基本初等函数、函数的应用(小题)
基本初等函数练习题
![基本初等函数练习题](https://img.taocdn.com/s3/m/34b62322dcccda38376baf1ffc4ffe473368fd86.png)
基本初等函数练习题基本初等函数练习题函数是数学中的重要概念,它描述了一种映射关系,将一个集合中的元素映射到另一个集合中的元素。
而初等函数则是指可以由有限次的四则运算、指数和对数运算以及三角函数和反三角函数运算得到的函数。
在数学学习中,初等函数是一个基础且重要的概念,下面我们来练习一些基本初等函数的题目。
1. 计算函数f(x) = 3x + 2在x = 5处的值。
解答:将x = 5代入函数f(x) = 3x + 2中,得到f(5) = 3 * 5 + 2 = 17。
所以函数在x = 5处的值为17。
2. 求函数g(x) = x^2 - 4x + 3的零点。
解答:零点即函数的解,即g(x) = 0。
将g(x) = x^2 - 4x + 3置零,得到x^2 -4x + 3 = 0。
通过求根公式,我们可以得到x = 1和x = 3。
所以函数的零点为x = 1和x = 3。
3. 计算函数h(x) = log2(x)在x = 8处的值。
解答:将x = 8代入函数h(x) = log2(x)中,得到h(8) = log2(8)。
由于2的多少次方等于8,所以log2(8) = 3。
所以函数在x = 8处的值为3。
4. 求函数k(x) = sin(x) + cos(x)的最大值和最小值。
解答:由于三角函数的取值范围在[-1, 1]之间,所以sin(x)和cos(x)的最大值和最小值都是1和-1。
所以函数k(x) = sin(x) + cos(x)的最大值为1 + 1 = 2,最小值为-1 - 1 = -2。
5. 计算函数m(x) = e^x在x = 2处的值。
解答:将x = 2代入函数m(x) = e^x中,得到m(2) = e^2。
e是一个数学常数,约等于2.71828。
所以函数在x = 2处的值为e^2。
通过以上的练习题,我们可以巩固对基本初等函数的理解和运用。
初等函数在数学中的应用非常广泛,它们可以描述各种各样的数学关系和现象。
函数的概念与基本初等函数、导数及其应用复习(教师版)
![函数的概念与基本初等函数、导数及其应用复习(教师版)](https://img.taocdn.com/s3/m/1be5dec40508763231121259.png)
函数的概念与基本初等函数、导数及其应用 综合复习一.函数的概念和图象、函数的表示方法、映射的概念 例题讲解1.函数f (x )=3x 21-x+lg(3x +1)的定义域是________.解析:要使函数有意义,必须且只须⎩⎪⎨⎪⎧1-x >0,3x +1>0,解得-13<x <1,所以函数的定义域为⎝⎛⎭⎫-13,1.答案:⎝⎛⎭⎫-13,12.已知函数f (x )=⎩⎪⎨⎪⎧8x -8 (x ≤1)x 2-6x +5(x >1),g (x )=ln x ,则f (x )与g (x )两函数的图像的交点个数为________. 答案:33.设函数f (x )=⎩⎨⎧23x -1,x ≥0,1x ,x <0,若f (a )>a ,则实数a 的取值范围是________.解析:易知f (a )>a ⇔⎩⎪⎨⎪⎧ 23a -1>a a ≥0或⎩⎪⎨⎪⎧1a >aa <0解之即得不等式的解集为(-∞,-1).4.定义在区间(-1,1)上的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )的解析式为________. 解析:∵对任意的x ∈(-1,1)有-x ∈(-1,1),由2f (x )-f (-x )=lg(x +1)①得2f (-x )-f (x )=lg(-x +1)②,①×2+②消去f (-x ),得3f (x )=2lg(x +1)+lg(-x +1) ∴f (x )=23lg(x +1)+13lg(1-x )(-1<x <1).答案:f (x )=23lg(x +1)+13lg(1-x )(-1<x <1)5.若函数f (x )的值域为⎣⎡⎦⎤12,3,求函数F (x )=f (x )+1f (x )的值域. 解:令f (x )=t ,t ∈⎣⎡⎦⎤12,3,问题转化为求函数y =t +1t 在⎣⎡⎦⎤12,3的值域.又y ′=1-1t 2=t 2-1t2,当t ∈⎣⎡⎦⎤12,1,y ′≤0,y =t +1t 为减函数,当t ∈[1,3],y ′≥0,y =t +1t 在[1,3]上为增函数, 故t =1时y min =2,t =3时y =103为最大.∴y =t +1t ,t ∈⎣⎡⎦⎤12,3的值域为⎣⎡⎦⎤2,103.二.函数的单调性 例题讲解1.函数y =x +2x -2的单调区间是________,在该区间上是单调________.解析:y =x +2x -2可写成y =1+4x -2,所以函数的单调区间是(-∞,2)及(2,+∞),在这两个区间上都是单调减函数.答案:(-∞,2)及(2,+∞) 减函数2.已知函数y =f (x )是定义在R 上的增函数,则f (x )=0的根最多有________个.解析:∵f (x )在R 上是增函数,∴对任意x 1,x 2∈R ,若x 1<x 2,则f (x 1)<f (x 2),反之亦成立.故若存在f (x 0)=0,则x 0只有一个,若对任意x ∈R 都无f (x )=0,则f (x )=0无解.答案:1 3.已知函数f (x )=x 2-2x +3在闭区间[0,m ]上最大值为3,最小值为2,则m 的取值范围为________. 解析:∵f (x )=(x -1)2+2,其对称轴为x =1,当x =1时,f (x )min =2,故m ≥1,又∵f (0)=3, ∴f (2)=3,∴m ≤2.答案:[1,2]4.函数y =x 2x 2+1(x ∈R)的最小值是________.解析:由已知:yx 2+y =x 2,即x 2=y1-y≥0,∴y ·(y -1)<0或y =0,∴0≤y <1.∴y 的最小值为0.答案:05.若函数f (x )=mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是________. 解析:由题意可得:f ′(x )=2mx +1x -2在(0,+∞)上有f ′(x )≥0恒成立,所以,2mx +1x -2≥0在(0,+∞)上恒成立,即2m ≥2x -1x 2在(0,+∞)上恒成立,设t (x )=-1x 2+2x =-⎝⎛⎭⎫1x -12+1,只要求出t (x )在(0,+∞)上的最大值即可. 而当1x =1,即x =1时,t (x )max =1,所以2m ≥1,即m ≥12.答案:m ≥12三.函数的奇偶性与周期性 例题讲解1.已知函数f (x )=1+me x -1是奇函数,则m 的值为________.解析:∵f (-x )=-f (x ),即f (-x )+f (x )=0,∴1+m e -x -1+1+me x -1=0,∴2-m e x e x -1+m e x -1=0,∴2+me x -1(1-e x )=0,∴2-m =0,∴m =2.答案:22.设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x -3,则f (-2)=________. 解析:设x <0,则-x >0,f (-x )=2-x -3=-f (x ),故f (x )=3-2-x ,所以f (-2)=3-22=-1.答案:-13.已知函数f (x )=a -12x +1,若f (x )为奇函数,则a =________.解析:解法一:∵f (x )为奇函数,定义域为R ,∴f (0)=0⇔a -120+1=0⇔a =12.经检验,当a=12时,f (x )为奇函数. 4.已知f (x )是R 上的奇函数,且当x >0时,f (x )=x 3+x +1,求f (x )的解析式. 解:设x <0,则-x >0,∴f (-x )=(-x )3-x +1=-x 3-x +1.由f (x )为奇函数,∴f (-x )=-f (x ).∴-x 3-x +1=-f (x ),即f (x )=x 3+x -1. ∴x <0时,f (x )=x 3+x -1,又f (x )是奇函数.∴f (0)=0,∴f (x )=⎩⎪⎨⎪⎧x 3+x +1 (x >0)0 (x =0)x 3+x -1 (x <0).四.指数函数 例题讲解1.函数y =a x +2-2(a >0,a ≠1)的图象恒过定点A (其坐标与a 无关),则A 的坐标为________.答案:(-2,-1) 2.已知,则a ,b ,c 按从小到大顺序排列为________. 解析:,∴b <a <c .答案:b <a <c3.设f (x )=4x 4x +2,则f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+f ⎝⎛⎭⎫311+…+f ⎝⎛⎭⎫1011=________. 