角三角形A B O ''',若2O B ''=,那么原ABO V 的面积是( )A.1B C D .7.已知0.150log 2,log 2a b ==,则21a b+=( )A .-2B .-1C .1D .28.若数列{}n a 的前n 项和(1)n S n n =+,则6a 等于( ) A .10B .11C .12D .139.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u vA .3144AB AC -u u u v u u u v B .1344AB AC -u u uv u u u v C .3144+AB AC u u uv u u u vD .1344+AB AC u u uv u u u v10.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1365石11.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .1012.设()tan π2α-=-,则()()()()sin πcos πsin πcos παααα-+-=+-+( )A .3B .13C .1D .1-13.设π3π44<<α,sin cos αα+=cos2=α( )A .12-B .12CD .14.已知向量(,1),(1,2)a m b == ,且222||||||a b a b +=+r r r r ,则m 的值为( )A .1B .2C .-1D .-215.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1257=+,在不超过18的素数2,3,5,7,11,13,17中,随机选取两个不同的数,其和等于18的概率是( )A .121B .221C .321D .42116.若直线1:20l x ay +-=与()22:2120l x a y ++-=平行,则两直线之间的距离为( )A B .1 C D .217.圆22(1)(1)4x y -++=上的点到直线34140x y +-=的距离的最大值为( )A .3B .4C .5D .918.如图所示,正方体1111ABCD A B C D -的棱长为1,点,,E F G 分别为11,,BC CC BB 的中点,则下列说法正确的是( )A .直线1D D 与直线AF 垂直B .直线1AG 与平面AEF 平行 C .三棱锥F ABE -的体积为18D .直线BC 与平面AEF 所成的角为45︒19.已知双曲线1C 过点(A ,且与双曲线222:31C x y -=有相同的渐近线,则双曲线1C 的标准方程为( )A .221124x y -=B .221124y x -=C .221155x y -=D .221155y x -=20.函数π()sin()0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法错误的是( )A .函数的周期是3π2B .函数()y f x =的图象的过点C .函数()y f x =在5ππ,6⎡⎤--⎢⎥⎣⎦上单调递减 D .当13π3π,62x ⎛⎫∈-- ⎪⎝⎭时,()1f x >二、填空题21.若函数2(1),0,()1,0,x x f x x x x ⎧-≤⎪=⎨+>⎪⎩则((1))f f -=. 22.如图,是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以自豪的发现,在这个伟大发现中,球的体积与圆柱的体积之比为.23.某学校有5个班级的同学一起到某工厂参加社会实践活动,该工厂有5个车间供学生选择,每个班级任选一个车间进行实践学习,则恰有2个班级选择甲车间,1个班级选择乙车间的方案有种.24.已知变量,x y 满足线性约束条件202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则212x yz +⎛⎫= ⎪⎝⎭的最大值为.25.已知12F F 、是椭圆22221(0)x y a b a b+=>>的左,右焦点,点P 为椭圆上一点,O 为坐标原点,2V POF 为正三角形,则该椭圆的离心率为.三、解答题26.已知函数()mf x x x=+,且(1)2f =. (1)求m 的值;(2)判断函数()f x 在(1,)+∞上是增函数还是减函数,并证明. 27.已知等比数列{}n a 的各项皆为正数,且351,100a a ==. (1)求数列{}n a 的通项公式; (2)求()123100lg a a a a ⋅⋅⋅⋅L 的值.28.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测,B ,C ,D 三地位于同一水平面上,这种仪器在B 地进行弹射实验,,C D 两地相距100m ,60BCD ∠=︒,在C 地听到弹射声音的时间比D 地晚217秒,在C 地测得该仪器至最高点A 处的仰角为30︒.(已知声音的传播速度为340m/s ),求:(1)B ,C 两地间的距离; (2)这种仪器的垂直弹射高度AB .29.如图所示,PDCE 为矩形,ABCD 为梯形,平面PDCE ⊥平面ABCD ,90,BAD ADC ︒∠=∠=AB AD =11,2CD ==PD =(1)若点M 为PA 的中点,证明://AC 平面MDE ; (2)求异面直线PB 与CD 所成角的大小.30.如图所示,抛物线22(0)y px p =>的准线过点(2,3)-,(1)求抛物线的标准方程;(2)若角α为锐角,以角α为倾斜角的直线经过抛物线的焦点F ,且与抛物线交于A 、B 两点,作线段AB 的垂直平分线l 交x 轴于点P ,证明:||||cos 2α-FP FP 为定值,并求此定值.。

2019-2020年高三第二次调研考试数学文试题 含答案(可打印修改)

2019-2020年高三第二次调研考试数学文试题 含答案(可打印修改)

2019-2020年高三第二次调研考试数学文试题 含答案本卷分选择题非选择题两部分,共4页,满分150分.考试用时间120分钟.注意事项:1.考生务必将自己的姓名、班级、学校用蓝、黑墨水钢笔签字笔写在答题卷上;2.选择题、填空题每小题得出答案后,请将答案填写在答题卷相应指定位置上。

答在试题卷上不得分;3.考试结束,考生只需将答题卷交回.4. 参考公式:锥体的体积公式,其中是锥体的底面积,是锥体的高.正棱锥的侧面积公式:,是底面周长,是斜高.一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={0,1,2,3,4,5},集合A={2,4},B=,则集合A .{0,4,5,2}B .{0,4,5}C .{2,4,5}D .{1,3,5}2.已知为虚数单位,则=( )A -B -1CD 13.设,则这四个数的大小关系是( )0.320.30.3log 2,log 3,2,0.3a b c d ====A . B . C. D.4.若方程表示双曲线,则k 的取值范围是()A. B. C. D. 或5.某几何体的三视图如图所示(俯视图是正方形,正视图和左视图是两个全等等腰三角形)根据图中标出的数据,可得这个几何体的表面积为( )A .B .C .D .12 6.已知回归直线斜率的估计值为1.23,样本点的中心为点(4,5),则回归直线的方程为( )A.=1.23x +4B.=1.23x +5C .=1.23x +0.08D .=0.08x +1.237. 设不等式组表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原002x y x y ≥⎧⎪≥⎨⎪+≤⎩点的距离大于的概率是( )A . B . C .D .8. 中,角、、所以的边为、、, 若,,面积,则( )A. B. C. D.9.设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值分.解答应写出文字说明,证明过程或演算步骤.(1)求高一(1)班参加校生物竞赛人数及分数在之间的频数,并计算频率分布直方图中间的矩形的高;(2)若要从分数在之间的学生中任选两人进行某项研究,求至少有一人分数在之间的概率.18.(本小题满分14分)如图,已知⊙所在的平面,是⊙的直径,,C是⊙上一点,且,.(1) 求证:;(2) 求证:;(3)当时,求三棱锥的体积.19.(本小题满分14分)椭圆的离心率为,两焦点分别为,点M是椭圆C上一点,的周长为16,设线段MO(O为坐标原点)与圆交于点N,且线段MN长度的最小值为.(1)求椭圆C以及圆O的方程;(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.20.(本小题满分14分)已知函数.(1)判断奇偶性, 并求出函数的单调区间;(2)若函数有零点,求实数的取值范围.21.(本小题满分14分)设等差数列的公差,等比数列公比为,且,,(1)求等比数列的公比的值;(2)将数列,中的公共项按由小到大的顺序排列组成一个新的数列,是否存在正整数(其中)使得和都构成等差数列?若存在,求出一组的值;若不存在,请说明理由.韶关市xx高三年级第一次调研(期末)测试数学试题(文科)参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.DCBAB CDDCA二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11. 12.13. (2分),(3分)14.15. 内切三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分12分)函数()的部分图像如右所示.(1)求函数的解析式;(2)设,且,求的值解:(1)∵由图可知:函数的最大值为,………2分且∴,最小正周期………………………………………………………4分∴故函数的解析式为. …………………………………6分(2),………………………………………………………8分∴,∵,∴,…………………………………………………………10分∴ …………………………………………………………………12分17.(本题满分12分)高一(1)班参加校生物竞赛学生成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高一(1)班参加校生物竞赛人数及分数在之间的频数,并计算频率分布直方图中间的矩形的高;(2)若要从分数在之间的学生中任选两人进行某项研究,求至少有一人分数在之间的概率.解.(1)分数在之间的频数为,频率为,高一(1)班参加校生物竞赛人数为.………2分所以分数在之间的频数为………4分频率分布直方图中间的矩形的高为.………6分(2)设至少有一人分数在之间为事件A将之间的人编号为,之间的人编号为,在之间的任取两人的基本事件为:,,,,,. 共个,,,,,,,………………………………………………………………………………………………..9分其中,至少有一个在之间的基本事件有个……………………………………10分根据古典概型概率计算公式,得………………………………………11分答:至少有一人分数在之间的概率………………………………………12分18.(本小题满分14分)如图,如图,已知⊙所在的平面,是⊙的直径,C是⊙上一点,且,.(1) 求证:;(2) 求证:;(3)当时,求三棱锥的体积.[网]16.如图所示,一个带正电的粒子沿x轴正向射人匀强磁场中,它所受到的洛伦兹力方向.沿Y轴正向,则磁场方向A.一定沿z轴正向B.一定沿z轴负向.C.一定在xOy平面内D.一定在xoz平面内,[来二、双项选题(共9个小题,每题6分,共54分。

