第七章-平面直角坐标系培优提高卷(含答案)
人教版七年级数学下册第7章平面直角坐标系培优提升卷
人教版七年级数学下册第7章平面直角坐标系培优提升卷一、选择题(每小题3分,共30分)1.下列选项中的点有可能在如图所示的阴影区域内的是( )A.(1,2) B.(-1,2) C.(-1,-2) D.(1,-2)2.若点P(a,b)在第二象限,则点Q(b+2,2-a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点A(2,7),AB∥x轴,AB=3,则B点的坐标为( )A.(5,7) B.(2,10) C.(2,10)或(2,4) D.(5,7)或(−1,7) 4.在平面直角坐标系中,点D(-5,4)到x轴的距离为()A.5 B.-5 C.4 D.-45.已知点M向左平移3个单位长度后的坐标为(-1,2),则点M原来的坐标是()A.(-4,2) B.(2,2) C.(-1,3) D.(-1,-2)6.如图是某动物园的平面示意图,若以大门为原点,向右的方向为x轴正方向,向上的方向为y轴正方向建立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.在平面直角坐标系中,如果点P到x轴的距离等于4,到y轴的距离等于5,这样的点P共有( ).A.1个B.2个C.3个D.4个8.已知点A(-1,0),B(1,1),C(0,-3),D(-1,2),E(0,1),F(6,0),其中在坐标轴上的点有( )A.1个B.2个C.3个D.4个9.在平面直角坐标系中,将点P向左平移2个单位长度后得到点(-1,5),则点P的坐标是()A.(-1,3) B.(-3,5) C.(-1,7) D.(1,5)10.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),…,根据这个规律,点P2019的坐标为( )A.(505,505) B.(-505,506) C.(505,-505) D.(504,504)二.填空题(共7小题)11.若P(a-2,a+1)在x轴上,则a的值是.12.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P的坐标.13.在平面直角坐标系中,点M在x轴的上方,y轴的左面,且点M到x轴的距离为4,到y 轴的距离为7,则点M的坐标是.14.若点A(2,n)在x轴上,则点B(n+2,n-5)位于第象限.15.如图,在平面直角坐标系xOy中,点A(3,0),判断在M,N,P,Q四点中,满足到点O和点A 的距离都小于2的点是.16.将正整数按如图所示的规律排列下去,若用有序数对(m,n)表示第m排从左到右第n个数,如(4,3)表示正整数9,那么(7,2)表示的正整数是,正整数18用有序数对表示为.17.如图,点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时会进行反弹,反弹时反射角等于入射角,当点P第2018次碰到长方形的边时,点P的坐标为.三.解答题(共7小题)18.已知点P(8-2m,m-1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.19.如图,点A(1,0),点(2,0),B点P(x,y),OC=AB,OD=OB.(1)则点C的坐标为(2)求x-y+xy的值.20.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(-3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(-1,-1),在图中标出行政楼的位置.21.已知点P(2a-12,1-a)位于第三象限,点Q(x,y)位于第二象限且是由点P向上平移一定单位长度得到的.(1)若点P的纵坐标为-3,试求出a的值;(2)在(1)题的条件下,试求出符合条件的一个点Q 的坐标;22.如图,在平面直角坐标系中,第一次将△OAB 变换成11,OA B 第二次将11OA B 变换成22,OA B 第三次将22OA B 变换成33;OA B 已知变换过程中各点坐标分别为123123(1,3),(2,3),(4,3),(8,3),(2,0),(4,0),(8,0),(16,0)A A A A B B B B .(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将33OA B 变换成44,OA B 则4A 的坐标为 4,B 的坐标为 .(2)按以上规律将△OAB 进行n 次变换得到,n n OA B 则n A 的坐标为,n B 的坐标为 ;(3)n n OA B 的面积为 .答案:1-5 BADCB6-10 DDDDA11.-112.(-1,2)(答案不唯一)13. (-7,4)14. 四15.点M与点N16. 2317. (7,4)(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(-4,3);(3)行政楼的位置如图所示.21. 解:(1)1-a=-3,a=4.(2)由a=4得:2a-12=2×4-12=-4,又点Q(x,y)位于第二象限,所以y>0;取y=1,得点Q的坐标为(-4,1).22.解:(1)∵A1(2,3)、A2(4,3)、A3(8,3).∴A4的横坐标为:24=16,纵坐标为:3.故点A4的坐标为:(16,3).又∵B1(4,0)、B2(8,0)、B3(16,0).∴B4的横坐标为:25=32,纵坐标为:0.故点B4的坐标为:(32,0).故答案为:(16,3),(32,0).(2)由A1(2,3)、A2(4,3)、A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故A n的坐标为:(2n,3).由B1(4,0)、B2(8,0)、B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故B n的坐标为:(2n+1,0);故答案为:(2n,3),(2n+1,0);(3)∵A n的坐标为:(2n,3),B n的坐标为:(2n+1,0),∴△OA n B n的面积为×2n+1×3=3×2n.。
【学生卷】初中七年级数学下册第七单元《平面直角坐标系》提高练习(含答案解析)
一、选择题1.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( )A .(-3,6)B .(-6,3)C .(3,-6)D .(8,-3) 2.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b -B .(),a b -C .(),a b --D .(),a b 3.下列各点中,在第二象限的是( ) A .()1,0 B .()1,1 C .()1,1- D .()1,1- 4.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ).A .2m n =B .2m n =C .2m n =D .2m n = 5.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 7.在平面直角坐标系中,点P (−1,23)在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2- 9.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限10.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)11.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3-12.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(0)4,C .40)(-,D .(0,4)- 13.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2) 14.如图,动点Р在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点Р的坐标是( )A .(2019,2)B .(2019,0)C .()2019,1D .(2020,1) 15.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交 B .平行、平行C .垂直相交、平行D .平行、垂直相交 二、填空题16.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 17.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.18.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.19.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.20.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.21.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 22.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.23.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,-1),…,按照这样的运动规律,点P 第17次运动到的点的坐标为__________.24.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____25.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 .26.点3(2,)A 到x 轴的距离是__________.三、解答题27.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.28.如图,已知△ABC 的顶点分别为A (﹣2,2)、B (﹣4,5)、C (﹣5,1)和直线m (直线m 上各点的横坐标都为1).(1)作出△ABC关于x轴对称的图形△A1B1C1,并写出点B1的坐标;(2)作出△ABC关于y轴对称的图形△A2B2C2,并写出点B2的坐标;(3)若点P(a,b)是△ABC内部一点,则点P关于直线m对称的点的坐标是.29.如图,已知平面直角坐标系中,点A在y轴上,点B、C在x轴上,S△ABO=8,OA=OB,BC=10,点P的坐标是(-6,a)(1)求△ABC三个顶点A、B、C的坐标;(2)连接PA、PB,并用含字母a的式子表示△PAB的面积(a≠2);(3)在(2)问的条件下,是否存在点P,使△PAB的面积等于△ABC的面积?如果存在,请求出点P的坐标;若不存在,请说明理由.30.正方形的边长为22,0),并写出另外三个顶点的坐标.。
人教版数学七年级下册第7章平面直角坐标系培优训练【含答案】
第7章平面直角坐标系培优训练一、单选题1.在平面直角坐标系中,对于坐标()34P ,,下列说法错误的是()A .点P 向左平移三个单位后落在y 轴上B .点P 的纵坐标是4C .点P 到x 轴的距离是4D .它与点()4,3表示同一个坐标2.平面直角坐标系内,下列的点不在任何象限的是()A .(51)-,B .(51)--,C .(5)1-,D .(01),3.下列说法正确的是()A .(32),和(2,3)表示同一个点B .点在x 轴的正半轴上C .点(2,4)-在第四象限D .点(31)-,到x 轴的距离为34.点()32,5P x x --在二、四象限的角平分线上,则x =()A .83B .2C .83-D .2-5.如图,在平面直角坐标系xOy 中有一点被墨迹遮挡了,这个点的坐标可能是()A .()2,3B .()2,3-C .()2,3--D .()2,3-6.在平面直角坐标系中,已知点()3,P a 到x 轴的距离为2,则a 的值为()A .2B .2-C .2±D .不能确定7.如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点()3,9M ,()12,9N ,则顶点A 的坐标是()A .()15,5B .()15,3C .()14,6D .()13,78.点M 到x 轴距离为3,到y 轴距离为2,且在第四象限内,则点M 的坐标为()A .()2,3-B .()2,3-C .()3,2D .()3,2-9.在平面直角坐标系中,点()23M m -,在y 轴上,则m 的值为()A .2-B .1-C .1D .210.点(1)P m m -,不可能在()A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.如图,若在象棋盘上建立直角坐标系,使“帅”位于点()11-,,“马”位于点()41-,,则“兵”位于点(_____,_____).12.平面直角坐标系的第二象限内有一点P ,到x 轴的距离为1,到y 轴的距离为2,则点P 的坐标是______.13.点()231A a a --+,在y 轴上,则=a ______.14.在平面直角坐标系内,线段AB 平行于x 轴,且3AB =,若点B 的坐标为()2,4,则点A 的坐标是______________.15.已知AB x ∥轴,A 的坐标为()1,6,4AB =,则点B 的坐标是______.16.在平面直角坐标系中,将点()3,1P 向上平移______个单位后得到点()3,3Q 17.已知点()3,A b 在第四象限,那么点()3,B b --在第________象限.18.如图,在平面直角坐标系中()1A -,1,()12B --,,()32C -,,()31D ,,一只瓢虫从点A 出发以3个单位长度/秒的速度沿A B C D A →→→→循环爬行,问第2022秒瓢虫在点____________处(填写坐标).三、解答题19.如图,这是某校的平面示意图,如以正东为x 轴正方向,正北为y 轴正方向建立平面直角坐标系后,得到初中楼的坐标是()42-,,实验楼的坐标是()40-,.(1)坐标原点应为______的位置.(2)在图中画出此平面直角坐标系;(3)校门在第______象限;图书馆的坐标是______;分布在第一象限的是______.20.已知)2040()()(A B C x y -,,,,,.(1)若点C (),x y 在第二象限,且44x y ==,,求点C 的坐标,并求三角形ABC 的面积;(2)若点C 在第四象限,且三角形ABC 的面积为9,|x |=3,求点C 的坐标.21.在平面直角坐标系经xOy 中,给出如下定义:点A 到x 轴、y 轴距离的较小值称为点A 的“短距”,当点P 的“短距”等于点Q 的“短距”时,称P 、Q 两点为“等距点”.(1)点(5,2)A --的“短距”为;(2)点(2,21)B m --+的“短距”为1,求m 的值;(3)若(1,3)C k -+,(4,23)D k -两点为“等距点”,求k 的值.22.已知ABC 在平面直角坐标系中的位置如图所示,将△ABC 向右平移6个单位长度,再向下平移4个单位长度,得到111A BC △(图中每个小方格边长均为1个单位长度).(1)直接写出ABC 三个顶点的坐标;(2)在图中画出平移后的111A BC △;(3)直接写出111A BC △三个顶点的坐标;(4)求111A BC △的面积.参考答案:一、选择1.D2.D3.B4.A5.B 6.C7.B8.B9.D10.C二、填空11.1-212.()2,1-13.214.()5,4或()1,4-15.()3,6-或()5,616.217.二18.()02-,三、解答19.【详解】(1)解:由题意得,可以建立如下坐标系,∴坐标原点应为高中楼的位置,故答案为:高中楼;(2)解:如图所示,即为所求;(3)解:由坐标系可知,校门在第四象限,图书馆的坐标为()41,,分布在第一象限的是,图书馆和操场,故答案为:四,()41,,图书馆和操场.20.【详解】(1)因为点C 在第二象限,横坐标为负,纵坐标为正,因为44x y ==,,所以点C 的坐标为(44)-,.因为(20)(40)A B -,,,,所以6AB =,所以164122ABC S =⨯⨯= (2)由(1)可知6AB =,因为点C 在第四象限,3x =,所以3x =,因为1692ABC S y =⨯⨯= ,所以3y =,因为点C 在第四象限,所以=3y -,所以点C 的坐标为(33)-,.21.【详解】(1)解:点(5,2)A --到x 轴、y 轴距离分别为2,5,∴“短距”为2,故答案为:2;(2)点(2,21)B m --+的“短距”为1,21-≠ ,∴211m -+=,,解得:0m =或1m =;(3)点(1,3)C k -+到x 轴的距离为3k +,到y 轴距离为1,点(4,23)D k -到x 轴的距离为23k -,到y 轴距离为4,1<4- ∴当3>1k +时,即>2k -或<4k -时,231k -=,∴231k -=或231k -=-,解得2k =或1k =;当31k +≤时,即42k -≤≤-时,233k k -=+,∴233k k -=+或()233k k -=-+,解得6k =(舍去)或0k =(舍去),综上所诉,2k =或1k =.22.【详解】(1)(2,4),(5,2),(4,5)A B C ---;(2)如图所示;(3)由图可知,111(4,0),(1,2),(2,1)A B C -;(4)11111133131223222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯ 3791322=---=.。
【数学】人教版七年级下册 第七章 平面直角坐标系提升训练
人教版七年级下册 第七章 平面直角坐标系提升训练七下平面直角坐标系相关提高训练(含答案)解决平面直角坐标系相关综合题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题,逐个击破;第三,要善于联想和转化,将以上得到的显性条件进行恰当的组合,进一步得到新的结论,尤其要注意的是,恰当地使用分析综合法及方程和函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题。
1、在平面直角坐标系中,0A=7,OC=18,现将点C 向上平移7个单位长度再向左平移4个单位长度,得到对应点B 。
(1)求点B 的坐标(2)若点P 从点C 以2个单位长度秒的速度沿C0方向移动,同时点Q 从点0以1个单位长度秒的速度沿0A 方向移动,设移动的时间为t 秒(0<t<7),四边形0PBA 与△0QB 的面积分别记为OPBA S 四边形与OQB S ∆,是否存在时间t,使OQB S OPBA S ∆≤2四边形,若存在,求出t 的范围,若不存在,试说明理由。
(3)在(2)的条件下,OPBQ S 四边形的值是否不变,若不变,求出其值,若变化,求出其范围2、如图,在平面直角坐标新中,AB//CD//x 轴,BC//DE//y 轴,且AB=CD=4cm ,OA=5cm ,DE=2cm,动点P 从点A 出发,沿C B A →→路线运动到点C 停止;动点Q 从点O 出发,沿C D E O →→→路线运动到点C 停止;若P 、Q 两点同时出发,且点P 的运动速度为1cm/s,点Q 的运动速度为2cm/s.(1) 、直接写出B 、C 、D 三个点的坐标; (2) 、当P 、Q 两点出发s 211时,试求的面积PQC ∆; (3) 、设两点运动的时间为t s,用t 的式子表示运动过程中S OPQ 的面积∆.3、如图,在平面直角坐标系中,A(a,0)为x 轴正半轴上一点,B(0,b)为y 轴正半轴上一点,且a 、b 满足()0382=-+-+b a b a(1)求S △AOB(2)点P(m,n)为直线L 上一动点,满足m-2n+2=0. ①若P 点正好在AB 上,求此时P 点坐标;②若B A S PAB S 0∆≥∆,试求m 的取值范围. L4、如图,已知点A ():51,3个单位,右移轴上,将点在A x m m --上移3个单位得到点B; (1) ,则m= ;B 点坐标( );(2) 连接AB 交y 轴于点C ,点D 是X 轴上一点,点坐标;,求的面积为D DAB 9∆(3) 求ABAC5、如图,在平面直角坐标系中,()().,2,1,6,4P y AB B A 轴于点交线段---(1) ,点A 到x 轴的距离是 ;点B 到x 轴的距离是 ;p 点坐标是 ; (2) ,延长AB 交x 轴于点M ,求点M 的坐标;(3) ,在坐标轴上是否存在一点T,使点坐标;?若存在,求的面积等于T ABT 6∆ 若不存在,说明理由。
部编数学七年级下册第七章平面直角坐标系提优测试卷(解析版)含答案
