第二章线性时不变系统
信号与系统课件:第二章 LTI系统

2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2
第2章-线性时不变系统

0
t
y(t)
d2Tt1T2
y(t)t2 T Td2T2 21(tT)2
tT
2
y(t) 0
1T2
2
t
0
T
2T
3T
例题:
f t 10u t etu t
u
t
t
0
f1
t
f2
d
10u t t e d 0
10 1 et u t
信号与系统
例: 计算 e 1 t u t * e 2 t u t
etut*ut 1ut 1
1[e(t1) 1]u(t 1) 1[e(t1) 1]u(t 1)
信号与系统
举例
❖ 已知某线性时不变系统的单位冲激响应和激
励信号分别为:e2tut ,ut 1ut2,则系
统的零状态响应为?
三. 卷积和的计算
计算方法:
有图解法、列表法、解析法(包括数值解法)。
运算过程: 将一个信号 x 不( k )动,另一个信号经反转后成
为h(k) ,再随参变量 n移位。在每个 值n 的情况
下,将 x ( k ) 与 h(nk) 对应点相乘,再把乘积的
各点值累加,即得到 n 时刻的 y ( n ) 。
otherwise
x(k )
1
0
4
h(nk)nk
k
n6
0
k
n
① n 0 时, y(n)0
n
n
② 0n4 时, y(n) nk n k
k0
k0
n
1(n1) 11
1n1 1
③
4n6 时,
y(n)
4
nk
k0
n
第二章 线性不变系统.

§1.7 傅里叶变换 Fourier Transform
常用傅里叶变换对
5. {d (x-a)}=exp(-j2pfxa) {exp(j2pfax)}= d (fx-fa)
6.
1 {cos (2pf 0 x) [d ( f x f 0 ) d ( f x f 0 )] 2 1 {sin(2pf 0 x) [d ( f x f 0 ) d ( f x f 0 )] 2j
0
圆对称函数的F.T. 仍是圆对称函数, 称为F-B (傅-贝)变 换,记为
-1{G()}
G() =
{g(r)}, g(r) =
§1-2 二维傅里叶变换 2-D Fourier Transform
傅里叶-贝塞尔变换
例: 利用F-B变换求圆域函数的F.T.
1, r 1 , 定义: circ(r ) 0, 其它 r x2 y 2
1
是圆对称函数
{circ(r )} 2p rJ 0 (2pr )dr
0
作变量替换, 令r’ =2pr, 并利用:
J
0
2p 0
x
0 ( )d
xJ1 ( x)
J1 (2p )
{circ(r )}
1 2p
2
r ' J 0 (r ' )dr'
§1.7 傅里叶变换 Fourier Transform
用算符表示系统
g(x, y) = ℒ{f(x, y)}
线性系统定义:
输入
f(x, y)
ℒ{
}
输出
g(x, y)
令 g1(x, y) = ℒ{f1(x, y)}, g2(x, y) = ℒ{f2(x, y)} 若对任意复常数a1, a2有: ℒ{a1 f1 (x, y) + a2 f2 (x, y) } = ℒ{a1 f1 (x, y)} + ℒ{a2 f2 (x, y) } = a1 ℒ{f1 (x, y)} + a2 ℒ{f2 (x, y) } = a1 g1 (x, y) + a2 g2 (x, y)
第二章 线性时不变系统的时域分析