山东省济南市2024届高三下学期3月模拟考试数学试题(含答案与解析)_9045

山东省济南市2024届高三下学期3月模拟考试数学试题(含答案与解析)_9045

绝密★启用并使用完毕前2024年3月山东省济南市高三模拟考试数学试题本试卷共4页,19题,全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 记等差数列{}n a 的前n 项和为n S .若57a =,102a =,则14S =()A 49B. 63C. 70D. 1262. 已知(),1a m = ,()31,2b m =- ,若//a b r r,则m =( )A. 1B. 1-C.23D. 23-3. 某公司现有员工120人,在荣获“优秀员工”称号的85人中,有75人是高级工程师.既没有荣获“优秀员工”称号又不是高级工程师的员工共有14人,公司将随机选择一名员工接受电视新闻节目的采访,被选中的员工是高级工程师的概率为( ) A.38B.1724C.45D.33404. 与抛物线22x y =和圆22(1)1x y ++=都相切的直线的条数为( ) A. 0B. 1C. 2D. 35. 已知a ,b ,c 分别为ABC 三个内角A ,B ,C的对边,且cos sin a C C b +=,则A =( ) A.π6B.π4C.π3D.π26. 若sin1a =,()lg tan1b =,12c =,则( ) A. c b a <<B. b a c <<.C. b<c<aD. a c b <<7. 已知复数1z ,2z 满足1212222z z z z ==-=,则1212z z +=( ) A. 1B.C. 2D.8. 若不等式()ln e ,x a x b a b x ≤+≤∈R 对任意的31,2x ⎡⎤∈⎢⎥⎣⎦恒成立,则a 的最小值为( ) A. 323e -B. 325e 2-C33ln 22 D. 33e 3ln2- 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知椭圆C :223448x y +=的两个焦点分别为1F ,2F ,P 是C 上任意一点,则( ) A. CB. 12PF F △的周长为12C. 1PF 的最小值为3D. 22PF PF ⋅的最大值为1610. 已知函数()()πcos 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象在y 轴上的截距为12,π12是该函数的最小正零点,则( ) A. π3ϕ=B. ()()2f x f x '+≤恒成立C. ()f x 在π0,3⎛⎫⎪⎝⎭上单调递减D. 将()y f x =的图象向右平移π3个单位,得到的图象关于y 轴对称 11. 下列等式中正确的是( ) A.8881C 2k k ==∑B.82392C C k k ==∑ .C. 82111!8!k k k =-=-∑ D. ()8828160C C k k ==∑三、填空题:本题共3小题,每小题5分,共15分.12. 已知随机变量()2~1,2X N ,则()21D X +的值为__________.13. 在三棱柱111ABC A B C -中,2AM MB = ,111A N mA C =,且//BN 平面1A CM ,则m 的值为________.14. 已知集合()()(){}2,,R A u x u x ax a b x b a b ==-++∈,函数()21f x x =-.若函数()g x 满足:对任意()u x A ∈,存在,R λμ∈,使得()()()u x f x g x λμ=+,则()g x 的解析式可以是_______.(写出一个满足条件的函数解析式即可)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知数列{}n a 的前n 项和为n S ,132a =且123n n S a +=-,令2n nn n b a +=.(1)求证:{}n a 为等比数列; (2)求使n b 取得最大值时的n 的值.16. 已知函数()2e e x xf x ax =+-.(1)当3a =时,求()f x 单调区间; (2)讨论()f x 极值点的个数.17. 抛掷甲、乙两枚质地均匀的骰子,所得的点数分别为a ,b ,记b a ⎡⎤⎢⎥⎣⎦的取值为随机变量X ,其中b a ⎡⎤⎢⎥⎣⎦表示不超过ba的最大整数. (1)求在0X >的条件下,bX a=的概率; (2)求X 分布列及其数学期望.18. 已知双曲线C :2214x y -=的左右顶点分别为1A ,2A ,过点()4,0P 的直线l 与双曲线C 的右支交于M ,N 两点.(1)若直线l 的斜率k 存在,求k 的取值范围;的的(2)记直线1A M ,2A N 的斜率分别为1k ,2k ,求12k k 的值; (3)设G 为直线1A M 与直线2A N 的交点,GMN ,12GA A △的面积分别为1S ,2S ,求12S S 的最小值. 19. 在空间直角坐标系O xyz -中,任何一个平面的方程都能表示成0Ax By Cz D +++=,其中,,,A B C D ∈R ,2220A B C ++≠,且(),,n A B C =为该平面的法向量.已知集合(){},,1,1,1P x y z x y z =≤≤≤,(){},,2Q x y z x y z =++≤,(){},,2,2,2T x y z x y y z z x =+≤+≤+≤.(1)设集合(){},,0M x y z z ==,记P M ⋂中所有点构成的图形的面积为1S ,Q M 中所有点构成的图形的面积为2S ,求1S 和2S 的值;(2)记集合Q 中所有点构成的几何体的体积为1V ,P Q 中所有点构成的几何体的体积为2V ,求1V 和2V 的值:(3)记集合T 中所有点构成的几何体为W . ①求W 的体积3V 的值;②求W 的相邻(有公共棱)两个面所成二面角的大小,并指出W 的面数和棱数.参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 记等差数列{}n a 的前n 项和为n S .若57a =,102a =,则14S =()A. 49B. 63C. 70D. 126【答案】B 【解析】【分析】利用等差数列的项的“等和性”得到1149a a +=,再运用等差数列的前n 项和公式计算即得. 【详解】因{}n a 是等差数列,故1145109a a a a +=+=,于是1141414()63.2a a S +==故选:B2. 已知(),1a m = ,()31,2b m =- ,若//a b r r,则m =( )A. 1B. 1-C.23D. 23-【答案】A 【解析】【分析】根据平面向量共线的充要条件即可得解.【详解】因为(),1a m = ,()31,2b m =- ,//a b r r ,所以()2310m m --=,解得1m =. 故选:A .3. 某公司现有员工120人,在荣获“优秀员工”称号的85人中,有75人是高级工程师.既没有荣获“优秀员工”称号又不是高级工程师的员工共有14人,公司将随机选择一名员工接受电视新闻节目的采访,被选中的员工是高级工程师的概率为( ) A.38B.1724C.45D.3340【答案】C 【解析】【分析】求出没有荣获“优秀员工”称号高级工程师人数,得到公司的高级工程师总人数,从而得到概率. 【详解】由题意得,没有荣获“优秀员工”称号的高级工程师有120851421--=人, 则公司共有高级工程师的人数为752196+=, 故被选中的员工是高级工程师的概率为9641205=. 故选:C4. 与抛物线22x y =和圆22(1)1x y ++=都相切的直线的条数为( ) A. 0 B. 1C. 2D. 3【答案】D 【解析】【分析】设出切点坐标,利用导数的几何意义求出抛物线的切线方程,再由圆的切线性质列式计算即得.【详解】设直线与抛物线22x y =相切切点坐标为21(,)2t t ,由212y x =,求导得y x '=, 因此抛物线22x y =在点21(,)2t t 处的切线方程为21()2y t t x t -=-,即2102tx y t --=,的的依题意,此切线与圆22(1)1x y ++=1=,解得0=t或t =±数为3. 故选:D5. 已知a ,b ,c 分别为ABC 三个内角A ,B ,C的对边,且cos sin a C C b +=,则A =( ) A.π6B.π4C.π3D.π2【答案】A 【解析】【分析】由题设条件和正弦定理化边为角,再利用和角公式进行拆角化简,即可得到tan A =角形内角范围即得.详解】由cos sin a C C b =以及正弦定理可得:sin cos sin sin A C A C B +=,因sin sin()sin cos cos sin B A C A C +A C =+=sin cos sin 0A C A C -=, 因0π,sin 0C C <<>,则得tan A =,又因0πA <<,故π6A =.故选:A.6. 若sin1a =,()lg tan1b =,12c =,则( ) A. c b a << B. b a c << C. b<c<a D. a c b <<【答案】C 【解析】【分析】利用三角函数和对数函数的单调性,放缩求解即可. 【详解】因为π1sin1sin 62>=,所以a c >,因为πtan1tan 3<=,所以()1lg tan1lg 2<<=,即b c <, 综上b<c<a , 故选:C【7. 已知复数1z ,2z 满足1212222z z z z ==-=,则1212z z +=( )A. 1B.C. 2D.【答案】B 【解析】【分析】首先分析题意,设出复数,求出复数的模找变量之间的关系,整体代入求解即可.【详解】设12i,i, z a b z c d =+=+则2===所以221a b +=,224,c d +=484()ac bd -+=,即1ac bd +=,则1212z z +====故选:B. 8. 若不等式()ln e ,x a x b a b x ≤+≤∈R 对任意的31,2x ⎡⎤∈⎢⎥⎣⎦恒成立,则a 的最小值为( ) A. 323e -B. 325e 2-C.33ln 22 D. 33e 3ln2- 【答案】A 【解析】【分析】因为ln e x ax b x≤+≤,所以ln e x x x bx a x ≤+≤,即求直线y bx a =+的纵截距a 的最小值,设()e x f x x =,利用导数证明()f x 在31,2x ⎡⎤∈⎢⎥⎣⎦的图象上凹,所以直线与()f x 相切,切点横坐标越大,纵截距越小,据此即可求解. 【详解】因为ln e x ax b x≤+≤,所以ln e x x x bx a x ≤+≤,所以即求直线y bx a =+的纵截距a 的最小值, 设()e x f x x =,所以()e (1)0x f x x '=+>,所以()f x 在31,2x ⎡⎤∈⎢⎥⎣⎦单调递增,所以()f x 在31,2x ⎡⎤∈⎢⎥⎣⎦的图象上凹,所以直线与()f x 相切,切点横坐标越大,纵截距越小,令切点横坐标为32,所以直线过点3233(,e )22,且直线y bx a =+斜率为325e 2所以y bx a =+的直线方程为3259e ()24y x =-,当1x =时,3322e 2.56 1.024ln 44y x x =>=>,即直线y bx a =+与()f x 相切时, 直线y bx a =+与()f x 无交点, 设()ln g x x x =,所以()ln 1g x x '=+,所以()g x 在32x =时斜率为3ln 12+,在1x =时斜率为1,均小于直线的斜率, 所以可令直线y bx a =+在32x =处与()f x 相交,在1x =处与ln y x x =相交,所以直线方程为32323e 02(1)03e (1)312y x x -=-+=--, 所以截距为323e -. 故选:A.【点睛】关键点点睛:本题关键在于ln e x ax b x≤+≤,ln e x x x bx a x ≤+≤,即求直线y bx a =+的纵截距a 的最小值的分析.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知椭圆C :223448x y +=的两个焦点分别为1F ,2F ,P 是C 上任意一点,则( )A. CB. 12PF F △的周长为12C. 1PF 的最小值为3D. 22PF PF ⋅的最大值为16【答案】BD 【解析】【分析】首先分析题意,利用椭圆性质进行逐个求解,直接求出离心率判断A ,利益椭圆的定义求出焦点三角形周长判断B ,举反例判断C ,利用基本不等式求最大值判断D 即可.【详解】由椭圆22:3448,C x y +=得221,1612x y +=则4,2,a b c ===所以12c e a ==,故A 错误; 易知12PF F △的周长为121228412F c F PF PF a ++=+2=+=故B 正确;当P 在椭圆长轴的一个端点时,1PF 取得最小值,最小值为422a c -=-=,故C 错误; 由基本不等式得122122PF PF PF PF +⋅≤()=16,当且仅当12PF PF =时取等,则12PF PF ⋅取得最大值16,故D 正确. 故选:BD.10. 已知函数()()πcos 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象在y 轴上的截距为12,π12是该函数的最小正零点,则( ) A. π3ϕ=B. ()()2f x f x '+≤恒成立C. ()f x 在π0,3⎛⎫⎪⎝⎭上单调递减D. 将()y f x =的图象向右平移π3个单位,得到的图象关于y 轴对称 【答案】AC 【解析】【分析】由题意求出,ωϕ,然后由余弦型函数的性质判断即可.【详解】函数()()πcos 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭图象在y 轴上的截距为12, 所以1cos 2ϕ=,因为π02ϕ<<,所以π3ϕ=.故A 正确;又因为π12是该函数的最小正零点, 所以ππcos 0123ω⎛⎫+= ⎪⎝⎭,所以πππ1232ω+=,解得2ω=,所以()πcos 23f x x ⎛⎫=+⎪⎝⎭,()π2sin 23f x x ⎛⎫=-+ ⎪⎝⎭',所以()()πππcos 22sin 22333f x f x x x x θ⎛⎫⎛⎫⎛⎫+=+-+=++≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭',故B 错误; 当π0,3x ⎛⎫∈ ⎪⎝⎭时,()ππ2,π0,π33x ⎛⎫+∈∈ ⎪⎝⎭,故C 正确; 将()y f x =的图象向右平移π3个单位,得到πππcos 2cos 2333y x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,是非奇非偶函数,图象不关于y 轴对称,故D 错误. 故选:AC.11. 下列等式中正确的是( ) A.8881C2kk ==∑B.82392CC k k ==∑C. 82111!8!k k k =-=-∑ D.()882816C C k k ==∑ 【答案】BCD 【解析】【分析】利用()81x +的展开式与赋值法可判断A ,利用组合数的性质2331C C C n n n ++=可判断B ,利用阶乘的裂项法可判断C ,构造()()()1688111x x x +=++求其含8x 的项的系数可判断D.【详解】对于A ,因为()801228888881C C C C x x x x +=++++ ,令1x =,得881288888121C C C 1Ck k ==++++=+∑ ,则88811C2k k ==-∑,故A 错误;的对于B ,因为2331C C C n n n ++=, 所以8222223222234833482CC C C C C C C C kk ==++++=++++∑322323448889C C C C C C =+++==+= ,故B 正确;对于C ,因为()()()()()()!1!11!1111!!!1!!1!!k k k k k k k k k k k k ------===---,所以()882211111111111!1!!1!2!2!3!7!8!8!k k k k k k ==⎡⎤-=-=-+-++-=-⎢⎥-⎣⎦∑∑ ,故C 正确. 对于D ,()()()1688111x x x +=++, 对于()161x +,其含有8x 的项的系数为816C ,对于()()8811x x ++,要得到含有8x 的项的系数,须从第一个式子取出()08,N k k k ≤≤∈个x ,再从第二个式子取出8k -个x , 它们对应的系数为()088288808C CC kk kk k =-==∑∑, 所以()8828160C C k k ==∑,故D 正确.故选:BCD.【点睛】关键点点睛:本题D 选项解决的关键是,利用组合的思想,从多项式()()8811x x ++中得到含有8x 的项的系数,从而得解.三、填空题:本题共3小题,每小题5分,共15分.12. 已知随机变量()2~1,2X N ,则()21D X +的值为__________.【答案】16 【解析】【分析】理解正态分布的均值、方差的含义即得()D X ,再利用随机变量的方差性质即可求得()21D X +. 【详解】由()2~1,2X N 可得2()24D X ==,则(21)4()16D X D X +==.故答案为:16 .13. 在三棱柱111ABC A B C -中,2AM MB = ,111A N mA C =,且//BN 平面1A CM ,则m 的值为________. 【答案】12 ##0.5 【解析】【分析】利用三棱柱模型,选择一组空间基底1,,AB a AC b AA c ===,将相关向量分别用基底表示,再利用//BN 平面1A CM ,确定1,,BN MA MC必共面,运用空间向量共面定理表达,建立方程组计算即得.【详解】如图,不妨设1,,AB a AC b AA c === ,依题意,1122,3233AM a MA MA AA c a AB +=-===-, 23MC AC AM b a =-=- ,因111A N mAC mb == ,则11,BN BA A N c a mb =+=-+又因//BN 平面1A CM ,故1,,BN MA MC必共面,即存在,R λμ∈,使1BN MA MC λμ=+,即22()()33c a mb c a b a λμ-+=-+-,从而有2()131m λμμλ⎧-+=-⎪⎪=⎨⎪=⎪⎩,解得12m =.故答案为:12.14. 已知集合()()(){}2,,R A u x u x ax a b x b a b ==-++∈,函数()21f x x =-.若函数()g x 满足:对任意()u x A ∈,存在,R λμ∈,使得()()()u x f x g x λμ=+,则()g x 的解析式可以是_______.(写出一个满足条件的函数解析式即可)【答案】()1g x x =-(满足()10g =,且一次项系数不为零的所有一次或者二次函数解析式均正确)【解析】【分析】根据()10u =,求得()10g =,则满足()10g =的一次函数或二次函数均可. 【详解】()()2u x ax a b x b =-++,()21f x x =-,()()10u a a b b =-++=,()10f =,()()()u x f x g x λμ=+,()()()()11110u f g g λμμ=+==,所以()10g =,则()g x 的解析式可以为()1g x x =-. 经检验,()1g x x =-满足题意. 故答案为:()1g x x =-(答案不唯一).【点睛】关键点点睛:本题的关键是根据函数的形式,确定函数的关键特征和条件.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知数列{}n a 的前n 项和为n S ,132a =且123n n S a +=-,令2n n n nb a +=.(1)求证:{}n a 为等比数列; (2)求使n b 取得最大值时的n 的值. 【答案】(1)证明见解析(2)32081. 【解析】【分析】(1)结合已知,由2n ≥时1n n n a S S -=-化简得132n n a a +=,再由2132a a =及等比数列的定义证明即可;(2)先求得()223nn b n n ⎛⎫=+ ⎪⎝⎭,利用作商法判断数列{}n b 的单调性即可求得最值.【小问1详解】由123n n S a +=-,可得2n ≥时,1122n n n n n a S S a a -+=-=- 即2n ≥,132n n a a +=,又因为132a =,所以294a =,2132aa =,综上,1n ≥,132n n a a +=,所以{}n a 为首项和公比均为32的等比数列. 【小问2详解】由(1)可得32n n a ⎛⎫= ⎪⎝⎭,所以()223nn b n n ⎛⎫=+ ⎪⎝⎭,2n ≥时,()()()()221221313nn n n n b b n n n -++==--, 令11n n b b ->,可得25n ≤<,(或令11nn b b -<,可得5n >), 可知1234567b b b b b b b <<<=>>>⋅⋅⋅, 综上,4n =或5n =时,n b 的取得最大值32081. 16. 已知函数()2e e x xf x ax =+-.(1)当3a =时,求()f x 的单调区间; (2)讨论()f x 极值点的个数.【答案】(1)单调递增区间为()0,∞+,单调递减区间为(),0∞-;(2)答案见解析. 【解析】【分析】(1)求出函数的导函数,再解关于导函数的不等式,即可求出函数的单调区间;(2)求出函数的导函数,分0a ≤、0a >两种情况讨论,分别求出函数的单调性,即可得到函数的极值点个数.小问1详解】当3a =时,()2e e 3x xf x x =+-定义域为R , 又()22e e 3x xf x '=+-,所以()()()2e 3e 1x xf x '=+-,由()0f x ¢>,解得0x >,此时()f x 单调递增; 由()0f x '<,解得0x <,此时()f x 单调递减,【所以()f x 的单调递增区间为()0,∞+,单调递减区间为(),0∞-. 【小问2详解】函数()f x 的定义域为R ,由题意知,()22e e x xf x a '=+-,当0a ≤时,()0f x ¢>,所以()f x 在R 上单调递增, 即()f x 极值点的个数为0个; 当0a >时,易知180a +>,故解关于t 的方程220t t a +-=得,1t =,2t =所以()()()122e exxf x t t '=--,又21104t -+=>=,10t =<,所以当2ln x t >时,()0f x ¢>,即()f x 在()2ln ,t +∞上单调递增, 当2ln x t <时,()0f x '<,即()f x 在()2,ln t -∞上单调递减, 即()f x 极值点的个数为1个.综上,当0a ≤时,()f x 极值点的个数为0个;当0a >时,()f x 极值点的个数为1个.17. 抛掷甲、乙两枚质地均匀的骰子,所得的点数分别为a ,b ,记b a ⎡⎤⎢⎥⎣⎦的取值为随机变量X ,其中b a ⎡⎤⎢⎥⎣⎦表示不超过ba的最大整数. (1)求在0X >的条件下,bX a=的概率; (2)求X 的分布列及其数学期望. 【答案】(1)23(2)分布列见解析,()4136E X = 【解析】【分析】(1)利用列举法结合条件概率公式即可得解;(2)写出随机变量的所有可能取值,求出对应概率,即可得出分布列,再根据期望公式求期望即可. 【小问1详解】记抛掷骰子的样本点为(),a b , 则样本空间为(){}Ω,16,16,Z,Z a b a b a b =≤≤≤≤∈∈,则()Ω36n =,记事件A =“0X >”,记事件B =“b bX a a ⎡⎤==⎢⎥⎣⎦”,则(){},16,Z,Z A a b a b a b =≤≤≤∈∈,且()21n A =,又{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),AB =}(2,6),(3,3),(3,6),(4,4),(5,5),(6,6),则()14n AB =, 所以()()()142213n AB P B A n A ===, 即在0X >的条件下,b X a=的概率为23;【小问2详解】X 所有可能取值为0,1,2,3,4,5,6.()3621503612P X -===,()1211363P X ===,()412369P X ===, ()2133618P X ===,()1436P X ==,()1536P X ==,()1636P X ==,所以X 的分布列为:X 01 2 3 4 5 6P512 13 19 118 136 136 136所以()511111141012345612391836363636E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 18. 已知双曲线C :2214x y -=的左右顶点分别为1A ,2A ,过点()4,0P 的直线l 与双曲线C 的右支交于M ,N 两点.(1)若直线l 的斜率k 存在,求k 的取值范围; (2)记直线1A M ,2A N 的斜率分别为1k ,2k ,求12k k 的值; (3)设G 为直线1A M 与直线2A N 的交点,GMN ,12GA A △的面积分别为1S ,2S ,求12S S 的最小值. 【答案】(1)11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭; (2)13-;(3)3. 【解析】【分析】(1)设直线l 的方程为4x my =+,联立方程组,结合题意列出不等式组,即可求解;(2)由(1)得到121222812,44m y y y y m m +=-=--,求得()121223my y y y =-+,结合斜率公式,准确运算,即可求解;(3)由(2)可知213k k =-,设1A M 与2A N 的方程分别为()12y k x =+和()132y k x =--,两两方程组,求得1G x =,结合三角形的面积公式和不等式的性质,即可求解. 【小问1详解】解:设()11,M x y ,()22,N x y ,直线l 的方程为4x my =+,联立方程组22414x my x y =+⎧⎪⎨-=⎪⎩,整理得()2248120m y my -++=, 因为直线l 与双曲线的右支交于,M N 两点,可得()()()2222122Δ8441216120401204m m m m y y m ⎧=--⨯=+>⎪⎪-≠⎨⎪⎪=<-⎩,解得22m -<<,又由直线l 的斜率为1k m =,可得k 的取值范围是11,,22∞∞⎛⎫⎛⎫--⋃+ ⎪ ⎪⎝⎭⎝⎭.【小问2详解】解:由双曲线22:14x C y -=,可得()12,0A -,()22,0A ,由(1)可得12284my y m +=--,122124y y m =-,则()121223my y y y =-+. 所以()()()()1121211121222121122222222662y y x y my k x my y y y k y x y my my y y x -+++====+++- ()()12112122123132122233936222y y y y y y y y y y -++-===--++-+.【小问3详解】解:由(2)可知213k k =-,所以直线1A M 与直线2A N 的方程分别为()12y k x =+和()132y k x =--, 联立两直线方程可得交点G 的横坐标为1G x =,于是()()1211221212121sin 331121313sin 2GM GN MGN my my S x x GM GN S GA GA GA GA A GA ⋅∠++--==⋅=⋅=⋅∠ ()221212223912161611334440m y y m y y m m m +++--===-+≥-+=---, 故12S S 的最小值为3,当且仅当0m =时取等号成立.【点睛】方法技巧:求解圆锥曲线的最值问题的解答策略与技巧:1、几何方法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用圆、圆锥曲线的定义、图形,以及几何性质求解;2、代数方法:当题目给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个目标函数的最值(或值域),常用方法:①配方法;②基本不等式;③单调性法;④三角换元法;⑤导数法等,要特别注意自变量的取值范围.19. 在空间直角坐标系O xyz -中,任何一个平面的方程都能表示成0Ax By Cz D +++=,其中,,,A B C D ∈R ,2220A B C ++≠,且(),,n A B C =为该平面的法向量.已知集合(){},,1,1,1P x y z x y z =≤≤≤,(){},,2Q x y z x y z =++≤,(){},,2,2,2T x y z x y y z z x =+≤+≤+≤.(1)设集合(){},,0M x y z z ==,记P M ⋂中所有点构成的图形的面积为1S ,Q M 中所有点构成的图形的面积为2S ,求1S 和2S 的值;(2)记集合Q 中所有点构成的几何体的体积为1V ,P Q 中所有点构成的几何体的体积为2V ,求1V 和2V 的值:(3)记集合T 中所有点构成的几何体为W . ①求W 的体积3V 的值;②求W 的相邻(有公共棱)两个面所成二面角的大小,并指出W 的面数和棱数. 【答案】(1)14S =,28S =;(2)1323V =,2203V =; (3)①16;②2π3,共有12个面,24条棱.【解析】【分析】(1)首先分析题意进行解答,分别表示出集合,M P 代表的点,后得到P M ⋂的截面是正方形求出1S ,同理得到Q M 是正方形求出2S 即可.(2)首先根据(1)分析得出P Q '' 为截去三棱锥4123Q Q Q Q -所剩下的部分. 后用割补法求解体积即可.(3)利用题目中给定的定义求出法向量,结合面面角的向量求法求解,再看图得到面数和棱数即可. 【小问1详解】 集合(){},,0M x y z z ==表示xOy 平面上所有的点,(){},,1,1,1P x y z x y z =≤≤≤表示()1,1,1±±±这八个顶点形成的正方体内所有的点,而P M ⋂可以看成正方体在xOy 平面上的截面内所有的点. 发现它是边长为2的正方形,因此14S =. 对于(){},,2Q x y z x y z =++≤,当,,0x y z >时,2x y z ++=表示经过(2,0,0),(0,2,0),(0,0,2)的平面在第一象限的部分.由对称性可知Q 表示2,0,0±(),0,2,0±(),0,0,2±() 这六个顶点形成的正八面体内所有的点.而Q M 可以看成正八面体在xOy 平面上的截面内所有的点.它是边长为28S =. 【小问2详解】记集合Q ,P Q 中所有点构成的几何体的体积分别为1V ,2V ; 考虑集合Q 的子集(){},,2,0,0,0Q x y z x y z x y z =++≤≥≥≥';即为三个坐标平面与2x y z ++=围成的四面体.四面体四个顶点分别为(0,0,0),(2,0,0),(0,2,0),(0,0,2), 此四面体的体积为114222323Q V '⎛⎫=⨯⨯⨯⨯= ⎪⎝⎭由对称性知,13283Q V V '== 考虑到P 的子集P '构成的几何体为棱长为1的正方体,即(){},,01,01,01P x y z x y z =≤≤≤≤≤≤',(){},,2,0,0,0Q x y z x y z x y z =++≤≥≥≥',显然P Q '' 为两个几何体公共部分,记()11,1,0Q ,()21,0,1Q ,()30,1,1Q ,()41,1,1Q .容易验证1Q ,2Q ,3Q 在平面2x y z ++=上,同时也在P '的底面上. 则P Q '' 为截去三棱锥4123Q Q Q Q -所剩下的部分.P '的体积1111P V '=⨯⨯=,三棱锥4123Q Q Q Q -的体积为()4123111111326Q Q Q Q V -=⨯⨯⨯⨯=. 故P Q '' 的体积412315166P Q P Q Q Q Q V V V '''-=-=-= . 当由对称性知,22083P Q V V ''==. 【小问3详解】如图所示,即为T 所构成的图形.其中正方体ABCD IJML -即为集合P 所构成的区域.E ABCD -构成了一个正四棱锥,其中E 到面ABCD 的距离为2,1412233E ABCD V -=⨯⨯⨯=,34686163P E ABCD V V V -=+=+⨯=.由题意面EBC 方程为20x z +-=,由题干定义知其法向量()11,0,1n =面ECD 方程为20y z +-=,由题干定义知其法向量()20,1,1n = 故1212121cos ,2n n n n n n ⋅==⋅ . 由图知两个相邻的面所成角为钝角.故H 相邻两个面所成角为2π3. 由图可知共有12个面,24条棱. 【点睛】关键点点睛:本题考查立体几何新定义,解题关键是利用新定义求出法向量,然后利用向量求法得到所要求的二面角余弦值即可.。