第七章平面直角坐标系提优测试卷(解析版)总分150分时间120分钟一.选择题(本大题共10小题,每小题3分,共30分)1.在平面直角坐标系内,下列各点中在第二象限的点是( )A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)思路引领:根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.解:A、(3,2)在第一象限,故本选项错误;B、(3,﹣2)在第四象限,故本选项错误;C、(﹣3,2)在第二象限,故本选项正确;D、(﹣3,﹣2)在第三象限,故本选项错误.故选:C.总结提升:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.线段AB两端点坐标分别为A(﹣1,4),B(﹣4,1),现将它向左平移4个单位长度,得到线段A1B1,则A1,B1的坐标分别为( )A.A1(﹣5,0),B1(﹣8,﹣3)B.A1(3,7),B1(0,5)C.A1(﹣5,4),B1(﹣8,1)D.A1(3,4),B1(0,1)思路引领:直接利用平移中点的变化规律求解即可.解:线段向左平移4个单位长度,即让原横坐标都减4,纵坐标不变即可,A1的横坐标为:﹣1﹣4=﹣5;B1的横坐标为:﹣4﹣4=﹣8.则A1,B1的坐标分别为A1(﹣5,4),B1(﹣8,1),故选C.总结提升:本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.3.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为( )A.﹣1B.﹣2C.1D.2思路引领:首先根据点P(x,y)在第四象限,且到y轴的距离为3,可得点P的横坐标是3,可得2﹣a =3,据此可得a的值.解:∵点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∴2﹣a=3,解答a=﹣1.故选:A.总结提升:此题主要考查了点的坐标,关键是掌握到x轴的距离=纵坐标的绝对值,到y轴的距离=横坐标的绝对值.4.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成( )A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)思路引领:先根据左眼和右眼所在位置点的坐标画出直角坐标系,然后写出嘴的位置所在点的坐标即可.解:如图,嘴的位置可以表示成(1,0).故选:C.总结提升:本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.5.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在( )A.第一象限B.第二象限C.第三象限D.第四象限思路引领:直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=−32,n=4,则点C(m,n)在第二象限.故选:B.总结提升:此题主要考查了点的坐标,正确得出m,n的值是解题关键.6.点(a﹣1,3)在y轴上,则a的值为( )A.0B.﹣1C.1D.3思路引领:根据y轴上点的横坐标为0列式计算即可得解.解:∵点(a﹣1,3)在y轴上,∴a﹣1=0,∴a=1,故选:C.总结提升:本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.7.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为( )A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)思路引领:直接利用平移中点的变化规律求解即可.解:∵A1(3,0)、A(﹣1,2),∴求原来点的坐标,则为让新坐标的横坐标都减4,纵坐标都加2.则点B的坐标为(﹣4,﹣2).故选:C.总结提升:此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.8.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为( )A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)思路引领:根据中点坐标公式[12(x A+x B),12(y A+y B)]代入计算即可.解:设点B的坐标为(x,y),∵点A的坐标为(﹣1,2),∴−1x2=0,2y2=0,∴x=1,y=﹣2,∴点B的坐标为(1,﹣2),故选:C.总结提升:本题考查坐标与图形的性质,记住中点坐标公式是解决问题的关键,代入计算时注意符号问题.9.如图,建立适当的直角坐标系后,正方形网格上B、C的坐标分别为(0,1),(1,﹣1),那么点A的坐标为( )A.(﹣1,2)B.(2,﹣1)C.(﹣2,1)D.(1,﹣2)思路引领:直接利用已知点位置得出原点位置进而得出答案.解:如图所示:点A的坐标为:(﹣1,2).故选:A.总结提升:此题主要考查了点的坐标,正确得出原点位置是解题关键.10.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是( )A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)思路引领:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,的出规律.解:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,横坐标为:0,1,2,3,4,5,6,.....,纵坐标为:1,0,﹣2,0,3,0,﹣4,0,5,0,﹣6,可知P n的横坐标为n﹣1,当n为偶数时纵坐标为0,当n为奇数时,纵坐标为|n12|,当n12为偶数时符号为负,当n12为奇数时符号为正,∴P2021的横坐标为2020,纵坐标为202112=1011,故选:C.总结提升:本题考查了规律型点的坐标,数形结合并从图象中发现循环规律是解题的关键.二、填空题(本大题共8小题,第11~12题每题3分,第13~18题每题4分,共30分.)11.在平面直角坐标系内,把点P(﹣5,﹣2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是 .思路引领:直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.解:原来点的横坐标是﹣5,纵坐标是﹣2,向左平移2个单位长度,再向上平移4个单位得到新点的横坐标是﹣5﹣2=﹣7,纵坐标为﹣2+4=2.得到的点的坐标是(﹣7,2).故答案为:(﹣7,2).总结提升:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.12.如图,在平面直角坐标系中,三角形ABC 经过平移后得到三角形A ′B ′C ′,且平移前后三角形的顶点坐标都是整数.若点P (12,−15)为三角形ABC 内部一点,且与三角形A ′B ′C ′内部的点P ′对应,则对应点P ′的坐标是 .思路引领:依据对应点的坐标变化,即可得到三角形ABC 向左平移2个单位,向上平移3个单位后得到三角形A ′B ′C ′,进而得出点P ′的坐标.解:由图可得,C (2,0),C '(0,3),∴三角形ABC 向左平移2个单位,向上平移3个单位后得到三角形A ′B ′C ′,又∵点P (12,−15)为三角形ABC 内部一点,且与三角形A ′B ′C ′内部的点P ′对应,∴对应点P ′的坐标为(12−2,−15+3),即P '(−32,145),故答案为:(−32,145).总结提升:此题主要考查了坐标与图形变化,关键是注意观察组成图形的关键点平移后的位置.解题时注意:横坐标,右移加,左移减;纵坐标,上移加,下移减.13.(2022•烟台)观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为 .14.已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(0,﹣6),C(0,﹣1),当AD∥BC且AD=BC 时,D点的坐标为 .思路引领:根据题意直接画出图形,进而分类讨论得出答案.解:如图所示:∵AD∥BC且AD=BC,∴D点的坐标为:(﹣2,8)或(﹣2,﹣2).故答案为:(﹣2,8)或(﹣2,﹣2).总结提升:此题主要考查了坐标与图形的性质,正确分类讨论是解题关键.15.在直角坐标系中,△ABC经过平移得到△A′B′C′,已知△ABC中的一点P的坐标为(x,y),经过平移后的对应点P′的坐标为(x+5,y﹣2).如果点A的坐标为(﹣1,2),请写出对应点A′的坐标为 .思路引领:平移是按照:向右平移5个单位,向下平移2个单位进行,从而可得出各顶点的坐标.解:因为△ABC中的一点P的坐标为(x,y),经过平移后的对应点P′的坐标为(x+5,y﹣2).所以向右平移5个单位,向下平移2个单位进行,点A的坐标为(﹣1,2),对应点A′的坐标为(4,0),故答案为:(4,0),总结提升:本题考查了平移的知识,解答本题需要我们能根据一个点的平移前后的坐标得出平移的规律.16.在平面直角坐标系中,一个点的横、纵坐标都是整数,并且它们的乘积为10,满足上述条件的点共有 个.思路引领:设这个点的坐标为(x,y),则xy=10,然后利用x、y为整数求出方程的整数解,从而确定满足条件的点的个数.解:设这个点的坐标为(x,y),则xy=10,因为x、y为整数,所以x=1,y=10;x=2,y=5;x=5,y=2;x=10,y=1;x=﹣1,y=﹣10;x=﹣2,y=﹣5;x=﹣5,y=﹣2;x=﹣10,y=﹣1;所以这样的点共有8个.故答案为8.总结提升:本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系.记住各象限内点的坐标特征.17.(2022•2…,24;…若2的位置记为(1,2)2,3),则 .思路引领:先找出被开方数的规律,然后再求得解:题中数字可以化成:∴规律为:被开数为从2开始的偶数,每一行4个数,∵=28是第14个偶数,而14÷4=3⋯2,∴4,2),故答案为:(4,2).总结提升:本题考查了类比点的坐标解决实际问题的能力和阅读理解能力,把被开方数全部统一成二次根式的形式是解题的关键.18.已知在平面直角坐标系中,A(0,4),C(3,0),点B在坐标轴上,且△ABC的面积为10,则点B的坐标为 .思路引领:点B在x轴上时,利用三角形的面积求出BC的长,再分点B在点C的左边与右边两种情况写出点C的坐标;点B在y轴上时,利用三角形的面积求出AB的长,再分点B在点A的上方与下方两种情况写出点B的坐标即可.解:点B在x轴上时,BC=10×2÷4=5,3﹣5=﹣2,3+5=8,则点B的坐标为(﹣2,0),(8,0);点B在y轴上时,AB=10×2÷3=20 3,4−203=−83,4+203=323,则点B的坐标为(0,−83),(0,323).综上所述,点B的坐标为(﹣2,0),(8,0),(0,−83),(0,323).故答案为:(﹣2,0),(8,0),(0,−83),(0,323).总结提升:本题考查了坐标与图形性质,三角形的面积,难点在于分情况讨论,坐标轴要分x轴与y轴两种情况.三、解答题(本大题共8小题,共90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)已知点A (1+2a ,4a ﹣5),(1)若点A 到两坐标轴的距离相等,求点A 的坐标.(2)若点A 在坐标轴上,求点A 的坐标.思路引领:(1)根据点A 到两坐标轴的距离相等,分两种情况讨论:1+2a 与a ﹣7相等;1+2a 与a ﹣7互为相反数;(2)分点A 在x 轴和y 轴两种情况解答即可.解:(1)根据题意,分两种情况讨论:①1+2a =4a ﹣5,解得:a =3,∴1+2a =7,∴点A 的坐标为(7,7);②1+2a +4a ﹣5=0,解得:a =23,∴1+2a =73,a ﹣7=﹣5,∴点A 的坐标为(73,−73),综上所述:A 点坐标为(4,4)或(73,−73).(2)点A 在x 轴上时,4a ﹣5=0,解得a =54,1+2a =72,∴点A 的坐标为(72,0);点A 在y 轴上时,1+2a ,解得a =−12,4a ﹣5=﹣7,∴点A 的坐标为(0,﹣7).综上所述:A 点坐标为(72,0)或(0,﹣7).总结提升:此题主要考查了点的坐标,解答此题的关键是熟知到两坐标轴的距离相等的点的特点是:横纵坐标相等或横纵坐标互为相反数.20.(10分)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…(1)填写下列各点的坐标:P9( 、 ),P12( 、 ),P15( 、 )(2)写出点P3n的坐标(n是正整数);(3)点P60的坐标是( 、 );(4)指出动点从点P210到点P211的移动方向.思路引领:由题意可以知道,动点运动的速度是每次运动一个单位长度,(0,1)→(1,1)→(1,0)→(1,﹣1)……通过观察找到有规律的特殊点,如P3、P6、P9、P12,发现其中规律是脚标是3的倍数的点,依次排列在x轴上,且相距1个单位,明确这个规律即可解决以上所有问题.解:(1)由动点运动方向与长度可得P3(1,0),P6(2,0),可以发现脚标是3的倍数的点,依次排列在x轴上,且相距1个单位,即动点运动三次与横轴相交,故答案为P9(3,0),P12(4、0 ),P15(5、0 ).(2)由(1)可归纳总结点P3n的坐标为P3n(n,0),(n是正整数);(3)根据(2),∵60=3×20,∴点P60的横坐标是20故点P60的坐标是(20、0 )故答案为(20、0 ).(4)∵210=3×70,符合(2)中的规律∴点P210在x轴上,又由图象规律可以发现当动点在x轴上时,偶数点向上运动,奇数点向下运动,而点P210是在x轴上的偶数点所以动点从点P210到点P211的移动方向应该是向上.总结提升:本题是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定动点移动的数字与方向上的规律,然后再进一步按规律解决要求的点的位置.21.(10分)如图,在平面直角坐标系中,已知A(﹣2,2),B(2,0),C(3,3),P(a,b)是三角形ABC 的边AC上的一点,把三角形ABC经过平移后得三角形DEF,点P的对应点为P(a﹣2,b﹣4).(1)直接写出D,E,F的坐标.(2)画出三角形DEF,求三角形DEF的面积.思路引领:(1)直接利用对应点变化规律进而分别得出对应点位置;(2)利用△DEF所在三角形面积减去周围三角形面积即可得出答案.解:(1)∵P为AC上的点,P平移后P(a﹣2,b﹣4)表示向左平移2个单位,再向下平移 4 个单位.∴A(﹣2,2)对应点D(﹣4,﹣2);B(2,0)对应点E(0,﹣4);C(3,3)对应点F(1,﹣1).(2)如图所示,将D,E,F连线即可.三角形DEF的面积为:3×5−12×1×5−12×2×4−12×1×3=15−52−4−32=7.总结提升:此题主要考查了平移变换以及三角形面积求法,正确得出对应点的位置是解题关键.22.(10分)已知点P(2m+4,m﹣1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.思路引领:(1)根据y轴上点的横坐标为0列方程求出m的值,再求解即可;(2)根据纵坐标比横坐标大3列方程求解m的值,再求解即可;(3)根据点P到x轴的距离列出绝对值方程求解m的值,再根据第四象限内点的横坐标是正数,纵坐标是负数求解.解:(1)∵点P(2m+4,m﹣1)在y轴上,∴2m+4=0,解得m=﹣2,所以,m﹣1=﹣2﹣1=﹣3,所以,点P的坐标为(0,﹣3);(2)∵点P的纵坐标比横坐标大3,∴(m﹣1)﹣(2m+4)=3,解得m=﹣8,m﹣1=﹣8﹣1=﹣9,2m+4=2×(﹣8)+4=﹣12,所以,点P的坐标为(﹣12,﹣9);(3)∵点P到x轴的距离为2,∴|m﹣1|=2,解得m=﹣1或m=3,当m=﹣1时,2m+4=2×(﹣1)+4=2,m﹣1=﹣1﹣1=﹣2,此时,点P(2,﹣2),当m=3时,2m+4=2×3+4=10,m﹣1=3﹣1=2,此时,点P(10,2),∵点P在第四象限,∴点P的坐标为(2,﹣2).总结提升:本题考查了点的坐标,熟练掌握坐标轴上点的坐标特征是解题的关键,(3)要注意点在第四象限.23.(10分)(2021春•围场县期末)四边形ABCD各顶点的坐标分别为A(0,1),B(5,1),C(6,3),D(2,5).(1)如图,在平面直角坐标系中画出该四边形;(2)四边形ABCD内(边界点除外)一共有 个整点(即横坐标和纵坐标都是整数的点);(3)求四边形ABCD的面积.思路引领:(1)根据点的坐标描出四个点,顺次连接可得;(2)根据整点的概念可得;(3)割补法求解即可.解:(1)如图所示,四边形ABCD即为所求;(2)由图可知,四边形ABCD内(边界点除外)的整点有11个,故答案为:11;(3)四边形ABCD的面积为4×6−12×2×4−12×2×4−12×1×2=15.总结提升:本题主要考查坐标与图形的性质,解题的关键是理解有序实数对与平面内的点一一对应及割补法求面积.24.(12分)在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为 ;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.思路引领:(Ⅰ)利用三角形的面积公式直接求解即可.(Ⅱ)①连接OD,根据S△ACD =S△AOD+S△COD﹣S△AOC求解即可.②构建方程求解即可.解:(Ⅰ)∵A(0,2),B(﹣2,0),C(4,0),∴OA=2,OB=2,OC=4,∴S△ABC =12•BC•AO=12×6×2=6.故答案为6.(Ⅱ)①如图②中由题意D(5,4),连接OD.S△ACD =S△AOD+S△COD﹣S△AOC=12×2×5+12×4×4−12×2×4=9.②由题意:12×2×|m|=12×2×4,解得m=±4,∴P(﹣4,3)或(4,3).总结提升:本题考查坐标与图形的变化,三角形的面积,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.25.(14分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b)且a,b|b−12|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的线路移动.(1)求点B的坐标为 ;当点P移动5秒时,点P的坐标为 ;(2)在移动过程中,当点P移动11秒时,求△OPB的面积;(3)在(2)的条件下,坐标轴上是否存在点Q,使△OPQ的面积与△OPB的面积相等,若存在,求点Q的坐标;若不存在,说明理由.思路引领:(1)由非负数的性质可得a、b的值,据此可得点B的坐标;由点P运动速度和时间可得其运动5秒的路程,结合OA=8知AP=2,从而得出其坐标;(2)先根据点P运动11秒判断出点P的位置,再根据三角形的面积公式求解可得;(3)分点Q在x轴和y轴上两种情况,根据三角形的面积公式求出OQ的长,从而得出答案.解:(1)∵a,b|b−12|=0,∴a=8,b=12,∴点B(8,12);当点P移动5秒时,其运动路程为5×2=10,∵OA=8,∴AP=2,则点P坐标为(8,2),故答案为:(8,12)、(8,2);(2)如图1,当点P移动11秒时,11×2=22,∵OA+AB=8+12=20<22,OA+AB+BC=8+12+8=28>22,∴点P在边BC上,此时PB=22﹣20=2.∴S△OPB =12×PB×AB=12×2×12=12;(3)①当点Q在x轴上时,∵S△OPQ =12×OQ×BA=12×OQ×12=12,∴OQ=2,∴Q(2,0)或者Q(﹣2,0);②当点Q在y轴上时,CP=6,∵S△OPQ =12×OQ×CP=12×OQ×6=12,∴OQ=4,∴Q(0,4),综上所述,存在点Q使△OPQ的面积与△OPB的面积相等,其坐标为Q1(2,0),Q2(﹣2,0),Q3(0,4).总结提升:本题是四边形的综合问题,解题的关键是掌握非负数的性质、动点运动问题及三角形的面积问题、分类讨论思想的运用等知识点.26.(14分)先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式P1P2=时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.思路引领:(1)根据两点间的距离公式PP2A、B两点间的距离;1(2)根据两点间的距离公式|y2﹣y1|来求A、B两点间的距离.(3)先将A、B、C三点置于平面直角坐标系中,然后根据两点间的距离公式分别求得AB、BC、AC的长度;最后根据三角形的三条边长来判断该三角形的形状.解:(1)∵A(2,4)、B(﹣3,﹣8),∴|AB|==13,即A、B两点间的距离是13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,∴|AB|=|﹣1﹣5|=6,即A、B两点间的距离是6;(3)△ABC是等腰三角形,理由如下:∵一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),∴AB=5,BC=6,AC=5,∴AB=AC,∴△ABC是等腰三角形.总结提升:本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.。
人教版七年级数学下册第7章平面直角坐标系培优卷