基本内容: 基本内容: (1) 系统的定义及表示 ) (2) ) 系统的基本性质 (3) ) 线性时不变系统的时域描述 (4) ) 零输入响应和零状态响应 (5) ) 单位冲激响应
重点难点: 重点难点: 零状态响应的求解方法 响应的求解方法; (1) ) 零状态响应的求解方法; 冲激响应的求解方法; (2) ) 冲激响应的求解方法;
4.稳定性 稳定性
有界输入产生有界输出,则这个系统就 是稳定系统。 所谓有界,即输入或输出的最大幅值是 一个有限值。 例系统 y[n]=nx[n] 就是一个不稳定系统, 因为,当输入 x[n] 是有界时,系统的输 出却有界,它将随着 n 值的增加而增加, 直至无穷。
三、线性时不变系统的时域描述
线性时不变系统也简称为LTI系统,其 系统, 线性时不变系统也简称为 系统 分析方法建立在信号分解的基础之上。 分析方法建立在信号分解的基础之上。 线性时不变系统具有的线性和时不变性, 线性时不变系统具有的线性和时不变性, 其响应必然是系统对这些基本信号响应 的组合。 的组合。 连续时间LTI系统用微分方程描述; 系统用微分方程描述; 连续时间 系统用微分方程描述 离散时间LTI系统用差分方程描述。 系统用差分方程描述。 离散时间 系统用差分方程描述
这个常系数线性微分方程, 这个常系数线性微分方程,其完全解由 齐次解和特解两部分组成 。 齐次解是微分方程在输入为0时的齐次 齐次解是微分方程在输入为 时的齐次 方程的解( 方程的解(式2.111) ) 而特解则是在输入的作用下满足微分方 程式(2.109) 的解。 的解。 程式
对于式(2.109)的微分方程,相应的齐次 方程为
如果系统的起始状态y(0-)≠0,则系统的 输出 y(t) 和系统的输入 x(t) 之间就不满 足线性和时不变性。然而,只要 y(0-)=0, y(t) 和 x(t) 之间就能够满足 线性和时不变的关系。
[new]xie第二章 线性时不变系统
![[new]xie第二章 线性时不变系统](https://img.taocdn.com/s3/m/3e1827c55fbfc77da269b1fc.png)
1 例2: x[n] (n) 0
n h( n) h[n] 0
0n4 otherwise
1, 0 n 6
otherwise
x[k ]
1
h[n k ]
k
n k
k
n6
0
0
4
n
① n 0 时,
yy(n]) 0 [n
n n
y[n] nk n k ② 0 n 4 时, y ( n) k 0 k 0
由于LTI系统满足齐次性和可加性,并且具
有时不变性的特点,因而为建立信号与系统分析
的理论与方法奠定了基础。 基本思想:如果能把任意输入信号分解成基 本信号的线性组合,那么只要得到了LTI系统对 基本信号的响应,就可以利用系统的线性特性, 将系统对任意输入信号产生的响应表示成系统对 基本信号的响应的线性组合。
号应该可以分解成一系列移位加权的单位冲激信号的
线性组合。
至少单位阶跃与单位冲激之间有这种关系:
u(t ) ( )d (t )d
0
t
对一般信号 x(t ) ,可以将其分成很多 宽度的区段, 用一个阶梯信号 近似表示 。当 时,有: x (t ) x(t ) 0
非线性、时不变
y(t ) t 2 x(t 1) 线性、时变
y[t ]
n n0
k n n0
x[k ]
2
线性、时不变 非线性、时不变 线性、时不变
y[n] x [n 2]
y[n] x[n 1] x[n 1]
y[n] xo [n]
线性、时变
观察上述系统后,得到如下结论:
ch2 linear time-invariant systems线性时不变系统

Ch2. Linear Time-Invariant Systems
hn un
Determine and plot the output y[n] x[n] h[n]
右移,
n>0,有重合
0 r
yn
1 2 k 令r k 2 k r 0 2
6
Ch2. Linear Time-Invariant Systems Convolution Sum
y[n]
k
x[k ]h[n k ]
——Convolution Sum
yn xn hn
x[n]
h[n]
yn xn hn
the unit impulse response h[n] can fully characterize a LTI system.
若:
x(n):n1 n n2,
则y(n): n1 n3 n n2 n4
例如:
x(n): 0 n 3 h(n): 0 n 4 y(n): 0 n 7
4个元素 5个元素 8 个元素
16
Ch2. Linear Time-Invariant Systems 2.2 Continuous-Time LTI: Convolution Integral
x[k ]h[1 k ]
10
x[0]h[1] x[1]h[ 2] 6
y[1]
k
x[0]h[1] x[1]h[0] x[2]h[ 1] 10
Example 2.2
1 x[n] 2
Ch2. Linear Time-Invariant Systems
线性时不变系统