山东省济南市2013届高三3月高考模拟文科数学

山东省济南市2013届高三3月高考模拟文科数学

山东省济南市2013届高三高考模拟考试文科数学试题本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页. 考试时间120分钟,满分150分,考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:1.锥体的体积公式:1V S 3h =,其中S 是锥体的底面积,h 是锥体的高; 2.方差],)()()[(1222212x x x x x x ns n -++-+-=其中x 为n x x x ,,,21 的平均数. 第I 卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1. 已知全集}6,5,4,3,2,1,0{=U ,集合{1,2}A =,}5,2,0{=B ,则集合=B A C U )(A .{3,4,6}B .{3,5}C .{0,5}D .{0,2,4}【答案】C{0,3,4,5,6}U A =ð,所以(){0,5}U A B = ð,选C.2. 设复数(34)(12)z i i =-+(i 是虚数单位),则复数z 的虚部为 A .2- B. 2 C. i 2- D. i 2【答案】B由(34)(12)52z i i i =-+=-+,所以复数z 的虚部为2,选B. 3. 若6.03=a ,2.0log 3=b ,36.0=c ,则A .b c a >> B. c b a >> C. a b c >> D. a c b >>【答案】A0.6331,log 0.20><,300.61<<,所以a c b >>。

2019年山东省济南市中考数学试题及答案全解全析

2019年山东省济南市中考数学试题及答案全解全析

济南市2019年初三年级学业水平考试数学试题(满分150分,考试时间120分钟)一、选择题:本大题共12小题,每小题4分,共48分.在每个小题给出的四个选项中,只有一个选项是符合题目要求的.1.(2019山东济南中考,1,4分,★☆☆)-7的相反数是( )A .-7B .71C .7D .71 2.(2019山东济南中考,2,4分,★☆☆)以下给出的几何体中,主视图是矩形,俯视图是圆的是( )A .B .C .D .3.(2019山东济南中考,3,4分,★☆☆)2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为( )A .0.1776×103B .1.776×102C .1.776×103D .17.76×1024.(2019山东济南中考,4,4分,★☆☆)如图,DE ∥BC ,BE 平分∠ABC ,若∠1=70°,则∠CBE 的度数为( )第4题图A .20°B .35°C .55°D .70°5.(2019山东济南中考,5,4分,★☆☆)实数a ,b 在数轴上的对应点的位置如图所示,下列关系式不成立...的是( )A .a -5>b -5B . 6a >6bC .-a >-bD . a -b >06.(2019山东济南中考,6,4分,★★☆)下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )赵爽弦图 笛卡尔心形图 科克曲线 斐波那契螺旋线A B C D7.(2019山东济南中考,7,4分,★★☆)化简21442++-x x 的结果是( ) A .21-x B .21+x C . 22-x D .22+x8.(2019山东济南中考,8,4分,★★☆)在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )A .9.7m ,9.9mB .9.7m ,9.8mC .9.8m ,9.7mD .9.8m ,9.9m9.(2019山东济南中考,9,4分,★★☆)函数y =-ax +a 与xay =(a ≠0)在同一坐标系中的图象可能是( )A .B .C .D .10.(2019山东济南中考,10,4分,★★☆)如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 为半径作弧,交CD 于点F ,连接AE ,AF .若AB =6,∠B =60°,则阴影部分的面积为( )第10题图A .π339-B .π239-C .π9318-D .π6318- 11.(2019山东济南中考,11,4分,★★☆)某数学社团开展实践性研究,在大明湖南门A ,测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在北偏东53°方向.请计算一下南门A 与历下亭C 之间的距离约为( )(参考数据tan37°≈43,tan53°≈34)A .225mB .275mC .300mD .315m 12.(2019山东济南中考,12,4分,★★★)关于x 的一元二次方程ax 2+bx+21=0有一个根是-1,若二次函数y=ax 2+bx+21的图象的顶点在第一象限,设t=2a+b ,则t 的取值范围是( )第11题图A .21-<t <41 B .-1<t ≤41 C . 21-≤t <21 D .-1<t <21非选择题部分 共102分二、填空题:(本大题共6小题,每小题4分,共24分.)13.(2019山东济南中考,13,4分,★☆☆)分解因式: m 2-4m+4= . 14.(2019山东济南中考,14,4分,★☆☆)如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于 .第14题图15.(2019山东济南中考,15,4分,★☆☆)一个n 边形的内角和等于720°,则n = . 16.(2019山东济南中考,16,4分,★☆☆))代数式312-x 与代数式x 23-的和为4,则x = .17.(2019山东济南中考,17,4分,★★☆)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l 1,l 2分别表示去年、今年水费y (元)与用水量x (m 3)之间的关系.小雨家去年用水量为150m 3,若今年用水量与去年相同,水费将比去年多________元.第17题图18.(2019山东济南中考,18,4分,★★☆)如图,在矩形纸片ABCD 中,将AB 沿BM翻折,使点A 落在BC 上的点N 处,BM 为折痕,连接MN ;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE 为折痕,连接EF 并延长交BM 于点P ,若AD =8,AB =5,则线段PE 的长等于____________.第18题图三、解答题:(本大题共9小题,满分78分.解答应写出文字说明、证明过程或演算步骤.) 19.(2019山东济南中考,19,6分,★☆☆)计算:(21)-1+(π+1)0-2cos60°+9.20.(2019山东济南中考,20,6分,★★☆)解不等式组:⎪⎩⎪⎨⎧+>+≤-②①21039235x x x x ,并写出它的所有整数解.21.(2019山东济南中考,21,6分,★★☆) 如图,在ABCD 中,E ,F 分别是AD 和BC 上的点,∠DAF =∠BCE . 求证:BF =DE .第21题图22.(2019山东济南中考,22,8分,★★☆)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本.(1)求A和B两种图书的单价;(2)书店在“世界读书日”进行打折促销动,所有图书都按8折销售.学校当天购买了A种图书20本和B种图书25本,花费多少元?23.(2019山东济南中考,23,8分,★★☆)如图,AB,CD是⊙O的两条直径,过点C 的⊙O的切线交AB的延长线于点E,连接AC,BD.(1)求证:∠ABD=∠CAB;(2)若B是OE的中点,AC=12,求⊙O的半径.第23题图24.(2019山东济南中考,24,10分,★★☆)某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.15.25.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.24.4 4.2 4.35.3 4.9 5.2 4.9 4.8 4.6 5.14.2 4.4 4.5 4.1 4.55.1 4.4 5.0 5.2 5.3根据数据绘制了如下的表格和统计图:等级视力(x)频数频率A x<4.2 4 0.1B 4.2≤x≤4.412 0.3C 4.5≤x≤4.7 aD 4.8≤x≤5.0 bE 5.1≤x≤5.310 0.25合计40 1根据上面提供的信息,回答下列问题:(1)统计表中的a= ,b= ;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.25.(2019山东济南中考,25,10分,★★★)如图1,点A (0,8),点B (2,a)在直线y=-2x +b 上,反比例函数xky =(x>0)的图象经过点B . (1)求a 和k 的值;(2)将线段AB 向右平移m 个单位长度(m >0),得到对应线段CD ,连接AC ,BD . ①如图2,当m =3时,过D 作DF ⊥x 轴于点F ,交反比例函数图象于点E ,求EFDE的值;②在线段AB 运动过程中,连接BC ,若△BCD 是以BC 为腰的等腰三角形,求所有满足条件的m 的值.第25题图1 第25题图226.(2019山东济南中考,26,12分,★★★)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究. (一)猜测探究在△ABC 中,AB =AC ,M 是平面内任意一点,将线段AM 绕点A 按顺时针方向旋转与∠BAC 相等的角度,得到线段AN ,连接NB .(1)如图1,若M 是线段BC 上的任意一点,请直接写出∠NAB 与∠MAC 的数量关系是 ,NB 与MC 的数量关系是 ;(2)如图2,点E 是AB 延长线上一点,若M 是∠CBE 内部射线BD 上任意一点,连接MC ,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由. (二)拓展应用如图3,在△A 1B 1C 1中,A 1B 1=8,∠A 1B 1C 1=60°,∠B 1A 1C 1=75°,P 是B 1C 1上的任意一点,连接A 1P ,将A 1P 绕点A 1按顺时针方向旋转75°,得到线段A 1Q ,连接B 1Q .求线段B 1Q 长度的最小值.第26题图1 第26题图2 第26题图327.(2019山东济南中考,27,12分,★★★)如图1,抛物线C :y =ax 2+bx 过A (-4,0),B (-1,3)两点,G 是顶点,将抛物线C 绕点O 旋转180°,得到新的抛物线C′. (1)求抛物线C 的函数表达式及顶点G 的坐标;(2)如图2,直线l :y =kx -125经过点A ,D 是抛物线C 上的一点,设D 点的横坐标为m (m <-2),连接DO 并延长交抛物线C′于点E ,交直线l 于点M ,若DE =2EM ,求m 的值;(3)如图3,在(2)的条件下,连接AG ,AB ,在直线DE 下方的抛物线C 上,是否存在点P ,使得∠DEP =∠GAB ?若存在,求出点P 的横坐标;若不存在,请说明理由.图1 图2 图3济南市2019年初三年级学业水平考试数学试题答案全解全析1.答案:C解析:只有符号不同的两个数互为相反数,故7的相反数是-7,故选C . 考查内容:相反数.命题意图:本题主要考查学生对求相反数的概念的掌握,难度较低. 2.答案:D解析:球的主视图、俯视图均是圆,A 选项错误;正方体的主视图、俯视图均是正方形,B 选项错误;圆锥的主视图是三角形,俯视图是带有圆心的圆,C 选项错误;圆柱的主视图是矩形,俯视图是圆,D 选项正确,故选D . 考查内容:几何体的三视图.命题意图:本题主要考查学生对简单几何体的三视图的识别,难度较低. 3.答案:B解析:把177.6用科学记数法表示为1.776×102. 考查内容:科学记数法—表示较大的数.命题意图:本题主要考查学生对用科学记数法表示数的掌握情况,难度较低. 4.答案:B解析:∵DE ∥BC ,∠1=70°,∴∠ABC =∠1=70°,∵BE 平分∠ABC ,∴∠CBE =21∠ABC =35°.故选B .考查内容:平行线的性质、角平分线的性质.命题意图:本题主要考查学生对平行线的性质、角平分线的性质的应用情况,难度较低. 5.答案:C解析:观察数轴,可以判断a >b ,根据不等式的基本性质1,不等式两边同时加减同一个数或整式,不等号方向不变,可以判断a -5>b -5,A 选项正确;根据不等式的基本性质2,两边同时乘以同一个正数,不等号方向不变,故6a >6b ,B 选项正确;根据不等式的基本性质3,不等式两边同时乘以同一个负数,不等号方向改变,故-a <-b ,C 选项错误;由a >b 知a -b >0,D 选项正确;故选C .考查内容:用数轴比较实数的大小、不等式的基本性质.命题意图:本题主要考查学生对用数轴比较两个实数的大小、不等式的基本性质的运用情况,难度较低. 6.答案:C解析:A 选项,是中心对称图形,不是轴对称图形,故不正确;B 选项,是轴对称图形,但不是中心对称图形,故不正确;C 选项,既是中心对称图形,也是轴对称图形,故正确;D 选项,既不是中心对称图形,也不是轴对称图形,故不正确.故选C . 考查内容:轴对称图形、中心对称图形.命题意图:本题主要考查学生对轴对称图形、中心对称图形的识别,难度较低. 7.答案:A 解析:21442++-x x =)2)(2(24-+-+x x x =21)2)(2(2-=-++x x x x . 考查内容:分式的运算.命题意图:本题主要考查学生对分式的运算的基本技能的掌握,难度中等. 8.答案:B解析:将7次成绩按大小顺序排列为10.2m ,10.1m ,9.8m ,9.7m ,9.7m ,9.6m ,9.5m ,处于中间位置的数据是9.7m ,故成绩的中位数是9.7m ;平均数为:m 8.975.96.97.97.98.91.102.10=++++++,故选B .考查内容:中位数、平均数.命题意图:本题主要考查学生根据统计图得出解题所需数据及中位数的定义和意义、平均数的计算,难度中等.9.答案:D解析:若a >0,则函数y =-ax +a 的图象经过第一、二、四象限;函数xay =的图象分布在第一、三象限;若a <0,则函数y =-ax +a 的图象经过第一、三、四象限;函数xay =的图象分布在第二、四象限,故只有D 选项符合,故选D . 考查内容:一次函数、反比例函数的图象.命题意图:本题主要考查学生对利用函数表达式确定一次函数、反比例函数的图象分布的掌握情况,难度中等. 10.答案:A解析:如图,连接AC .在菱形ABCD 中,AB =BC ,又∵∠B =60°,∴△ABC 是等边三角形,同理,△ADC 是等边三角形,∵点E 是BC 的中点,根据菱形的轴对称性知点F 是DC 中点,故阴影部分的面积为S △ABC -S 扇形ECF .在Rt △ABE 中,AE =AB ·sin60°=6×3323=,阴影部分的面积为S △ABC -S 扇形ECF =ππ3393603120336212-=⨯-⨯⨯,故选A .考查内容:菱形、等边三角形、扇形的面积、三角形的面积.命题意图:本题主要考查学生对菱形的性质、等边三角形的判定、三角形、扇形的面积计算的综合运用情况,难度中等. 11.答案:C解析:如图,过C 作CD ⊥AC 于D .设CD =xm ,在Rt △ACD 中,x x CD AD 344337tan ==︒=,在Rt △BCD 中,x x CD BD 433453tan ==︒=,AD -BD =AB ,即1054334=-x x ,解得x =180,所以AD =)(24018034m =⨯,在Rt △ADC 中,由勾股定理得AC =22AD CD =22240180=300(m ),故选C .考查内容:解直角三角形的应用.命题意图:本题主要考查学生对解直角三角形的实际运用能力以及添加辅助线的技巧,难度中等. 12.