解析:可以求得f (x )+f (1-x )=1,于是有f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫1011=f ⎝⎛⎭⎫211+f ⎝⎛⎭⎫911=f ⎝⎛⎭⎫311+f ⎝⎛⎭⎫811=f ⎝⎛⎭⎫411+f ⎝⎛⎭⎫711=f ⎝⎛⎭⎫511+f ⎝⎛⎭⎫611=1, 共有5组,所以原式=5.答案:5五.对数函数 例题讲解1.若lg x -lg y =a ,则lg ⎝⎛⎭⎫x 23-lg ⎝⎛⎭⎫y 23等于________. 解析:∵lg x -lg y =a ,∴lg x y =a ,lg ⎝⎛⎭⎫x 23-lg ⎝⎛⎭⎫y 23=lg ⎝⎛⎭⎫x 23⎝⎛⎭⎫y 23=lg ⎝⎛⎭⎫x y 3=3lg x y =3a .答案:3a 2.已知函数f (x )=⎩⎪⎨⎪⎧log 3x (x >0)3x (x ≤0),则f ⎣⎡⎦⎤f ⎝⎛⎭⎫13=________.解析:f ⎝⎛⎭⎫13=-1,f ⎣⎡⎦⎤f ⎝⎛⎭⎫13=f (-1)=3-1=13.答案:13 3.已知2a =5b =10,则1a +1b=________.解析:∵2a =10,5b =10,∴a =log 210,b =log 510,∴1a +1b =1log 210+1log 510=lg 2+lg 5=1.答案:1六.幂函数、一次函数及二次函数 例题讲解 1.若,则a 的取值范围是________.解析:∵,∴⎩⎪⎨⎪⎧a +1>03-2a >0a +1>3-2a或⎩⎪⎨⎪⎧a +1<03-2a <0a +1>3-2a或⎩⎪⎨⎪⎧3-2a >0a +1<0,解之得23<a <32或a <-1.答案:23<a <32或a <-1 2.已知函数f (x )=x α的图象经过点(4,2),则log 2f (2)=________. 解析:由题意知:2=4α,∴α=12,∴log 2f (2)==12.答案:123.已知集合A ={x |x 2-2x <3},集合B ={x |x ≤2},则A ∩B =________.解析:A ={x |x 2-2x -3<0}={x |(x +1)(x -3)<0}=(-1,3);B =(-∞,2],∴A ∩B =(-1,2]. 答案:(-1,2]4.已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α=________.解析:由幂函数定义得k =1,再将点⎝⎛⎭⎫12,22代入得22=⎝⎛⎭⎫12α,从而α=12,故k +α=32.答案:325.函数f (x )=(x -1)log 23a -6x log 3a +x +1在区间[0,1]上恒为正值,实数a 的取值范围是________.解析:由题知⎩⎨⎧f (0)>0f (1)>0,⎩⎪⎨⎪⎧-log 23a +1>0-6log 3a +2>0,13<a <33.答案:⎝ ⎛⎭⎪⎫13,33七.函数与方程 例题讲解1.函数f (x )=ln x -1x -1的零点的个数是________.解析:本题考查了学生的画图能力,构造函数等方法.这种题型很好地体现了数形结合的数学思想.构建函数h (x )=ln x ,g (x )=1x -1,f (x )的零点个数即h (x )与g (x )交点的个数.画出图象可知有两个交点. 答案:22.若函数f (x )=ax +b 有一个零点为2,那么g (x )=bx 2-ax 的零点是________. 解析:ax +b =0,x =-b a =2,bx 2-ax =0,x =0或x =a b =-12.答案:0,-12八.函数模型及其应用 例题讲解1.计算机的价格大约每3年下降23,那么今年花8 100元买的一台计算机,9年后的价格大约是________元.解析:9年后的价格大约是8 100×⎝⎛⎭⎫ 13 3=300元.答案:300九.导数的概念与导数的运算 例题讲解1.曲线y =2x 3在x =1处的切线的斜率是________.解析:令y =f (x )=2x 3,∴y ′=f ′(x )=6x 2,∴f ′(1)=6.答案:6 2.已知f (x )=x 2+2xf ′(1),则f ′(0)等于________.解析:f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2,∴f ′(x )=2x -4, ∴f ′(0)=-4.答案:-43.已知函数f (x )=x ·e x ,则f ′(0)=________. 解析:f ′(x )=(x ·e x )′=e x +x e x ,∴f ′(0)=1.答案:14.曲线C :f (x )=sin x +e x +2在x =0处的切线方程为________.解析:由f (x )=sin x +e x +2得f ′(x )=cos x +e x ,从而f ′(0)=2,又f (0)=3,所以切线方程为y =2x +3.答案:y =2x +35.设P 为曲线C :y =x 2-x +1上一点,曲线C 在点P 处的切线的斜率范围是[-1,3],则点P 纵坐标的取值范围是________.解析:由题知,y ′=2x -1,所以-1≤2x -1≤3,即0≤x ≤2.此时y =x 2-x +1=⎝⎛⎭⎫x -122+34的值域为⎣⎡⎦⎤34,3,故点P 纵坐标的取值范围是⎣⎡⎦⎤34,3. 6.已知函数f (x )=f ′⎝⎛⎭⎫π2sin x +cos x ,则f ⎝⎛⎭⎫π4=________. 解析:由题意f ′(x )=f ′(π2)cos x -sin x ,得f ′( π2 )=f ′⎝⎛⎭⎫π2·cos π2-sin π2,即f ′⎝⎛⎭⎫π2=-1,∴f (x )=-sin x +cos x ,则f ⎝⎛⎭⎫π4=-sin π4+cos π4=0.答案:0 7.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程. 解:(1)∵y ′=x 2,∴在点P (2,4)处的切线的斜率k =y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0. (2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43, 则切线的斜率k =y ′|x =x 0=x 20.∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0, ∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.十.导数在研究函数中的应用 例题讲解1.曲线y =13x 3+x 在点⎝⎛⎭⎫1,43处的切线与坐标轴围成的三角形面积为________. 解析:曲线y =13x 3+x 在点⎝⎛⎭⎫1,43处的切线斜率为y ′|x =1=⎝⎛⎪⎪13x 3+x ′x =1=(x 2+1)|x =1=2,所以切线的方程为y -43=2(x -1),即y =2x -23,与x 轴的交点和y 轴的交点为⎝⎛⎭⎫13,0,⎝⎛⎭⎫0,-23,所求面积为S =12×13×23=19.答案:192.已知f (x )=x 2+2x +a ln x ,若f (x )在区间(0,1]上恒为单调函数,则实数a 的取值范围为________.解析:由题意知,f ′(x )=2x +2+a x =2x 2+2x +ax,∵f (x )在区间(0,1]上恒为单调函数,∴f ′(x )在区间(0,1]上恒大于等于0或恒小于等于0,∴2x 2+2x +a ≥0或2x 2+2x +a ≤0在区间(0,1]上恒成立,即a ≥-(2x 2+2x )或a ≤-(2x 2+2x ),而函数y =-2x 2-2x 在区间(0,1]的值域为[-4,0),∴a ≥0或a ≤-4.答案:a ≥0或a ≤-43.已知f (x )为奇函数,且当x >0时,f (x )>0,f ′(x )>0,则函数y =xf (x )的递增区间是________. 解析:当x >0时,y ′=[xf (x )]′=f (x )+xf ′(x )>0,∴y =xf (x )在(0,+∞)上递增.又f (x )为奇函数,∴y =xf (x )为偶函数,∴y =xf (x )在(-∞,0)上递减.答案:(0,+∞)。
高中数学【基本初等函数、函数的应用】专题练习
![高中数学【基本初等函数、函数的应用】专题练习](https://img.taocdn.com/s3/m/8adc2fd77e192279168884868762caaedd33ba87.png)