线性时不变系统
传递函数
• 在考虑扰动的情况下,系统的传递函数可以写成
y (t ) = G (q )u (t ) + H (q )e(t )
(2.12)
y (kT ) =
∫τ
∞ =0
g (τ )u (kT − τ )dτ
线性时不变系统
稳定性
• 系统的传递函数如果满足以下条件
G (q ) =
∞ ∞
∑
k =1
线性时不变系统
传递函数
• 我们定义q算子
qu (t ) = u (t + 1)
• 同样
q −1u (t ) = u (t − 1)
(2.9)
(2.10)
• 那么(2.6)就可以写成
y (t ) =
∞ k =1
∑ g (k )u(t − k ) =∑ g (k )q
k =1
∞
−k
u (t )
(2.11)
y (t ) = G (q )u (t )
y (kT ) =
∫τ
∞ =0
g (τ )u (kT − τ )dτ
线性时不变系统
传递函数
• 如果系统是稳定的,随着k的增大,g(k)趋近于0, 则上式可以简化为
G (q ) = ∑ g (k )q − k
k =1
n
• 其中g(n+1),g(n+2),…接近于0,可以忽略不计
(2.3)
y (kT ) =
∫τ
∞ =0
g (τ )u (kT − τ )dτ
线性时不变系统
单位脉冲响应模型
• 将(2.3)带入(2.2)
y (kT ) = =
∫τ
第2章 线性时不变系统

0 t
2.4 LTI系统的性质
举例:累加系统(accumulator)
y[n]
k
x[k ]
n
它是LTI系统,其单位脉冲响应为
h[n] u[n]
h[n] k [n] Memory h[n] 0, n 0 Causal
2.4 LTI系统的性质
从以上推导得出以下结论: DT LTI 系统的单位阶跃响应是其单位脉冲响应的求和函数; DT LTI 系统的单位脉冲响应是其单位阶跃响应的一次差分 同理,对于CT LTI 系统: 单位阶跃响应是其单位冲激响应的积分函数
s(t ) h( )d
t
单位冲激响应是其单位阶跃响应的一阶导数
2.7小结
2.1概述
(1)线性与时不变性(Linearity and Time-Invariance): 很多物理过程都具有这两个性质 这些物理过程能用LTI系统表征 可以对LTI系统进行详细的分析:
能够将LTI系统的输入用一组基本信号的线性组合表示 根据该系统对基本信号的响应,利用叠加性质求得整个系统的输出
2.4 LTI系统的性质
离散时间LTI系统用 卷积和表示
连续时间LTI系统用 卷积积分表示
LTI系统的特性可以 完全由其单位冲激响 应决定
2.4 LTI系统的性质
卷积的交换律性质 The Commutative Property of Convolution
2.4 LTI系统的性质
卷积的三个代数性质:交换律、结合律、分配律 Three algebraic properties of convolution
第二章 线性时不变系统

9
例5 y[n] 6,5,24,13,22,10,n 0,1,2,3,4,5 h[n] 3,1,4,2 n 0,1,2,3
y[n] x[n]h[n] 求 x[n]
2 t 5t2 x(t)
x[n] x[k] [n k] 离散的信号分解成脉冲
k
信号的 线性组合的形式
把任意一个序列表示成一串移位的单位脉冲序列 [n k]
的线性组合,而这个线性组合式中的权因子就是 x[k]
4
二. 离散时间线性时不变系统卷积和表示
[n] h[n]
[n k] h[n k]
时不变
x[k] [n k] x[k]h[n k] 齐次性
11
二. 连续时间线性时不变系统的卷积积分表示
(t) h (t)
(t k)
x(k) (t k)
x(k) (t k)
k
h (t k)
时不变
x(k
)h
(t
k
)
齐次性
x(k)h (t k) 可加性
k
xˆ(t)
yˆ (t )
y(t) x( )h(t )d x(t) h(t)
12
卷积的计算
(1)由定义计算卷积积分
例:设某一线性时不变系统的输入为x(t),其单位冲
激响应为h(t) x(t) eatu(t) , a 0 h(t) u(t)
试求 x(t) h(t)
x(t) h(t) ea u( )u(t )d
t ea d ,
0
t0
0,
t0
1 1 eat u(t) a
1
信号与系统王明泉第二章习题解答