答案:D解析:由于关于x 的一元二次方程ax 2+bx+21=0有一个根是-1,所以a -b 021=+,所以b=a 21+,t=2a+b=3a+21+,设方程的ax 2+bx+21=0另一个根为,2x 则a x 2112=⋅-,a x 212-=,因为二次函数y=ax 2+bx+21的图象的顶点在第一象限,所以1212>-=ax ,所以021<<-a ,所以0323<<-a ,所以212131<+<-a ,故选D . 考查内容:一元二次方程的解;一元二次方程根与系数的关系;二次函数的顶点坐标. 命题意图:本题主要考查学生对一元二次方程根与系数的关系及顶点坐标的综合运用的能力,难度中等. 13.答案:(m -2)2解析:直接应用完全平方公式进行分解因式即可,m 2-4m +4=m 2-4m +22=(m -2)2. 考查内容:因式分解.命题意图:本题主要考查学生对用公式法进行因式分解的掌握情况,难度较低. 14.答案:31解析:P (指针落在红色区域的概率)=3162==扇形总个数红色扇形个数.考查内容:概率.命题意图:本题主要考查学生对简单随机事件的概率计算公式的掌握情况,难度较低. 15.答案:6解析:由多边形内角和公式得180(n -2)=720,解得n =6. 考查内容:多边形的内角和.命题意图:本题主要考查学生对多边形内角和公式的应用能力的掌握情况以及方程思想的应用,难度较低. 16.答案:-1解析:根据两个代数式的和为4,可列方程:423312=-+-x x ,解得x =-1. 考查内容:一元一次方程.命题意图:本题主要考查学生对一元一次方程的应用及解法的掌握情况,难度较低. 17.答案:210解析:设直线l 1的函数表达式为ax y =1,将(160,480)代入ax y =1得480160=a ,解得a =3,所以直线l 1的函数表达式为x y 31=.设直线BC 段的函数表达式为b kx y +=2,将(120,480)、(160,720)分别代入b kx y +=2,得⎩⎨⎧=+=+.720160,480120b k b k 解得⎩⎨⎧-==.240,6b k 所以24062-=x y .当x =150时,4501=y ,6602=y ,660-450=210(元),水费将比去年多210元.考查内容:一次函数的应用.命题意图:本题主要考查学生对应用一次函数解决实际问题的能力以及应用数形结合思想解决问题的能力,难度中等. 18.答案:320解析:通过折叠得AB=BN=5,四边形ABNM 是正方形,所以AM=MN=5,所以MD=AD -AM=8-5=3,由题意得EF=ED ,设ME=x ,则EF=ED=3-x ,在Rt △FCN 中,NC=MD=3,FC=CD=5,由勾股定理得4352222=-=-=NC FC FN ,所以FM=5-4=1,在Rt △MEF 中,由勾股定理得222MF ME EF +=,所以1)3(22+=-x x ,解之得34=x ,过P 作AM PG ⊥于G ,则Rt △PMG 为等腰直角三角形,所以PG=MG ,由△EMF ∽△EGP得,所以PG MF EG EM =,则PG PG 13434=+,解之得PG=4,EG=316434=+,在Rt △PEG 中,由勾股定理320)316(42222=+=+=EG PG PE .考查内容:矩形的性质,相似三角形的判定与性质,轴对称的性质.命题意图:本题主要考查学生对矩形的性质的运用,三角形相似的判定与性质的掌握,难度较大.19.分析:分别根据幂的定义、零指数幂、绝对值的性质、特殊角的三角函数值以及二次根式的性质化简即可. 解析:原式=2+1-2⨯21+3=3-1+3=5. 考查内容:实数的运算命题意图:本题主要综合考查二次根式的化简、绝对值的化简、积的乘方、0指数幂的知识进行实数的计算,难度中等.20.分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解析:解不等式组: ⎪⎩⎪⎨⎧+>+≤-②①21039235x x x x解不等式①,得4≤x . 解不等式②,得x>2.所以不等式组的解集为42≤<x ,所以不等式组的整数解3,4. 考查内容:一元一次不等式组的解法.命题意图:本题考查学生对一元一次不等式组的解法掌握能力,难度较小.方法归纳:不等式组的解集是不等式组中所有不等式解集的公共部分,所以可以求出不等式组中各个不等式的解集,然后取它们的公共部分即可.找公共部分常用的方法有两种:(1)数轴法把不等式组中所有不等式的解集在同一条数轴上表示出来,直观地观察得到公共部分.两个一元一次不等式所组成的不等式组的解集有以下四种情形(设a<b)①不等式组x ax b>,>的解集是x>b,在数轴上表示如图:②不等式组x ax b<,<的解集是x<a,在数轴上表示如图:③不等式组x ax b>,<的解集是a<x<b,在数轴上表示如图:④不等式组x ax b<,>无解,在数轴上表示如图:(2)口诀法应用口诀“大大取较大,小小取较小;大小小大中间找,大大小小无解了”来确定.21.分析:利用平行四边形的性质得出一对角相等,然后利用ASA来证明三角形全等,得到BF=DE.解析:∵四边形ABCD是平行四边形,∴∠B=∠D,∠DAB=∠BCD,AB=CD,∵∠DAF=∠BCE.∴∠DAB-∠DAF=∠BCD-∠BCE.∴∠BAF=∠DCE.在△ABF与△CDE中,⎪⎩⎪⎨⎧∠=∠=∠=∠DCE BAF CDAB D B , ∴△ABF ≅△CDE , ∴BF=DE .考查内容:平行四边形的性质;全等三角形的性质与判定.命题意图:本题考查利用平行四边形的性质,全等三角形的性质与判定解决问题,难度较低. 一题多解:∵四边形ABCD 是平行四边形,∴AD//BC ,∴∠DAF=∠AFB.∵∠DAF =∠BCE . ∴∠AFB=∠BCE ,∴AF//CE ,∴四边形AFCE 是平行四边形,即BF=DE .22.分析:(1)以“A 种图书的数量-B 种图书的数量=20”等量关系列出分式方程求解;(2)列代数式求出费用.解析:(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,由题意得2016005.13000=-xx ,解得x=20. 经检验:x=20是原方程的解. 1.5x=1.5×20=30(元), 所以A 种图书的单价为30元.答:A 种图书与B 种图书的单价分别30元、20元. (2)(30×20+20×25)×80%=880(元),共花费880元. 考查内容:分式方程的应用命题意图:本题考查综合利用分式方程解决应用问题的能力,注意方程思想的运用,难度中等.23.分析:(1)利用等边对等角证明∠CAB=∠ACD ,由同弧所对的圆周角相等,所以∠ACD =∠ABD ,即可得出结论.(2)由CE 是⊙O 的切线,B 是OE 的中点,所以OE=2OB=2OC ,即∠E=∠A=30°,即AC=CE ,所以OC=21CE=6. 解析:(1)∵AB ,CD 是⊙O 的两条直径,∴AO=CO ,∴∠CAB=∠ACD ,∵∠ACD 和∠ABD 都是AD 所对的圆周角,∴∠ACD =∠ABD ,∴∠ABD =∠CAB .(2)∵CE 是⊙O 的切线,∴∠OCE=90°,又∵B 是OE 的中点,∴OE=2OB=2OC ,∴∠E=30°,∴∠COE=60°.∴∠E=∠A=30°,∴AC=CE=12,设⊙O 的半径为r ,∴OC=r ,OE=2r .在Rt △OCE 中,∵OC 2+CE 2=OE 2,∴r 2+122=(2r )2,解得.考查内容:圆周角定理及推论;切线的性质;解直角三角形.命题意图:本题主要考查了学生对圆周角定理及推论的了解,对圆的切线的性质的掌握,辅助线的添加技巧,难度中等偏上.24.分析:(1)由数据可知a=8,b 通过频率来计算数值;(2)由(1)中的结论直接画出条形统计图;(3)用样本估计总体来计算“E 级”的人数;(4)通过树状图或列表找出所有可能的情况,并计算概率. 解析:(1)a=8,频率为2.0408=,b=1-0.1-0.3-0.2-0.25=0.15; (2)D 级的人数为0.15×40=6(人),画图为(3)八年级学生视力为“E 级”的人数10025.0400=⨯(人). (4)画树状图如下:由树状图可以看出一共有12种等可能的结果,一男一女的结果共有8种,所以P (恰好选中“1男1女”)=32128=. 考查内容:频数与频率;条形统计图;样本估计总体;画树状图或列表法求概率. 命题意图:本题主要考查学生根据统计结果做出合理的判断和预测的能力,对画树状图或列表法求概率的掌握,难度中等.25.分析:(1)根据待定系数法求一次函数的解析式及反比例函数的解析式;(2)根据平移得出D 点的坐标,求DE 与EF 的长;根据等腰三角形的腰相等来确定平移距离.解析:(1)把A (0,8)代入y=-2x+b 得,b=8,所以一次函数的解析式y=-2x+8,把(2,a )代入y=-2x+8得a=4,∴B (2,4),把B (2,4)代入xky =得k=8,即a=4,k=8.(2)①当m=3时,由平移可得D(5,4),过D 作DF ⊥x 轴于点F ,设E 的坐标为(5,t ),把E 的坐标代入x k y =得t=58,∴EF=58,512584=-=DE ,即2358512==EF DE . ②∵A (0,8),B (2,4),∴52)48(222=-+==CD AB ,分两种情况,如图1,当BC=CD 时,过C 作CG ⊥BD 于G ,则CG=4,由勾股定理得BG=2,即C (4,8),则m=4;如图2,当BC=BD 时,过B 作BH ⊥AC 于H ,则BH=4,AC=BD=BC=m ,CH=m -2,由勾股得222)2(4m m =-+,解得m=5.综上所述,满足条件的m 值分别是4,5.图1 图2考查内容:待定系数法求函数解析式;点的坐标在平面直角坐标系内的平移变化;反比例函数图象上点的特征;勾股定理.命题意图:本题主要考查学生对待定系数法的掌握,勾股定理的掌握,添加辅助线的技巧,运用分类讨论思想解决等腰三角形问题的能力,难度较大.26.分析:(1)由旋转的性质可以得出角相等及对应边相等;(2)通过全等三角形的判定与性质得出(1)的结论是正确的; 解析:(1)相等;相等. (2)(1)的结论成立,由旋转可得∠NAM=∠BAC ,AN=AM ,∴∠NAM -∠BAM=∠BAC -∠BAM , ∴∠NAB=∠MAC .在△NAB 和△MAC 中,⎪⎩⎪⎨⎧==AC AB MAC ∠=NAB ∠AM AN ,∴△NAB ≌△MAC ,∴NB=MC .(3)如图,过A 1作A 1H ⊥B 1C 1于H ,在Rt △A 1B 1H 中,∠A 1B 1H =60°,∴A 1H =A 1B 1×sin60°=8×23=34,B 1H =A 1B 1×cos60°=8×21=4.∵∠A 1B 1C 1=60°,∠B 1A 1C 1=75°,∴∠C 1=45°.在Rt △A 1HC 1中,由勾股定理可得A 1C 1=46.将A 1C 1绕点A 1顺时针旋转75°得到A 1G ,∵∠B 1A 1C 1=75°,∴A 1,B 1,G 在同一条直线上.∵A 1C 1=46,∴A 1G=46,∴B 1G=46-8.由旋转的性质易得△A 1QG ≌△A 1PC 1,∴∠G=∠C 1=45°.∵P 是B 1C 1上任意一点,∴当B 1Q ⊥QG 时,B 1Q 最小,最小值为B 1G·sinG=(46-8)×22=43-42.考查内容:等腰三角形的性质;全等三角形的判定与性质;相似三角形的判定与性质;二次函数的最值;旋转的性质.命题意图:本题主要考查学生对全等三角形的判定与性质、相似三角形的判定与性质的掌握,建立二次函数模型解决最值问题的解题能力,难度较大.27.分析:(1)用待定系数法求二次函数的解析式,用顶点坐标公式求抛物线的顶点坐标;(2)由中心旋转的性质及DE=2EM 表示出M 的坐标代入直线l 的解析式求出m 的值;(3)通过相似来建立关系式求出P 点的坐标.解析:(1)把A (-4,0)、B (-1,3)代入y =ax 2+bx 得⎩⎨⎧-=-=b a b a 34160,解得⎩⎨⎧-=-=41b a , 所以二次函数的解析式为y =-x 2-4x ,顶点坐标为G (-2,4).(2)设D (m ,-m 2-4m ),由中心对称的性质可知E (-m ,m 2+4m ),且OD=OE . 又因为DE=2EM ,则OM=2OE ,所以M (-2m ,2m 2+8m ).把A(-4,0)代入y =kx -125得,0=-4k -125,解得k=-35,所以直线l :y =-35x -125.把M (-2m ,2m 2+8m )代入y =-35x -125,得2m 2+8m =65m -125,整理得10m 2+34m+12=0,解得m 1=-3,m 2=-25(舍去),即m=-3.(3)在直线DE 下方的抛物线C 上,存在点P ,使得∠DEP =∠GAB .连接BG . 由(2)知D (-3,3),E (3,-3),由勾股定理得AG ,AB BG∴AG 2=AB 2+BG 2,∴△ABG 是直角三角形,且∠ABG =90°,tan ∠GAB =31=AB BG.∵∠DEP =∠GAB ,∴tan ∠DEP =tan ∠GAB =31.设直线AB 的表达式为y =kx +b ,将A (-4,0),B (-1,3)分别代入y =kx +b ,得⎩⎨⎧=+-=+-304b k b k ,解得⎩⎨⎧==41b k,所以直线AB 的表达式为y =x +4.设直线DE 的表达式为y =ax ,将E (3,-3)代入y =ax 得3a=-3,解得a=-1,所以直线DE 的表达式为y =-x ,所以AB ⊥DE .设直线AB 与DE 交于点Q ,联立两函数解析式组成方程组⎩⎨⎧+=-=4x y x y ,解得⎩⎨⎧=-=22y x , 所以Q (-2,2).设PE 与AB 交于点N ,则tan ∠DEP =31=EQ NQ , 由勾股定理得EQ =25, 所以325=NQ ,可求点N (-113,13). 设直线PE 的表达式为y =k 1x +b 1,将E (3,-3)、N (-113,13)分别代入y =k 1x +b 1得⎪⎩⎪⎨⎧-=+=+-33313111111b k b k ,解得11123.2k b -,- 所以直线PE 的表达式为y =-12x -32. 联立二次函数的解析式y =-x 2-4x ,可得-12x -32=-x 2-4x , 解得x 1=7734,x 2=7734, 所以点P 的横坐标为7734或7734.一题多解:(1)∵抛物线过A(-4,0),B(-1,3),16a-4b=0.a-b=3,解得a=-1,b=-4,∴y=-x2-4x,∴顶点G的坐标(-2,4).(2)如答案图1,作EF⊥x轴,MH⊥x轴,垂足分别为F,H,∵直线y=kx-125过点A(-4,0),解得k=-3 5,∴直线l的解析式为y=-35x-125.∵EF⊥x轴,MH⊥x轴,∴EF∥MH.∵点D与点E关于点O对称,∴DO=OE.∵DE=2EM,∴OE=EM.∵EF∥MH,∴EF=12MH,OF=12OH.设点D (m ,-m 2-4m ),则点E (-m ,m 2+4m ),∴点M 的坐标为(-2m ,2m 2+8m ) .将点M (-2m ,2m 2+8m )代入y =-35x -125得2m 2+8m =-35×(-2m )-125,解得m 1=-3, m 2=-25.∵m<-2,∴m =-3.(3)存在点P ,使得∠DEP =∠GAB .如答案图2,过点G 作GK ⊥x 轴于点K ,过点P 作PN ⊥EF 交EF 的延长线于点N ,∵A (-4,0),B (-1,3)得∠BAO =45°.∵点D 坐标为(-3,3),∴点E 坐标为(3,-3),∴∠OEF=45°.∵∠GAB =∠PED ,∴∠GAB +∠BAO =∠PED +∠OEF ,∴∠GAK =∠PEN .∵∠GKA =∠PNE =90°,∴△GAK ∽△PEN , ∴EN AKPN GK=,∴GK ·EN =AK ·PN .设P 点的横坐标为t ,则P(t ,-t 2-4t ),得PN =3-t ,EN =-t 2-4t +3,∴4·(-t 2-4t +3)= 2·(3-t ),解得 t 1=7734,t 2=7734∴当t=7734或7734时,∠DEP=∠GAB.图1 图2考查内容:待定系数法求二次函数的解析式;解一元二次方程;相似三角形的判定与性质.命题意图:本题主要考查对待定系数法求二次函数的解析式的运用,对相似三角形的判定与性质的掌握,难度较大.。