高中数学【基本初等函数、函数的应用】专题练习1.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A.a <b <c B.b <a <c C.b <c <a D.c <a <b答案 A解析 ∵log 53-log 85=log 53-1log 58=log 53·log 58-1log 58<⎝ ⎛⎭⎪⎫log 53+log 5822-1log 58=⎝ ⎛⎭⎪⎫log 52422-1log 58<⎝ ⎛⎭⎪⎫log 52522-1log 58=0,∴log 53<log 85.∵55<84,134<85,∴5log 85<4log 88=4=4log 1313<5log 138, ∴log 85<log 138,∴log 53<log 85<log 138, 即a <b <c .故选A.2.若2x -2y <3-x -3-y ,则( ) A.ln(y -x +1)>0 B.ln(y -x +1)<0 C.ln|x -y |>0 D.ln|x -y |<0 答案 A解析 设函数f (x )=2x -3-x .因为函数y =2x 与y =-3-x 在R 上均单调递增, 所以f (x )在R 上单调递增.原已知条件等价于2x -3-x <2y -3-y ,即f (x )<f (y ),所以x <y ,即y -x >0,y -x +1>1,所以A 正确,B 不正确. 因为|x -y |与1的大小不能确定,所以C ,D 不正确.3.设a ∈R ,函数f (x )=⎩⎨⎧cos (2πx -2πa ),x <a ,x 2-2(a +1)x +a 2+5,x ≥a ,若f (x )在区间(0,+∞)内恰有6个零点,则a 的取值范围是( ) A.⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114 B.⎝ ⎛⎭⎪⎫74,2∪⎝ ⎛⎭⎪⎫52,114 C.⎝ ⎛⎦⎥⎤2,94∪⎣⎢⎡⎭⎪⎫114,3 D.⎝ ⎛⎭⎪⎫74,2∪⎣⎢⎡⎭⎪⎫114,3 答案 A解析 因为x 2-2(a +1)x +a 2+5=0最多有2个根, 所以c os (2πx -2πa )=0至少有4个根.由2πx -2πa =π2+k π,k ∈Z 可得x =k 2+14+a ,k ∈Z .由0<k 2+14+a <a 可得-2a -12<k <-12.①当x <a 时,当-5≤-2a -12<-4时,f (x )有4个零点,即74<a ≤94;当-6≤-2a -12<-5时,f (x )有5个零点, 即94<a ≤114;当-7≤-2a -12<-6时,f (x )有6个零点, 即114<a ≤134;②当x ≥a 时,f (x )=x 2-2(a +1)x +a 2+5, Δ=4(a +1)2-4(a 2+5)=8(a -2), 当a <2时,Δ<0,f (x )无零点;当a =2时,Δ=0,f (x )有1个零点x =3;当a >2时,令f (a )=a 2-2a (a +1)+a 2+5=-2a +5≥0,则2<a ≤52,此时f (x )有2个零点;所以当a >52时,f (x )有1个零点.综上,要使f (x )在区间(0,+∞)内恰有6个零点,则应满足⎩⎪⎨⎪⎧74<a ≤94,2<a ≤52或⎩⎪⎨⎪⎧94<a ≤114,a =2或a >52或⎩⎨⎧114<a ≤134,a <2.则可解得a 的取值范围是⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114.4.已知f (x )=|lg x |-kx -2,给出下列四个结论: (1)若k =0,则f (x )有两个零点; (2)∃k <0,使得f (x )有一个零点; (3)∃k <0,使得f (x )有三个零点; (4)∃k >0,使得f (x )有三个零点. 以上正确结论的序号是________. 答案 (1)(2)(4)解析 令f (x )=|lg x |-kx -2=0,可转化成两个函数y 1=|lg x |,y 2=kx +2的图象的交点个数问题. 对于(1),当k =0时,y 2=2与y 1=|lg x |的图象有两个交点,(1)正确; 对于(2),存在k <0,使y 2=kx +2与y 1=|lg x |的图象相切,(2)正确;对于(3),若k <0,则y 1=|lg x |与y 2=kx +2的图象最多有2个交点,(3)错误; 对于(4),当k >0时,过点(0,2)存在函数g (x )=lg x (x >1)图象的切线,此时共有两个交点,当直线斜率稍微小于相切时的斜率时,就会有3个交点,故(4)正确.1.指数式与对数式的七个运算公式 (1)a m ·a n =a m +n ; (2)(a m )n =a mn ;(3)log a (MN )=log a M +log a N ; (4)log a MN =log a M -log a N ;(5)log a M n =n log a M ; (6)a log a N =N ;(7)log a N =log b Nlog ba (注:a ,b >0且a ,b ≠1,M >0,N >0).2.指数函数与对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数. 3.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解. 4.应用函数模型解决实际问题的一般程序 读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.热点一 基本初等函数的图象与性质 【例1】 (1)(多选)下列命题中正确的是( ) A.∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13xB.∀x ∈(0,1),log 12x >log 13xC.∀x ∈⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12x >x 12D.∃x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x >log 13x(2)已知函数f (x )=⎩⎨⎧log a x ,x >0,|x +2|,-3≤x ≤0(a >0且a ≠1),若函数f (x )的图象上有且仅有两个点关于y 轴对称,则a 的取值范围是( )A.(0,1)B.(1,3)C.(0,1)∪(3,+∞)D.(0,1)∪(1,3)答案 (1)ABC (2)D解析 (1)对于A ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫13x的图象,如图(1),由图可知,当x ∈(0,+∞)时,⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x,故A 正确;对于B ,分别作出y =log 12x ,y =log 13x 的图象,如图(2),由图可知,当x ∈(0,1)时,log 12x >log 13x ,故B 正确;对于C ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =x 12的图象,如图(3),由图可知,当x ∈⎝ ⎛⎭⎪⎫0,12时,⎝ ⎛⎭⎪⎫12x >x 12,故C 正确;对于D ,当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫120=1,log 13x >log 1313=1,所以D 错误.故选ABC.(2)y =log a x 的图象关于y 轴对称的图象对应的函数为y =log a (-x ),函数f (x )的图象上有且仅有两个点关于y 轴对称,等价于y =log a (-x )与y =|x +2|,-3≤x ≤0的图象有且仅有一个交点.当0<a <1时,显然符合题意(图略).当a >1时,只需log a 3>1,∴1<a <3. 综上所述,a 的取值范围是(0,1)∪(1,3).探究提高 1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围. 2.基本初等函数的图象和性质是统一的,在解题中可相互转化. 【训练1】 (1)函数f (x )=x 2-1e x 的图象大致为( )(2)(多选)已知函数f (x )=log 2(1+4x )-x ,则下列说法正确的是( ) A.函数f (x )是偶函数 B.函数f (x )是奇函数C.函数f (x )在(-∞,0]上单调递增D.函数f (x )的值域为[1,+∞) 答案 (1)A (2)AD解析 (1)易知f (x )在定义域R 上为非奇非偶函数,B 不合题意. 当x <0且x →-∞时,f (x )>0,且f (x )→+∞,C 不合题意. 当x >0且x →+∞时,f (x )→0,知D 不合题意,只有A 满足.(2)因为f (x )的定义域为R ,且f (-x )=log 2⎝ ⎛⎭⎪⎫1+14x -(-x )=log 2⎝ ⎛⎭⎪⎫4x +14x +x =log 2(4x +1)-log 24x +x =log 2(1+4x )-2x +x =log 2(1+4x )-x =f (x ), 所以函数f (x )为偶函数,故A 正确,B 不正确;f ′(x )=4x ln 4(1+4x)ln 2-1=2×4x 4x +1-1=4x -14x +1, 则当x <0时,f ′(x )<0,函数f (x )单调递减,当x >0时,f ′(x )>0,函数f (x )单调递增,故C 不正确;由以上分析知,f (x )min =f (0)=1,所以函数f (x )的值域为[1,+∞),故D 正确.