其 值
方程特征根 , ,故零输入响应
将初始值代入上式及其导数,得
由上式解得 , ,所以
(2)零状态响应 是初始状态为零,且 时,原微分方程的解,即 满足方程
即
及初始状态 。先求 和 ,由于上式等号右端含有 ,令
积分(从 到 )得
将 、 和 代入微分方程可求得 。对以上三式等号两端从 到 积分,并考虑到 , ,可求得
解:(1)求齐次解
特征方程为:
特征根为:
所以,
(2)求特解
(3)全响应
将 代入系统方程得
(1)
将初始条件代入
得:
所以全响应为:
2.5 已知描述某线性时不变连续系统的微分方程为
,
当激励为 时,系统的完全响应为 , 。试求其零输入响应、零状态响应、自由响应和强迫响应。
解:由全响应得初始条件 ,
(1)求零输入响应
在时域中,子系统级联时,总的冲激响应等于子系统冲激响应的卷积。
因果系统的冲激响应为
(2)阶跃响应
一线性时不变系统,当其初始状态为零时,输入为单位阶跃函数所引起的响应称为单位阶跃响应,简称阶跃响应,用 表示。阶跃响应是激励为单位阶跃函数 时,系统的零状态响应
阶跃响应 与冲激响应 之间的关系为
或
2.2.6卷积积分
(1)卷积积分的概念
一般情况下,如有两个信号 和 做运算
此运算定义为 和 的卷积(Convolution),简记为
或
(2)卷积积分的图解法
用图解法能直观地说明卷积积分的计算过程,而且便于理解卷积的概念。两个信号 和 的卷积运算可通过以下几个步骤来完成:
第一步,画出 和 波形,将波形图中的 轴改换成 轴,分别得到 和 的波形。
信号处理与系统分析 第2章线性时不变系统

从波形的角度来观察离散时间信号,它可以 看成是由许多加权了的单位冲激信号组合 而成的
x[n] x[1] [n 1] x[0] [n] x[2] [n 2]
对于任意的离散时间信号:
累加序号 自变量
加权值 移位的冲激信号
x[n]
k
x[k ] [n k ]
n
卷积公式是无穷多项求和,而我们实际遇到的常 常是有限长度序列,特别是在计算机离线处理的场 合,因为计算机不可能处理无穷多的信息。 在进行有限长度的序列的卷积时候,长度为N和M 的2个序列作卷积时,反转序列从左到右进入重叠 直至移出重叠,只有存在重叠项时,卷积和才可能 非零。 卷积序列的长度为M+N-1。
求解系统响应的卷积方法是系统分析的重要工具。
单位冲激响应h[n]完全描述了线性时不变系统的变换 规律。不同的系统输入,都在h[n]的作用下产生相应的 响应,因此,给定了一个LTI系统的单位冲激响应h[n]就 等于给定了该系统。
从计算某一个特定点的角度来看
yy [n [n 0]
k k
第2章 线性时不变系统
线性时不变(简称LTI,Linear, Time-invariant)系统
为什么引入LTI ?
如果不对系统的性质加以限制,那么分析 一个系统将是十分困难的。 给系统加上线性和时不变性的限制,那么 系统的分析将变得十分简便。 LTI系统的分析还为非线性系统的分析方法 提供了思路。例如,线性时不变系统可以 用冲激响应来表达,非线性系统可以用 Volterra级数来表达。
上式应该理解为许多以为n自变量的函数的相 加,而不是数值相加。
许多移了位的冲激信号的加权和,构成了x[n] 。
特别地,我们有
线性时不变系统--习题