人教版七年级数学下册第7章平面直角坐标系培优卷一.选择题(共10小题)1.下列各点中,位于第四象限的点是()A.(3,-4) B.(3,4) C.(-3,4) D.(-3,-4)2.在平面直角坐标系中,点(P-所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点A(2x-4,x+2)在坐标轴上,则x的值等于()A.2或-2 B.-2 C.2 D.非上述答案4.已知点P(-4,3),则点P到y轴的距离为()A.4 B.-4 C.3 D.-35.如图,已知在△AOB中A(0,4),B(-2,0),点M从点(4,1)出发向左平移,当点M平移到AB 边上时,平移距离为()A.4.5 B.5 C.5.5 D.5.756.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0) B.(1,2) C.(5,4) D.(5,0)7.已知点M向左平移3个单位长度后的坐标为(-1,2),则点M原来的坐标是()A.(-4,2) B.(2,2) C.(-1,3) D.(-1,-2)8.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)9.已知点A(-1,2)和点B(3,m-1),如果直线AB∥x轴,那么m的值为()A.1 B.-4 C.-1 D.310.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点1(1,1),P紧接着第2次向左跳动2个单位至点2(1,1),P 第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P第2017次跳动至2017P的坐标是()A.(504,1007) B.(505,1009)C.(1008,1007) D.(1009,1009)二.填空题(共7小题)11.在平面直角坐标系中,把点A(-10,1)向上平移4个单位,得到点A′,则点A′的坐标为.12.如图是轰炸机机群的一个飞行队形,若最后两架轰炸机的平面坐标分别为A(-2,3)和B(-2,-1),则第一架轰炸机C的平面坐标是.13.若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为.14.在平面直角坐标系中,将点A(-1,3)向左平移a个单位后,得到点A′(-3,3),则a的值是.15.点Q(x,y)在第四象限,且|x|=3,|y|=2,则点Q的坐标是.16.若点A(a,b)在第四象限,则点C(-a-1,b-2)在第象限.17.已知平面内有一点A的横坐标为-6,且到原点的距离等于10,则A点的坐标为.三.解答题(共7小题)18.已知平面直角坐标系中有一点M(m-1,2m+3),且点M到x轴的距离为1,求M的坐标.19.若点P(1-a,2a+7)到两坐标轴的距离相等,求a的值.20.如图,点A(1,0),点B点P(x,y),OC=AB,OD=OB.(1)则点C的坐标为;(2)求x-y+xy的值.21.请你在图中建立直角坐标系,使汽车站的坐标是(3,1),并用坐标说明儿童公园、医院、李明家、水果店、宠物店和学校的位置.22.在平面直角坐标系中,已知点P(2m+4,m-1),试分别根据下列条件,求出点P 的坐标. 求:(1)点P 在y 轴上;(2)点P 的纵坐标比横坐标大3;(3)点P 在过A(2,-5)点,且与x 轴平行的直线上.23.已知平面直角坐标系中有一点M(2m-3,m+1).(1)点M 到y 轴的距离为l 时,M 的坐标?(2)点N(5,-1)且MN ∥x 轴时,M 的坐标?24.【阅读材料】平面直角坐标系中,点P(x,y)的横坐标x 的绝对值表示为|x|,纵坐标y 的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3【解决问题】(1)求点(2,4),A B --的勾股值[A],[B];(2)若点M 在x 轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M 的坐标.参考答案:1-5 ABAAC6-10 DBCDB11. (-10,5)12. (2,1)13. (2,5)14.215. (3,-2)16.三17. (-6,8)或(-6,-8)18. 解:由题意可得:|2m+3|=1,解得:m=-1或m=-2,当m=-1时,点M的坐标为(-2,1);当m=-2时,点M的坐标为(-3,-1);综上,M的坐标为(-2,1)或(-3,-1).19. 解:∵点P(1-a,2a+7)到两坐标轴的距离相等,∴|1-a|=|2a+7|,∴1-a=2a+7或1-a=-(2a+7),解得a=-2或a=-8.20. 解:(1)∵点A(1,0),点B(,0),∴OA=1、OB=,则AB=-1,∵OC=AB,OD=OB,∴OC=-1,OD=,则点C坐标为(-1,0),故答案为:(-1,0).(2)由(1)知点P坐标为(-1,),则x=-1、y=,∴原式=-1-+(-1)=-1+2-=1-.21. 解:如图所示:建立平面直角坐标系,儿童公园(-2,-1),医院(2,-1),李明家(-2,2),水果店(0,3),宠物店(0,-2),学校(2,5).22. 解:(1)令2m+4=0,解得m=-2,所以P点的坐标为(0,-3);(2)令m-1-(2m+4)=3,解得m=-8,所以P点的坐标为(-12,-9);(3)令m-1=-5,解得m=-4.所以P点的坐标为(-4,-5).23. 解:(1)∵点M(2m-3,m+1),点M到y轴的距离为1,∴|2m-3|=1,解得m=1或m=2,当m=1时,点M的坐标为(-1,2),当m=2时,点M的坐标为(1,3);综上所述,点M的坐标为(-1,2)或(1,3);(2)∵点M(2m-3,m+1),点N(5,-1)且MN∥x轴,∴m+1=-1,解得m=-2,故点M的坐标为(-7,-1).24. 解:(1)∵点A(-2,4),B(+,-),∴[A]=|-2|+|4|=2+4=6,[B]=|+|+|−|=++−=2;(2)∵点M在x轴的上方,其横,纵坐标均为整数,且[M]=3,∴x=±1时,y=2或x=±2,y=1或x=0时,y=3,∴点M的坐标为(-1,2)、(1,2)、(-2,1)、(2,1)、(0,3).人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)一、单选题(每小题只有一个正确答案)1.下面的有序数对的写法正确的是()A.(1、3) B.(1,3) C.1,3 D.以上表达都正确2.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7).则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)3.平面直角坐标系中有5个点:(2,3),(1,0),(0,-2),(0,0),(-3,2),其中不属于任何象限的有( )A.1个 B.2个 C.3个 D.4个4.在如图所示的单位正方形网格中,经过平移后得到,已知在上一点平移后的对应点为,则点的坐标为( )A.(1.4,-1) B.(-1.5,2) C.(-1.6,-1) D.(-2.4,1)5.根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东C.美莱登国际影城3排D.东经,北纬6.点P()在平面直角坐标系的轴上,则点P的坐标为( )A.(0,2) B.(2,0) C.(0,-2) D.(0,-4)7.下列说法中,正确的是( )A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.在平面上的一点的坐标在不同的直角坐标系中的坐标相同8.下列与(2,5)相连的直线与y轴平行的是()A.(5,2) B.(1,5) C.(-2,2) D (2,1)9.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则P的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)11.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)12.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()A.第二、四象限 B.第一、三象限C.平行于x轴的直线上 D.平行于y轴的直线上二、填空题13.早上8点钟时室外温度为2 ℃,我们记作(8,2),则晚上9点时室外温度为零下3 ℃,我们应该记作______.14.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第________象限.15.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.16.到轴的距离是________,到轴的距离是________,到原点的距离是________.17.如图,平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2 019个点的坐标为________.三、解答题18.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,19.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?请分别写出这些路线。
河南省实验中学七年级数学下册第七章【平面直角坐标系】提高卷(培优提高)
一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1-3.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上 4.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)5.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1-6.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( )A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2)7.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 8.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上 9.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)10.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限 11.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题12.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.13.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 14.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 15.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.16.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .17.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.18.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 19.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.20.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).23.ABC 在如图所示的平面直角坐标系中,将其平移得到A B C ''',若B 的对应点B '的坐标为(1,1).(1)在图中画出A B C ''';(2)此次平移可以看作将ABC 向________平移________个单位长度,再向________平移________个单位长度,得A B C ''';(3)求A B C '''的面积并写出做题步骤.24.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是 A (﹣3,2),B (0,4),C (0,2).(1)将△ABC 以点 O 为旋转中心旋转 180°,画出旋转后对应的△A 1B 1C 1;(2)平移△ABC ,使对应点 A 2 的坐标为(0,﹣4),写出平移后对应△A 2B 2C 2的中B 2,C 2点坐标.25.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.一、选择题1.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位2.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1-3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,14.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置5.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上6.在平面直角坐标系中,点P (﹣2019,2018)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 7.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .8868.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092m D .2504m 9.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒11.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题12.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)13.写一个第三象限的点坐标,这个点坐标是_______________.14.已知点()3,2P -,//MP x 轴,6MP =,则点M 的坐标为______.15.若点p(a+13,2a+23)在第二,四象限角平分线上,则a=_____. 16.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.17.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 18.如图,在平面直角坐标系中,三角形ABC 经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P (12,﹣15)为三角形ABC 内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.19.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.20.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换:①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.21.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______. 三、解答题22.已知点(1,5)A a -和(2,1)B b -.试根据下列条件求出a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于x 轴对称;(3)AB ‖x 轴23.在平面直角坐标系中,ABC 的位置如图所示,把ABC 先向左平移2个单位,再向下平移4个单位可以得到A B C '''.(1)画出三角形A B C ''',并写出,,A B C '''三点的坐标;(2)求A B C '''的面积.24.如图,在平面直角坐标系中,点A (0,12),点B (m ,12),且B 到原点O 的距离OB =20,动点P 从原点O 出发,沿路线O →A →B 运动到点B 停止,速度为每秒5个单位长度,同时,点Q 从点B 出发沿路线B →A →O 运动到原点O 停止,速度为每秒2个单位长度.设运动时间为t .(1)求出P 、Q 相遇时点P 的坐标.(2)当P 运动到AB 边上时,连接OP 、OQ ,若△OPQ 的面积为6,求t 的值. 25.已知点P (2x ﹣6,3x +1),求下列情形下点P 的坐标.(1)点P 在y 轴上;(2)点P 到x 轴、y 轴的距离相等,且点P 在第二象限;(3)点P 在过点A (2,﹣4)且与y 轴平行的直线上.一、选择题1.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1) 2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)-3.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8-4.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A 1,第二次移动到点A 2,第n 次移动到点A n ,则点A 2020的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1) 5.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 6.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)7.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( )A .(-3,1)B .(0,-2)C .(3,1)D .(0,4)9.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上10.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 11.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求.A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭二、填空题12.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.13.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.14.在x 轴上方的点P 到x 轴的距离为3,到y 轴距离为2,则点P 的坐标为________. 15.某人从A 点沿北偏东60︒的方向走了100米到达点B ,再从点B 沿南偏西10︒的方向走了100米到达点C ,那么点C 在点A 的南偏东__度的方向上.16.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.17.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.18.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.19.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.20.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.21.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.三、解答题22.已知在长方形ABCD 中,4AB =,252BC =,O 为BC 上一点,72BO =,如图所示,以BC 所在直线为x 轴,O 为坐标原点建立平面直角坐标系,M 为线段OC 上的一点. (1)若点(1,0)M ,如图①,以OM 为一边作等腰OPM ,使点P 在长方形ABCD 的一边上.请直接写出所有符合条件的点P 的坐标;(2)若将(1)中的点M 的坐标改为()4,0,其它条件不变,如图②,求出所有符合条件的点P 的坐标.(3)若将(1)中的点M 的坐标改为()5,0,其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个(不必求出点P 的坐标).23.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D →(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.24.如图,在平面直角坐标系中,OAB ∆的顶点都在格点上,把OAB ∆平移得到111O A B ∆,在OAB ∆内一点()1,1M 经过平移后的对应点为()13,5M -.(1)画出111O A B ∆;(2)点1B 到y 轴的距离是____个单位长;(3)求111O A B ∆的面积.25.如图1,在平面直角坐标系中,A (a ,0),C (b ,4),且满足(a+5)2+5-b =0,过C 作CB ⊥x 轴于B .(1)a = ,b = ,三角形ABC 的面积= ;(2)若过B 作BD //AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P点坐标;若不存在,请说明理由.。
济宁市七年级数学下册第七章【平面直角坐标系】提高卷(答案解析)
一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .32.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,14.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( ) A .-1 B .79- C .1 D .25.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.已知点A 的坐标为(2,1)--,点B 的坐标为(0,2)-,若将线段AB 平移至A B ''的位置,点A '的坐标为(3,2)-,则点B '的坐标为( )A .(3,2)--B .(0,1)C .(1,1)-D .(1,1)-7.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 8.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( )A .(2,-4)B .(4,-2)C .(-2,4)D .(-4,2) 9.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π 10.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 11.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题12.到x 轴距离为2,到y 轴距离为3的点的坐标为___________.13.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.14.如果点()3,1P m m ++在坐标轴上,那么P 点坐标为_________.15.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __16.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.17.如图所示的坐标系中,单位长度为1 ,点 B 的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上,ADP △ 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)18.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.19.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次A的坐标是_________.不断移动,每次移动1个单位,其行走路线如图所示.则点201932,,则B点坐标为______.20.已知线段AB的长度为3,且AB平行于y轴,A点坐标为()21.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n=(a,b)表示正整数n为第a组第b个数(从左往右数),如A7=(4,1),则A20=______________.三、解答题22.如图,在平面直角坐标系中,A(-2,0),C(2,2),过C作CB⊥x轴于B,在y轴上△的面积相等,若存在,求出P点的坐标;若不存在,是否存在点P,使得ABC和ABP请说明理由.23.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的a-﹣6|=0,点B在第一象限内,点P从原点出发,以坐标为(0,b),且a、b4每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.24.