综上所述,选AD. 热点二 函数的零点与方程 考向1 确定函数零点个数【例2】 (1)设函数f (x )=2|x |+x 2-3,则函数y =f (x )的零点个数是( ) A.4 B.3 C.2D.1(2)已知函数f (x )=⎩⎨⎧e x ,x <0,4x 3-6x 2+1,x ≥0,其中e 为自然对数的底数,则函数g (x )=3[f (x )]2-10f (x )+3的零点个数为( ) A.4 B.5 C.6D.3答案 (1)C (2)A解析 (1)易知f (x )是偶函数,当x ≥0时,f (x )=2x +x 2-3,所以x ≥0时,f (x )在[0,+∞)上是增函数,且f (1)=0,所以x =1是函数y =f (x )在[0,+∞)上的唯一零点.根据奇偶性,知x =-1是y =f (x )在(-∞,0)内的零点, 因此y =f (x )有两个零点.(2)当x ≥0时,f (x )=4x 3-6x 2+1的导数为f ′(x )=12x 2-12x , 当0<x <1时,f (x )单调递减,x >1时,f (x )单调递增,可得f (x )在x =1处取得最小值,最小值为-1,且f (0)=1, 作出函数f (x )的图象,如图. g (x )=3[f (x )]2-10f (x )+3,可令g (x )=0,t =f (x ),可得3t 2-10t +3=0, 解得t =3或13.当t =13时,可得f (x )=13有三个实根,即g (x )有三个零点; 当t =3时,可得f (x )=3有一个实根,即g (x )有一个零点. 综上,g (x )共有四个零点.探究提高 判断函数零点个数的主要方法(1)解方程f (x )=0,直接求零点;(2)利用零点存在性定理;(3)数形结合法:对于给定的函数不能直接求解或画出图象,常会通过分解转化为两个能画出图象的函数,求其图象交点问题.【训练2】 (1)函数f (x )=2sin x -sin 2x 在[0,2π]的零点个数为( ) A.2 B.3 C.4D.5(2)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,则关于x 的方程为f (x )-log 8(x +2)=0在区间(-2,6)上根的个数为( ) A.1 B.2 C.3D.4答案 (1)B (2)C解析 (1)令f (x )=0,得2sin x -sin 2x =0, 即2sin x -2sin x cos x =0,∴2sin x (1-cos x )=0,∴sin x =0或cos x =1. 又x ∈[0,2π],∴由sin x =0得x =0,π或2π,由cos x =1得x =0或2π. 故函数f (x )的零点为0,π,2π,共3个. (2)对于任意的x ∈R ,都有f (2+x )=f (2-x ), ∴f (x +4)=f [2+(x +2)]=f [2-(x +2)]=f (-x )=f (x ), ∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,函数f (x )是定义在R 上的偶函数,且f (6)=f (-2)=1,则函数y =f (x )与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f (x )与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f (x )-log 8(x +2)=0在区间(-2,6)上有3个根. 考向2 根据函数的零点求参数的值或范围 【例3】 (1)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A.-12B.13C.12D.1(2)设a ,b ∈R ,函数f (x )=⎩⎪⎨⎪⎧x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y =f (x )-ax -b恰有3个零点,则( ) A.a <-1,b <0 B.a <-1,b >0 C.a >-1,b <0 D.a >-1,b >0答案 (1)C (2)C解析 (1)f (x )=(x -1)2+a (e x -1+e 1-x )-1, 令t =x -1,则g (t )=f (t +1)=t 2+a (e t +e -t )-1. ∵g (-t )=(-t )2+a (e -t +e t )-1=g (t ),且t ∈R , ∴函数g (t )为偶函数.∵f (x )有唯一零点,∴g (t )也有唯一零点. 又g (t )为偶函数,由偶函数的性质知g (0)=0, ∴2a -1=0,解得a =12.(2)由题意,令y =f (x )-ax -b =0,得b =f (x )-ax =⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0. 设y =b ,g (x )=⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0,则以上两个函数的图象恰有3个交点,根据选项进行讨论.①当a <-1时,1-a >0,可知在x ∈(-∞,0)上,g (x )单调递增,且g (x )<0; 由g ′(x )=x 2-(a +1)x =x [x -(a +1)](x ≥0),a +1<0, 可知在x ∈[0,+∞)上,g (x )单调递增,且g (x )≥0.此时直线y =b 与g (x )的图象只有1个交点,不符合题意,故排除A ,B. ②当a >-1,即a +1>0时.因为g ′(x )=x [x -(a +1)](x ≥0),所以当x ≥0时,由g ′(x )<0可得0<x <a +1,由g ′(x )>0可得x >a +1,所以当x ≥0时,g (x )在(0,a +1)上单调递减,g (x )在(a +1,+∞)上单调递增.如图,y =b 与y =g (x )(x ≥0)的图象至多有2个交点.当1-a >0,即-1<a <1时,由图象可得,若要y =g (x )与y =b 的图象有3个交点,必有b <0;当1-a =0时,y =g (x )与y =b 的图象可以有1个、2个或无数个交点,但不存在恰有3个交点的情况,不符合题意,舍去;当1-a <0,即a >1时,y =g (x )与y =b 的图象可以有1个或2个交点,但不存在恰有3个交点的情况,不符合题意,舍去. 综上,-1<a <1,b <0.故选C.探究提高 1.求解第(1)题关键是利用函数f (x )有唯一零点找到解题思路.借助换元法,构造函数g (t )=f (t +1)=t 2+a (e t +e -t )-1,利用函数的性质求解. 2.解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.【训练3】 设函数f (x )=e x (2x -1)-ax +a (a <1)有两个零点,则实数a 的取值范围是( ) A.(0,1) B.⎝ ⎛⎭⎪⎫0,43e -0.5 C.(-∞,1) D.⎝ ⎛⎭⎪⎫-∞,43e -0.5 答案 A解析 依题设,f (x )=e x (2x -1)-ax +a 有两个零点,∴函数y =e x (2x -1)的图象与直线y =a (x -1)有两个交点. 令y ′=[e x (2x -1)]′=e x (2x +1)=0,得x =-12.当x ∈⎝ ⎛⎭⎪⎫-∞,-12时,y ′<0,故y =e x(2x -1)为减函数; 当x ∈⎝ ⎛⎭⎪⎫-12,+∞时,y ′>0,故y =e x (2x -1)为增函数,如图.设直线y =a (x -1)与y =e x (2x -1)相切于点P (x 0,y 0), ∴y 0=e x 0(2x 0-1). 则过点P (x 0,y 0)的切线为 y -e x 0(2x 0-1)=e x 0(2x 0+1)(x -x 0).将点(1,0)代入上式,得x 0=0或x 0=32(舍去). 此时,直线y =a (x -1)的斜率为1.故若直线y =a (x -1)与函数y =e x (2x -1)的图象有两个交点,应有0<a <1. 热点三 函数的实际应用【例4】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO ′为铅垂线(O ′在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO ′的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO ′的距离b (米)之间满足关系式h 2=-1800b 3+6b .已知点B 到OO ′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?