山东省济南市2024届高三下学期高考针对性训练(5月模拟)数学试题含答案

山东省济南市2024届高三下学期高考针对性训练(5月模拟)数学试题含答案

绝密★启用并使用完毕前高考针对性训练数学试题本试卷共4页,19题,全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设12i2iz -=+,则z =()A .iB .i-C .4i 5+D .4i 5-2.若sin cos αα-=,则tan α=()A .1B .1-C .2D .2-3.()6111x x ⎛⎫+- ⎪⎝⎭展开式中2x 的系数为()A .5-B .5C .15D .354.已知{}n a 是等比数列,且27844a a a a =-=-,则3a =()A .B .C .2-D .2±5.某单位设置了a ,b ,c 三档工资,已知甲、乙、丙三人工资各不相同,且甲的工资比c 档高,乙的工资比b 档高,丙领取的不是b 档工资,则甲、乙、丙领取的工资档次依次为()A .a ,b ,cB .b ,a ,cC .a ,c ,bD .b ,c ,a6.三棱锥S ABC -中,SA ⊥平面ABC ,AB BC ⊥.若该三棱锥的最长的棱长为9,最短的棱长为3,则该三棱锥的最大体积为()A B C .18D .367.在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点P在C 上,且2122PF PF a ⋅= ,PO = ,则C 的离心率为()A B C .3D .28.已知函数()f x 的定义域为R ,且()()()yf x xf y xy x y -=-,则下列结论一定成立的是()A .()11f =B .()f x 为偶函数C .()f x 有最小值D .()f x 在[]0,1上单调递增二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某同学投篮两次,第一次命中率为23.若第一次命中,则第二次命中率为34;若第一次未命中,则第二次命中率为12.记()1,2i A i =为第i 次命中,X 为命中次数,则()A .22()3P A =B .4()3E X =C .4()9D X =D .123(|)4P A A =10.已知ABC △内角A ,B ,C 的对边分别为a ,b ,c ,外接圆半径为R .若1a =,且()sin sin sin A b B c b C -=+,则()A .3sin 2A =B .ABC △面积的最大值为34C .3R =D .BC 边上的高的最大值为611.已知函数()sin ln f x x x =⋅,则()A .曲线()y f x =在πx =处的切线斜率为ln πB .方程()2024f x =有无数个实数根C .曲线()y f x =上任意一点与坐标原点连线的斜率均小于1eD .2()2x y f x =-在()1,+∞上单调递减三、填空题:本题共3小题,每小题5分,共15分.12.数列{}n a 满足22n n a a +-=,若11a =,44a =,则数列{}n a 的前20项的和为______.13.在正四棱柱1111ABCD A B C D -中,4AB =,16AA =,M ,N 分别是AB ,AD 的中点,则平面1MNC 截该四棱柱所得截面的周长为______.14.已知抛物线22x y =与圆()()22240x y rr +-=>相交于四个不同的点A ,B ,C ,D ,则r 的取值范围为______,四边形ABCD 面积的最大值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)近年来,我国众多新能源汽车制造企业迅速崛起.某企业着力推进技术革新,利润稳步提高.统计该企业2019年至2023年的利润(单位:亿元),得到如图所示的散点图.其中2019年至2023年对应的年份代码依次为1,2,3,4,5.(1)根据散点图判断,y a bx =+和2y c dx =+哪一个适宜作为企业利润y (单位:亿元)关于年份代码x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)中的判断结果,建立y 关于x 的回归方程;(3)根据(2)的结果,估计2024年的企业利润.参考公式及数据;1221ˆni ii ni i x ynx ybx nx==-=-∑∑,ˆˆay bx =-,52155i i x ==∑,541979ii x ==∑,51390i i y ==∑,511221i i i x y ==∑,5214607.9i i i x y ==∑16.(本小题满分15分)如图,在三棱台ABC DEF -中,平面ABC ⊥平面BCFE ,AF DE ⊥,45ABC CBF ∠=∠=︒,1AC AB >=.(1)求三棱台ABC DEF -的高;(2)若直线AC 与平面ABF 所成角的正弦值为155,求BC .17.(本小题满分15分)已知函数()22xxf x a =+-,其中0a >且1a ≠.(1)若()f x 是偶函数,求a 的值;(2)若0x >时,()0f x >,求a 的取值范围.18.(本小题满分17分)已知点21,2A ⎛⎫ ⎪ ⎪⎝⎭在椭圆2222:1(0)x y E a b a b +=>>上,A 到E的两焦点的距离之和为.(1)求E 的方程;(2)过抛物线()2:1C y x m m =->上一动点P ,作E 的两条切线分别交C 于另外两点Q ,R .(ⅰ)当P 为C 的顶点时,求直线QR 在y 轴上的截距(结果用含有m 的式子表示);(ⅱ)是否存在m ,使得直线QR 总与E 相切.若存在,求m 的值;若不存在,说明理由.19.(本小题满分17分)高斯二项式定理广泛应用于数学物理交叉领域.设,y q ∈R ,*n ∈N ,记[]11n n q q-=++⋅⋅⋅+,[][][][]!11n n n =⨯-⨯⋅⋅⋅⨯,并规定[]0!1=.记1(,)()()()()n n q F x n x y x y x qy x q y -=+=++⋅⋅⋅+,并规定()0,0()1q F x x y =+=.定义[][][](,),0(,)11(),1,2,,kqn kq F x n k D F x n n n n k x y k n-=⎧⎪=⎨-⋅⋅⋅-++=⋅⋅⋅⎪⎩(1)若1y q ==,求(),2F x 和1(,2)q D F x ;(2)求[][]!(0,)!k qn k D F n n -;(3)证明:[]0(0,)(,)!k nq k k D F n F x n x k ==∑.2024年5月济南市高三模拟考试数学试题参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号12345678答案ABACBCDC二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.题号91011答案ABDADBCD三、填空题:本题共3小题,每小题5分,共15分.12.21013.14.4);四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)2y c dx =+适宜作为企业利润y (单位:亿元)关于年份代码x 的回归方程类型.(2)由题意得:52211()115i i x x ===∑,511785i i y y ===∑,52215222221553905()4607.95317.9550.8537455()5()9795ˆ5i ii ii xy x ydx x ==-⨯-⨯⨯====⎛⎫-⨯-⨯ ⎪⎝⎭∑∑,239055()0.8568.655ˆ5ˆcy d x =-⨯=-⨯=,所以,268.65ˆ0.85y x =+.(3)令6x =,268.650.85699.25ˆy=+⨯=,估计2024年的企业利润为99.25亿元.另解(此种解法酌情给分):(1)y a bx =+适宜作为企业利润y (单位:亿元)关于年份代码x 的回归方程类型.(2)由题意得:1234535x ++++==,511785i i y y ===∑,()()515222151221537851 5.13ˆ555105i ii i i x yx ybx x==-⨯-⨯⨯====-⨯-⨯∑∑,()78 5.1362.7ˆˆa y b x =-⨯=-⨯=,所以,7ˆ62. 5.1yx =+.(3)令6x =,62.7 5.1693.3ˆy=+⨯=,估计2024年的企业利润为93.3亿元.16.【解析】解:(1)作FO BC ⊥于点O ,因为平面ABC ⊥平面BCFE ,所以FO ⊥平面ABC ,FO 即为三棱台ABC DEF -的高.又因为AB ⊂平面ABC ,所以FO AB ⊥.连接AO ,因为AB DE ∥,AF DE ⊥,所以AB AF ⊥,FO AF F = ,所以AB ⊥平面AFO ,又AO ⊂平面AFO ,所以AB AO ⊥.45ABC CBF ∠=∠=︒,1AB =.所以1AO =,BO FO ==ABC DEF -.(2)以O 为原点,在面ABC 内,作OG BC ⊥,以OG ,OB ,OF 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系O xyz -,则,22A ⎛⎫ ⎪ ⎪⎝⎭,B,F,,,022AB ⎛⎫=- ⎪ ⎪⎝⎭,FB =,设平面ABF 的法向量为(),,n x y z =则022n FB n AB x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,可取()1,1,1n = ,设BC BO λ=,则22,022AC ⎛⎫=-- ⎪ ⎪⎝⎭,设直线AC 与平面ABF 所成角为α,15sin cos ,5AC n α===,化简得281890λλ-+=,解得32λ=或34λ=(舍去,因为AC AB >,所以1λ>),所以BC =.17.【解析】(1)由题意,()()11f f -=,即112222a a +-=+-,解得,12a =或2a =-(舍)又经检验,12a =时,()f x 是偶函数.所以,a 的值为12.(2)当12a =时,0x ∀>,1()22202x xf x ⎛⎫=+->= ⎪⎝⎭成立;当12a >且1a ≠时,0x ∀>,1()22222xx x xf x a ⎛⎫=+->+- ⎪⎝⎭,又12202xx⎛⎫+-> ⎪⎝⎭已证,故此时符合题意;当102a <<时,()ln 2ln 2x xf x a a '=+,易知,此时()f x '在R 上单调递增,且(0)ln(2)0f a =<'.故存在00x >,使得当0(0,)x x ∈时,()0f x '<,从而()f x 单调递减,所以,存在02x >,使得0(0)02x f f ⎛⎫<= ⎪⎝⎭,故此时不合题意.综上所述,12a ≥且1a ≠.18.【解析】(1)由题意2a =,得a =又21,2A ⎛⎫ ⎪ ⎪⎝⎭在E 上,得221112a b +=,从而1b =.故E 的方程为2212x y +=.(2)(ⅰ)当P 为C 的顶点时,()0,P m ,不妨设R 在第一象限,直线PR 的方程为y kx m =-,联立E 的方程为2212x y +=可得222(21)4220k x kmx m +-+-=.由22222Δ(4)4(21)(22)8(21)0km k m k m =-+-=-+=可得2221k m +=.联立直线PR 的方程y kx m =-与抛物线2:C y x m =-的方程可得x k =,则R 点的纵坐标为22212122R m m m y k m m ---=-=-=,由对称性知2212Q m m y --=,故直线QR 在y 轴上的截距为2212m m --.(ⅱ)要使(2)中的直线QR 与E 相切,必有22112m m b --==,即2230m m --=,解得3m =或1-(舍去).设()11,P x y ,()22,Q x y ,()33,R x y ,则2113y x =-,2223y x =-,2333y x =-.直线PQ 的方程为211121()y y y y x x x x --=--,即1212()3y x x x x x =+--.联立椭圆方程2212x y +=可得222121212122()14()(3)2(3)20x x x x x x x x x x ⎡⎤++-++++-=⎣⎦.由[]22212121212Δ4()(3)42()12(3)2x x x x x x x x ⎡⎤⎡⎤=++-+++-⎣⎦⎣⎦22221212128(2228)0x x x x x x =+---=可得222212*********x x x x x x +---=,即121212250x x y y y y ++++=.同理可得131313250x x y y y y ++++=.因为直线1112(1)50x x y y y ++++=同时经过点QR ,所以QR 的直线方程为1112(1)50x x y y y ++++=.联立椭圆方程2212x y +=可得222111118(1)8(5)16480x y x x y x y ⎡⎤++++++=⎣⎦,于是[]2222211111111Δ8(5)48(1)(1648)64(1)(3)0x y x y y y x y ⎡⎤=+-+++=+--=⎣⎦.故直线QR 与椭圆相切,因此3m =符合题意.19.【解析】(1)若1y q ==,222(,2)()()(1)(1)F x x y x qy x q xy y x =++=+++=+,而[]11(,2)2()(1)()2(1)q q D F x x y q x y x =+=++=+.(2)当0k =时,[][](1)2!(0,)(0,)(0,)!n n k n q q n k D F n D F n F n q y n --===.当0k ≠时,由[][][](0,)11(0)kn kq qD F n n n k y -=-⋅⋅⋅++[][][][][]()(1)()(1)/22!11!n k n k n k n k n kn k n n n n k qyqy n k --------=-⋅⋅⋅-+=-,可得[][]()(1)2!(0,)!n k n k k n k q n k D F n q y n -----=.因此[][]()(1)2!(0,)!n k n k k n k q n k D F n q y n -----=,0,1,2,,k n = .(3)要证[]0(0,)(,)!k nq k k D F n F x n x k ==∑,只需证[][][][][]1()(1)/2(1)/200!!()()()![]!!!nnn n k n k n k kk k n k k k k n n x y x qy x qy q y x q x y n k k n k k -------==++⋅⋅⋅+==--∑∑.令1()()()()nn k k k G y x y x qy x q y a y -==++⋅⋅⋅+=∑,一方面,110101()()()()n nkkk k k n n k k k n k k x y G qy x y a q y xa xq a q a y a q y -+-==+=+=+++∑∑,另一方面,10101()()()()n nnnkn k n n k k k n k k x q y G y x q y a y xa xa q a y a q y +-==+=+=+++∑∑,当1q ≠且0x ≠时,由于()()()()nx y G qy x q y G y +=+,比较两式中ky 的系数可得111k k n k k k k xq a q a xa q a ---+=+,则[]1111(1)[]k n k k kk q n k a q q a x q x k ----+-==-⋅,由0na x =可知[][][](1)1120120!!!k k n k k k k k k n a a a a a q x a a a n k k -----=⋅⋅⋅⋅⋅=-.当1q =时,由[]11n n q qn -=++⋅⋅⋅+=,[]!!n n =可知()[][]00!C ![]!nn nn k k k n k kn k k n x y y x yx n k k --==+==-∑∑,此时命题也成立.当0x =时,[](1)/2(0,)(,)(0,)!k nq n n nk qk D F n F x n qy D F n x k -====∑也成立.综上所述,()()[]00,,!knq k k D F n F x n x k ==∑.。

最全总结--离心率

最全总结--离心率

离心率一.一般求值定义法例1.(北京市海淀区2019届高三4月期中练习(一模)数学文试题)13.已知椭圆和双曲线.经过的左顶点和上顶点的直线与的渐近线在第一象限的交点为,且,则椭圆的离心率______;双曲线的离心率________ .【答案】(1). (2).解析:椭圆中:a=2,b=1,所以,c=,离心率为:,A(-2,0),B(0,1),直线AB的方程为:,因为,所以B为AP的中点,设P(x,y),则,解得:,即P(2,2)双曲线的渐近线为:,点P在渐近线上,所以,,所以,,双曲线中:a=1,b=1,所以,c=,离心率为:=,【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b 得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.举一反三1.(河北省武邑中学2019届高三下学期第一次质检数学(理)试题)6.已知双曲线,四点,中恰有三点在双曲线上,则该双曲线的离心率为()A. B. C. D.【答案】C解析:根据双曲线的性质可得,在双曲线上,则一定不在双曲线上,则在双曲线上,解得故选C.(安徽省安庆市2019届高三模拟考试(二模)数学文试题)14.若双曲线的一条渐近线方程是,则此双曲线的离心率为_______.【答案】【解析】【分析】由双曲线的渐近线方程可求得a,然后利用离心率公式计算即可.【详解】根据双曲线方程可知其渐近线方程为,而已知是一条渐近线方程,则有,解得,又b=2,,则故答案为:【点睛】本题考查双曲线的渐近线方程和离心率的求法,属于基础题.方程法例2.(山东省济南市2019届高三3月模拟考试理科数学试题)11.设,分别是椭圆的左右焦点,过的直线交椭圆于,两点,且,,则椭圆的离心率为()A. B. C. D.【答案】C解析:设,则由椭圆的定义,可以得到,在中,有,解得在中,有整理得,故选C项.【点睛】本题考查几何法求椭圆离心率,是求椭圆离心率的一个常用方法,通过几何关系,构造出关系,得到离心率.属于中档题.举一反三1.(梧州市、桂林市、贵港市等2019届)设,,分别是椭圆的左、右、上顶点,为坐标原点,为线段的中点,过作直线的垂线,垂足为.若到轴的距离为,则的离心率为()A. B. C. D. 【答案】C解析:如图示过H作轴于点G,则相似,,即故即,即故选:C.2.(济南市2019届)设,分别是椭圆的左右焦点,为椭圆的下顶点,为过点,,的圆与椭圆的一个交点,且,则的值为__________.【答案】解析:设过三点的圆的圆心为是通径的一半,是圆中的一条弦,根据圆的对称性可知的坐标,,整理得整理得解得,舍去负根【点睛】本题考查椭圆的几何关系与圆的几何关系.综合程度较大,属于难题.3.(武邑中学2019届)已知点A是抛物线的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足,当m取最大值时,点P恰好在以A,B为焦点的双曲线上,则双曲线的离心率为______.【答案】解析:过P作准线的垂线,垂足为N,则由抛物线的定义可得,,,则,设PA的倾斜角为,则,当m 取得最大值时,最小,此时直线PA 与抛物线相切, 设直线PA 的方程为,代入,可得,即, ,,,双曲线的实轴长为, 双曲线的离心率为.故答案为:.【点睛】本题考查抛物线的性质,考查双曲线、抛物线的定义,考查学生分析解决问题的能力,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得 (的取值范围).4. 如图,1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右两个焦点,若直线y x =与双曲线C 交于P 、Q 两点,且四边形12PF QF 为矩形,则双曲线的离心率为( )A .2 B C .2 D 【答案】D . 解析:矩形对角线长相等,将直线y=x 代入曲线方程)0,0(1x 2222>>=-b a by a ,解得2222a b b a x -±=,所以c ab b =-2222a 2,即024e 24=+-e 解得22e 2+=已知渐近线方程求离心率,或离心率求渐近线方程例1.(2017·全国卷Ⅲ改编)双曲线x 2a 2-22y b =1(a >0,b>0)的一条渐近线方程为y =21x ,则e =________.解析:因为渐近线方程的斜率跟离心率都是比值关系焦点在x 轴上,则令a=2, b=1, 541c 222=+=+=b a 25e ==a c 例2.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22xD .y =±32x解析:因为渐近线方程的斜率跟离心率都是比值关系 焦点在X 轴上,则令a=1, c=3,222b a c -==2 x x ab2y ±=±= 举一反三1.已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( )A .x ±2y =0 B.2x ±y =0 C .x ±2y =0D .2x ±y =0解析:选A 椭圆C 1的离心率为a 2-b 2a ,双曲线C 2的离心率为a 2+b 2a ,所以a 2-b 2a ·a 2+b 2a =32,所以a 4-b 4=34a 4,即a 4=4b 4,所以a =2b ,所以双曲线C 2的渐近线方程是y =±12 x ,即x ±2y=0.2.(2018·惠州调研)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线的斜率为( )A .±2B .±2C .±12D .±22解析:选B3.(2019·郑州一中入学测试)已知抛物线x 2=8y 与双曲线y2a 2-x 2=1(a >0)的一个交点为M ,F 为抛物线的焦点,若|MF |=5,则该双曲线的渐近线方程为( )A .5x ±3y =0B .3x ±5y =0C .4x ±5y =0D .5x ±4y =0解析:设点M (x 0,y 0),则有|MF |=y 0+2=5,所以y 0=3,x 20=24,由点M (x 0,y 0)在双曲线y 2a 2-x 2=1上,得y 2a 2-x 20=1,即9a 2-24=1,解得a 2=925,所以双曲线y 2a 2-x 2=1的渐近线方程为y 2a 2-x 2=0,即3x ±5y =0,选B.[方法技巧]求双曲线x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程的方法是令右边的常数等于0,即令x 2a 2-y 2b 2=0,得y =±ba x ;或令y 2a 2-x 2b 2=0,得y =±a b x .反之,已知渐近线方程为y =±b a x ,可设双曲线方程为x 2a 2-y 2b 2=λ(a >0,b >0).二.利用题目中的几何关系例1.已知F 1、F 2是椭圆的两个焦点,满足120MF MF =的点M 总在椭圆内部,则椭圆离心率的取值范围是A.(0,1)B.10,2⎛⎤⎥⎝⎦C. 0,2⎛⎝⎦D. 2⎫⎪⎪⎣⎭解析:由于满足120MF MF =的点M 总在椭圆内部,则对椭圆上任意一点P ,21PF F ∠均为锐角,如图1-12所示,只需顶点位置的顶角为锐角即可,,π401<∠<BO F 4s s i n 1πin BO F e <∠=,故选C12sin,,2121<≤=∠e e PF F P F F θθ的取值范围为则若是椭圆上的任意一点,是椭圆的两个焦点, 举一反三1.(东莞市2019届15)设双曲线的左右焦点分别为,,过的直线l 交双曲线左支于A ,B 两点,则的最小值等于__. 【答案】16 【解析】 试题分析:考点:双曲线定义【思路点睛】(1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF1|+|PF2|>|F1F2|,双曲线的定义中要求||PF1|-|PF2||<|F1F2|,抛物线上的点到焦点的距离与准线的距离相等的转化.(2)注意数形结合,画出合理草图.2.(衡水中学2018届)已知分别是椭圆的左、右焦点,若椭圆上存在点,使,则椭圆的离心率的取值范围为A.B.C.D.【答案】B∴,∴∴。