如图,在平面直角坐标系中有一个△ABC.(1)将△ABC向右平移3个单位得到△A1B1C1,画出△A1B1C1.(2)写出△A1B1C1,三个顶点的坐标.25.某市在创建文明城市过程中,在城市中心建了若干街心公园.如图是所建“丹枫公园”的平面示意图,在8×8的正方形网格中,各点分别为:A点,公共自行车停车处;B点,公园大门;C点,便利店;D点,社会主义核心价值观标牌;E点,健身器械;F点,文化小屋,如果B点和D点的坐标分别为(2,﹣2).(3,﹣1).(1)请你根据题目条件,画出符合题意的平面直角坐标系;(2)在(1)的平面直角坐标系中,写出点A,C,E,F的坐标.一、选择题1.如果点A (a ,b )在第二象限,那么a 、b 的符号是( )A .0>a ,0>bB .0<a ,0>bC .0>a ,0<bD .0<a ,0<b 2.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1- 3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,14.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1-5.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 6.在平面直角坐标系中,点P 在第二象限,且点P 到x 轴的距离为3个单位长度,到y 轴的距离为4个单位长度,则点P 的坐标是( )A .()3,4B .()3,4--C .()4,3-D .()3,4- 7.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( ) A .-1 B .79- C .1 D .28.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗9.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)10.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 11.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒二、填空题12.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________. 13.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.14.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.15.在平面直角坐标系中,将点A (5,﹣8)向左平移得到点B (x +3,x ﹣2),则点B 的坐标为_____.16.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 17.如图所示,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点1(0,1)P ,2(1,1)P ,3(1,0)P ,4(1,1)P -,5(2,1)P -,6(2,0)P ,…,则点2020P 的坐标是______.18.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.19.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.20.点3(2,)A -到x 轴的距离是__________.21.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.三、解答题22.在平面直角坐标系中,已知点M 的坐标为()23,1m m +-.(1)若点M 在x 轴上,求m 的值;(2)已知点N 的坐标为(3,2)-,且直线MN x ⊥轴,求线段MN 的长.23.国庆假期到了,八年级(1)班的同学到某梦幻王国游玩,在景区示意图前面,李强和王磊进行了如下对话:李强说:“魔幻城堡的坐标是()4,2-.”王磊说:“丛林飞龙的坐标是()2,1--.”若他们二人所说的位置都正确.(1)在图中建立适当的平面直角坐标系xOy ;(2)用坐标描述西游传说和华夏五千年的位置.24.在平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,2).(1)将△ABC 向右平移6个单位长度,再向下平移4个单位长度,得到△A 'B ′C ′.请画出平移后的△A ′B ′C ′,并写出点的坐标A ′( , )、B ′( , )、C ′( , );(2)求出△A′B′C′的面积;(3)若连接AA′、CC′,则这两条线段之间的关系是.25.如图,平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P()是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a +6,b+2 )(1)直接写出点A1,B1,C1的坐标;(2)在图中画出△A1B1C1;(3)求△ABC的面积.一、选择题1.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位2.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8-3.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)4.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 5.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 6.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上7.已知点P (m ,n )在第三象限,则点Q (-m ,│n│)在( ).A .第一象限B .第二象限C .第三象限D .第四象限 8.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .8869.如图,动点Р在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点Р的坐标是( )A .(2019,2)B .(2019,0)C .()2019,1D .(2020,1) 10.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处11.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题12.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________. 13.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.14.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 15.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __16.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.17.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.18.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.19.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.20.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.21.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.三、解答题22.如图①,A 、B 、C 三地依次在一条直线上,两辆汽车甲、乙分别从A 、B 两地同时出发驶向C 地.如图②,是两辆汽车行驶过程中到B 地的距离(km)s 与行驶时间(h)t 的关系图象,其中折线EF-FG 是甲车的图象,线段OM 是乙车的图象.(1)请求出图②中a 的值和点M 的坐标;(2)在行驶过程中,甲车有可能在乙车与B 地中点的位置吗?如有,请求出行驶时间t 的值;若没有,请说明理由.23.在平面直角坐标系中,已知(0,1)A ,(2,0)B ,(4,3)C .(1)在给出的平面直角坐标系中画出ABC ∆;(2)已知P 为x 轴上一点,若ABP ∆的面积为2,求点P 的坐标.24.(1)请在网格中建立平面直角坐标系,使得A ,B 两点的坐标分别为()4,1,()1,2-; (2)在(1)的条件下,过点B 作x 轴的垂线,垂足为点M ,在BM 的延长线上取一点C ,使MC BM =.①写出点C 的坐标;②平移线段AB 使点A 移动到点C ,画出平移后的线段CD ,并写出点D 的坐标.25.如图,在平面直角坐标系中,Rt△ABC 的三个顶点分别是A(﹣3,2),B(0,4),C (0,2).(1)将△ABC 以点O 为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)平移△ABC,使对应点A2的坐标为(0,﹣4),写出平移后对应△A2B2C2的中B2,C2点坐标.。
人教版七年级下《第七章平面直角坐标系》单元提升试卷(含答案)
2020人教版七年级数学下册第七章平面直角坐标系单元提升一、选择题1.在平面直角坐标系中,点P(2,﹣3)在( D )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB( A )A.平行于x轴B.平行于y轴C..经过原点D.无法确定3.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为( D )A.(﹣3,3)B.(3,2)C.(0,3)D.(1,3)4.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A 的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为( C )A.(7,1)B.B(1,7)C.(1,1)D.(2,1)5.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是( C )A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.图7-2-1是一局象棋残局,已知棋子“马”和“车”所在位置用坐标表示分别为(4,3),(-2,1),则棋子“炮”所在位置用坐标表示为( D )A.(-3,3) B.(3,2)C.(0,3) D.(1,3)7.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在网格的格点上.若线段AB上有一个点P(a,b),则点P在线段A′B′上的对应点P′的坐标为( A )A.(a-2,b+3) B.(a-2,b-3) C.(a+2,b+3) D.(a+2,b-3)8.游戏植物大战僵尸中,一个小正方形土地上可以放一株植物,并且当坚果墙在向日葵正右方时,可以保护向日葵.如图,如果向日葵所在的位置是(0,1),豌豆的位置是(2,2),那么坚果墙在以下 D 处可以保护向日葵.A.(0,2)B.(3,0)C.(2,1)D.(4,1)9.如图,点A,B的坐标分别为(2,0),(0,1).若将线段AB平移至A1B1的位置,则a+b 的值为( A )A.2 B.3 C.4 D.510.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是( B )A.(2,0)B.(1,1)C.(2,1)D.(1,1)二、填空题11.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是.答案:(﹣3,4)12.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是.答案:(2016,0).13.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为.答案:214.知点m(3a-9,1-a),将m点向左平移3个单位长度后落在y轴上,则a=______.【答案】415.如图,一艘船在A处遇险后向相距50海里位于B处的救生船报警,用方向和距离描述遇险船相对于救生船的位置__________.【答案】南偏西15°,50海里16.如图,圆A经过平移得到圆O.如果圆A上一点P的坐标为(m,n),那么平移后的对应点P′的坐标为__________.【答案】(m+2,n-1)三、解答题17.如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.解:(1)如图,(2)B同学家的坐标是(200,150);(3)如图.故答案为(200,150).18.据某报社报道,某省4艘渔船(如图)在回港途中,遭遇9级强风,岛上边防战士接到命令后立即搜救.你能告诉边防战士这些渔船的位置吗?[解析] 利用方向角和距离确定物体的位置,其关键在于选择参照点.由题图可知应选小岛为参照点.解:渔船A 在小岛的北偏东40°方向25 km 处;渔船B 在小岛的正南方向20 km 处;渔船C 在小岛的北偏西30°方向30 km 处;渔船D 在小岛的南偏东65°方向35 km 处.19.在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“友好距离”,给出如下定义:若|x 1﹣x 2|≥|y 1﹣y 2|,则点P 1(x 1,y 1)与点P 2(x 2,y 2)的“友好距离”为|x 1﹣x 2|; 若|x 1﹣x 2|<|y 1﹣y 2|,则P 1(x 1,y 1)与点P 2(x 2,y 2)的“友好距离”为|y 1﹣y 2|;(1)已知点A (﹣32,0),B 为y 轴上的动点, ①若点A 与B 的“友好距离为”3,写出满足条件的B 点的坐标: .②直接写出点A 与点B 的“友好距离”的最小值 .(2)已知C 点坐标为C (m ,23m+3)(m <0),D (0,1),求点C 与D 的“友好距离”的最小值及相应的C 点坐标.解:(1)①∵B 为y 轴上的一个动点,∴设点B 的坐标为(0,y ).∵|﹣32﹣0|=32≠3, ∴|0﹣y|=3,解得,y=3或y=﹣3;∴点B 的坐标是(0,3)或(0,﹣3);故填写:(0,3)或(0,﹣3).②根据题意,得:|﹣32﹣0|≥|0﹣y|, 即|y|≤32, ∴点A 与点B 的“友好距离”的最小值为32. 故答案为:32; (2)∵C (m ,23m+3),D (0,1), ∴|m|=|23m+2|, ∵m <0,当m ≤﹣3时,m=23m+2,解得m=6,(舍去); 当﹣3<m <0时,﹣m=23m+2,解得m=﹣65, ∴点C 与点D 的“友好距离”的最小值为:|m|=65, 此时C (﹣65,115). 20.先阅读下列一段文字,再回答问题.已知平面内两点P1(x1,y1),P2(x2,y2),这两点间的距离P1P2=(x2-x1)2+(y2-y1)2.同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x2-x1|或|y2-y1|.(1)已知点A(2,4),B(-3,-8),试求A,B两点间的距离;(2)已知点A,B所在的直线平行于y轴,点A的纵坐标为5,点B的纵坐标为-1,试求A,B两点间的距离;(3)已知一个三角形各顶点的坐标分别为A(0,6),B(-3,2),C(3,2),你能判断三角形ABC的形状吗?说明理由.解:(1)∵A(2,4),B(-3,-8),∴AB=(-3-2)2+(-8-4)2=169.∵132=169,∴169=13,即A,B两点间的距离是13.(2)∵点A,B所在的直线平行于y轴,点A的纵坐标为5,点B的纵坐标为-1,∴AB=|-1-5|=6,即A,B两点间的距离是6.(3)三角形ABC是等腰三角形.理由:∵一个三角形各顶点的坐标分别为A(0,6),B(-3,2),C(3,2),∴AB=5,BC=6,AC=5,∴AB=AC,∴三角形ABC是等腰三角形.21.已知三角形ABC的三个顶点的坐标分别是A(-2,3),B(0,1),C(2,2).(1)在所给的平面直角坐标系中画出三角形ABC.(2)直接写出点A到x轴,y轴的距离分别是多少?(3)求出三角形ABC的面积.解:(1)略.(2)点A(-2,3)到x轴的距离为3,到y轴的距离为2.(3)三角形ABC的面积为3.。
人教版七年级下《第七章平面直角坐标系》综合提升卷(含答案)
第七章平面直角坐标系第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.如图1是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A 可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走( )图1A.(7,2) B.(2,6) C.(7,6) D.(4,5)2.已知点P(x+3,2x+4)在横轴上,则x的值是( )A.-3 B.-2 C.0 D.23.如图2,将“笑脸”图标向右平移4个单位长度,再向下平移2个单位长度,则点P的对应点P′的坐标是( )图2A.(-1,6) B.(-9,6)C.(-1,2) D.(-9,2)4.点P(m,m+1)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限5.已知平面直角坐标系内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( ) A.-3B.-5C.1或-3D.1或-56.把点A(-2,3)平移到点A′(1,5),平移方式正确的为( )A.先向右平移3个单位长度,再向下平移2个单位长度B.先向左平移3个单位长度,再向上平移2个单位长度C.先向左平移3个单位长度,再向下平移2个单位长度D.先向右平移3个单位长度,再向上平移2个单位长度7.如图3,在平面直角坐标系中,将点P(4,6)向左平移4个单位长度后得到点Q,那么三角形POQ的面积为( )图3A.24 B.12 C.8 D.68.下列四点与点(-2,6)连接成的线段中,与x轴和y轴都不相交的是( )A.(-4,2) B.(3,-1)C.(4,2) D.(-3,-1)9.如图4,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A的位置记作A(8,30°).用同样的方法将点B,C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在( )图4A.点O1 B.点O2 C.点O3 D.点O410.如图5,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2019分钟时,这个粒子所在位置的坐标是( )图5A.(44,5) B.(5,44) C.(44,6) D.(6,44)请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.在电影票上,将“3排6号”简记为(3,6),则(4,12)表示的意义是________.12.已知点M(3,-2),将它先向左平移4个单位长度,再向上平移3个单位长度后得到点N,则点N所处的象限是________.13.在我国沿海地区,几乎每年夏秋两季都会或多或少地遭受台风的侵袭,加强台风的监测和预报是减轻台风灾害的重要措施.图6是气象台2018年发布的某台风的有关信息:2018年10月某天该台风中心位于点A处,则点A的位置是______________.图614.已知线段AB∥x轴,线段AB的长为5.若点A的坐标为(4,5),则点B的坐标为________.15.如图7,线段OB,OC,OA的长度分别是1,2,3,且OC平分∠AOB.若将点A表示为(3,20°),点B 表示为(1,110°),则点C可表示为__________.图716.如图8,三角形ABC的顶点坐标分别是A(3,6),B(1,3),C(4,2).如果将三角形ABC平移,使点A与点A′重合,得到三角形A′B′C′,那么点B的对应点B′的坐标是__________.图8三、解答题(共52分)17.(5分)如图9,在平面直角坐标系中,确定点A,B,C,D,E,F,G的坐标.图918.(5分)已知点P(x,y)在第四象限,它到x轴的距离为3,到y轴的距离为4,求点P的坐标.19.(5分)如图10,在平面直角坐标系中描出下列各点:A(-2,-1),B(2,-1),C(2,2),D(3,2),E(0,3),F(-3,2),G(-2,2),A(-2,-1),并依次将各点连接起来,观察所描出的图形,它像什么?根据图形回答下列问题:(1)图形中哪些点在坐标轴上,它们的坐标有什么特点?(2)线段FD和x轴之间有什么位置关系?点F和点D的坐标有什么特点?图1020.(6分)如图11,方格纸中每个小方格都是边长为1个单位长度的正方形,若学校(A)位置的坐标为(1,2),解答下列问题:(1)请在图中建立适当的平面直角坐标系,并写出图书馆(B)位置的坐标;(2)若体育馆(C)位置的坐标为(-3,3),请在平面直角坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到三角形ABC,求三角形ABC的面积.图1121.(6分)如图12,已知长方形ABCD四个顶点的坐标分别是A(2,-2 2),B(5,-2 2),C(5,-2),D(2,-2).(1)长方形ABCD的面积是多少?(2)将长方形ABCD向上平移2个单位长度,求所得的长方形A′B′C′D′的四个顶点的坐标.图1222.(8分)如图13,在平面直角坐标系中,三角形ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求三角形ABC的面积;(2)如果三角形ABC的三个顶点的纵坐标不变,横坐标增加3个单位长度,得到三角形A1B1C1,试在图中画出三角形A1B1C1,并写出点A1,B1,C1的坐标;(3)(2)中三角形A1B1C1与三角形ABC的大小、形状有什么关系?图1323.