解(1)如图,设AA1,BB1,CD1,EF1都与MN垂直,A1,B1,D1,F1是相应垂足.由条件知,当O′B=40时,BB1=-1800×403+6×40=160,则AA1=160.由140O′A2=160,得O′A=80.所以AB=O′A+O′B=80+40=120(米).(2)以O为原点,OO′所在直线为y轴建立平面直角坐标系xOy(如图所示).设F(x,y2),x∈(0,40),则y2=-1800x3+6x,EF=160-y2=160+1800x3-6x.因为CE=80,所以O′C=80-x.设D(x-80,y1),则y1=140(80-x)2,所以CD =160-y 1=160-140(80-x )2=-140x 2+4x . 记桥墩CD 和EF 的总造价为f (x )万元, 则f (x )=k ⎝ ⎛⎭⎪⎫160+1800x 3-6x +32k ⎝ ⎛⎭⎪⎫-140x 2+4x=k ⎝ ⎛⎭⎪⎫1800x 3-380x 2+160(0<x <40). f ′(x )=k ⎝ ⎛⎭⎪⎫3800x 2-340x =3k 800x (x -20),令f ′(x )=0,得x =20或x =0(舍去). 列表如下:所以当x =20时,f (x )取得最小值. 答:(1)桥AB 的长度为120米;(2)当O ′E 为20米时,桥墩CD 与EF 的总造价最低.探究提高 1.解决函数的实际应用问题时,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去.2.对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.【训练4】 “一骑红尘妃子笑,无人知是荔枝来”描述了封建统治者的骄奢生活,同时也讲述了古代资源流通的不便利.如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e ax +b (a ,b 为常数),若该果蔬在6 ℃的保鲜时间为216小时,在24 ℃的保鲜时间为8小时,且该果蔬所需物流时间为3天,则物流过程中果蔬的储藏温度(假设物流过程中恒温)最高不能超过( ) A.9 ℃ B.12 ℃ C.18 ℃ D.20 ℃答案 B解析 当x =6时,e 6a +b =216;当x =24时,e 24a +b =8, ∴e 6a +be 24a +b =2168=27,则e 6a =13. 若果蔬保鲜3天,则72=13×216=e 6a ·e 6a +b =e 12a +b , 故物流过程中果蔬的储藏温度最高不能超过12 ℃.一、选择题1.设a =log 2 0.3,b =log 120.4,c =0.40.3,则a ,b ,c 的大小关系为( )A.a <b <cB.c <a <bC.b <c <aD.a <c <b答案 D解析 ∵log 20.3<log 21=0,∴a <0.∵log 120.4=-log 20.4=log 252>log 22=1,∴b >1.∵0<0.40.3<0.40=1,∴0<c <1, ∴a <c <b .2.已知函数f (x )是定义在R 上的偶函数,满足f (x +1)=-f (x ),当x ∈[0,1]时,f (x )=cos π2x ,则函数y =f (x )-|x |的零点个数是( ) A.2 B.3 C.4 D.5 答案 A解析 由f (x +1)=-f (x ),得f (x +2)=f (x ),知周期T =2. 令f (x )-|x |=0,得f (x )=|x |.作出函数y =f (x )与g (x )=|x |的图象如图所示.由图象知,函数y =f (x )-|x |有两个零点.3.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A.60 B.63 C.66 D.69答案 C 解析 ∵I (t )=K 1+e -0.23(t -53), ∴当I (t *)=0.95K 时,K1+e -0.23(t *-53)=0.95K ,则11+e -0.23(t *-53)=0.95⇒1+e -0.23(t *-53)=10.95⇒e -0.23(t *-53)=10.95-1⇒e0.23(t *-53)=19. ∴0.23(t *-53)=ln 19,∴t *=ln 190.23+53≈30.23+53≈66.4.已知函数f (x )=[x ]([x ]表示不超过实数x 的最大整数),若函数g (x )=e x -1e x -2的零点为x 0,则g [f (x 0)]等于( ) A.1e -e -2B.-2C.e -1e -2 D.e 2-1e 2-2答案 B解析 因为g (x )=e x -1e x -2, 所以g ′(x )=e x +1e x >0在R 上恒成立, 即函数g (x )=e x -1e x -2在R 上单调递增.又g(0)=e0-1e0-2=-2<0,g(1)=e1-1e1-2>0,所以g(x)在(0,1)上必然存在零点,即x0∈(0,1),因此f(x0)=[x0]=0,所以g[f(x0)]=g(0)=-2.5.(多选)若0<c<1,a>b>1,则()A.log a c>log b cB.ab c>ba cC.a log b c>b log a cD.a(b-c)>b(a-c) 答案AB解析对于A,因为0<c<1,a>b>1,所以log c a<log c b<0,所以log a alog a c<log b blog b c<0,即1 log a c<1log b c<0,所以0>log a c>log b c,故A正确;对于B,因为0<c<1,所以-1<c-1<0,所以当x>1时,函数y=x c-1单调递减,所以b c-1>a c-1,又ab>0,所以由不等式的基本性质得ab c>ba c,故B正确;对于C,由A知log b c<log a c<0,又a>b>1,所以a log b c<b log b c,b log b c<b log a c,所以a log b c<b log a c,故C不正确;对于D,因为0<c<1,a>b>1,所以ac>bc,所以-ac<-bc,所以ab-ac<ab-bc,即a(b-c)<b(a-c),故D不正确.综上所述,选AB.6.(多选)已知f(x)是定义在R上的奇函数,且f(1+x)=f(1-x),当0≤x≤1时,f(x)=x,则关于函数g(x)=|f(x)|+f(|x|),下列说法正确的是()A.g(x)为偶函数B.g (x )在(1,2)上单调递增C.g (x )在[2 016,2 020]上恰有三个零点D.g (x )的最大值为2 答案 AD解析 易知函数g (x )的定义域为R ,且g (-x )=|f (-x )|+f (|-x |)=|-f (x )|+f (|x |)=|f (x )|+f (|x |)=g (x ), 所以g (x )为偶函数,故A 正确;因为f (1+x )=f (1-x ),所以f (x )的图象关于直线x =1对称,又f (x )是奇函数,当0≤x ≤1时,f (x )=x ,所以f (x )是周期为4的函数,其部分图象如图所示,所以当x ≥0时,g (x )=⎩⎪⎨⎪⎧2f (x ),x ∈[4k ,2+4k ],0,x ∈(2+4k ,4+4k ],k ∈N ,当x ∈(1,2)时,g (x )=2f (x ),g (x )单调递减,故B 错误;g (x )在[2 016,2 020]上零点的个数等价于g (x )在[0,4]上零点的个数,而g (x )在[0,4]上有无数个零点,故C 错误;当x ≥0时,易知g (x )的最大值为2,由偶函数图象的对称性可知,当x <0时,g (x )的最大值也为2,所以g (x )在整个定义域上的最大值为2,故D 正确. 综上可知,选AD. 二、填空题7.已知λ∈R ,函数f (x )=⎩⎨⎧x -4,x ≥λ,x 2-4x +3,x <λ.若函数f (x )恰有2个零点,则λ的取值范围是________. 答案 (1,3]∪(4,+∞)解析 令f (x )=0,当x ≥λ时,x =4.当x <λ时,x 2-4x +3=0,则x =1或x =3.若函数f (x )恰有2个零点,结合图1与图2知,1<λ≤3或λ>4.8.为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25 mg/m 3时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (单位:mg/m 3)与经过的时间t (单位:min)之间的函数关系为y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t10-a,t ≥10(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是________.答案 9:30解析 由题图可得函数图象过点(10,1), 代入函数的解析式,可得⎝ ⎛⎭⎪⎫121-a=1,解得a =1,所以y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t 10-1,t ≥10. 