dt
dt
dt
et t et t
t t t
t
方法二没有注意利用冲激函数的性质,求解过
程较繁。另外,对冲激偶信号的性质
f t t f 0 t f 0 t
往往被错误写成
f t t f 0 t
从而得出错误结论。
(2) f t t e3 δτ d τ
1 O t 3 1
t
t 3 1
t
3
1
即2 t 4
g(t) 1 1(t )d t 2 t 2
t3 2
42
T4
1 f1
f2 t
t
1 O
1 t3
t-31
即t 4
gt 0
卷积结果
f1t
1
1 O 1 t
f2 t
3
2
O
3t
t2 t 1
g(t
)
4 t
t
2
2
4
x(t t0 ) h(t) x(t) h(t t0 ) y(t t0 )
例1 粗略绘出下列各函数式的波形图
(1) f1t u t2 1
(2)
f2 t
d dt
et cos tut
描绘信号波形是本课程的一项基本训练,在绘 图时应注意信号的基本特征,对所绘出的波形,应标 出信号的初值、终值及一些关键的值,如极大值和极 小值等,同时应注意阶跃、冲激信号的特点。
设x3(t) ax1 t bx2 t x3 t y3 t x32 t ax1 t bx2 t 2 a2 x12 t b2 x22 t 2abx1 t x2 t
a2 y1 t b2 y2 t 2abx1 t x2 t ay1 t by2 t
2LTI线性时不变系统

x[n] x[k][n k] k
12
假设该系统对δ[n]的响应为h[n],即
[n] uLuTuurI h[n]
根据系统的时不变性,将有:
16
卷积和的图解法
两个信号x[n]和h[n]的卷积和的基本步骤为:
(1)将x[n]和h[n]的自变量换成k。
(2)将h[k]反转后,得到h[-k],再右移n(n>0),或 左移n(n<0),得到h[n-k] 。(”卷积“或”褶积
“由此得名) (或者将横坐标值加n,n从-∞~+∞变化)
(3)将x[k]和上一步得到的h[n-k]相乘,得到卷积 和的被求和序列x[k] h[n-k]。 (4)在(-∞, ∞ )区间上,将上述被求和序列求 和,得到y[n]。 (5)为计算所有时刻的y[n],必须对所有的n,重 复上述(2)到(4)的步骤。
[n k] uLuTuurI h[n k], k 0, 1, 2,L
再根据线性叠加性,又有:
x[k][n k] uLuTuurI x[k ]h[n k ]
k
k
13
故,离散时间LTI系统的输入输出信号变 换关系为:
y[n] x[k]h[n k] k
(2.6)
这就是卷积和。
0
k -2 –1 0 1
19
Step3:
n=0
0.5 2 x[k]
k 01
1 h[-k] -2 –1 0 1
n=0
k
y[0] x[k]h[0 k] k 0.5*1
0.5
《线性时不变系统》课件

奈奎斯特准则
1 奈奎斯特稳定判定条件
奈奎斯特准则是评估线性时不变系统稳定性的另一种方法。我们将讲解稳定判定条件。
2 奈奎斯特绘图法
借助奈奎斯特绘图法,我们可以直观地观察线性时不变系统的稳定性。
总结
线性时不变系统的重要性
线性时不变系统在控制领域扮演 着重要角色。我们将总结其重要 性和应用。
线性时不变系统在控制领 域的应用
线性时不变系统的传递函数
传递函数的定义
传递函数是描述线性时不变系 统输入和输出之间关系的强大 工具。让我们深入探讨它的定 义。
传递函数与系统响应 的关系
我们将了解传递函数与系统对 不同输入的响应之间的密切关 系。
是否稳定的判定方式
通过传递函数,我们可以判断 线性时不变源自统是否稳定。我 们将探讨判定方式。
2 系统的状态空间表示
了解系统的状态空间表示将帮助我们更好地分析和理解线性时不变系统的行为。
系统的稳定性分析
1
稳定性的概念
我们将介绍稳定性的概念,并了解稳定性对系统性能的重要影响。
2
渐进稳定
渐进稳定是我们评估线性时不变系统稳定性的一种方法。让我们探讨这个重要的 概念。
3
有界稳定
了解有界稳定性有助于我们判断系统是否能够在特定范围内保持稳定。
《线性时不变系统》PPT 课件
欢迎来到《线性时不变系统》的PPT课件。本课程将探讨线性和时不变系统的 定义、特点、描述以及稳定性分析和传递函数等内容。让我们一起来学习吧!
什么是线性时不变系统?
线性时不变系统具有令人惊叹的特性。我们将定义线性时不变系统,探讨线性和非线性系统的差异,并理解时 变和时不变系统的区别。
线性时不变系统的特点
线性时不变系统