(8分)对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:点P(1,4)的“2属派生点”为点P′(1+2×4,2×1+4),即P′(9,6).(1)点P(-2,3)的“3属派生点”P′的坐标为________;(2)若点P在x轴的正半轴上,点P的“k属派生点”为点P′,且线段PP′的长为线段OP长的2倍,求k的值.24.(9分)如图14,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4 cm,OA=5 cm,DE=2 cm,动点P从点A出发,以每秒1 cm的速度,沿ABC路线向点C运动;动点Q从点O出发,以每秒2 cm 的速度,沿OED路线向点D运动.若P,Q两点同时出发,其中一点到达终点时,运动停止.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发3 s时,求三角形PQC的面积;(3)设两点运动的时间为t s,用含t的式子表示运动过程中三角形OPQ的面积.图14答案详析1.D [解析] (4,5)处没有地雷.2.B [解析]∵点P (x +3,2x +4)在横轴上, ∴2x +4=0,解得x =-2.3.C [解析] 点P (-5,4)向右平移4个单位长度,再向下平移2个单位长度,横坐标加4,纵坐标减2,因此对应点P ′的坐标是(-5+4,4-2),即(-1,2).4.D [解析]∵当m >0时,m +1只能大于0, ∴P (m ,m +1)不可能在第四象限.5.C [解析] 由题意,得2a +2=4或2a +2=-4,解得a =1或a =-3.6.D [解析] 把点A (-2,3)平移到点A ′(1,5),横坐标增加3,纵坐标增加2,所以把点A 向右平移3个单位长度,再向上平移2个单位长度得到点A ′.7.B [解析] 将点P (4,6)向左平移4个单位长度,得点Q (0,6),这时PQ =4,点O 到PQ 的距离OQ =6,所以三角形POQ 的面积为12.8.A [解析] 因为点(-2,6)和(-4,2)都在第二象限,所以连接这两点得到的线段不会与坐标轴有交点.9.A10.A [解析] 粒子所在位置与运动时间的情况如下: 位置:(1,1),运动了2=1×2(分钟),方向向左; 位置:(2,2),运动了6=2×3(分钟),方向向下; 位置:(3,3),运动了12=3×4(分钟),方向向左; 位置:(4,4),运动了20=4×5(分钟),方向向下.由上式规律,到(44,44)处时,粒子运动了44×45=1980(分钟),方向向下, 故到2019分钟,须由(44,44)再向下运动2019-1980=39(分钟),所以在第2019分钟时,这个粒子的纵坐标为44-39=5,所以其坐标为(44,5). 11.4排12号12.第二象限 [解析] 原来点M 的横坐标是3,纵坐标是-2,向左平移4个单位长度,再向上平移3个单位长度得到点N 的横坐标是3-4=-1,纵坐标为-2+3=1,则点N 的坐标是(-1,1),在第二象限.13.东经129°,北纬18°14.(-1,5)或(9,5) [解析]AB 平行于x 轴说明A ,B 两点到x 轴的距离相等,又因为点A ,B 在同一条直线上,不难得出A ,B 两点的纵坐标相同(都是5).由于AB 平行于x 轴,则AB 两点间的距离(即线段AB 的长)等于A ,B 两点横坐标差的绝对值.故本题有两种可能,即点B 的坐标为(-1,5)或(9,5).15.(2,65°) [解析] 用线段的长度和线段与水平直线向右方向的夹角来表示点的位置,因为OC =2,且与水平直线向右方向的夹角为110°-12×(110°-20°)=65°,所以点C 可表示为(2,65°).16.(4,2) [解析] 由点A (3,6)和点A ′(6,5),可得三角形ABC 向右平移了3个单位长度,向下平移了1个单位长度,因此点B (1,3)的横坐标加3,纵坐标减1,得点B ′(4,2).17.解:A (-4,4),B (-3,0),C (-2,-2),D (1,-4),E (1,-1),F (3,0), G (2,3).18.解:∵点P 到x 轴的距离为|y |,到y 轴的距离为|x |,∴|y |=3,|x |=4.又∵点P 在第四象限,∴x =4,y =-3,∴点P 的坐标为(4,-3).19.解:如图所示,图形像一个房子.(1)由图可知点E (0,3)在y 轴上,它的横坐标等于0.(2)线段FD 平行于x 轴;点F 和点D 的纵坐标相同,横坐标互为相反数. 20.解:(1)平面直角坐标系如图所示. 图书馆(B )位置的坐标为(-3,-2).(2)如图所示,观察可得,三角形ABC 中BC 边长为5,BC 边上的高为4,所以三角形ABC 的面积为12×5×4=10.21.解:(1)AB =5-2=3,AD =-2-(-2 2)=2, ∴长方形ABCD 的面积是3 2.(2)四个顶点的坐标分别为A ′(2,-2),B ′(5,-2),C ′(5,0),D ′(2,0). 22.解:(1)S 三角形ABC =15. (2)如图:A 1(3,0),B 1(9,0),C 1(8,5).(3)三角形A 1B 1C 1与三角形ABC 的大小、形状均相同.23.解:(1)(7,-3)(2)∵点P (a ,b )在x 轴的正半轴上,∴b =0,a >0,∴点P 的坐标为(a ,0),点P ′的坐标为(a ,ka ), ∴线段PP ′的长为点P ′到x 轴的距离,为|ka |. ∵点P 在x 轴正半轴上,∴线段OP 的长为a , 根据题意,有|PP ′|=2|OP |,∴|ka |=2a . ∵a >0,∴|k |=2,∴k =±2.24.解:(1)B (4,5),C (4,2),D (8,2).(2)当P ,Q 两点运动3 s 时,点P (3,5),Q (6,0).因为C (4,2),过点P 作PM ⊥x 轴,垂足为M (3,0),所以QM =3,所以三角形PQC 的面积=12×3×5-12×1×3-12×2×2-2×1=2.(3)①当0≤t <4时(如图(a)),OA =5,OQ =2t ,S 三角形OPQ =12OQ ·OA =12×2t ×5=5t ;②当4≤t <5时(如图(b)),OE =8,EM =9-t ,PM =4,MQ =17-3t ,EQ =2t -8, S 三角形OPQ =S 梯形OPME -S 三角形PMQ -S 三角形OEQ=12×(4+8)×(9-t )-12×4×(17-3t )-12×8×(2t -8) =52-8t .。
【3套试题】人教版七年级下册 第七章 平面直角坐标系提升训练
人教版七年级下册 第七章 平面直角坐标系提升训练七下平面直角坐标系相关提高训练(含答案)解决平面直角坐标系相关综合题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题,逐个击破;第三,要善于联想和转化,将以上得到的显性条件进行恰当的组合,进一步得到新的结论,尤其要注意的是,恰当地使用分析综合法及方程和函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题。
1、在平面直角坐标系中,0A=7,OC=18,现将点C 向上平移7个单位长度再向左平移4个单位长度,得到对应点B 。
(1)求点B 的坐标(2)若点P 从点C 以2个单位长度秒的速度沿C0方向移动,同时点Q 从点0以1个单位长度秒的速度沿0A 方向移动,设移动的时间为t 秒(0<t<7),四边形0PBA 与△0QB 的面积分别记为OPBA S 四边形与OQB S ∆,是否存在时间t,使OQB S OPBA S ∆≤2四边形,若存在,求出t 的范围,若不存在,试说明理由。
(3)在(2)的条件下,OPBQ S 四边形的值是否不变,若不变,求出其值,若变化,求出其范围2、如图,在平面直角坐标新中,AB//CD//x 轴,BC//DE//y 轴,且AB=CD=4cm ,OA=5cm ,DE=2cm,动点P 从点A 出发,沿C B A →→路线运动到点C 停止;动点Q 从点O 出发,沿C D E O →→→路线运动到点C 停止;若P 、Q 两点同时出发,且点P 的运动速度为1cm/s,点Q 的运动速度为2cm/s.(1) 、直接写出B 、C 、D 三个点的坐标; (2) 、当P 、Q 两点出发s 211时,试求的面积PQC ∆; (3) 、设两点运动的时间为t s,用t 的式子表示运动过程中S OPQ 的面积∆.3、如图,在平面直角坐标系中,A(a,0)为x 轴正半轴上一点,B(0,b)为y 轴正半轴上一点,且a 、b 满足()0382=-+-+b a b a(1)求S △AOB(2)点P(m,n)为直线L 上一动点,满足m-2n+2=0. ①若P 点正好在AB 上,求此时P 点坐标;②若B A S PAB S 0∆≥∆,试求m 的取值范围. L4、如图,已知点A ():51,3个单位,右移轴上,将点在A x m m --上移3个单位得到点B; (1) ,则m= ;B 点坐标( );(2) 连接AB 交y 轴于点C ,点D 是X 轴上一点,点坐标;,求的面积为D DAB 9∆(3) 求ABAC5、如图,在平面直角坐标系中,()().,2,1,6,4P y AB B A 轴于点交线段---(1) ,点A 到x 轴的距离是 ;点B 到x 轴的距离是 ;p 点坐标是 ; (2) ,延长AB 交x 轴于点M ,求点M 的坐标;(3) ,在坐标轴上是否存在一点T,使点坐标;?若存在,求的面积等于T ABT 6∆若不存在,说明理由。
人教版七年级数学下册第七章平面直角坐标系培优测试试卷
人教版七年级数学下册第七章平面直角坐标系培优测试试卷一、单选题(共10题;共30分)1.在平面直角坐标系中,将点(-2,-3)向上平移3个单位长度,则平移后的点的坐标为( )A. (-2,0)B. (-2,1)C. (0,-2)D. (1,-1)2.点P(m+3,m+1)在直角坐标系的x轴上,则点P的坐标为()A. (2,0)B. (0,-2)C. (4,0)D. (0,-4)3.如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A. (﹣2,3)B. (3,﹣1)C. (﹣3,1)D. (﹣5,2)4.已知点A在x轴上,且点A到y轴的距离为4,则点A的坐标为( )A. (4,0)B. (0,4)C. (4,0)或(-4,0)D. (0,4)或(0,-4)5.将点A(﹣1,2)向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A. (3,1)B. (﹣3,﹣1)C. (3,﹣1)D. (﹣3,1)6.点A1(5,–7)关于x轴对称的点A2的坐标为( ).A.(–5, –7)B.(–7 , –5)C.(5, 7)D.(7, –5)7.如图,在正方形ABCD 中,A,B,C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD 向右平移3 个单位,则平移后点 D 的坐标是()A. (﹣6,2)B. (0,2)C. (2,0)D. (2,2)8.A(-3,4)和B(4,-1)是平面直角坐标系中的两点,则由A点移到B点的路线可能是()A. 先向上平移5个单位长度,再向右平移7个单位长度B. 先向上平移5个单位长度,再向左平移7个单位长度C. 先向左平移7个单位长度,再向上平移5个单位长度D. 先向右平移7个单位长度,再向下平移5个单位长度9.小张和小陈都在电影院看电影,小张的位置用(a,b)表示,小陈的位置用(x,y)表示,我们约定“排数在前,列数在后”,若小张恰在小陈的正前方,则()A. a=xB. b=yC. a=yD. b=x10.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()A. (2,﹣1)B. (4,﹣2)C. (4,2)D. (2,0)二、填空题(共6题;共24分)11.线段AB两端点A(-1,2),B(4,2),则线段AB上任意一点可表示为________.12.将点P(x,4)向右平移3个单位得到点(5,4),则P点的坐标是________.13.点A(1-x,5)、B(3,y)关于y轴对称,那么x+y = .14.在平面直角坐标系中,若点M(﹣1,4)与点N(x,4)之间的距离是5,则x 的值是________.15.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋②的坐标是________.16.有一个英文单词的字母顺序对应如图中的有序数对分别为(2,1),(2,2),(4,2),(5,1),请你把这个英文单词写出来(或者翻译成中文)为________。
人教版七年级数学下册第七章《平面直角坐标系》培优单元测试卷一(解析)
人教版七年级数学下册第七章《平面直角坐标系》培优单元测试卷一(后附教师版答案详解)参考答案与试题解析一.选择题(共10小题)1.将点(4,2)A 向右平移2个单位长度,再向下平移3个单位长度得到的对应点B 的坐标为( )A .(6,5)B .(6,1)-C .(6,1)--D .(2,1)-【分析】横坐标,右移加,左移减;纵坐标,上移加,下移减可得所得到的点的坐标为(42,23)+-,再解即可.【解答】解:将点(4,2)A 向右平移2个单位长度,再向下平移3个单位长度得到的对应点B 的坐标为(42,23)+-,即(6,1)-,故选:B .【点评】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律. 2.在平面直角坐标系中,线段CD 是线段AB 平移得到的,点(2,3)A -的对应点为(2,5)C ,则点(4,1)B --时对应点D 的坐标为( )A .(8,3)--B .(0,1)C .(4,2)D .(1,8)【分析】根据点(2,3)A -的对应点为(2,5)C ,可知横坐标由2-变为2,向又移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D 的对应点的坐标.【解答】解:点(2,3)A -的对应点为(2,5)C ,可知横坐标由2-变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是(4,1)B --的对应点D 的横坐标为440-+=,点D 的纵坐标为121-+=, 故(0,1)D .故选:B .【点评】此题考查了坐标与图形的变化----平移,根据(2,3)A -变为(2,5)C 的规律,将点的变化转化为坐标的变化是解题的关键.3.如图是庐城一些地点的分布示意图.在图中,分别以向右,向上为x 轴,y 轴的正方向建立平面直角坐标系,有如下四个结论:--时,表示周瑜①当表示政府广场的点的坐标为(0,0),表示庐江汽车站的点的坐标为(2,3)-;文化园的点的坐标为(6,4)--时,表示周瑜②当表示政府广场的点的坐标为(0,0),表示庐江汽车站的点的坐标为(4,6)-;文化园的点的坐标为(12,8)--时,表示周瑜③当表示政府广场的点的坐标为(1,1),表示庐江汽车站的点的坐标为(3,5)-;文化园的点的坐标为(13,7)--时,表④当表示政府广场的点的坐标为(1.5,1.5),表示庐江汽车站的点的坐标为( 4.5,7.5)-.示周瑜文化园的点的坐标为(19.5,10.5)上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】根据各结论所给两个点的坐标得出原点位置及单位长度,从而得出答案.①每个小格1个单位,可做判断;②每个小格2个单位,可做判断;③每个小格2个单位,且原点不在格点上,可做判断;④每个小格3个单位,且原点不在格点上,可做判断.--【解答】解:①当表示政府广场的点的坐标为(0,0),表示庐江汽车站的点的坐标为(2,3)-;时,表示周瑜文化园的点的坐标为(6,4)所以①正确,--时,表示周瑜②当表示政府广场的点的坐标为(0,0),表示庐江汽车站的点的坐标为(4,6)-;文化园的点的坐标为(12,8)所以②正确;--时,表示周瑜③当表示政府广场的点的坐标为(1,1),表示庐江汽车站的点的坐标为(3,5)文化园的点的坐标为(13,7)-;所以③正确,④当表示政府广场的点的坐标为(1.5,1.5),表示庐江汽车站的点的坐标为( 4.5,7.5)--时,表示周瑜文化园的点的坐标为(19.5,10.5)-;所以④正确.故选:D .【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及第每个小格的单位长度.4.如图,A 、B 的坐标分别为(2,1)-、(0,2)-.若将线段AB 平移至11A B ,1A 、1B 的坐标分别为(,4)a 、(3,)b ,则a b +的值为( )A .2B .3C .4D .5【分析】由已知得出线段AB 向右平移了3个单位,向上平移了3个单位,即可得出a 、b 的值,从而得出答案.【解答】解:由(2,1)A -的对应点1A 的坐标为(,4)a 知,线段AB 向上平移了3个单位, 由(0,2)B -的对应点1B 的坐标为(3,)b 知,线段AB 向右平移了3个单位,则231a =-+=,231b =-+=,112a b ∴+=+=,故选:A .【点评】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5.如图,已知一个斜边长为2的直角三角板的直角顶点与原点重合,两直角边分别落在两个坐标轴上.现将该三角板向右平移使点A 与点O 重合,得到OCB ∆',则点B 的对应点B '的坐标是( )A .(1,0)B .(33)C .3)D .(3)-【分析】解直角三角形求出OA ,OB ,再利用平移变换的性质即可解决问题.【解答】解:在Rt AOB ∆中,90AOB ∠=︒,2AB =,30ABO ∠=︒,112AO AB ∴==, 33OB OA ∴==△OB C '是由ABO ∠平移得到,1OC OA ∴==,3B C OB '==(13)B ∴'.故选:C .【点评】本题考查坐标与图形变化-平移,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.6.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠【分析】根据平行于x 轴的直线纵坐标相等解答可得.【解答】解://AB x 轴,5b ∴=,1a ≠-,故选:C .【点评】本题主要考查坐标与图形的性质,熟练掌握平面内点的坐标的特点是解题的关键.7.如图,一个粒子在第一象限内及x 轴、y 轴上运动,在第一分钟,它从原点运动到点(1,0);第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是( )A .(44,4)B .(44,3)C .(44,5)D .(44,2)【分析】找出粒子运动规律和坐标之间的关系即可解题.【解答】解:由题知(0,0)表示粒子运动了0分钟,(1,1)表示粒子运动了212=⨯分钟,将向左运动,(2,2)表示粒子运动了623=⨯分钟,将向下运动,(3,3)表示粒子运动了1234=⨯分钟,将向左运动,...于是会出现:(44,44)点粒子运动了44451980⨯=分钟,此时粒子将会向下运动,∴在第2021分钟时,粒子又向下移动了2021198041-=个单位长度,∴粒子的位置为(44,3),故选:B .【点评】本题考查的是动点坐标问题,解题的关键是找出粒子的运动规律.8.如果点(3,)A b -在第三象限,则b 的取值范围是( )A .0b <B .0bC .0bD .0b >【分析】第三象限内横纵坐标均为负数,从而可得答案.【解答】解:点(3,)A b -在第三象限,0b ∴<,故选:A .【点评】此题主要考查了点的坐标,关键是掌握坐标系中四个象限内点的坐标符号. 9.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)【分析】根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2020次碰到球桌边时,小球的位置.【解答】解:由图可得,点(1,0)第一次碰撞后的点的坐标为(0,1),第二次碰撞后的点的坐标为(3,4),第三次碰撞后的点的坐标为(7,0),第四次碰撞后的点的坐标为(8,1),第五次碰撞后的点的坐标为(5,4),第六次碰撞后的点的坐标为(1,0),⋯,202063364÷=⋯,∴小球第2020次碰到球桌边时,小球的位置是(8,1),故选:D .【点评】本题考查坐标确定位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答.10.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把1(1,1)P y x ---叫做点P 的友好点,已知点1A 的友好点为2A ,点2A 的友好点为3A ,点3A 的友好点为4A ,这样依次得到各点.若2020A 的坐标为(3,2)-,设1(,)A x y ,则x y +的值是( )A .5-B .1-C .3D .5【分析】列出部分n A 点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和2020A 的坐标为(3,2)-,找出2021A 的坐标,由此即可得出x 、y 的值,二者相加即可得出结论.【解答】解:2020A 的坐标为(3,2)-,根据题意可知:2019A 的坐标为(3,2)--,2018A 的坐标为(1,2)-,2017A 的坐标为(1,2),2016A 的坐标为(3,2)-,⋯41(1,2)n A +∴,42(1,2)n A +-,43(3,2)n A +--,44(3n A +-,2)(n 为自然数).20205054=⨯,2020A 的坐标为(3,2)-,2021(1,2)A ∴,1(1,2)A ∴,3x y ∴+=.故选:C .【点评】本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键.二.填空题(共5小题)11.教室里,小彬坐在第4排第2列,用(4,2)表示,小明坐在第2排第5列可表示为 (2,5) . 【分析】根据题意得出括号内第1个数字表示排,第2个数字表示列,据此求解即可.【解答】解:根据题意,括号内第1个数字表示排,第2个数字表示列,所以小明坐在第2排第5列可表示为(2,5),故答案为:(2,5).【点评】本题主要考查坐标确定位置,解题的关键是根据已知条件得出第1个数字表示排,第2个数字表示列.12.在平面直角坐标系中,点A 的坐标为(3,2),将点A 沿x 轴的正方向平移n 个单位后,得到的对应点的坐标为(6,2),则n = 3 .【分析】根据点A 及其对应的横坐标可得答案.【解答】解:由点A 的横坐标3及其平移后对应点的横坐标为6知点A 是沿x 轴的正方形平移3个单位得到其对应点的,所以3n =,故答案为:3.【点评】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.13.