设从喷洒药物开始经过t min 顾客方可进入商场,易知t >10, 则⎝ ⎛⎭⎪⎫12t10-1≤0.25,解得t ≥30,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.9.已知a ,b ,c 为正实数,且ln a =a -1,b ln b =1,c e c =1,则a ,b ,c 的大小关系是________. 答案 c <a <b解析 ln a =a -1,ln b =1b ,e c =1c .依次作出y =e x ,y =ln x ,y =x -1,y =1x 这四个函数的图象,如下图所示.由图象可知0<c <1,a =1,b >1,∴c <a <b . 三、解答题10.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求实数m 的取值范围. 解 (1)函数f (x )的图象如图所示.(2)因为f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,在(1,+∞)上是增函数,由0<a <b 且f (a )=f (b ),得0<a <1<b , 且1a -1=1-1b ,所以1a +1b =2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 故实数m 的取值范围为(0,1).11.随着中国经济的快速发展,节能减耗刻不容缓.某市环保部门为了提高对所辖水域生态环境的巡查效率,引进了一种新型生态环保探测器,该探测器消耗能量由公式E n =M v n T 给出,其中M 是质量(常数),v 是设定速度(单位:km/h),T 是行进时间(单位:h),n 为参数.某次巡查为逆水行进,水流速度为4 km/h ,行进路程为100 km.(逆水行进中,实际速度=设定速度-水流速度,顺水行进中,实际速度=设定速度+水流速度)(1)求T 关于v 的函数关系式,并指出v 的取值范围;(2)①当参数n =2时,求探测器最低消耗能量;②当参数n =3时,试确定使该探测器消耗的能量最低的设定速度.解 (1)由题意得,探测器实际速度为100T =v -4,则T =100v -4(v >4). (2)①当参数n =2时,E 2=100·M ·v 2v -4=100M ⎣⎢⎡⎦⎥⎤v -4+16v -4+8 ≥100M ⎣⎢⎡⎦⎥⎤2(v -4)·16v -4+8 =1 600M ⎝ ⎛⎭⎪⎫当且仅当v -4=16v -4,即v =8时取等号. 因此,当参数n =2时,该探测器最低消耗能量为1 600M .②当参数n =3时,E 3=100·M ·v 3v -4(v >4). 令f (v )=v 3v -4(v >4),则f ′(v )=2v 2(v -6)(v -4)2, 当4<v <6时,f ′(v )<0,f (v )单调递减,当v >6时,f ′(v )>0,f (v )单调递增.故当设定速度为6 km/h 时,该探测器消耗的能量最低.12.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天答案 B解析 由R 0=1+rT ,R 0=3.28,T =6,得r =R 0-1T =3.28-16=0.38.由题意,累计感染病例数增加1倍,则I (t 2)=2I (t 1),即e0.38t 2=2e0.38t 1,所以e0.38(t 2-t 1)=2,即0.38(t 2-t 1)=ln 2,∴t 2-t 1=ln 20.38≈0.690.38≈1.8. 13.(多选)方程e x +x -2=0的根为x 1,ln x +x -2=0的根为x 2,则( ) A.x 1x 2>12 B.x 1ln x 2+x 2ln x 1<0 C.e x 1+e x 2<2eD.x 1x 2<e 2 答案 BD解析 令f (x )=e x +x -2,g (x )=ln x +x -2,作出函数y =-x +2,y =e x ,y =ln x 的图象,其中y =e x 与y =ln x 互为反函数,其图象关于直线y =x 对称,如图,则A (x 1,e x 1),B (x 2,ln x 2).设直线y =x 与y =-x +2的交点为C ,则C (1,1),且A ,B 关于点C 对称,∴e x 1=x 2,x 1+x 2=2.∵f (0)=-1<0,f ⎝ ⎛⎭⎪⎫12=e -32>0,g (1)=-1<0,g (2)=ln 2>0, ∴0<x 1<12<1<x 2<2,∴x 1x 2<12,故A 错误; ∵x 1ln x 2+x 2ln x 1<0等价于ln x 1x 1+ln x 2x 2<0,易知h (x )=ln x x 在(0,e)上单调递增, ∴h (x 1)<h ⎝ ⎛⎭⎪⎫12=-2ln 2,h (x 2)<h (2)=12ln 2, ∴h (x 1)+h (x 2)<-32ln 2<0,即ln x 1x 1+ln x 2x 2<0,故B 正确; ∵x 1+x 2=2且x 1≠x 2,∴e x 1+e x 2>2e x 1+x 2=2e ,故C 错误;∵e x 1=x 2,∴x 1x 2=x 1e x 1.易知φ(x )=x e x 在⎝ ⎛⎭⎪⎫0,12上单调递增, ∴φ(x 1)<φ⎝ ⎛⎭⎪⎫12, 即x 1e x 1<e 2,即x 1x 2<e 2,故D 正确. 故选BD.14.记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”;(2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值.(1)证明 函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2.由f (x )=g (x )且f ′(x )=g ′(x ),得⎩⎨⎧x =x 2+2x -2,1=2x +2,此方程组无解, 因此,f (x )与g (x )不存在“S 点”.(2)解 函数f (x )=ax 2-1,g (x )=ln x ,则f ′(x )=2ax ,g ′(x )=1x .设x 0为f (x )与g (x )的“S 点”, 由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得 ⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎨⎧ax 20-1=ln x 0,2ax 20=1, (*) 得ln x 0=-12,即x 0=e -12,则a =12⎝ ⎛⎭⎪⎫e -122=e 2. 当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”.因此,a 的值为e 2.。
专题练 第5练 基本初等函数、函数与方程
![专题练 第5练 基本初等函数、函数与方程](https://img.taocdn.com/s3/m/0fb6cd26854769eae009581b6bd97f192279bfc1.png)
6.(2018·全国Ⅰ)已知函数f(x)=elnx,x,x≤x>00,,g(x)=f(x)+x+a.若g(x)存在2个 零点,则a的取值范围是
A.[-1,0)
B.[0,+∞)
√C.[-1,+∞)
D.[1,+∞)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
令h(x)=-x-a,则g(x)=f(x)-h(x). 在同一坐标系中画出y=f(x),y=h(x)图象的示意图, 如图所示. 若g(x)存在2个零点,则y=f(x)的图象与y=h(x)的图象有2个交点,平 移y=h(x)的图象可知,当直线y=-x-a过点(0,1)时,有2个交点, 此时1=-0-a,a=-1. 当y=-x-a在y=-x+1上方,即a<-1时,仅有1个交点,不符合 题意; 当y=-x-a在y=-x+1下方,即a>-1时,有2个交点,符合题意. 综上,a的取值范围为[-1,+∞).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
14.(2022·临汾模拟)2019年在阿塞拜疆举行的联合国教科文组织第43届世界遗
产大会上,随着木槌落定,良渚古城遗址成功列入《世界遗产名录》,这座见 证了中华五千多年文明史的古城迎来了在世界文明舞台上的“高光时刻”,标
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10.(2022·淮安模拟)已知函数f(x)=(3m-2)·xm+2(m∈R)是幂函数,则函数
g(x)=loga(x-m)+1(a>0,且a≠1)的图象所过定点P的坐标是
√A.(2,1)
B.(0,2)
C.(1,2)
D.(-1,2)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
(整理)基本初等函数和函数应用.