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。
怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。
只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。
线性系统(齐次性,叠加定理)时不变系统对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。
例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0)-()=()(t-)d f t f τδττ∝∝⎰ 的响应为-y()=()(-)t f h t d τττ∝∝⎰ 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示连续时间信号和系统的频域分析时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。
而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。
都是把信号分解为大量单一信号的组合。
周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数n A sin F =T x x τ 其中0=2nw x τ。
取样函数sin ()=x S a x 。
产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。
第二:谱线的间距是0w .。
零点是0=2nw x τ,02w =Tπ是谱的基波频率。
如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。
第2章__线性时不变系统

g (t ) u(t ) h(t ) h()d
求系统零状态响应举例:如图所示系统, hD (t ) (t 1 ) hG (t ) u(t ) u(t 3) , ,输入 x(t ) u(t ) u (t 1),求零状态响应y(t)
k
h[k ]x[n k ]
2、分配律
x[n] (h1[n] h2 [n]) x[n] h1[n] x[n] h2 [n]
x(t ) (h1 (t ) h2 (t )) x(t ) h1 (t ) x(t ) h2 (t )
物理意义: (1)LTI系统对两个输入的和的响应等于对 单个输入响应的和
y[n]
k
x[k ]h [n]
k
• 若该线性系统又是时不变的 ,则有
hk [n] h[n k ]
其中h[n]是系统输入为δ[n]时的零状态响应, 称为单位脉冲(样本)(序列)响应 y[n] x[k ]h[n k ] 所以对LTI系统,有 : k 对照卷积的定义,有: y[n] x[n] h[n] 称为卷积和
通信中的编码器都是可逆的 例: y(t ) 2 x(t ) w(t ) 1 y(t )
2
y[n]
k
x[k ]
n
w[n] y[n] y[n 1]
不可逆:
y[n] c
y(t ) x (t )
2
2.2.3 因果性
因果系统 :系统在任何时刻的输出只决定于现在 的输入以及过去的输入
y (t )
因此当 h(t ) dt 时,输出为有界-充分性 亦可证必要性 h(t ) dt 连续时间LTI系统的稳定性 离散时间LTI系统的稳定性 h[n]
线性时不变系统

e2t H r2t
则 1e1t 2e2 t
1r1t 2r2 t
H
1e1(t ) 2e2 (t ) 1r1(t ) 2r2 (t )
X
第
3
判断方法
页
先线性运算,再经系统=先经系统,再线性运算
f1 t
C1 C1 f1 t
f2 t
C2 C2 f2 t
H •
HC1 f1 t C2 f2 t
f1 t H• H f1t C1 C1H f1 t
f2 t H• H f2 t C2 C2 H f2 t
C1H f1 t C2 H f2 t
若 HC1 f1t C2 f2t C1H f1t C2H f2t
则系统 H[•]是线性系统,否则是非线性系统。 注意:外加激励与系统非零状态单独处理。
系统的这种特性称为因果特性。
符合因果性的系统称为因果系统(非超前系统)。
2.判断方法
输出不超前于输入
X
第
3.实际的物理可实现系统均为因果系统
9 页
非因果系统的概念与特性也有实际的意义,如信号 的压缩、扩展,语音信号处理等。
若信号的自变量不是时间,如位移、距离、亮度等 为变量的物理系统中研究因果性显得不很重要。
r(t) r(t t0)
r(t)
O
T
e(t t0 )
tO r(t t0 )
O t0
t t0 T
O t0
第 5 页
t
t
X
第
6
2. 判断方法
页
先时移,再经系统=先经系统,再时移
f t
H •
H f t
yt
DE
yt
信号与系统 第二章 线性时不变系统的时域分析