对于平面直角坐标系xOy 中的点(,)P a b ,若点P '的坐标为(,)a kb ka b ++(其中k 为常数,且0)k ≠,则称点P '为点P 的“k 属派生点”.例如:(1,4)P 的“2属派生点”为(124,214)P '+⨯⨯+.即(9,6)P '.则点(2,3)P -的“4属派生点” P '的坐标为 (10,5)- ;若点P 在x 轴的正半轴上,点P 的“k 属派生点”为P '点,且线段PP '的长度为线段OP 长度的3倍,则k 的值为 .【分析】由定义可列出P '坐标满足的关系式为:24310-+⨯=,4(2)35⨯-+=-,确定点P '的坐标;由已知可设(,0)P b ,则点P 的“k 属派生点” P '点为(,)b kb ,再由题意可得||3||kb b =,即可求k 的值.【解答】解:由定义可知:2a =-,3b =,4k =,24310a kb ∴+=-+⨯=,4(2)35ka b +=⨯-+=-,P ∴'的坐标为(10,5)-,点P 在x 轴的正半轴上,P ∴点的纵坐标为0,设(,0)P b ,则点P 的“k 属派生点” P '点为(,)b kb ,||PP kb '∴=,||PO b =,线段PP '的长度为线段OP 长度的3倍,||3||kb b ∴=,3k ∴=±.故答案为(10,5)-,3±.【点评】本题考查坐标与图形的性质;理解定义,能够根据定义求出“k 属派生点”的坐标是解题的关键.14.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到11A B ,点1A ,1B 的坐标分别为(2,)a ,(,3)b ,则22a b -的值为 1- .【分析】根据点A 、B 的坐标以及对应点的坐标确定出平移方法,从而求出a 、b 的值,再代入代数式进行计算即可得解.【解答】解:(1,0)A ,1(2,)A a ,(0,2)B ,1(,3)B b ,∴平移方法为向右平移1个单位,向上平移1个单位,011a ∴=+=,011b =+=,222121121a b ∴-=-⨯=-=-.故答案为1-.【点评】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.15.已知点(39,1)M a a --,将M 点向左平移3个单位长度后落在y 轴上,则M 的坐标是 (3,3)- .【分析】根据平移时,坐标的变化规律“上加下减,左减右加”构建方程求解即可.【解答】解:根据题意,得,3930a --=,解得4a =,(3,3)M ∴-,故答案为(3,3)-.【点评】此题考查了平移时,点的坐标变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.三.解答题(共8小题)16.春天到了,某班同学组织到公园春游,如图是公园的平面图(小正方形的边长代表100m 长),图中牡丹园的坐标是(300,300),望春亭的坐标为(100,100)--,请在图中建立平面直角坐标系并写出其它地点的坐标.【分析】(1)以牡丹园向左3个单位,向下3个单位为坐标原点建立平面直角坐标系即可;(2)根据平面直角坐标系中点的坐标的写法写出即可.【解答】解:(1)建立平面直角坐标系如图所示;(2)广场(0,0),湖心亭(300,200)-,东门(400,0),游乐园(200,200)-.【点评】本题考查了坐标确定位置,根据牡丹亭的位置确定出坐标原点的位置是解题的关键.17.在平面直角坐标系中:(1)若点(6,23)M m m -+到两坐标轴的距离相等,求M 的坐标;(2)若点(6,23)M m m -+,点(5,2)N ,且//MN y 轴,求M 的坐标;(3)若点(,)M a b ,点(5,2)N ,且//MN x 轴,3MN =,求M 的坐标.【分析】(1)由点(6,23)M m m -+到两坐标轴的距离相等得|6||23|m m -=+.(2)//MN y 轴,则点M ,N 的横坐标相等.(3)由M ,N 纵坐标相等求出b ,分类讨论点M 在N 的左右两侧.【解答】解:(1)点(6,23)M m m -+到两坐标轴的距离相等,|6||23|m m ∴-=+,当6m 时,623m m -=+,解得9m =-(舍)当 1.56m -<时,623m m -=+,解得1m =,65m -=-,235m +=,∴点M 坐标为(5,5)-.当 1.5m <-时,623m m -=--,解得9m =-,615m -=-,∴点M 坐标为(15,15)--.综上所述,M 的坐标为(5,5)或(15,15)--.(2)//MN y 轴,65m ∴-=,解得11m =,1165-=,211325⨯+=,M ∴的坐标(5,25).(3)//MN x 轴,2b ∴=,当点M 在点N 左侧时,532a =-=,当点M 在点N 右侧时,538a =+=,∴点M 坐标为(2,2)或(8,2).【点评】本题考查平面直角坐标系,解题关键是熟练掌握点坐标在平面直角坐标系中的含义及变化规律.18.如图,三角形A B C '''是由三角形ABC 经过某种平移得到的,点A 与点A ',点B 与点B ',点C 与点C '分别对应,观察点与点坐标之间的关系,解答下列问题.(1)直接写出点A 和点A '的坐标,并说明三角形A B C '''是由三角形ABC 经过怎样的平移得到的.(2)若点(2,4)M a b +-是点(23,25)N a b --通过(1)中的平移变换得到的,求2()b a -的值.【分析】(1)根据点A 的平移规律解决问题即可.(2)利用平移规律,构建方程组解决问题即可.【解答】解:(1)由题意(0,3)A ,(3,0)A '-,三角形A B C '''是由三角形ABC 向左平移3个单位,再向下平移3个单位得到.(2)由题意23322534a a b b--=+⎧⎨--=-⎩, 解得84a b =⎧⎨=⎩, 2()16b a ∴-=.【点评】本题考查坐标与图形变化-平移,解题的关键是理解题意,灵活运用所学知识解决问题.19.如图①,在平面直角坐标系中,点A 、B 在x 轴上,AB BC ⊥,2AO OB ==,3BC = (1)写出点A 、B 、C 的坐标.(2)如图②,过点B 作//BD AC 交y 轴于点D ,求CAB BDO ∠+∠的大小.(3)如图③,在图②中,作AE 、DE 分别平分CAB ∠、ODB ∠,求AED ∠的度数.【分析】(1)根据图形直接写出答案;(2)根据两直线平行,内错角相等可得ABD CAB ∠=∠,则90CAB BDO ABD BDO ∠+∠=∠+∠=︒;(3)根据角平分线的定义可得CAE BDE ∠+∠,过点E 作//EF AC ,然后根据平行线的性质求出AED CAE BDE ∠=∠+∠.【解答】解:(1)依题意得:(2,0)A -,(2,0)B ,(2,3)C ;(2)//BD AC ,ABD BAC ∴∠=∠,90CAB BDO ABD BDO ∴+∠=∠+∠=︒;(3)://BD AC ,ABD BAC ∴∠=∠, AE ,DE 分别平分CAB ∠,ODB ∠, 111()()9045222CAE BDE BAC BDO ABD BDO ∴∠+∠=∠+∠=∠+∠=⨯︒=︒, 过点E 作//EF AC ,则CAE AEF ∠=∠,BD E D EF ∠=∠,45AED AEF DEF CAE BDE ∴∠=∠+∠=∠+∠=︒.【点评】本题考查了坐标与图形性质,平行线的性质,三角形的面积,熟记性质并求出点A 、B 、C 的坐标是解题的关键,(3)作出平行线是解题的关键.20.如图所示,在平面直角坐标系中,点A ,B 的坐标分别为(,0)A a ,(,0)B b ,且a ,b 满足|2|40a b ++-=,点C 的坐标为(0,3).(1)求a ,b 的值及ABC S ∆;(2)若点M 在x 轴上,且13ACM ABC S S ∆∆=,试求点M 的坐标.【分析】(1)由“|2|40a b ++-”结合绝对值、算术平方根的非负性即可得出a 、b 的值,再结合三角形的面积公式即可求出ABC S ∆的值;(2)设出点M 的坐标,找出线段AM 的长度,根据三角形的面积公式结合13ACM ABC S S ∆∆=,即可得出AM 的值,从而得出点M 的坐标.【解答】解:(1)|2|40a b ++-=,20a ∴+=,40b -=,2a ∴=-,4b =,∴点(2,0)A -,点(4,0)B .又点(0,3)C ,|24|6AB ∴=--=,3CO =,1163922ABC S AB CO ∆∴==⨯⨯=. (2)设点M 的坐标为(,0)x ,则|(2)||2|AM x x =--=+,又13ACM ABC S S ∆∆=, ∴11923AM OC =⨯, ∴1|2|332x +⨯=, |2|2x ∴+=,即22x +=±,解得:0x =或4-,故点M 的坐标为(0,0)或(4,0)-.【点评】本题考查了坐标与图形的性质、绝对值(算术平方根)的非负性以及三角形的面积公式,解题的关键是:(1)根据绝对值、算术平方根的非负性求出a 、b 的值:(2)根据三角形的面积公式得出关于x 的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据绝对值、算术平方根的非负性求出点的坐标是关键. 21.如图,平面直角坐标系中,四边形ABCD 的顶点坐标分别为(1,0)A ,(5,0)B ,(3,3)C ,(2,4)D ,求四边形ABCD 的面积.【分析】分别过C 、D 向x 轴作垂线,四边形ABCD 的面积分割为过D 、C 两点的直角三角形和直角梯形.【解答】解:如图,作CE x ⊥轴于点E ,DF x ⊥轴于点F .则1(21)422ADF S ∆=⨯-⨯=,()()13432 3.52DCEF S =⨯+⨯-=梯形,1(53)332BCE S ∆=⨯-⨯=, 2 3.538.5ABCD S ∴=++=四边形,答:四边形ABCD 的面积是8.5.【点评】本题主要考查了坐标与图形性质和面积求法,已知图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.22.已知,点(26,2)P m m -+.(1)若点P 在y 轴上,P 点的坐标为 (0,5) ;(2)若点P 的纵坐标比横坐标大6,求点P 在第几象限?(3)若点P 和点Q 都在过(2,3)A 点且与x 轴平行的直线上,3PQ =,求Q 点的坐标.【分析】(1)利用y 轴上点的坐标特征得到260m -=,然后解方程求出m 即可得到P 点坐标;(2)利用点P 的纵坐标比横坐标大6得到2662m m -+=+,然后解方程求出m 得到P 点坐标,从而可判断点P 所在的象限;(3)利用与x 轴平行的直线上的点的坐标特征得到点P 和点Q 的纵坐标都为3,然后利用3PQ =得到Q 点的横坐标,从而得到Q 点坐标.【解答】解:(1)点P 在y 轴上,260m ∴-=,解得3m =,P ∴点的坐标为(0,5);故答案为(0,5);(2)根据题意得2662m m -+=+,解得2m =,P ∴点的坐标为(2,4)-,∴点P 在第二象限;(3)点P 和点Q 都在过(2,3)A 点且与x 轴平行的直线上,∴点P 和点Q 的纵坐标都为3,(4,3)P ∴-而3PQ =,Q ∴点的横坐标为1-或7-,Q ∴点的坐标为(1,3)-或(7,3)-.【点评】本题考查了两点间的距离公式:会计算与坐标轴平移的直线上两点间的距离;记住各象限点的坐标特征.23.已知(0,)A a ,(,1)B b --,(,0)C b 且满足17|2|21402a b a -+++-=. (1)求A 、B 、C 三点的坐标;(2)如图1所示,//CD AB ,DCO ∠的角平分线与BAO ∠的补角的角平分线交于点E ,求出E ∠的度数;(3)如图2,把直线AB 以每秒1个单位的速度向左平移,问经过多少秒后,该直线与y 轴交于点(0,5)-.【分析】(1)根据非负数的性质求出a 、b 的值即可解决问题;(2)延长EA 交CD 的延长线于H .设ECO ECH x ∠=∠=,EAB EAP y ∠=∠=,设AB 交x 轴于F .想办法求出x y +的值即可解决问题;(3)利用图像法,解决问题即可.【解答】解:(1)17|2|21402a b a -+++-. 又70a -,|2|0b +,2140a -,7a ∴=,2b =-,(0A ∴,7)(2B ,1)(2C --,0)(2)延长EA 交CD 的延长线于H .设ECO ECH x ∠=∠=,EAB EAP y ∠=∠=,设AB 交x 轴于F .//AB CH ,EAB H y ∴∠=∠=,180HCO AFC ∠+∠=︒,90PAB AFC ∠=︒+∠,290(1802)y x ∴=︒+︒-,135x y ∴+=︒,在EHC ∆中,18045E x y ∠=︒--=︒.(3)如图,观察图像可知,直线AB 向左平移3个单位,经过(0,5)G -,解法二:过点B 作//BC y 轴交直线AB ''于C ,设BB AA x '='=.ABB A BCGA S S ''=平行四边形平行四边形,8122x ∴=⨯,3x ∴=,所以3t =.【点评】本题考查坐标与图形的平移、平行线的性质、一次函数的应用、非负数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
人教版七年级数学下册 第七章 平面直角坐标系 培优专题测试训练(含答案)
人教版七年级数学下册第七章平面直角坐标系培优专题测试训练一、选择题1. 点(-2,1)在平面直角坐标系中所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A'的坐标是 ( )A.(6,1)B.(-2,1)C.(2,5)D.(2,-3)3.图是某动物园的平面示意图,若以猴山为原点,向右的水平方向为x轴正方向,向上的竖直方向为y轴正方向建立平面直角坐标系,则熊猫馆所在的象限是 ( )A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,将点P(x,y)先向左平移4个单位长度,再向上平移3个单位长度后得到点P'(1,2),则点P的坐标为( )A.(2,6)B.(-3,5)C.(-3,1)D.(5,-1)5.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1 mm,则图中转折点P的坐标表示正确的是( )A.(5,30)B.(8,10)C.(9,10)D.(10,10)6. 平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( )A. (-2,-3)B. (2,-3)C. (-3,2)D. (3,-2)7.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第21秒时,点P的坐标为( )A.(21,-1)B.(21,0)C.(21,1)D.(22,0)8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点O运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P的坐标是( )A.(2021,1)B.(2021,0)C.(2021,2)D.(2022,0)二、填空题9. 点P(-6,-7)到x轴的距离为 ,到y轴的距离为 .10. 已知点P(3-m,m)在第二象限,则m的取值范围是________.11.如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一点P(a,b),则点P在A'B'上的对应点P'的坐标为 .12.五子棋是一种两人对弈的棋类游戏,起源于中国古代的传统黑白棋种,规则是在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个同学的对弈图.若白子A的坐标为(0,-2),白子B的坐标为(-2,0),为了不让白方马上获胜,此时黑方应该下在坐标为 的位置.(写出一处即可)13.如图,在三角形ABC中,已知点A(0,4),C(3,0),且三角形ABC的面积为10,则点B的坐标为 .14. 将自然数按以下规律排列:第一列第二列第三列第四列第五列…第一行1451617第二行23615…第三行98714…第四行10111213…第五行………………表中数2在第二行、第一列,与有序数对(2,1)对应,数5与有序数对(1,3)对应,数14与有序数对(3,4)对应.根据这一规律,数2021对应的有序数对为 .15.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P60的坐标是 .16.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移两个单位称为一次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续九次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是__________.三、解答题17. 在如图所示的平面直角坐标系中,描出下列各点:(0,4),(-1,1),(-4,1),(-2,-1),(-3,-4),(0,-2),(3,-4),(2,-1),(4,1),(1,1),(0,4).依次连接各点,观察得到的图形,你觉得它像什么?18.常用的确定物体位置的方法有两种.如图,在4×4的边长为1的小正方形组成的网格中,标有A ,B两点(点A,B之间的距离为m).请你用两种不同的方法表述点B相对于点A的位置.19. 如图所示,已知单位长度为1的方格中有一个三角形ABC.(1)请画出三角形ABC先向上平移3格,再向右平移2格所得的三角形A'B'C'(点A,B,C的对应点分别为点A',B',C');(2)请以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系(在图中画出),然后写出点B,B'的坐标.20. 如图,在平面直角坐标系中,A(3,4),B(4,1),求三角形AOB的面积.21.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-A-B-C-O的路线移动(即沿着长方形的边移动一周).(1)点B的坐标为 ;(2)当点P移动了4秒时,求出点P的坐标,并在图中描出此时点P的位置;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.22.如图,在平面直角坐标系中,已知A(2,3),B(0,2),C(3,0).将三角形ABC的一个顶点平移到坐标原点O处,写出平移方法和另两个对应顶点的坐标.23. 如图,若三角形A 1B 1C 1是由三角形ABC 平移后得到的,且三角形ABC 中任意一点P (x ,y )经过平移后的对应点为P 1(x-5,y+2).(1)求点A 1,B 1,C 1的坐标;(2)求三角形A 1B 1C 1的面积.24. 【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭.【运用】(1)如图,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),求点M 的坐标;(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.答案一、选择题1.B 2.D 3.B 4.D5.C [解析] 如图,过点C作CD⊥y轴于点D,∴CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10).故选C.6.A 【解析】本题考查了直角坐标平面内的点关于x轴的对称点,点如果关于x轴对称,则它的横坐标不变,纵坐标互为相反数,于是点(-2,3)关于x轴对称的点的坐标为(-2,-3),故选A .7.C [解析] 半径为1的半圆的弧长是×2π×1=π,由此可列下表:故选C.8.A [解析]点P坐标的变化规律可以看作每运动四次一个循环,且横坐标与运动次数相同,纵坐标规律是:第1次纵坐标为1,第3次纵坐标为2,第2次和第4次纵坐标都是0.∵2021=505×4+1,∴经过第2021次运动后,动点P 的坐标是(2021,1).故选A .二、填空题9.7 6 10.m >3 【解析】∵点P 在第二象限,∴其横坐标是负数,纵坐标是正数,则根据题意得出不等式组,解得m >3. {3-m <0m >0)11.(a-2,b+3) [解析]由图可知线段AB 向左平移了2个单位长度,向上平移了3个单位长度,所以P'(a-2,b+3).12.(2,0)或(-2,4)13.(-2,0) [解析] S 三角形ABC =BC ·4=10,解得BC=5,∴OB=5-3=2,∴点B 的坐标为(-2,0).14.(45,5) [解析] 观察表格发现:偶数列的第一行数是“列数”的平方数,奇数行的第一列数是“行数”的平方数.下面从奇数行着手:(1,1)表示1,即12;(3,1)表示9,即32;(5,1)表示25,即52;依此类推可知(45,1)表示452,即2025,于是(45,2)表示2024,(45,3)表示2023,…,(45,5)表示2021.故填(45,5).15.(20,0) [解析] 因为P 3(1,0),P 6(2,0),P 9(3,0),…,所以P 3n (n ,0).当n=20时,P 60(20,0).16.(16,1+) 3解析:可以求得点A (-2,-1-),则第一次变换后点A 的坐标为A 1(0,1+),第二次变换33后点A 的坐标为A 2(2,-1-),可以看出每经过两次变换后点A 的y 坐标就还原,每经过一次3变换x 坐标增加2.因而第九次变换后得到点A 9的坐标为(16,1+).3三、解答题17.解:描点连线如图所示,它像五角星.18.解:方法一:用有序数对(a ,b )表示.比如:以点A为原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则点B相对于点A的位置是(3,3).方法二:用方向和距离表示.比如:点B位于点A的东北方向(或北偏东45°方向),距离点A m处.19.解:(1)如图.(2)如图,以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则B(1,2),B'(3,5).20.[解析]三角形AOB的三边均不与坐标轴平行,不能直接利用三角形的面积公式求面积,需通过作辅助线,用“添补”法间接计算.解:如图,过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,延长EA,FB交于点C,则四边形OECF为长方形.由点A,B的坐标可知AE=3,OE=4,OF=4,BF=1,CE=4,CF=4,所以AC=1,BC=3,所以S三角形AOB=S长方形OECF-S三角形OAE-S三角形ABC-S三角形BOF=4×4-×4×3-×3×1-×4×1=6.5.21.解:(1)(4,6)(2)因为点P的移动速度为每秒2个单位长度,所以当点P移动了4秒时,它移动了8个单位长度,此时点P的坐标为(4,4),图略.(3)当点P到x轴的距离为5个单位长度时,有两种情况:①若点P在AB上,则点P移动了4+5=9(个)单位长度,此时点P移动了9÷2=4.5(秒);②若点P在OC上,则点P移动了4+6+4+1=15(个)单位长度,此时点P移动了15÷2=7.5(秒).综上所述,当点P到x轴的距离为5个单位长度时,点P移动了4.5秒或7.5秒.22.解:(1)若将点A平移到原点O处,则平移方法(不唯一)是向左平移2个单位长度,再向下平移3个单位长度.另两个顶点B,C的对应点的坐标分别是(-2,-1),(1,-3).(2)若将点B平移到原点O处,则平移方法是向下平移2个单位长度.另两个顶点A,C的对应点的坐标分别是(2,1),(3,-2).(3)若将点C平移到原点O处,则平移方法是向左平移3个单位长度.另两个顶点A,B的对应点的坐标分别是(-1,3),(-3,2).23.解:(1)∵三角形ABC中任意一点P(x,y)经过平移后的对应点为P1(x-5,y+2),∴三角形ABC 向左平移5个单位长度,再向上平移2个单位长度(平移方法不唯一)得到三角形A 1B 1C 1.∵A (4,3),B (3,1),C (1,2),∴点A 1的坐标为(-1,5),点B 1的坐标为(-2,3),点C 1的坐标为(-4,4).(2)三角形A 1B 1C 1的面积=三角形ABC 的面积=3×2-×1×3-×1×2-×1×2=.24.解:(1)∵四边形ONEF 是矩形,∴点M 是OE 的中点.∵O (0,0),E (4,3),∴点M 的坐标为.(2,32)(2)设点D 的坐标为(x ,y ).若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合∴Error!,解得,Error!.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合∴Error!,解得,Error!.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合∴Error!,解得,Error!.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).。