![(整理)基本初等函数和函数应用.](https://img.taocdn.com/s3/m/7539308369dc5022aaea00f3.png)
高一上学期数学单元测试(基本初等函数和函数的应用)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分). 1.函数f (x )=x20081-的定义域是( ) A .-∞,0] B .[0,+∞C .(-∞,0)D .(-∞,+∞)2.若函数f(x) =+ 2x+ log 2x 的值域是 {3,223-1, 5 +2, 20},则其定义域是( ) A .{0,1,2,4} B .{21,1,2,4} C .{-21,1,2,4} D .{41,1,2,4}3.函数y=log 2008 (2x 2-3x+1)的递减区间为( )A .(1,+)B .(-,43)C .(21,+)D .(-,21) 4.若( )A .关于直线y =x 对称B .关于x 轴对称C .关于y 轴对称D .关于原点对称5.下列函数中,同时满足:是奇函数,定义域和值域相同的函数是( )A .y=220082008xx -+B .y=lgxx+-20092009C .y=-x31D .y=||x6.f (x)=㏑x +2x -5的零点一定位于以下的区间 ( ) A .(1,2) B .(2,3)C .(3,4)D .(4,5)7.幂函数1-=x y 及直线x y =,1=y ,1=x 将平面直角坐标系的第一象限分成八个“卦限”:①,②, ③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数21x y =的图象经过的“卦限”是( )A .④,⑦B .④,⑧C .③,⑧D .①,⑤ 8.下表是函数值y 随自变量x 变化的一组数据,由此判断它最可能的函数模型 ( )t/月A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型9.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:t y a =,有以下叙述: ①这个指数函数的底数是2;②第5个月时,浮萍的面积就会超过230m ; ③浮萍从24m 蔓延到212m 需要经过1.5个月; ④浮萍每个月增加的面积都相等。
压轴题09 基本初等函数、函数与方程(原卷版)--2023年高考数学压轴题专项训练(全国通用)
![压轴题09 基本初等函数、函数与方程(原卷版)--2023年高考数学压轴题专项训练(全国通用)](https://img.taocdn.com/s3/m/ce1a41458f9951e79b89680203d8ce2f006665cd.png)
压轴题09基本初等函数、函数与方程题型/考向一:基本初等函数的图像与性质题型/考向二:函数的零点题型/考向三:函数模型及其应用○热○点○题○型一基本初等函数的图像与性质1.指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,其图象关于y =x 对称,它们的图象和性质分0<a <1,a >1两种情况,着重关注两个函数图象的异同.2.幂函数y =x α的图象和性质,主要掌握α=1,2,3,12,-1五种情况.一、单选题1.若125()3a -=,121log 5b =,3log 7c =,则a ,b ,c 的大小关系为()A .a b c>>B .b c a >>C .c a b>>D .c b a>>2.已知函数()2121x f x =-+,则()A .()f x 是偶函数且是增函数B .()f x 是偶函数且是减函数C .()f x 是奇函数且是增函数D .()fx 是奇函数且是减函数3.下列函数中,既是偶函数又是区间(0,)+∞上的增函数的是()A .y =B .21y x =C .lg y x=D .332x xy --=4.已知函数()2,0,1,0,2x x x f x x ⎧≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩若()()6f a f a <-,则实数a 的取值范围是()A .()3,-+∞B .(),3-∞-C .()3,+∞D .(),3-∞5.函数()2eln 2x f x x=的图象大致是()A .B .C .D .6.指数函数x y a =的图象如图所示,则2y ax x =+图象顶点横坐标的取值范围是()A .1,2⎛⎫-∞- ⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,2⎛⎫⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭7.已知实数1a ≠,函数()4,0,2,0,x a x x f x x -⎧≥=⎨<⎩若(1)(1)f a f a -=-,则a 的值为()A .12B .12-C .14D .14-8.函数()()()ln 1ln 1f x x x x =+--⎡⎤⎣⎦的部分图象大致是()A .B .C .D .二、填空题9.已知函数()2()e e x x f x x -=-⋅,若实数m 满足))2(1)f f m f -≤,则实数m的取值范围是____________.10.已知函数()|ln(1)||ln(1)|f x x x =--+,则函数()f x 的最小值为___________.11.已知,,1x y a ∈>R ,若2x y a a a +=,且x y +的最大值为103,则函数()()212log 2f x x ax a =-++的最小值为______12.幂函数y=xa ,当a 取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=xa ,y=xb 的图象三等分,即有BM =MN =NA ,那么ab =______.○热○点○题○型二函数的零点判断函数零点个数的方法:(1)利用零点存在定理判断.(2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f (x )的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.一、单选题1.函数()243xf x x =+-的零点所在的区间是()A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭2.已知函数()2cos 1f x a x x =--有且只有1个零点,则实数a 的值是()A .0B .1C .2D .33.已知()0,2πθ∈,若函数()()2sin cos sin 2f x x x x θ=-+在π0,4⎛⎫⎪⎝⎭上无零点,则θ的值可能为()A .π6B .π4C .11π12D .6π54.若函数22,0()1,0x x f x x x -⎧≤=⎨+>⎩,则函数()()2g x f x =-的零点的个数是()A .1B .2C .3D .45.已知函数()2ln 1212x x x f x mx mx x +>⎧⎪=⎨-+≤⎪⎩,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是()A .71,4⎛⎤⎥⎝⎦B .(]1,2C .41,3⎛⎤ ⎥⎝⎦D .[]1,36.()f x 是定义在R 上的奇函数,当[]1,1x ∈-时,()f x x =,()()11f x f x +=-,令()()lg g x f x x =-,则函数()g x 的零点个数为()A .4B .5C .6D .77.已知函数()41,0141,02x x x f x x ⎧+-≤⎪=⎨⎛⎫->⎪ ⎪⎝⎭⎩,关于x 的方程()()()22110f x t f x t +-+-=有6个不等实数根,则实数t 的取值范围是()A.7,5⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭B.7,5⎡⎫⎛⎫-∞-+∞⎪⎢ ⎪⎪⎝⎭⎣⎭C .7,52⎛-- ⎝⎦D .7,522⎛⎛⎫-- ⎪ ⎪⎝⎭⎝⎭8.已知()f x 是定义域为{}0x x ≠的偶函数且2ln 1()(0)ex f x x x =->,则函数()f x 零点个数是()A .6B .5C .4D .3二、多选题9.已知偶函数()f x 满足()()()126f x f x f -+=,()11e f -=+,且当[)0,6x ∈时,()e 1x f x a -=+,则下列说法正确的有()A .2e a =B .()f x 在[]18,24上为增函数C .()320231ef -=-D .()f x 在[]2023,0-上共有169个零点10.定义在R 上的偶函数()f x 满足()()22f x f x -=+,且当[]0,2x ∈时,()2e 1,01,44,1 2.x x f x x x x ⎧-≤≤=⎨-+<≤⎩若关于x 的不等式()m x f x ≤的整数解有且仅有9个,则实数m的取值可以是()A .e 16-B .e 17-C .e 18-D .e 19-三、填空题11.