外加信号 常数A
特解 常数B
r 1i k t i r 1 i 1
tr
sin t或cos t
eλt
k1 cost k2 sin t keλt, λ不是方程的特征根 kteλt, λ是方程的特征根
k t
i 1 i
r 1
r 1i t
e , λ是方程的r阶特征重根
一、微差分方程的建立以及经典解法
'' 1
di1 (t ) 1 t L i2 ( )d R2i2 (t ) f (t ) dt C
一、微差分方程的建立以及经典解法
1 (2) Li (t ) i2 (t ) R2i2 ' (t ) f ' (t ) C 1 ( R2i2 i2 ( )d ) 1 U C i2 (t ) y (t ) (3) i1 i2 i2 (4) R2 R1 R1
(1)
t
i ( )d
1 (2) Li (t ) i2 (t ) R2i2 ' (t ) f ' (t ) C 1 ( R2i2 i2 ( )d ) 1 U C i2 (t ) y (t ) (3) i1 i2 i2 (4) R2 R1 R1
例题,已知线性时不变系统方程如下: y˝(t)+6y΄(t)+8y(t)= f(t), t>0. 初始条件y(0)=1, y΄(0)=2,输入信号f(t)=e-tu(t) , Q求系统的完全响应y(t)。
解:1)求方程的齐次解 特征方程为:m2+6m+8=0 显然特征根为:m1=-2,m2=-4
故原方程的齐次解为:yn(t)= Ae-2t+Be-4t
线性时不变系统的应用

线性时不变系统(LTI system)是一类非常重要的信号处理系统,它在很多领域都有着广泛的应用。
本文将对线性时不变系统的定义、特性以及其在信号处理、控制系统、通信系统等方面的应用进行详细的介绍。
首先,我们来解释一下什么是线性时不变系统。
线性系统是指输出信号是输入信号的线性函数,即对于任意的输入信号x1和x2,以及任意的常数a1和a2,都有输出信号y1=ax1+by1和y2=ax2+by2。
时不变系统是指系统的输出信号只与输入信号的形态有关,而与时间无关。
因此,线性时不变系统就是既是线性系统又是时不变系统。
线性时不变系统有着许多优秀的特性,使得它在信号处理、控制系统、通信系统等领域都有着广泛的应用。
其中,最重要的优秀特性就是线性性和时不变性。
因为线性性使得系统的输出信号可以通过线性变换得到,而时不变性使得系统的输出信号与时间无关,这为信号的分析和处理带来了巨大的便利。
在信号处理领域,线性时不变系统可以用来模拟各种不同的信号处理器。
例如,低通滤波器就是一种常见的线性时不变系统,它可以用来消除高频噪声,使得信号更加平稳。
此外,线性时不变系统还可以用来提取信号的特征,例如通过频谱分析来获取信号的频率成分。
在控制系统领域,线性时不变系统也有着重要的应用。
例如,在飞行控制系统中,可以使用线性时不变系统来模拟飞机的运动方程,并通过调节系统的参数来实现飞机的姿态控制。
此外,在工业生产过程中,也可以使用线性时不变系统来控制生产设备的运行状态,从而实现生产过程的自动化。
在通信系统领域,线性时不变系统也有着广泛的应用。
例如,在数字通信系统中,可以使用线性时不变系统来模拟信道的传输特性,并通过调节系统的参数来实现信号的增益控制。
此外,在无线电通信系统中,也可以使用线性时不变系统来模拟电磁波的传播特性,并通过调节系统的参数来实现信号的功率控制。
总之,线性时不变系统是一类非常重要的信号处理系统,它在信号处理、控制系统、通信系统等领域都有着广泛的应用。