2020--2021学年人教版七年级数学下册《第七章平面直角坐标系》期中培优提升训练(附答案)
2021年度人教版七年级数学下册《第七章平面直角坐标系》期中培优提升训练(附答案)1.在平面直角坐标系中,点M在第四象限,到x轴,y轴的距离分别为6,4,则点M的坐标为()A.(4,﹣6)B.(﹣4,6)C.(﹣6,4)D.(﹣6,﹣4)2.点M位于平面直角坐标系第四象限,且到x轴的距离是5,到y轴的距离是2,则点M 的坐标是()A.(2,﹣5)B.(﹣2,5)C.(5,﹣2)D.(﹣5,2)3.已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限4.已知点A(m,n),且有mn≤0,则点A一定不在()A.第一象限B.第二象限C.第四象限D.坐标轴上5.如图,在平面直角坐标系中,O为坐标原点,点N在x轴正半轴上,点A1,A2,A3…在射线ON上,点B1,B2,B3…在射线OM上,∠MON=30°,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,依此类推,若OA1=1,则点B2020的横坐标是()A.22017×3 B.22018×3 C.22019×3 D.22020×36.在平面直角坐标系中,对于点P(x,y),我们把点P'(1﹣y,x﹣1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,…,这样依次得到点A1、A2、A3、A4…,若点A1的坐标为(3,2),则点A2020的坐标为()A.(3,2)B.(﹣1,2)C.(﹣1,﹣2)D.(3,﹣2)7.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2)黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是()A.(2,2)B.(0,1)C.(2,﹣1)D.(2,1)8.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为()A.(1,﹣2)B.(2,﹣1)C.(,﹣1)D.(3.0)9.如图是在方格纸上画出的小旗图案.若用(2,1)表示A点,(2,5)表示B点,那么C 点的位置可表示为()A.(3,5)B.(4,3)C.(3,4)D.(5,3)10.小明经常在一条南北方向的公路上散步.他每次从A点出发,两次记录自己散步的情况如下(向南走为正方向),如果第二次记录时停下,此时他离A点最近的是()A.﹣225米,510米B.﹣152米,﹣250米 C.123米,﹣151米D.150米,300米11.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线l∥x轴,点C是直线l上的一个动点,则线段BC的长度最小时,点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)12.在平面直角坐标系中,对于任意三点A、B、C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20,若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为15,则t的值为()A.﹣3或7 B.﹣4或6 C.﹣4或7 D.﹣3或613.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣214.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC 的最小值及此时点C的坐标分别为()A.6,(﹣3,5)B.10,(3,﹣5)C.1,(3,4)D.3,(3,2)15.在直角坐标系中,某三角形三个顶点的横坐标不变,纵坐标都增加2个单位长度,则所得三角形与原三角形相比()A.形状不变,面积扩大2倍 B.形状不变,位置向上平移2个单位长度C.形状不变,位置向右平移2个单位长度 D.以上都不对16.如图,在平面直角坐标系中,线段AB的两个端点是A(1,3),B(2,1).将线段AB 沿某一方向平移后,若点A的对应点A′的坐标为(﹣2,0),则点B的对应点B′的坐标为()A.(﹣3,2)B.(﹣1,﹣3)C.(﹣1,﹣2)D.(0,﹣2)17.在平面直角坐标系内,将M(5,2)先向下平移2个单位,再向左平移3个单位,则移动后的点的坐标是()A.(2,0)B.(3,5)C.(8,4)D.(2,3)18.第一象限内的点P(2,a﹣4)到坐标轴的距离相等,则a的值为.19.在平面直角坐标系中,对于点P(a,b),我们把Q(﹣b+1,a+1)叫做点P的伴随点,已知A1的伴随点为A2,A2的伴随点为A3,…,这样依次下去得到A1,A2,A3,…,A n,若A1的坐标为(3,1),则A2020的坐标为.20.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣3,﹣2),棋子②的坐标为(0,﹣3),那么棋子③的坐标是.21.若教室中的5排3列记为(5,3),则3排5列记为.22.如图,在平面直角坐标系中,AB平行于x轴,点A坐标为(4,3),B在A点的左侧,AB=a,若B点在第二象限,则a的取值范围是.23.在直角坐标平面内,点A(﹣m,5)和点B(﹣m,﹣3)之间的距离为.24.在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是.25.在平面直角坐标系中,点A(1,2a+3)在第一象限.(1)若点A到x轴的距离与到y轴的距离相等,求a的值;(2)若点A到x轴的距离小于到y轴的距离,求a的取值范围.26.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是;若x+y =0,则点P在坐标平面内的位置是;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.27.每个小方格都是边长为1的正方形,在平面直角坐标系中.(1)写出图中从原点O出发,按箭头所指方向先后经过的A、B、C、D、E这几个点的坐标;(2)按图中所示规律,找到下一个点F的位置并写出它的坐标.28.如图,正方形ABCD的边长为4,过它的中心建立平面直角坐标系(中心在原点上),各边和坐标轴平行或垂直.(1)试写出正方形四个顶点的坐标;(2)从中你发现了什么规律?请举例说明.(写出一个即可)29.如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的位置坐标为B(﹣2,﹣1),解答以下问题:(1)在图中找到坐标系中的原点,并建立直角坐标系;(2)若体育馆的坐标为C(1,﹣3),食堂坐标为D(2,0),请在图中标出体育馆和食堂的位置;(3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD,求四边形ABCD的面积.30.如图,平面直角坐标系中,C(0,5)、D(a,5)(a>0),A、B在x轴上,∠1=∠D,求证:∠ACB+∠BED=180°.31.已知,如图,点A(a,b),B(c,d)在平面直角坐标系中的任意两点,且AC⊥x轴于点C,BD⊥x轴于点D.(1)CD=,|DB﹣AC|=;(用含a,b,c,d的代数式表示)(2)请猜想:A,B两点之间的距离;(3)利用猜想,若A(﹣2,5),B(4,﹣4),求AB两点之间的距离.参考答案1.解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,﹣6).故选:A.2.解:∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2,∵点M在第四象限,∴M坐标为(2,﹣5).故选:A.3.解:∵m2≥0,∴m2+1>0,∴点A(m,m2+1)不在第三、四象限.故选:D.4.解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.5.解:根据题意,得等边三角形△A1B1A2,△A2B2A3,△A3B3A4…,∵∠B1OA1=30°,OA1=1,∠B1A1A2=∠A1A2B1=∠A2B1A1=60°,∴∠OB1A1=30°,∴∠OB1A2=90°,∴A1A2=A2B1=A1B1=OA1=1,所以B1的横坐标为1+=,同理可得:B2的横坐标为2+1=3,B3的横坐标为4+2=22+21,B4的横坐标为8+4=23+22,B5的横坐标为16+8=24+23,…B n的横坐标为2n﹣1+2n﹣2=2n﹣2(2+1)=3×2n﹣2,∴点B2020的横坐标是3×22018,故选:B.6.解:根据点P(x,y)的友好点是点P'(1﹣y,x﹣1),点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,…,因为点A1的坐标为(3,2),所以点A2的坐标为(﹣1,2),点A3的坐标为(﹣1,﹣2),点A4的坐标为(3,﹣2),点A5的坐标为(3,2),…发现规律:4个点一个循环,所以2020÷4=505,则点A2020的坐标为(3,﹣2).故选:D.7.解:根据题意可建立如图所示平面直角坐标系:由坐标系知白棋(甲)的坐标是(2,1),故选:D.8.解:设M(x,y),由“实际距离”的定义可知:点M只能在ECFG区域内,﹣1<x<5,﹣5<y<1,又∵M到A,B,C距离相等,∴|x﹣3|+|y﹣1|=|x﹣5|+|y+3|=|x+1|+|y+5|,①∴|x﹣3|+1﹣y=5﹣x+|y+3|=x+1+y+5,②要将|x﹣3|与|y+3|中绝对值去掉,需要判断x在3的左侧和右侧,以及y在﹣3的上侧还是下侧,将矩形ECFG分割为4部分,若要使M到A,B,C的距离相等,由图可知M只能在矩形AENK中,故x<3,y>﹣3,则方程可变为:3﹣x+1﹣y=y+5+x+1=5﹣x+3+y,解得,x=1,y=﹣2,则M(1,﹣2)故选:A.9.解:如图所示:点C的坐标为(5,3),故选:D.10.解:∵|﹣225|=225,|510|=510;|﹣152|=152,|﹣250|=250;|123|=123,|﹣151|=151;|150|=150,|300|=300;∴C选项中的两个数的绝对值最小,即离A点最近.故选:C.11.解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥x轴,∴BC=2,∴C(1,2),故选:C.12.解:∵D(1,2)、E(﹣2,1)、F(0,t),∴“水平底”a=1﹣(﹣2)=3.“铅垂高“h=1或|2﹣t|或|1﹣t|①当h=1时,三点的“矩面积”S=1×3=3≠15,不合题意;②当h=|2﹣t|时,三点的“矩面积”S=3×|2﹣t|=15,解得:t=﹣3或t=7(舍去);③当h=|1﹣t|时,三点的“矩面积”S=3×|1﹣t|=15,解得:t=﹣4(舍去)或t=6;综上:t=﹣3或6.故选:D.13.解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.14.解:依题意可得:∵AC∥x轴,A(﹣3,2)∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5﹣2=3,此时点C的坐标为(3,2),故选:D.15.解:∵三角形三个顶点的横坐标不变,纵坐标都增加2个单位,∴三角形与原三角形相比,向上平移2个单位,∴形状不变,位置向上平移2个单位.故选:B.16.解:观察图象可知,点B的对应点B′的坐标为(﹣1,﹣2).故选:C.17.解:平移后的坐标为(5﹣3,2﹣2),即坐标为(2,0),故选:A.18.解:∵第一象限内的点P(2,a﹣4)到坐标轴的距离相等,∴2=a﹣4,解得:a=6.故答案为:6.19.解:∵点A1的坐标为(3,1),∴A2的坐标为(0,4),A3的坐标为(﹣3,1),A4的坐标为(0,﹣2),A5的坐标为(3,1),∴每连续的四个点一个循环,∵2020÷4=505,∴A2020的坐标为(0,﹣2),故答案为:(0,﹣2).20.解:如图所示:棋子③的坐标是:(1,﹣1);故答案为:(1,﹣1)21.解:∵5排3列记为(5,3),∴3排5列记为(3,5).故答案为:(3,5).22.解:由题意﹣(a﹣4)<0,解得a>4,故答案为:a>4.23.解:∵在直角坐标平面内,点A(﹣m,5),点B(﹣m,﹣3)∴AB==8,故答案为:824.解:∵点M(2,4)与点N(x,4)之间的距离是3,∴|2﹣x|=3,解得,x=﹣1或x=5,故答案为:﹣1或5.25.解:(1)∵点A到x轴的距离与到y轴的距离相等,∴2a+3=1,解得a=﹣1;(2)∵点A到x轴的距离小于到y轴的距离,点A在第一象限,∴2a+3<1且2a+3>0,解得a<﹣1且a>﹣,∴﹣<a<﹣1.26.解:(1)∵点P的坐标为(x,y),若x=y,∴点P在一、三象限内两坐标轴夹角的平分线上.∵x+y=0,∴x、y互为相反数,∴P点在二、四象限内两坐标轴夹角的平分线上.故答案为:在一、三象限内两坐标轴夹角的平分线上.在二、四象限内两坐标轴夹角的平分线上.(2)∵点Q到两坐标轴的距离相等,∴|2﹣2a|=|8+a|,∴2﹣2a=8+a或2﹣2a=﹣8﹣a,解得a=﹣2或a=10,当a=﹣2时,2﹣2a=2﹣2×(﹣2)=6,8+a=8﹣2=6,当a=10时,2﹣2a=2﹣20=﹣18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(﹣18,18).27.解:(1)观察图形,可知:A(1,0)、B(1,2)、C(﹣2,2)、D(﹣2,﹣2)、E(3,﹣2);(2)∵E(3,﹣2),DE=5,∴EF=6,∴F(3,4).28.解:(1)设正方形与y轴的交点分别为E、F(F点在E点下方),与x轴交于M、N点(N 点在M点右方),如图1所示.∵正方形ABCD的边长为4,且中心为坐标原点,∴AE=ED=DN=NC=CF=FB=BM=MA=2,∴点A的坐标为(﹣2,2),点B的坐标为(﹣2,﹣2),点C的坐标为(2,﹣2),点D 的坐标为(2,2).(2)B、D点的横(纵)坐标互为相反数.连接AC,BD,如图2所示.∵坐标原点为正方形的中心,且正方形的对角线互相平分,∴点O为线段BD的中点,∴B、D点的横(纵)坐标互为相反数.29.解:(1)建立平面直角坐标系如图所示;(2)体育馆C(1,﹣3),食堂D(2,0)如图所示;(3)四边形ABCD的面积=4×5﹣×3×3﹣×2×3﹣×1×3﹣×1×2,=20﹣4.5﹣3﹣1.5﹣1,=20﹣10,=10.30.证明:∵C(0,5)、D(a,5)(a>0),∴CD∥x轴,即CD∥AB,∴∠1+∠ACD=180°,∵∠1=∠D,∴∠D+∠ACD=180°,∴AC∥DE,∴∠ACB=∠DEC,∵∠DEC+∠BED=180°,∴∠ACB+∠BED=180°.31.解:(1)CD=|c﹣a|,|DB﹣AC|=|b﹣d|;(2)AB=;(3)AB==3.故答案为|c﹣a|,|b﹣d|;。
第七章-平面直角坐标系培优提高卷(含答案)
第七章 平面直角坐标系培优提高卷一、选择题。
(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第K 棵树种植在P k(X k ,Y k )处,其中X 1=1,Y 1=1,当k ≥2时,X k =X k –1+1-5([51-k ]-[52-k ]),Y k =Y k –1+[51-k ]-[52-k ],[a ]表示非负实数a 的整数部分,例如[2.6]= 2,[0.2]= 0,按此方案,第2013棵树种植点的坐标是( )A .(3,402)B .(3,403)C .(4,403)D .(5,403)2.如图,在平面直角坐标系中,已知点A (-1,1),B (-1,-2),将线段AB 向下平移2个单位,再向右平移3个单位得到线段A /B /,设点),(y x P 为线段A /B /上任意一点,则y x ,满足的条件为( )A .3=x ,14-≤≤-yB .2=x ,14-≤≤-yC .14-≤≤-x ,3=yD .14-≤≤-x ,2=y(第2题) (第3题) (第4题)3.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(1,﹣2)C .(1,1)D .(﹣1,﹣1)4.如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .55.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )A .(66,34)B .(67,33)C .(100,33)D .(99,34)6.在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换:①()()f m n m n =-,,,如()()f 2121=- ,,;②()()g m n m n =--,,,如()()g 2121=-- ,,.按照以上变换有:()()()f g 34f 3434⎡⎤=--=-⎣⎦ ,,,,那么()g f 32⎡-⎤⎣⎦ ,]等于( )A .(3,2)B .(3,2-,)C .(3-,2)D .(3-,2-,)7.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、BC 边上,BD =BE =1.沿直线DE 将△BDE 翻折,点B 落在点B ′处,则点B ′的坐标为 ( )A .(1,2)B .(2,1)C .(2,2)D .(3,1)8.如图,△ABC 的两个顶点BC 均在第一象限,以点(0,1)为位似中心,在y 轴左方作△ABC 的位似图形△AB ′C ′,△ABC 与△A ′B ′C 的位似比为1:2.若设点C 的纵坐标是m ,则其对应点C ′的纵坐标是( )A . ﹣(2m ﹣3)B . ﹣(2m ﹣2)C . ﹣(2m ﹣1)D . ﹣2m9.已知点A (0,0),B (0,4),C (3,t +4),D (3,t ).记N (t )为▱ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为( )A .6、7 B.7、8 C.6、7、8 D.6、8、910.以下是甲、乙、丙三人看地图时对四个坐标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆.乙:从学校向西直走300米,再向北直走200米可到邮局.丙:邮局在火车站西200米处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站()A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走100米C.向南直走700米,再向西直走200米D.向南直走700米,再向西直走600米二、填空题。
人教版七年级下《第七章平面直角坐标系》单元测试培优卷有答案
| y | = 2 , 则点 Q 的坐标是
16、若点 A(3,x+1),B(2y-1,-1)分别在 x 轴、y 轴上,则 x2+y2=____. 17、如图,长方形 OABC 的边 OA,OC 分别在 x 轴、y 轴上,点 B 的坐标 为(3,2).点 D,E 分别在 AB,BC 边上,BD=BE=1.沿直线 DE 将三角形 BDE 翻折,点 B 落在点 B′处,则点 B′的坐标为________. 18、如图,在平面直角坐标系中,一动点从原点 O 出发,按向上、向右、向 下、向右的方向不断地移动,每移动一个单位长度,得到点 A1(0,1),A2(1,1),A3(1,0), A4(2,0),…,那么点 A4n+1(n 为自然数)的坐标为______(用 n 表示).
10、如图,一只跳蚤在第一象限及 x 轴、y 轴上跳动,第一秒钟,它从原
13、如图,正方形 ABCD 的边长为 4,点 A 的坐标为(-1,1), AB 平行于 X 轴,则点 C 的坐标为___. 14、△ABC 中,A(-4,-2),B(-1,-3),C(-2,-1),将△ABC 先向右平移 4 个单位长度,再向 上平移 3 个单位长度,则对应点 A′、B′、C′的坐标分别为 15、点 Q(x, y)在第四象限,且| x | = 3, 、 、 . 。
26.如图①,在平面直角坐标系中,点 A,B 的坐标分别为(-1,0),(3,0),现同时将点 A,B 分别向上平移 2 个单位长度,再向右平移 1 个单位长度,分别得到点 A,B 的对应点 C,D,连接 AC,BD,CD. (1)求点 C,D 的坐标及 S 四边形 ABDC.