2019届百师联盟全国高三模拟考(一)全国I卷文科数学试题(带答案解析)

2019届百师联盟全国高三模拟考(一)全国I卷文科数学试题(带答案解析)

2019届百师联盟全国高三模拟考(一)全国I 卷文科数学试题第I 卷(选择题)一、单选题1.已知复数z 满足()14i z i -=,则z =( )A .B .2C .4D .3 2.已知集合{}20,2131x A xB x x x +⎧⎫=≤=-≤⎨⎬-⎩⎭则()RC A B ⋂( ) A .[]1,2 B .()[),21,2-∞-U C .()[],21,2-∞-⋃D .(]1,2 3.已知命题:p []02,2x ∃∈-,2430x x -+≥,则p ⌝为( )A .[]02,2x ∃∉-,2430x x -+<B .[]02,2x ∀∉-,2430x x -+<C .[]2,2x ∀∈-,2430x x -+<D .[]2,2x ∀∈-,2430x x -+≥ 4.设α为锐角,若3cos 45πα⎛⎫+= ⎪⎝⎭,则5sin 12πα⎛⎫+ ⎪⎝⎭的值为( )A .310+BC .410D .410- 5.“角谷猜想”的内容是:对于任意一个大于1的整数n ,如果n 为偶数就除以2,如果n 是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入10n =,则输出i 的( )6.已知双曲线2222:1x yCa b-=(0a>,0b>)的渐近线与圆()22314x y+-=相切,则双曲线C的离心率为()A B.2 C D7.为研究某咖啡店每日的热咖啡销售量y和气温x之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(x轴表示气温,y轴表示销售量),由散点图可知y与x的相关关系为()A.正相关,相关系数r的值为0.85B.负相关,相关系数r的值为0.85C.负相关,相关系数r的值为0.85-D.正相关,相关负数r的值为0.85-8.函数32sin()xx xg xe-=的图象大致为()A.B.C.D.9.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A .83B .163C .43D .810.已知函数()y f x =是定义在R 上的奇函数,函数()f x 满足()()4f x f x =+,且(]0,1x ∈时,()2()log 1f x x =+,则()()20182019f f +=( )A .2B .2-C .1D .1-11.已知集合{}{}3,*,2,*n M x x n N N x x n n N ==∈==∈,将集合M N ⋃的所有元素从小到大一次排列构成一个新数列{}n c ,则12335...c c c c ++++=( ) A .1194 B .1695 C .311 D .1095 12.已知函数()()0xe f x x a a=->,若函数()y f x =的图象恒在x 轴的上方,则实数a 的取值范围为( )A .1,e ⎛⎫+∞ ⎪⎝⎭B .()0,eC .(),e +∞D .1,1e ⎛⎫⎪⎝⎭第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.已知a =r a r 在b r ,则a r 与b r 的夹角为_________.14.抛物线2:2C x py =(0p >)的焦点到准线的距离为4,则抛物线的准线方程为___________.15.已知ABC ∆内角、、A B C 的对边分别为,4,a b c a b ABC ==∆、、外接圆的面积为4π,则ABC ∆的面积为_________.16.在三棱锥P ABC -中,三条侧棱PA PB PC 、、两两垂直,1,4PB PA PA PC =++=,则三棱锥P ABC -外接球的表面积的最小值为________.三、解答题17.已知{}n a 为各项均为整数的等差数列,n S 为{}n a 的前n 项和,若3a 为213a 和13a 的等比中项,749=S .(1)求数列{}n a 的通项公式;(2)若12n n n b a a +=,n T 为数列{}n b 的前n 项和,求n T . 18.在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,2ABC π∠=,PE ⊥面ABCD ,3AD AE =,22AB BC AE ===,3PC =.(1)在线段PD 上是否存在点F ,使//CF 面PAB ,说明理由;(2)求三棱锥C PAE -的体积.19.某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:(1)(i )将22⨯列联表补充完整;(ii )据此列联表判断,能否有99%的把握认为“日平均走步数和性别是否有关”? (2)从样本中的运动达人中抽取7人参加“幸运抽奖”活动,通过抽奖共产生2位幸运用户,求这2位幸运用户恰好男用户和女用户各一位的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++ 20.已知椭圆()2222:10x y C a b a b+=>>,左、右焦点为12F F 、,点P 为C 上任意一点,若1PF 的最大值为3,最小值为1.(1)求椭圆C 的方程;(2)动直线l 过点2F 与C 交于P Q 、两点,在x 轴上是否存在定点A ,使22PAF QAF ∠=∠成立,说明理由.21.已知函数1()ln 1a f x x x+=-+,a R ∈. (1)当2a =-时,求函数()f x 在点()2,(2)f 处的切线方程;(2)若当0x >,()3f x ≥,求a 的取值范围.22.在平面直角坐标系xOy 中,已知直线12:1x t l y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=. (1)求曲线C 的直角坐标方程;(2)设点M 的极坐标为1,2π⎛⎫ ⎪⎝⎭,直线l 与曲线C 的交点为,A B ,求MA MB +的值. 23.已知函数()12f x x x =--+.(1)求不等式()2f x ≤的解集A ;(2)若不等式2()2f x x x m ≤+-对x A ∈恒成立,求实数m 的取值范围.参考答案1.A【解析】【分析】由复数除法求出z ,再由模的定义计算出模.【详解】44(1)22,1(1)(1)i i i z i z i i i +===-+=--+ 故选:A .【点睛】本题考查复数的除法法则,考查复数模的运算,属于基础题.2.C【解析】【分析】解不等式确定集合,A B 中的元素,再由集合的运算法则计算.【详解】 由201x x +≤-得(2)(1)010x x x +-≤⎧⎨-≠⎩,∴21x -?,即[2,1)A =-,又{|2}(,2]B x x =≤=-∞,∴(,2)[1,)R A =-∞-+∞U ð,()(,2)[1,2]R A B =-∞-I U ð.故选:C .【点睛】本题考查集合的综合运算,掌握集合运算的定义是解题基础.3.C【解析】【分析】根据特称命题的否定是全称命题可得出答案.【详解】由于特称命题的否定是全称命题,故命题:p []02,2x ∃∈-,2430x x -+≥的否定是::p ⌝[]2,2x ∀∈-,2430x x -+<.故选:C.【点睛】本题考查特称命题的否定,意在考查学生的推断能力,属于基础题.4.A【解析】【分析】 先求出sin 4πα⎛⎫+⎪⎝⎭的值, 5sin sin 1246ααπππ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,再由两角和的正弦公式计算即可.【详解】 Q α为锐角,3cos 45πα⎛⎫+= ⎪⎝⎭,∴4sin 45απ⎛⎫+== ⎪⎝⎭,∴513sin sin sin cos 1246242410ααααπππππ⎛⎫⎛⎫⎛⎫⎛⎫+=++=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A.【点睛】本题考查同角三角函数间的关系,考查两角和的正弦公式,考查逻辑思维能力和计算能力,属于常考题.5.B【解析】【分析】模拟程序运行,观察变量值可得结论.【详解】循环前1,10i n ==,循环时:5,2n i ==,不满足条件1n =;16,3n i ==,不满足条件1n =;8,4n i ==,不满足条件1n =;4,5n i ==,不满足条件1n =;2,6n i ==,不满足条件1n =;1,7n i ==,满足条件1n =,退出循环,输出7i =.故选:B .【点睛】本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论.6.C【解析】【分析】先根据双曲线的方程求得双曲线的渐近线,再利用圆心到渐近线的距离为圆的半径求得a 和b 的关系,代入e =中求得离心率即可. 【详解】渐近线方程为0bx ay -=,r ==2213b a ∴=,3e ∴==. 故选:C.【点睛】本题考查双曲线离心率的求法,考查逻辑思维能力和计算能力,属于常考题.7.C【解析】【分析】根据正负相关的概念判断.【详解】由散点图知y 随着x 的增大而减小,因此是负相关.相关系数为负.故选:C .【点睛】本题考查变量的相关关系,考查正相关和负相关的区别.掌握正负相关的定义是解题基础.8.B【解析】【分析】确定函数的奇偶性排除,再求一些特殊的函数值,根据其正负排除一些选项.【详解】 由32sin ()()x x x f x f x e-+-==-,知()f x 为奇函数,排除D ;12sin1(1)0f e -=<,排除C ;322732sin 38202f e -⎛⎫=> ⎪⎝⎭,排除A . 故选:B【点睛】本题考查由函数解析式选择函数图象,解题时可通过确定函数的奇偶性、单调性等性质,特殊的函数值,函数值的正负,函数值的变化趋势等由排除法得出正确选项.9.A【解析】【分析】由三视图还原出原几何体,得出几何体的结构特征,然后计算体积.【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2, 直观图如图所示,1822233V =⨯⨯⨯=. 故选:A .【点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键.10.D【解析】【分析】()()4f x f x =+说明函数是周期函数,由周期性把自变量的值变小,再结合奇偶性计算函数值.【详解】由()()4f x f x =+知函数()f x 的周期为4,又()f x 是奇函数,(2)(2)f f =-,又(2)(2)f f -=-,∴(2)0f =,∴()()()()()()201820192301011f f f f f f +=+=+-=-=-. 故选:D . 【点睛】本题考查函数的奇偶性与周期性,掌握周期性与奇偶性的概念是解题基础. 11.D 【解析】 【分析】确定{}n c 中前35项里两个数列中的项数,数列{2}n 中第35项为70,这时可通过比较确定{3}n 中有多少项可以插入这35项里面即可得,然后可求和.【详解】35n =时,23570,370,3n n ⨯=<≤,所以数列{}n c 的前35项和中,{}3n有三项3,9,27,{}2n 有32项,所以123353231 (3927322210952)c c c c ⨯++++=+++⨯+⨯=. 故选:D . 【点睛】本题考查数列分组求和,掌握等差数列和等比数列前n 项和公式是解题基础.解题关键是确定数列{}n c 的前35项中有多少项是{2}n 中的,又有多少项是{3}n中的.12.B 【解析】 【分析】函数()y f x =的图象恒在x 轴的上方,0x e x a ->在()0,∞+上恒成立.即x ex a>,即函数xe y a=的图象在直线y x =上方,先求出两者相切时a 的值,然后根据a 变化时,函数xe y a=的变化趋势,从而得a 的范围.【详解】由题0x e x a ->在()0,∞+上恒成立.即xe x a>,xe y a=的图象永远在y x =的上方,设x e y a =与y x =的切点()00,x y ,则01x x e ae xa⎧=⎪⎪⎨⎪=⎪⎩,解得a e =,易知a 越小,xey a=图象越靠上,所以0a e <<.故选:B . 【点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围. 13.6π【解析】 【分析】由向量投影的定义可求得两向量夹角的余弦值,从而得角的大小. 【详解】a r 在b r方向上的投影为cos ,cos ,2a a b a b <>=∴<>==r r r r r ,即夹角为6π. 故答案为:6π. 【点睛】本题考查求向量的夹角,掌握向量投影的定义是解题关键. 14.2y =-【分析】根据题意先求出p 的值,然后再写出准线方程即可. 【详解】焦点到准线的距离为4p =,准线方程为22py =-=-. 故答案为:2y =-. 【点睛】本题考查抛物线的定义,考查对基本知识的理解和掌握,属于基础题.15.【解析】 【分析】由外接圆面积,求出外接圆半径,然后由正弦定理可求得三角形的内角,A B ,从而有C ,于是可得三角形边长,可得面积. 【详解】设外接圆半径为r ,则24,2S r r =π=π=,由正弦定理24sin sin a b r A B ===,得sin 1A B ==,,,,326A B C πππ∴===∴2c =,a =12S ac ==.故答案为: 【点睛】本题考查正弦定理,利用正弦定理求出三角形的内角,然后可得边长,从而得面积,掌握正弦定理是解题关键. 16.14π 【解析】 【分析】设PA x =,可表示出,PB PC ,由三棱锥性质得这三条棱长的平方和等于外接球直径的平方,从而半径的最小值,得外接球表面积.设PA x =则1,4PC x PC x =+=-,由,,PA PB PC 两两垂直知三棱锥P ABC -的三条棱,,PA PB PC 的棱长的平方和等于其外接球的直径的平方.记外接球半径为r ,∴2r ==当1x =时,2min min 2=414r r S ==π=π⎝⎭表. 故答案为:14π. 【点睛】本题考查三棱锥外接球表面积,解题关键是掌握三棱锥的性质:三条侧棱两两垂直的三棱锥的外接球的直径的平方等于这三条侧棱的平方和. 17.(1)21n a n =-;(2)221nn + 【解析】 【分析】(1)利用已知条件列出方程组,求出1a 和d 的值,进而写出通项公式即可; (2)()()1221121212121n n n b a a n n n n +===--+-+,利用裂项相消法求和即可.【详解】(1)由题得()23213177137492a a a a a S ⎧=⋅⎪⎪⎨+⎪==⎪⎩,解得112a d =⎧⎨=⎩或1073a d =⎧⎪⎨=⎪⎩,因为数列{}n a 为各项均为整数,所以112a d =⎧⎨=⎩,即21n a n =-;(2)令()()1221121212121n n n b a a n n n n +===--+-+,所以111111112113355721212121n n T n n n n =-+-+-+-=-=-+++. 【点睛】本题考查等差等比数列的性质,考查等差数列的通项公式,考查裂项相消法求和,考查逻辑思维能力和运算能力,属于常考题. 18.(1)存在,理由见解析;(2)23. 【解析】 【分析】(1)取ED 中点Q ,分别连接CQ ,QF ,CF ,易得//AB CQ ,//QF AP ,然后可证 面//CQF 面PAB ,即//CF 面PAB ;(2)过E 作//EG AB 交BC 于G ,分别求出EC ,PE 的长度,在梯形ABCD 中,作EH BC ⊥于H ,再求出EH 的长度,利用等体积法C PAE P ACE V V --=计算得解.【详解】(1)当F 为PD 上靠近D 点的三等分点时,满足//CF 面PAB , 证明如下,取ED 中点Q ,分别连接CQ ,QF ,CF ,//AD BC Q ,3AD AE =,2BC =,2AE =,AQ BC ∴=,即易得//AB CQ ,AB Ì面PAB ,CQ ⊄面PAB , 所以//CQ 面PAB ,同理可得//QF AP ,AP ⊂面PAB ,QF Ë面PAB , 所以//QF 面PAB ,又CQ QF Q ⋂=,CQ ,QF ⊂面CQF ,所以面//CQF 面PAB ,又CF ⊂面CQF ,所以//CF 面PAB ;(2)过E 作//EH AB 交BC 于H ,PE ⊥Q 面ABCD ,2ABC π∠=,EH BC ∴⊥在Rt PEC ∆中,EC =2PE ==, 所以11121223323C PAE P ACE ACE V V S PE --∆==⋅=⨯⨯⨯⨯=. 【点睛】本题考查线面平行的证法,考查利用等体积法求三棱锥体积,考查空间想象能力和运算能力,属于常考题.19.(1)(i )列联表见解析;(ii )没有;(2)1021. 【解析】 【分析】(1)(i )根据题意补全22⨯列联表;(ii )代入数据计算2K ,对照临界值做出判断即可;(2)由分层抽样方法,利用列举法求出基本事件数,计算所求的概率值. 【详解】 (1)(i )(ii )由22⨯列联表得()2210035261425 5.229 6.63560404951K ⨯⨯-⨯=≈<⨯⨯⨯,所以没有99%的把握认为“日平均走步数和性别是否有关”; (2)由列联表知从运动达人中抽取的男用户人数为735549⨯=,女用户人数为714249⨯=, 男用户编号a ,b ,c ,d ,e ,女用户编号m ,n ,则抽取的两位幸运用户有:(),a b ,(),a c ,(),a d ,(),a e ,(),a m ,(),a n ,(),b c ,(),b d ,(),b e ,(),b m ,(),b n ,(),c d ,(),c e ,(),c m ,(),c n ,(),d e ,(),d m ,(),d n ,(),e m ,(),e n ,(),m n ,共21种,其中男女各一位的有10种,概率为1021, 所以这2位幸运用户恰好男用户和女用户各一位的概率为1021. 【点睛】本题考查独立性检验及其计算,考查分层抽样,考查古典概率,考查逻辑思维能力和计算能力,属于常考题.20.(1)22143x y +=(2)存在;详见解析【解析】 【分析】(1)由椭圆的性质得3,1a c a c +=-=,解得,a c 后可得b ,从而得椭圆方程; (2)设()()()1122,,,,,0P x y Q x y A n ,当直线l 斜率存在时,设为()1y k x =-,代入椭圆方程,整理后应用韦达定理得1212,x x x x +,代入AP AQ k k +=0由恒成立问题可求得n .验证l 斜率不存在时也适合即得. 【详解】解:(1)由题易知1max 1min31PF a c PF a c ⎧=+=⎪⎨=-=⎪⎩解得21a c =⎧⎨=⎩,所以椭圆C 方程为22143x y +=(2)设()()()1122,,,,,0P x y Q x y A n当直线l 斜率存在时,设为()1y k x =-与椭圆方程联立得()22224384120kx k x k +-+-=,显然>0∆所以221212228412,4343k k x x x x k k -+=⋅=++ 因为22,0AP AQ PAF QAF k k ∠=∠∴+=()()()()()()1221121212110k x x n k x x n y y x n x n x n x n --+--∴+==---- 化简()()()222121222281824682120,0434343n k k n nk x x n x x n k k k --+-+++=∴-+=+++ 解得6240n -=即4n =所以此时存在定点()4,0A 满足题意 当直线l 斜率不存在时,()4,0A 显然也满足综上所述,存在定点()4,0A ,使22PAF QAF ∠=∠成立 【点睛】本题考查求椭圆的标准方程,考查直线与椭圆相交问题中的定点问题,解题方法是设而不求的思想方法.设而不求思想方法是直线与圆锥曲线相交问题中常用方法,只要涉及交点坐标,一般就用此法. 21.(1)1ln 214y x =++;(2)(],1e -∞--. 【解析】 【分析】(1)先求导,然后根据导数的几何意义求出切线斜率,最后由点斜式写出切线方程即可; (2)0x >,()3f x ≥,即只需min ()3f x ≥,对a 进行分类讨论, 求()f x 的最小值,解不等式求出范围即可. 【详解】(1)当2a =-时,1()ln 1f x x x=++,21()x f x x -'=,1(2)4f '∴=,()32ln 22f =+,所以切线方程为1ln 214y x =++;(2)当0x >,()3f x ≥,即只需min()3f x ≥,()21'()1x a f x x ++=+,当1a ≥-时,即10a --≤,()0f x '>,()f x ∴在()0,∞+上增,无最小值,舍去, 当1a <-时,即10a -->,()0f x '>,得1x a >--,()0f x '<,得01x a <<--, 此时()f x 在()1,1a ---上减,在()1a --+∞,上增,即()()min ()12ln 13f x f a a =--=+--≥,解得1a e ≤--, 综上(],1a e ∈-∞--. 【点睛】本题考查利用导数研究曲线上某点的切线方程,考查利用导数研究函数的单调性,考查逻辑思维能力和计算能力,属于常考题. 22.(1)()2211x y -+=(21 【解析】 【分析】(1)由公式cos sin x y ρθρθ=⎧⎨=⎩可化极坐标方程为直角坐标方程;(2)把M 点极坐标化为直角坐标,直线l 的参数方程是过定点M 的标准形式,因此直接把参数方程代入曲线C 的方程,利用参数t 的几何意义求解. 【详解】解:(1)2:cos C ρθ=,则22cos ρρθ=,∴222x y x +=,所以曲线C 的直角坐标方程为2220x y x +-=,即()2211x y -+=(2)点1,2M π⎛⎫⎪⎝⎭的直角坐标为()0,1M ,易知M l ∈.设,A B 对应参数分别为12,t t将12:1x t l y ⎧=-⎪⎪⎨⎪=+⎪⎩与22:20C x y x +-=联立得)21212110,1,1t t t t t t ++=∴+=⋅=120,0t t ∴<<12121MA MB t t t t +=+=+=【点睛】本题考查极坐标方程与直角坐标方程的互化,考查直线参数方程,解题时可利用利用参数方程的几何意义求直线上两点间距离问题. 23.(1)3,2⎡⎫-+∞⎪⎢⎣⎭(2)114m ≤-【解析】 【分析】(1)按绝对值的定义分类讨论去绝对值符号后解不等式;(2)不等式转化为2321m x x x ≤++--,求出2()321g x x x x =++--在3[,)2-+∞上的最小值即可,利用绝对值定义分类讨论去绝对值符号后可求得函数最小值. 【详解】 解:(1)1122x x x ≥⎧⎨---≤⎩或21122x x x -<<⎧⎨---≤⎩或2122x x x x ≤-⎧⎨-+++≤⎩ 解得1x ≥或312x -≤<或无解 综上不等式的解集为3,2A ⎡⎫=-+∞⎪⎢⎣⎭. (2)3,2x ⎡⎫∈-+∞⎪⎢⎣⎭时,2()2f x x x m ≤+-,即2132x x x m -≤++- 所以只需2321m x x x ≤++--在3,2x ⎡⎫∈-+∞⎪⎢⎣⎭时恒成立即可 令22223,1()321341,12x x x g x x x x x x x ⎧++≥⎪=++--=⎨++-≤<⎪⎩, 由解析式得()g x 在3[,)2-+∞上是增函数, ∴当32x =-时,min 11()4g x =- 即114m ≤-【点睛】本题考查解绝对值不等式,考查不等式恒成立问题,解决绝对值不等式的问题,分类讨论是本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

2019年高考数学全国卷1(文理科试题及答案)

2019年高考数学全国卷1(文理科试题及答案)

2019 年普通高等学校招生全国统一考试(全国卷1)理科数学2019年聊通高筲学枝IW 上全国统与试理科数学1. 善巻啊.蛊生务愛耨自已的蚪化、齐生号霁垃q 在善變节*1弑嘗搭电他*上.2. 阿巻就卄虺uh 迤出禅小町善丽,用樹笔把仔国鬥tlSJ ■貝曲唇塞标号找事,如蒂改圍”用 檢皮崔「浄后・再选涂其它袴索标号"凤祎非选择期时.特嘗案耳在答理卡匕耳左血试卷匕无牡・3-苇试姑柬斤,将事试卷和書岂卡一弁宦回°、业獎砸:本翹弍垃小SL 爼水粗占分.共⑷分.在毎小題箱出的四个选亚中.人有--助超胡倉饉 目贾康的"】.己如能會M ■徉4< JT 莖工}, N = |x -r-6<o|» HA/nJV =(A. [.r|-4 < x <3. (r-4 < x < -2^C.[ .v -1 < J <D. (JL |2 < A <d 试耳烈:満足:一F| = l*匚料珏罪血内时咻的戌対(斗y)・确r 】A.(x-i) +3': =1B (J -1 + >2 - IC t' +( i -l)J =i D.r +(.V + 1)3 = 1弘已刘iM = 】Qg ;0£ b 二 0 • e-o^1' ・剧 i JA,.ti<h<ce. < f < bCvai^bu.Zt <c<a朽一]4,古希雅时朗.人怕认为星类人井的齊哺至肚睛的绘度勺肚1ft 帘足底的氏度之比是七一吕首的-瞬嘗聲抽飓・便艮则此Jtt>K 摊羌人体的久3证1%1/5噸的快度与咽麻奇tt 席酋长嵐之比也呈坐二.拧卓人厲址h.ifffif 黄童井制比桝.105cm.AJMSIF f F 韻的叹度为Mcrm 则K 甘岳町施址(1A,]lKcm B.l 75cm 匚185cm5,i 炯柱小}壬二町・屁訂的側粉打)ccs r +□ 190cm*: 0.611!.轧爲竝;:寸乩比隣.*"tty氐我岡古代典攜(周SP用H卄”推述打物的堂比邯一“直5K山从卜之1齐列的EG弦爼获.Jt分为團爻■■一 -•- ■■右圈就是M・也所有重計中融机取£幷’则谍啃料惜盯于个们爻的栅率¥(〕5 II 2\IIA.—&.—C,— D.—16 竝竝169.记旺为:字衣吐列仏}的前』」1杷L1畑二=0・山二5.驅CA.叫= 2rt 5B. = 3n 10CS =2n:D.S =-ft-2nh °2ltt已如«•■<;的世点为^(-W) . FW 过珂的fL^'j C丸于礼H阳点雷|娠卜2|两国,\AH=2|占F,則亡的力糧为(>①丿足腾咕救②/|町任邂的|彳,用)单闊理增③f (x I住区间[一亿訂f:F个-匸?.i ④/V)的赧(伯X-j 22/5 三三A,—Uu b)-i・则:与石的夹甬沟<fiSMEB・图中空白框*■ I丄rL缶航朗是求二己知羊零向鐵:* &WM 22/711.艾干诵豹f ix)= sin J* |>in A'| f」下述四个馆论t匚①④埠巴如三检推F —川封匸的四牛I 加的用商上,PA^PB^PC, AX5CMlt£^2 rn 止-M t £尸介別兄加「祐的中九 ZCEF = 90 ’则球O 的休机为( t34vf )zr二 填空嵐:本鹽找4「|咂.毎小駆S 井”其加分达曲凹7 = 3(屮7片在点((}期社儿•:叫川沟 ________________ .地记屯为等比栽手|{叫}的前萌项和,若納二y tr? = a..则员= _____________________ .Je.屮.乙洒賦诜恬槪球比賽.光用七场西胜制.幄捲訓期比赛成细,屮认的主客甬安排粮抚旳"主主客 峯L 客广.设甲阻主场即胜的柢率为06辉场駅胖的觀率肯血窑(1各场比赛靖黑梱互1M 則甲駅以4: 1塡腔的槪率 ________________ .J甲W 已知或曲険C:肴-舊 “BI" 0)的底右儒点分別为耳迅.迁片的血线二匸的两最潮瓦钱甘 ^TA y B^F [A = AB. FR 化 S 則卍的离也那肯 ________________________________ .三' 解善題:M7C^・聲笞应写出文字说明、证明过程亚演算步骑L 第E1锂为必考麵.毎『试饉 老生都必顼作啤 闕瞬” 口罚为选老題・老主喂西英求作?£• (一)叱老證匸別分"17. <12山I&C 的内ftX.JJ,C 的柑边分别是ng 设(sin£ —sinQ 『 =sin 2/I-sm ffsiuC,ti )求右;2)?7 ^2a + 6 = 2c .求*nJ “IS. (12 *、 斗呃直网檢哇卫处Q-月風CD 的虑曲是菱器*.11, = 41 AB = 2 ・ £BAD =■ 6O P . E,M r N^\^BC.RH 、 J Q ;勺中止”丸①②④-Ci5 / 36i)旺明i .,WA P//2)求_i加傩卫一址气一用的止強值.19”〔12 分}己却删为尸,期卓为斗的直教却C的蛉伪小总,S轴的仝山为"Xi11務|/<尸| + 0F卜£ 求*的力軒;2*越乔二[两.求\AU .30.(12^)dfti^Si/(r)=(mx-hi(l + T). f(x)^i/(r)的#敷就削:⑴『匕)杞皿’—】.亍存杞唯…的极人值点;⑵血工”相农有2卒毒丸21- C12 分〉为冷疗革种臥両”研制了甲、乙两种折科,需型知洞那种軒药更TT故・为此进打动梅实越真验收fill心毎轮逸取詡卿自臥对貞1效进荷对比试鑿.对F闊!!勺就・RI机选•射只施氐乙罚. M MB HINNIA ffiBI卜--轮试戦.当齐中--忡童称直的白嵐出另咐> i门二h、;.: a」一- 就碎止试驰丼从曲治倉只數命的荊史有玆・为了方便描述问臥的定*对于厘Flit魅・若itu甲药的白艮治載且16玖兀药的白損耒谢蠢惰甲蘇禅I分,二药斜-】血若施以乙药时口瞬泊JftlL施以屮葯的白亂走冶愈刚乙罚堺lih甲冊-】4h若欄治竈诚暮水治壷嘲两种眦均鮒0分耳、£两种拘闱治愈率廿别记如和". 熾试猫申甲的的咼灯记沖Y.1)哦JV的少舟列t⑵ 若甲药、乙t?孫试验幵始时都瞋"井.期"=0J,2…問老示存甲苟的當计得分知仇最终儿为屮知比乙热屯白%”的槻典刖地=0,仇=1+冏=即严如+甲⑴(:=】2 <7},儿中芒=尸(,丫=0), f) -P(.¥ -0), < = P( A J/7-0>.:i)hi小—瓦}"二12…⑺为鼻比故処;门门求齐.井規揣円的您駢痒试种试誥方當的合證性.4/5(二)粧电瓯:it 10^.请弋生在察2叭為赣中作讐.如睾第妣・则按所憎的策一晅计分.22.[选悔V 坐标集与題數晒(10井】"为需歎)息堂标底成O为駆点.石轴在帆角坐标纂呦冲*曲爼C的辩数方押为f -1 ~止半稱为槻轴建立璇坐标系.的概生桩方租为2“顷旧 + JJpsin日+丨1・0,11)*匚与』的直箱坐栋方程I:空痕匚上财点到F跑寄的最小值.21[4iU-5t不芳氏注讲]10 5Z)已抑臥he为壬敕・且胃足nhc- I.证弗(1)丄4■丄+丄羞应『卜胪+『和a b c!2)(a + ^)J + (A+r)- +(c+<J)' >245/58 / 362019年査通爲零学校招化全国统一考试文科数学注卷車顶:1.售卷前・考牛•务感将口己的姓洛号空号黑填垢在割S卡铀试卷指建位胃匕.孔河答址择期i・h旌出毎小童答案冶*期铅里把菩匙轻对应題目鸚I■如需盘4h用也皮攥「-净后.再选洙其它答慕标h昇回霜4延择题时.瘙椁家写隹粹朗卡上.写芒本试卷L:无效"3.考试轴束已将体试程和剳冒卡一件交同―、选擇慙;本駆共12小怂"程小融弓分*共60分在毎小融绐出的四个进念中* 口右一砺星轩合豔目要求的=2B.V3 c. 41ai1L1知#0U =①狛从氐7}・A ={234・5;,Z?二h・3百・7}・A=(】A ;L6(B-{1J| C. {6.7} D. {1,6,7} 乱已知a = lo^r DN・h = 2a2, c = 0.2in. IM t )A.ii <h<f R.ti<c<hC.c<ti<hD.^ <4 一古乖聊时训”人心认为於兀人侏的义顶至肚M的山A乌丄情孚足呸的li哽之比兄"匚‘^5-1*0.618.林为黄金分割比榊人着呂的•斷惮醴抽斯”良足JU此,此外.扯k扎障的久顶至啥2喉的fei44i咽喉至It脐的怪度立比也昱{口+若臬人涌匸丨述两个扯金分削比悯*巨腿圧为KScm’2张顼奎聆『卜-端的悅度为265・耻其身禹町能足(>^lGSem B.175cm CJBScm D.190em 去汝嚼数/{巧二竺斗■理[饥厅]的轻|他为(-COS J + X立科軸学10 / 36氐某学栈为r 解1 Q00宕新生怕刖悻當际将这些学牛編弓为眞2+ -+ 1000.^^^<k 屮用系统抽枠 的加i 等距抽9U00名手空进行测试.若輻号学牛被抽轧 则下面4名宁主中被抽取的址()A.B :^^T. B 200 号学中- C 616 ^4^1:D 81S 号即上&己划 忤向施.匸祸斗:=平.11币一和丄乳则门示的夹旳,1LAXSC 的内脚扎鼠匸的时处务刑是鸟氏c LliuasiiM- bsia&-4ca\nC . e«j» J = - T M* =4 cA.6B.5C.d a.3区L 2掠瞬闘匚的囁点为林一 1、创・rtkOl ・过巧的起缕耳匚交:■-」/ 九忆苦I”; =2|/';^・I 姐=2)昭|・则(7的方程为<)11 T 丁*■* 1 x'2 .犷 y .工” y .匕 A ' v .A . — + r = I玫一 + J 匸】匚一+ — = I& - -+ — = I232435 4->才空题;本题共4小題,霽小題5井,共20分.= ^x~ +扌片件点(0X )牡的切纯方出为 ________________ .皿记比为等比數时就}的斛丹顷和.若坷丄・衬=毎.则乂二 _______________________ .17. un 255 =【Rg 号学生 B 200号学生 C616号供主0415 v^tB. - ? ■ v'?i€-2"D 2 + V3■右— 的程序帼用.圈屮空口框屮应塡入]■応础戟(?:二—吴三财>0上M )的一柚f 近线的幢料角为口0 .则匕的离心莘为< abA. 2 sin 4(}B. 2 cos 40sin 50D. ---------cos 502 + 4CA =1*2#甲2/515 医靈/(P v)=siml v 4-—)-Jcnsx 的瑕小恆为_______________________值已如ZJCB二90’・P为芈迪A&C外规FC = 2 ■点尸到^ACB两边"G AB的距离均A I J5.廉么P到辛祈冲占“的护离为 ______________________ .三i離答孤共7C^解答內写出文字说馭证明讨幻走洁草梅第1严21孤为必老黑.岛个试耶不生都必须件答“第2氛刀就为选青!L电生觸据聲求作答.C-)必书迩;60分*17.(1Z 时)臬南场为提1W务櫛孟驰机调查了和粕男贼客神疔「窑立顒罂毎忖蹊客村谨商场恂审务给出満总戍平满意的泮比眸到下列列联祐D分別估计职女岡客对谐商场服务满强的槪執C2)能否有95%的把握认為?b女陵第对谁斷炀服务的评价有館异? 附宀——凹」竺——(tj + h)(c^-ii )(/T-*-L')(/J +18 <12 ^f)记&为零龙:数列®」的前舟驷h曲0罠=—令*1> 阻%軒帆}他通项公戌*(2)若>?0・頼購£ 土斗術I刀取苟小范鬧.立理數学13 / 3619. (12如& 豐四變柱ABCD -叫垃3的旳如辛菱厢-AA,= 4 (AH-2. r£4匚*分别晁/?「.11歇..4、D的中点.[D 证I则v.w/TmcDFi[?>求点<到平[tic,n£的距离,竹、Ml 朗数 f (x) - 2 sin v - .vcos x~x , f f(x)为f(x)的冷 ft.[|>证罔:_f{-r)托IK间®.JT)存序吋-话点t⑵占上£[0卫]时,/(.r)>ax T求“的収價小也囤20, <12 分)已姐山彳.F艾尸叶函:口。