5、已知点 P(x,y)的坐标满足|x|=3, y =2,且 xy<0,则点 P 的坐标是( A.(3,-2) B.(-3,2) C.(3,-4) D.(-3,4)
精选七年级下册数学第七章平面直角坐标系单元测试题(含答案)
人教版七年级数学下册第7章平面直角坐标系能力提升卷一.选择题(共10小题)1.如图,小手盖住的点的坐标可能为()A.(5,2) B.(-7,9) C.(-6,-8) D.(7,-1)2.若线段AB∥x轴且AB=3,点A的坐标为(2,1),则点B的坐标为()A.(5,1) B.(-1,1)C.(5,1)或(-1,1) D.(2,4)或(2,-2)3.若点A(a+1,b-2)在第二象限,则点B(1-b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点D(-5,4)到x轴的距离为()A.5 B.-5 C.4 D.-45.已知点A(2x-4,x+2)在坐标轴上,则x的值等于()A.2或-2 B.-2 C.2 D.非上述答案6.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°7.如图是某动物园的平面示意图,若以大门为原点,向右的方向为x轴正方向,向上的方向为y轴正方向建立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.若线段AB∥y轴,且AB=3,点A的坐标为(2,1),现将线段AB先向左平移1个单位,再向下平移两个单位,则平移后B点的坐标为()A.(1,2) B.(1,-4)C.(-1,-1)或(5,-1) D.(1,2)或(1,-4)9.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)10.已知点A(-1,2)和点B(3,m-1),如果直线AB∥x轴,那么m的值为()A.1 B.-4 C.-1 D.3二.填空题(共6小题)11.若P(a-2,a+1)在x轴上,则a的值是.12.在平面直角坐标系中,把点A(-10,1)向上平移4个单位,得到点A′,则点A′的坐标为.13.在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”,例如,点P(1,4)的3级关联点”为Q(3×1+4,1+3×4)即Q(7,13),若点B的“2级关联点”是B'(3,3),则点B的坐标为;已知点M(m-1,2m)的“-3级关联点”M′位于y轴上,则M′的坐标为.14.已知点A(m-1,-5)和点B(2,m+1),若直线AB∥x轴,则线段AB的长为.15.小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为.16.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是.三.解答题(共7小题)17.如图,在平面直角坐标系中,三角形ABC的顶点A、B、C的坐标分别为(0,3)、(-2,1)、(-1,1),如果将三角形ABC先向右平移2个单位长度,再向下平移2个单位长度,会得到三角形A′B′C′,点A'、B′、C′分别为点A、B、C移动后的对应点.(1)请直接写出点A′、B'、C′的坐标;(2)请在图中画出三角形A′B′C′,并直接写出三角形A′B′C′的面积.18.已知平面直角坐标系中有一点M(m-1,2m+3)(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?19.如图是某个海岛的平面示意图,如果哨所1的坐标是(1,3),哨所2的坐标是(-2,0),请你先建立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的位置.20.已知:点P(2m+4,m-1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,-4)点且与x轴平行的直线上.21.阅读材料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点A位于点(-4,4),点B位于点(3,1),则“帅”所在点的坐标为;"马”所在点的坐标为;"兵”所在点的坐标为.(2)若“马”的位置在点A,为了到达点B,请按“马”走的规则,在图上画出一种你认为合理的行走路线,并用坐标表示出来.22.对有序数对(m,n)定义“f运算”:f(m,n)=11,,22m a n b⎛⎫+-⎪⎝⎭其中a、b为常数.f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F 变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′.(1)当a=0,b=0时,f(-2,4)=;(2)若点P(4,-4)在F变换下的对应点是它本身,则a=,b=.答案:1-5 CCBCA6-10 DDDCD11.-112.(-10,5)13. (1,1)(0,-16)14.915. B1016. (-1,-1)17. 解:(1)根据题意知,点A′的坐标为(2,1)、B'的坐标为(0,-1)、C′的坐标为(1,-1);(2)如图所示,△A′B′C′即为所求,S△A′B′C′=1×1×2=1.218. 解:(1)∵|2m+3|=12m+3=1或2m+3=-1∴m=-1或m=-2;(2)∵|m-1|=2m-1=2或m-1=-2∴m=3或m=-1.19. 解:建立如图所示的平面直角坐标系:小广场(0,0)、雷达(4,0)、营房(2,-3)、码头(-1,-2).20. 解:(1)∵点P (2m+4,m-1),点P 在y 轴上,∴2m+4=0,解得:m=-2,则m-1=-3,故P (0,-3);21. 解:(1)由点A 位于点(-4,4人教版七年级数学下册第7章平面直角坐标系培优检测卷一.选择题(共10小题)1.点A(-3,-1)所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 2.已知点A(2x -4,x+2)在坐标轴上,则x 的值等于( )A .2或-2B .-2C .2D .非上述答案 3.已知m 为任意实数,则点A ()m,m 2+1不在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限4.下列描述不能确定具体位置的是( )A .贵阳横店影城1号厅6排7座B .坐标(3,2)可以确定一个点的位置C .贵阳市筑城广场北偏东40°D .位于北纬28°,东经112°的城市5.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为( )A .(1,0)B .(1,2)C .(5,4)D .(5,0)6.若x 轴上的点P 到y 轴的距离为2,则点P 的坐标为( )A .(2,0)B .(2,0)或(-2,0)C.(0,2)D.(0,2)或(0,-2)7.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)8.已知点A(-3,0),则A点在()A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上9.已知点P(a,b)在第三象限,且|a|=3,|b|=4,那么点P的坐标为()A.(-4,-3)B.(-3,-4)C.(-3,4)D.(3,-4)10.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P第2017次跳动至P2017的坐标是()A.(504,1007)B.(505,1009)C.(1008,1007)D.(1009,1009)二.填空题(共6小题)11.若P(a-2,a+1)在x轴上,则a的值是.12.小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为13.已知点A(2,3)在第一象限,则与点A关于y轴对称的点A1的坐标是14.在平面直角坐标系中,若点P在第四象限,且点P到x轴和y轴的距离分别为3和4,则点P的坐标是.15.如图,把"QQ"笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C的坐标为(-1,1),若把此"QQ"笑脸向右平移3个单位长度后,则与右眼B对应的点的坐标是.16.幂a b 在神秘的β星球上对应着一对有序数(a,b),例如23在β星球上是用(2,3)表示的,又如((2,3),5)表示()235,它等于85=32768,令a=4,b=3,c=2,d=1,那么((a,b),(c,d))是三.解答题(共6小题)17.已知点P(8-2m,m -1).(1)若点P 在x 轴上,求m 的值.(2)若点P 到两坐标轴的距离相等,求P 点的坐标.18.如图,A 、B 两点的坐标分别是(2,-3)、(-4,-3).(1)请你确定P(4,3)的位置;(2)请你写出点Q 的坐标.19.已知点P(-2x,3x+1)是平面直角坐标系中第二象限内的点,且点P 到两轴的距离之和为11,求P 的坐标.20.如图是某个海岛的平面示意图,如果哨所1的坐标是(1,3),哨所2的坐标是(-2,0),请你先建立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的位置.21.作图题:(不要求写作法)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-3,4),B(-3,1),C(-1,3).(1)作图:将△ABC先向右平移4个单位,再向下平移3个单位,则得到△A1B1C1,求作△A1B1C1;(2)求△BCC1面积.22.【阅读材料】平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3【解决问题】(1)求点A(-2,4),B( 2+ 3, 2-3)的勾股值[A],[B];(2)若点M在x轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M的坐标.答案:1.C2.A3.D4.C5.D6.B7.C8.B9.B10.B11.-112.B1013.(-2,3)14. (4,-3)15. (3,3)16.409617.解:(1)∵点P(8-2m,m-1)在x轴上,∴m-1=0,解得:m=1;(2)∵点P到两坐标轴的距离相等,∴|8-2m|=|m-1|,∴8-2m=m-1或8-2m=1-m,解得:m=3或m=7,∴P(2,2)或(-6,6).18.解:(1)根据A、B两点的坐标可知:x轴平行于A、B两点所在的直线,且距离是3;y 轴在距A点2(距B点4)位置处,如图建立直角坐标系,则点P(4,3)的位置,即如图所示的点P;(2)点Q的坐标是(-2,2).19. 解:∵点P(-2x,3x+1)是平面直角坐标系中第二象限内的点,且点P到两轴的距离之和为11,∴2x+3x+1=11人教七年级上册数学第7章《平面直角坐标系》练习题 (A B 卷)人教版七年级数学下册第七章平面直角坐标系 单元测试题班级 姓名 得分一、选择题(4分×6=24分) 1.点A (4,3-)所在象限为( )A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限 2.点B (0,3-)在()上A 、 在x 轴的正半轴上B 、 在x 轴的负半轴上C 、 在y 轴的正半轴上D 、 在y 轴的负半轴上3.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为() A 、(3,2) B 、 (3,2--) C 、 (2,3-) D 、(2,3-) 4. 若点P (x,y )的坐标满足xy =0,则点P 的位置是()A 、 在x 轴上B 、 在y 轴上C 、 是坐标原点D 、在x 轴上或在y 轴上 5.某同学的座位号为(4,2),那么该同学的所座位置是()A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定 6.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为()A 、 A 1(0,5-),B 1(3,8--) B 、 A 1(7,3), B 1(0,5)C 、 A 1(4,5-) B 1(-8,1)D 、 A 1(4,3) B 1(1,0) 二、填空题( 1分×50=50分 ) 7.分别写出数轴上点的坐标:A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-F9. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限A-1-1点)0,2(-E 在第 象限,点)3,0(F 在第 象限10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点 是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。
(必考题)初中七年级数学下册第七单元《平面直角坐标系》提高卷(答案解析)
一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 3.如果点A (a ,b )在第二象限,那么a 、b 的符号是( ) A .0>a ,0>b B .0<a ,0>b C .0>a ,0<b D .0<a ,0<b 4.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)5.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ).A .2m n =B .2m n =C .2m n =D .2m n = 6.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 8.在平面直角坐标系中,点P (−1,−2+3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,10.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( )A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2) 11.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 3030,3)D .(3030,﹣3) 12.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 13.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .88614.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C(1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1 15.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处二、填空题16.在x 轴上方的点P 到x 轴的距离为3,到y 轴距离为2,则点P 的坐标为________. 17.若点p(a+13,2a+23)在第二,四象限角平分线上,则a=_____. 18.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.19.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .20.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.21.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P的坐标是_____.22.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,-1),…,按照这样的运动规律,点P 第17次运动到的点的坐标为__________.23.如图,在平面直角坐标系中,三角形ABC经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P(12,﹣15)为三角形ABC内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.24.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.25.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.26.点3(2,)A -到x 轴的距离是__________.三、解答题27.已知点(24,1)P m m +-,请分别根据下列条件,求出点P 的坐标.(1)点P 在x 轴上;(2)点P 在过点(2,4)A -且与y 轴平行的直线上.28.已知点(1,5)A a -和(2,1)B b -.试根据下列条件求出a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于x 轴对称;(3)AB ‖x 轴29.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).30.如图,在平面直角坐标系中有一个△ABC.(1)将△ABC向右平移3个单位得到△A1B1C1,画出△A1B1C1.(2)写出△A1B1C1,三个顶点的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系培优提高一、选择题。
1. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第K 棵树种植在P k(X k ,Y k )处,其中X 1=1,Y 1=1,当k ≥2时,X k =X k –1+1-5([51-k ]-[52-k ]),Y k =Y k –1+[51-k ]-[52-k ],[a ]表示非负实数a 的整数部分,例如[2.6]= 2,[0.2]= 0,按此方案,第2013棵树种植点的坐标是( )A .(3,402)B .(3,403)C .(4,403)D .(5,403)2.如图,在平面直角坐标系中,已知点A (-1,1),B (-1,-2),将线段AB 向下平移2个单位,再向右平移3个单位得到线段A /B /,设点),(y x P 为线段A /B /上任意一点,则y x ,满足的条件为( )A .3=x ,14-≤≤-yB .2=x ,14-≤≤-yC .14-≤≤-x ,3=yD .14-≤≤-x ,2=y(第2题) (第3题) (第4题)3.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(1,﹣2)C .(1,1)D .(﹣1,﹣1)4.如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .55.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )A .(66,34)B .(67,33)C .(100,33)D .(99,34)6.在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换:①()()f m n m n =-,,,如()()f 2121=- ,,;②()()g m n m n =--,,,如()()g 2121=-- ,,.按照以上变换有:()()()f g 34f 3434⎡⎤=--=-⎣⎦ ,,,,那么()g f 32⎡-⎤⎣⎦ ,]等于( )A .(3,2)B .(3,2-,)C .(3-,2)D .(3-,2-,)7.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、BC 边上,BD =BE =1.沿直线DE 将△BDE 翻折,点B 落在点B ′处,则点B ′的坐标为 ( )A .(1,2)B .(2,1)C .(2,2)D .(3,1)8.如图,△ABC 的两个顶点BC 均在第一象限,以点(0,1)为位似中心,在y 轴左方作△ABC 的位似图形△AB ′C ′,△ABC 与△A ′B ′C 的位似比为1:2.若设点C 的纵坐标是m ,则其对应点C ′的纵坐标是( )A . ﹣(2m ﹣3)B . ﹣(2m ﹣2)C . ﹣(2m ﹣1)D . ﹣2m9.已知点A (0,0),B (0,4),C (3,t +4),D (3,t ).记N (t )为▱ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为( )A .6、7 B.7、8 C.6、7、8 D.6、8、9二、填空题。
11.如图,在平面直角坐标系中,A 、B 均在边长为1的正方形网格格点上.(1) 在网格的格点中,找一点C ,使△ABC 是直角三角形,且三边长均为无理数(只画出一个,并涂上阴影);(2)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有_________-个;(3)若将线段AB绕点A顺时针旋转90°,写出旋转后点B的坐标.12.已知点A(1,0),点B(0,2)若有点C在X轴上并使S△ABC=2,则点C的坐标为________ 13.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(−3,3),嘴唇C点的坐标为(−2,1),将此“QQ”笑脸向右平移2个单位后,此“QQ”笑脸右眼B的坐标是. 14.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2017的坐标为。
15.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2014个点的横坐标为________________.16.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2014的坐标为________________.三、解答题。
17.如图所示,已知△ABC 的三个顶点的坐标分别为A(-2,3)、B (-6,0)、C (-1,0),(1)请直接写出点A 关于原点O 对称的点的坐标;(2)将△ABC 绕坐标原点O 逆时针旋转90°,求出A ′点的坐标。
(3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:B A −→−(+1,+4),从A B −→−(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向.图中____)(____,C B −→−,_____),1_____(+−→−C 若这只甲虫的行走路线为A →B →C →D ,请计算该甲虫走过的路程;3.(2015春•鄂城区期中)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b 满足a=+﹣1,现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC .(2)在y 轴上是否存在一点P ,连接PA ,PB ,使S △PAB =S 四边形ABDC ?若存在这样一点,求出点P 的坐标;若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.4.(2014春•富顺县校级期末)在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2)(见图1),且|2a+b+1|+=0(1)求a、b的值;(2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积仍然成立?若存在,请直接写出符合条件的点M的坐标;(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.5.(2014春•泰兴市校级期末)已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP 上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.6.(2014春•江岸区期末)如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB交y轴于F点.(1)求点A、B的坐标.(2)点D为y轴正半轴上一点,若ED∥AB,且AM,DM分别平分∠CAB,∠ODE,如图2,求∠AMD的度数.(3)如图3,(也可以利用图1)①求点F的坐标;②点P为坐标轴上一点,若△ABP的三角形和△ABC的面积相等?若存在,求出P点坐标.7.(2014春•黄陂区期末)在直角坐标系中,已知点A、B的坐标是(a,0)(b,0),a,b满足方程组,c为y轴正半轴上一点,且S△ABC=6.(1)求A、B、C三点的坐标;(2)是否存在点P(t,t),使S△PAB=S△ABC?若存在,请求出P点坐标;若不存在,请说明理由;(3)若M是AC的中点,N是BC上一点,CN=2BN,连AN、BM相交于点D,求四边形CMDN 的面积是.8.(2014春•海珠区期末)在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数.(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.9.(2014春•黄梅县校级期中)如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b满足关系式.(1)求a,b的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.10.(2014春•通州区校级期中)在如图直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式+(b﹣3)2=0,(c﹣4)2≤0.(1)求a、b、c的值;(2)如果点P(m,n)在第二象限,四边形CBOP的面积为y,请你用含m,n的式子表示y;(3)如果点P在第二象限坐标轴的夹角平分线上,并且y=2S四边形CBOA,求P点的坐标.11.(2014春•鄂州校级期中)如图,A、B两点坐标分别为A(a,4),B(b,0),且a,b满足(a﹣2b+8)2+=0,E是y轴正半轴上一点.(1)求A、B两点坐标;(2)若C为y轴上一点且S△AOC=S△AOB,求C点的坐标;(3)过B作BD∥y轴,∠DBF=∠DBA,∠EOF=∠EOA,求∠F与∠A间的数量关系.12.(2014春•东湖区期中)如图,平面直角坐标系中A(﹣1,0),B(3,0),现同时将A、B 分别向上平移2个单位,再向右平移1个单位,分别得到A、B的对应点C、D,连接AC、BD (1)直接写出C、D的坐标:C D及四边形ABCD的面积:(2)在y轴负半轴上是否存在点M,连接MA、MB使得S△MAB>S四边形ABCD?若存在,求出M 点纵坐标的取值范围;若不存在说明理由(3)点P为线段BD上一动点,连PC、PO,当点P在BD上移动(不含端点)现给出①的值不变,②的值不变,其中有且只有一个正确,请你找出这个结论并求其值.13.(2014春•台州月考)如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.14.(2014春•海安县月考)如图,在平面直角坐标系中,点A,B,C的坐标分别为(﹣1,0),(3,0),(0,2),图中的线段BD是由线段AC平移得到.(1)线段AC经过怎样的平移可得到线段BD,所得四边形是什么图形,并求出所得的四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在,求出点P的坐标;若不存在,试说明理由;(3)点P是线段BD上的一个动点,连接PC、PO,当点P在BD上移动时(不与B,D重合)给出下列结论:①的值不变;②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.15.(2014春•武汉月考)已知,在平面直角坐标系中,点A (0,m ),点B (n ,0),m 、n 满足(m ﹣3)2=﹣;(1)求A 、B 的坐标;(2)如图1,E 为第二象限内直线AB 上一点,且满足S △AOE =S △AOB ,求E 的坐标.(3)如图2,平移线段BA 至OC ,B 与O 是对应点,A 与C 对应,连AC .E 为BA 的延长线上一动点,连EO .OF 平分∠COE ,AF 平分∠EAC ,OF 交AF 于F 点.若∠ABO+∠OEB=α,请在图2中将图形补充完整,并求∠F (用含α的式子表示).若图中另有两个格点M 、N ,且)4,3(--−→−b a A M ,)2,5(--−→−b a N M ,则A N −→−应记作什么?23.已知:在平面直角坐标系中,四边形ABCD 是长方形, ∠A =∠B =∠C =∠D =90°AB ∥CD ,AB =CD =8cm ,AD =BC =6cm ,D 点与原点重合,坐标为(0,0).(1)写出点B 的坐标.(2)动点P 从点A 出发以每秒3个单位长度的速度向终点B 匀速运动, 动点Q 从点C 出发以每秒4个单位长度的速度I 沿射线CD 方向匀速运动,若P ,Q 两点同时出发,设运动时间为t 秒,当t 为何值时,PQ ∥BC ?(3)在Q 的运动过程中,当Q 运动到什么位置时,使△ADQ 的面积为9? 求出此时Q 点的坐标.。