2019年全国统一高考数学试卷(文科)以及答案解析(全国1卷)

2019年全国统一高考数学试卷(文科)以及答案解析(全国1卷)

绝密★启用前2019年高考普通高等学校招生全国统一考试(全国1卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=,则|z|=()A.2B.C.D.12.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7} 3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生7.(5分)tan255°=()A.﹣2﹣B.﹣2+C.2﹣D.2+8.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.9.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+10.(5分)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C 的离心率为()A.2sin40°B.2cos40°C.D.11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A﹣b sin B=4c sin C,cos A =﹣,则=()A.6B.5C.4D.312.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1二、填空题:本题共4小题,每小题5分,共20分。

2019年普通高等学校招生全国统一考试文科数学(含答案)

2019年普通高等学校招生全国统一考试文科数学(含答案)

2019年普通高等学校招生全国统一考试文科数学(含答案)本试卷共5页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2)C .(–1,2)D .∅2.设z =i(2+i),则z = A .1+2i B .–1+2iC .1–2iD .–1–2i3.已知向量a =(2,3),b =(3,2),则|a –b |=A B .2C .D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23 B .35 C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 8.若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .129.若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .8 10.曲线y =2sin x +cos x 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=11.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A.15BCD12.设F为双曲线C:22221x ya b-=(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为ABC.2 D二、填空题:本题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件23603020x yx yy⎧⎪⎨⎪⎩+-≥+-≤-≤,,,则z=3x–y的最大值是___________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.15.ABC△的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=__________ _.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。

2024年山东省济南市中考数学模拟考试试题

2024年山东省济南市中考数学模拟考试试题

2024年山东省济南市中考数学模拟考试试题一、单选题1.0.2-的倒数等于( ) A .0.2B .5-C .15-D .52.清明节期间某市共接待国内游客约721000人次,将721000用科学记数法表示为( ) A .372110⨯B .472.110⨯C .57.2110⨯D .60.72110⨯3.下列计算正确的是( ) A .1133a a-=B .2322a a a +=C .()326a a a ⋅-=-D .()()32a a a -÷-=-4.将一个长方体木块沿四条棱切割掉一个三棱柱后,得到如图所示的几何体,则该几何体的左视图是( )A .B .C .D .5.如图,,145AB CD ABE ∠=︒∥,40DFE ∠=︒,则BEF ∠的度数为( )A .40︒B .50︒C .75︒D .70︒6.若点()2,A m 在x 轴上,则点()1,4B m m --在( ) A .第四象限B .第三象限C .第二象限D .第一象限7.已知点11(,)A x y ,22(,)B x y ,33(,)C x y 都在反比例函数2y x=-的图像上,且3210x x x <<<,则1y ,2y ,3y 的大小关系为( )A .132y y y <<B .123y y y <<C .231y y y <<D .321y y y <<8.新考法与新定义结合,如果一个自然数正着读和倒着读都一样,如121,32123等,则称该数为“回文数”.从1,1,2,2这四个数字中随机选取三个数字组成一个三位数,恰好是“回文数”的概率是( )A .12B .13C .14D .169.如图,点B ,C 分别在直线y =2x 和直线y =kx 上,A 、D 是x 轴上两点,若四边形ABCD 是长方形,且AB :AD =1:3,则k 的值是( )A .23B .25C .27D .2910.将抛物线2(1)y x =+的图象位于直线9y =以上的部分向下翻折,得到如图图象,若直线y x m =+与此图象有四个交点,则m 的取值范围是( )A .574m << B .354m <<C .495m << D .374m <<二、填空题11.分解因式:242m m -=.1213.在一个不透明的盒子中有1个白球和2个红球,它们除颜色外其余都相同,从盒子里任意摸出2个球,则摸出的两个球都是红球的概率是.14.如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为.15.如图,抛物线1C 的解析式为24y x =-+,将抛物线绕点O 顺时针旋转45︒得到图形G ,图形G 分别与y 轴、x 轴正半轴交于点A 、B ,连接AB ,则OAB △的面积为.16.如图,在矩形ABCD 中,4=AD ,6AB =,点E 在AB 上,将DAE V 沿直线DE 折叠,使点A 恰好落在DC 上的点F 处,连接EF ,分别与矩形ABCD 的两条对角线交于点M 和点G .给出以下四个结论:①ADE V 是等腰直角三角形;②:1:4BEM BAD S S =△△;③FG GM EM ==;④sin EDM ∠=,其中正确的结论序号是.三、解答题17.计算:)21312sin 452-⎛⎫--+︒ ⎪⎝⎭18.解不等式组321213x x x x >+⎧⎪+⎨>-⎪⎩,并写出它的整数解.19.如图,在ABCD Y 中,AC BD ,交于点O ,点E F ,在AC 上,AE CF =.(1)求证:四边形EBFD 是平行四边形;(2)若,BAC DAC ∠=∠求证:四边形EBFD 是菱形.20.某中学为掌握学生对党史的了解情况,开展了“党在我心中”党史知识竞赛,竞赛得分为整数.王老师为了解竞赛情况,随机抽取了部分参赛学生的得分并进行整理,绘制成不完整的统计图表.请你根据统计图表提供的信息解答下列问题: (1)上表中的m =,n =,p =;(2)这次抽样调查的成绩的中位数落在哪个组?请补全频数分布直方图;(3)现要从E 组随机抽取两名学生参加上级部门组织的党史知识竞赛,E 组中的小丽和小洁是一对好朋友,请用列表或画树状图的方法求出恰好抽到小丽和小洁的概率.21.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O 均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin700.94cos700.34tan70 1.73,,).︒≈︒≈︒≈22.如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交»BC于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.23.某运输公司安排甲、乙两种货车24辆恰好一次性将328吨的物资运往A,B两地,两种货车载重量及到A,B两地的运输成本如下表:(1)求甲、乙两种货车各用了多少辆;(2)如果前往A 地的甲、乙两种货车共12辆,所运物资不少于160吨,其余货车将剩余物资运往B 地.设甲、乙两种货车到A ,B 两地的总运输成本为w 元,前往A 地的甲种货车为t 辆.①写出w 与t 之间的函数解析式; ②当t 为何值时,w 最小?最小值是多少?24.如图1,一次函数y =kx -3(k ≠0)的图象与y 轴交于点B ,与反比例函数y =mx(x >0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当tan ∠ADC =2时,求点C 的坐标;(3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O 'CD ',若点O 的对应点O '恰好落在该反比例函数图象上(如图2),求出点O ',D '的坐标.25.如图1,抛物线211:2C y x bx c =-++与x 轴交于点()3,0A ,点B ,与y 轴交于点()0,3C .(1)求抛物线1C 表达式;(2)连结AC ,点D 为抛物线1C 在第一象限部分上的点,作ED x ∥轴交AC 于点E ,若1DE =,求D 点的横坐标;(3)如图2,将抛物线1C 平移,使得其顶点与原点重合,得到抛物线2C .过点()0,1F -作不与x 轴平行的直线交2C 于M ,N 两点.在y 轴正半轴上是否存在点P ,满足对任意的M ,N 都有直线PM 和PN 关于y 轴对称?若存在,请求出点P 的坐标:若不存在,请说明理由.26.实践与探究 【问题情境】(1)①如图1,Rt ABC △,90B ??,60A ∠=︒,D E ,分别为边AB AC ,上的点,DE BC ∥,且2BC DE =,则ADAB=______;②如图2,将①中的ADE V 绕点A 顺时针旋转30︒,则,DE BC 所在直线较小夹角的度数为______. 【探究实践】(2)如图3,矩形ABCD ,2AB =,AD =E 为边AD 上的动点,F 为边BC 上的动点,2BF AE =,连接EF ,作BH EF ⊥于H 点,连接CH .当CH 的长度最小时,求BH 的长.【拓展应用】(3)如图4,Rt ABC △,90ACB ∠=︒,60CAB ∠=︒,AC =D 为AB 中点,连接CD ,E F ,分别为线段BD CD ,上的动点,且2DF BE =,请直接写出AF 的最小值.。

2025届山东省济南市市中区济南外国语学校三箭分校高三第二次模拟考试数学试卷含解析

2025届山东省济南市市中区济南外国语学校三箭分校高三第二次模拟考试数学试卷含解析

2025届山东省济南市市中区济南外国语学校三箭分校高三第二次模拟考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在ABC ∆中,0OA OB OC ++=,2AE EB =,AB AC λ=,若9AB AC AO EC ⋅=⋅,则实数λ=( ) A .33B .32C .63D .622.已知函数()()()2sin 0f x x b ωϕω=++>,88f x f x ππ+=-()(),且58f π=(),则b =( ) A .3B .3或7C .5D .5或83.如图,在四边形ABCD 中,1AB =,3BC =,120ABC ∠=︒,90ACD ∠=︒,60CDA ∠=︒,则BD 的长度为( )A .533B .3C .33D 734.已知0x >,0y >,23x y +=,则23x yxy+的最小值为( )A .322-B .221C 21D 215.设x ,y 满足约束条件34100640280x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则2z x y =+的最大值是( )A .4B .6C .8D .106.已知双曲线C :22221x y a b-=(0a >,0b >)的右焦点与圆M :22(2)5x y -+=的圆心重合,且圆M 被双曲线的一条渐近线截得的弦长为22,则双曲线的离心率为( ) A .2B .2C .3D .37.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'2357︒'2413︒'2428︒'2444︒'正切值 0.439 0.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年D .早于公元前6000年8.若直线y =kx +1与圆x 2+y 2=1相交于P 、Q 两点,且∠POQ =120°(其中O 为坐标原点),则k 的值为( ) A . 3 B .2 C . 3或-3 D . 2和-29.函数cos ()cos x xf x x x+=-在[2,2]ππ-的图象大致为A .B .C .D .10.某几何体的三视图如图所示,则该几何体的体积为( )A .83π1633+B .4π1633+C .16343π3+D .43π1633+11.已知双曲线22221(0,0)x y a b a b-=>>的离心率为e ,抛物线22(0)y px p =>的焦点坐标为(1,0),若e p =,则双曲线C 的渐近线方程为( ) A .3y x =±B .22y x =±C .52y x =±D .22y x =±12.若直线不平行于平面,且,则( )A .内所有直线与异面B .内只存在有限条直线与共面C .内存在唯一的直线与平行D .内存在无数条直线与相交二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学精品复习资料
2019.5
绝密★启用并使用完毕前
高考模拟考试(山东卷)
文科数学
本试卷分为第I 卷和第Ⅱ卷两部分,共4页.训练时间l20分钟,满分150分,考试结束后,将本试卷和答题卡一并交回.
注意事项:
1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.
2.第l 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.
3、第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.
参考公式:
锥体的体积公式:V=1
3
Sh ,其中S 是锥体的底面积,h 是锥体的高. 第I 卷 (共50分)
一、选择题:本大题共l0个小题,每小题5分,共50分。

每小题给出的四个选项中只有一项是符合题目要求的。

(1)已知复数2
1i z i
=+(i 是虚数单位),则复数z 在复平面内对应的点位于
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
(2)已知集合A={|2,x y y x R =∈},B={|lg(1)x y x =-},则A
B

(A)(-∞,l) (B)(0,+∞) (C)(0,1) (D)(0,1]
(3)命题“2,10x R x ∀∈+>”的否定是
(A)2,10x R x ∀∈+≤ (B) 2,10x R x ∃∈+>
(C)2,10x R x ∀∈+< (D) 2,10x R x ∃∈+≤
(4)将函数cos 21y x =+的图象向右平移
4π个单位,再向下平移1个单位后得到的函数图象对应的表达式为
(A)sin 2y x = (B) sin 22y x =+
(C) cos 2y x = (D) cos(2)4y x π=-
(5)执行右面的程序框图输出的T 的值为
(A)4 (B)6
(C)8 (D)10
(6)已知直线m ,n 不重合,平面α,β不重合,下列命题正确的是
(A)若m β⊂,n β⊂,m //α,n //α,则//αβ
(B)若m α⊂,m β⊂,//αβ,则m//n
(C)若αβ⊥,m α⊂,n β⊂,则m n ⊥
(D)若m α⊥,n α⊂,则m n ⊥
(7)函数sin ln sin x x y x x -⎛⎫= ⎪+⎝⎭
的图象大致是
(8)已知变量x ,y ,满足约束条件111x y x y x a -≥⎧⎪+≥⎨⎪<≤⎩
,目标函数z =x +2y 的最大值为10,则实数a 的值为
(A)2 (B) 83
(C)4 (D)8 (9)已知F 1,F 2是双曲线22
221x y a b
-= (a>0,b>0)的左右两个焦点,过点F 1作垂直于x 轴的直线与双曲线的两条渐近线分别交于A ,B 两点,△ABF 2是锐角三角形,则该双曲线的离心率e 的取值范围是
(A)(1,2) (B)(1 (C )(1,5) (D)( +∞)
(10)已知()f x 定义域为(0,+∞),'()f x 为()f x 的导函数,且满足()'()f x xf x <-,则不等式2(1)(1)(1)f x x f x +>--的解集是
(A)(0,1) (B)(1,+∞) (C)(1,2) (D)(2,+∞)
第Ⅱ卷(共100分)
二、填空题:本大题共5个小题,每小题5分,共25
分。

(11)某学校举行课外综合知识比赛,随机抽取400名同
学的成绩,成绩全部在50分至100分之间,将成绩按如下
方式分成5组:第一组,成绩大于等于50分且小于60分;
第二组,成绩大于等于60分且小于70分……第五组,成
绩大于等于90分且小于等于100分,据此绘制了如图所示
的频率分布直方图.则400名同学中成绩优秀(大于等于80
分)
的学生有 名.
(12)如图,长方体ABCD —A 1B 1C 1D 1,有一动点在此长方体内随
机运动,则此动点在三棱锥A —A 1BD 内的概率为 .
(13)已知直线340x y a -+=与圆224210x x y y -+-+=相切,
则实数a 的值为 .
(14)如图,在直角梯形ABCD 中,AB//CD ,AB=2, AD=DC=1,
P 是线段BC 上一动点,Q 是线段DC 上一动点,,(1)D Q D C C P C B λλ==-,则
AP AQ 的取值范围是 .
(15)有一个奇数组成的数阵排列如下:
则第30行从左到右第3个数是 .
三、解答题:本大题共6小题,共75分.
(16)(本小题满分12分)
已知函数21()cos cos 2
f x x x x =-+
. (I)求()f x 的最小正周期及对称轴方程; (Ⅱ)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若1()22
A
f =,bc=6,求a 的最小值. (17)(本小题满分l2分)
一个袋中装有5个形状大小完全相同的球,其中有2个红球,3个白球.
(I)从袋中随机取两个球,求取出的两个球颜色不同的概率;
(II)从袋中随机取一个球,将球放回袋中,然后再从袋中随机取一个球,求两次取出的球中至少有一个红球的概率.
(18)(本小题满分12分)
如图,四边形ABCD 是菱形,四边形MADN 是矩
形,平面MADN ⊥平面ABCD ,E ,F 分别为MA ,
DC 的中点,求证:
(I)EF//平面MNCB ;
(Ⅱ)平面MAC ⊥平面BND .
(19)(本小题满分12分)
设等差数列{n a }的前n 项和为S ,且S 3=2S 2+4,a 5=36.
(I)求n a ,S n ;
(Ⅱ)设*1()n n b S n N =-∈,1231111...n n
T b b b b =++++,求T n (20)(本小题满分13分
)
已知函数2()()x
f x x ax e =+在(0,1)上单调递减.
(I)求a 的取值范围;
(Ⅱ)令2()[(3)21],()'()()x g x a x a a e h x f x g x =+++-=-,求()h x 在[1,2]上的最小值.
(21)(本小题满分14分)
已知椭圆C :22
221x y a b
+= (a>b>0)的离心率为2,且椭圆C 上一点与两个焦点F 1,F 2构成的
三角形的周长为.
(I)求椭圆C 的方程;
(II)过右焦点F 2作直线l 与椭圆C 交于A ,B 两点,设22F A F B λ=,若21λ-≤<-,求11F A F B 的取值范围.。

相关文档
最新文档