已知函数()131,0ln ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若函数()()()2221g x f x af x a =-+-⎡⎤⎣⎦恰有4个不同的零点,则a 的取值范围是__________.12.已知函数11,02()2(2),28x x f x f x x ⎧--≤≤=⎨-<≤⎩,若方程()f x kx =恰好有四个实根,则实数k 的取值范围是___.○热○点○题○型三函数模型及其应用应用函数模型解决实际问题的一般程序和解题关键:(1)一般程序:――→读题文字语言⇒――→建模数学语言⇒――→求解数学应用⇒――→反馈检验作答(2)解题关键:解答这类问题的关键是确切地写出相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.一、单选题1.垃圾分类,一般是指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而变成公共资源的一系列活动的总称.已知某种垃圾的分解率ν与时间t (月)满足函数关系式t v a b =⋅(其中a ,b 为非零常数).若经过6个月,这种垃圾的分解率为5%,经过12个月,这种垃圾的分解率为10%,那么这种垃圾完全分解(分解率为100%)至少需要经过()(参考数据lg 20.3≈)A .20个月B .40个月C .28个月D .32个月2.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速(单位:m /s )可以表示为31log 2100Qv =,其中Q 表示鲑鱼的耗氧量的单位数.当一条鲑鱼以3ln2m /s ln3的速度游动时,其耗氧量是静止时耗氧量的倍数为()A .83B .8C .32D .643.0C 表示生物体内碳14的初始质量,经过t 年后碳14剩余质量01()2th C t C ⎛⎫= ⎪⎝⎭(0t >,h 为碳14半衰期).现测得一古墓内某生物体内碳14含量为00.4C ,据此推算该生物是距今约多少年前的生物(参考数据lg 20.301≈).正确选项是()A .1.36hB .1.34hC .1.32hD .1.30h4.2023年1月底,由马斯克、彼得泰尔等人创立的人工智能研究公司openAI 发布的名为“ChatGTP ”的人工智能聊天程序进入中国,迅速以其极高的智能化水平引起国内关注.深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的,在神经网络优化中,指数衰减的学习率模型为0G G L L D=,其中L 表示每一轮优化时使用的学习率,0L 表示初始学习率,D 表示衰减系数,G 表示训练迭代轮数,0G 表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为18,且当训练迭代轮数为18时,学习率衰减为0.4,则学习率衰减到0.2以下(不含0.2)所需的训练迭代轮数至少为()(参考数据:1g20.3010≈)A .72B .74C .76D .785.血氧饱和度是呼吸循环的重要生理参数.人体的血氧饱和度正常范围是95%~100%,当血氧饱和度低于90%时,需要吸氧治疗,在环境模拟实验室的某段时间内,可以用指数模型:0()e KtS t S =描述血氧饱和度()S t 随给氧时间t (单位:时)的变化规律,其中0S 为初始血氧饱和度,K 为参数.已知060%S =,给氧1小时后,血氧饱和度为80%.若使得血氧饱和度达到90%,则至少还需要给氧时间(单位:时)为()(精确到0.1,参考数据:ln 2069ln 3110≈≈.,.)A .0.3B .0.5C .0.7D .0.96.某企业为了响应并落实国家污水减排政策,加装了污水过滤排放设备,在过滤过程中,污染物含量M (单位:mg /L )与时间t (单位:h )之间的关系为0e ktM M -=(其中0,M k 是正常数).已知在处理过程中,该设备每小时可以清理池中残留污染物10%,则过滤一半的污染物需要的时间最接近()(参考数据:lg20.30≈,lg30.48≈)A .6小时B .8小时C .10小时D .12小时7.著名物理学家牛顿在17世纪提出了牛顿冷却定律,描述温度高于周围环境的物体向周围媒质传递热量逐渐冷却时所遵循的规律.统计学家发现网络热搜度也遵循这样的规律,即随着时间的推移,热搜度会逐渐降低.假设事件的初始热搜度为()000N N >,经过t (天)时间之后的热搜度变为()0etN t N α-=,其中α为冷却系数.若设某事件的冷却系数0.3α=,则该事件的热搜度降到初始的50%以下需要的天数t 至少为().(ln 20.693≈,t 取整数)A .7B .6C .4D .38.针对“台独”分裂势力和外部势力勾结的情况,为捍卫国家主权和领土完整,维护中华民族整体利益和两岸同胞切身利益,解放军组织多种战机巡航台湾.已知海面上的大气压强是760mmHg ,大气压强P (单位:mmHg )和高度h (单位:m )之间的关系为760e hk P -=(e为自然对数的底数,k 是常数),根据实验知500m 高空处的大气压强是700mmHg ,则当歼20战机巡航高度为1000m ,歼16D 战机的巡航高度为1500m 时,歼20战机所受的大气压强是歼16D 战机所受的大气压强的()倍.A .0.67B .0.92C .1.09D .1.5二、多选题9.如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =,关于下列说法正确的是()A .浮萍每月的增长率为3B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积超过280m D .若浮萍蔓延到2224m 2m 8m 、、所经过的时间分别是123t t t 、、,则2132t t t =+10.泊松分布适合于描述单位时间(或空间)内随机事件发生的次数.如某一服务设施在一定时间内到达的人数,显微镜下单位分区内的细菌分布数等等.其概率函数为()e !kP X k k λλλ-==,参数λ是单位时间(或单位面积)内随机事件的平均发生次数.现采用某种紫外线照射大肠杆菌,大肠杆菌的基因组平均产生3个嘧啶二体.设大肠杆菌的基因组产生的嘧啶二体个数为Y ,()P Y k =表示经该种紫外线照射后产生k 个嘧啶二体的概率.已知Y 服从泊松分布,记为()Y Pois λ~,当产生的嘧啶二体个数不小于1时,大肠杆菌就会死亡,下列说法正确的有()(参考数据:3e 0.049-=⋅⋅⋅,恒等式0e !inxi x i ==∑)A .大肠杆菌a 经该种紫外线照射后,存活的概率约为5%B .设()()f k P Y k λ==,则,(1)()0,()f k f k k λ∀∈+->∈N NC .如果()X pois λ~,那么(!)X E X λ=,X 的标准差σλ=D .大肠杆菌a 经该种紫外线照射后,其基因组产生的嘧啶二体个数的数学期望为311.(多选)甲同学家到乙同学家的途中有一座公园,甲同学家到公园的距离与乙同学家到公园的距离都是2km.如图所示表示甲同学从家出发到乙同学家经过的路程y (km)与时间x (min)的关系,下列结论正确的是()A.甲同学从家出发到乙同学家走了60minB.甲从家到公园的时间是30minC.甲从家到公园的速度比从公园到乙同学家的速度快D.当0≤x≤30时,y与x的关系式为y=1 15 x12.尽管目前人类还无法准确预报地震,但科学家经过研究,已经对地震有所了解,例如,地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lg E=4.8+1.5M,则下列说法正确的是()A.地震释放的能量为1015.3焦耳时,地震里氏震级约为七级B.八级地震释放的能量约为七级地震释放的能量的6.3倍C.八级地震释放的能量约为六级地震释放的能量的1000倍D.记地震里氏震级为n(n=1,2,···,9,10),地震释放的能量为an,则数列{an}是等比数列。
小题专项集训(三)基本初等函数
![小题专项集训(三)基本初等函数](https://img.taocdn.com/s3/m/58e64389250c844769eae009581b6bd97f19bc8f.png)
小题专项集训(三) 基本初等函数 (时间: 40分钟 满分: 75分)一、选择题(每小题5分, 共50分)[来源:Z|xx|]1.幂函数y =f(x)的图象经过点 , 则f 的值为( ).A. 1B. 2C. 3D. 4 解析 设f(x)=xn, ∴f(4)= , 即4n = , ∴f = n =4-n =2. 答案 B2. (2013·湖南长郡中学一模)设函数f(x)=若f(x)>1成立, 则实数x 的取值范围是( ). [来源:学科网]A .(-∞, -2)B.⎝ ⎛⎭⎪⎫-12,+∞ C.⎝ ⎛⎭⎪⎫-2,-12 D. (-∞, -2)∪解析 当x ≤-1时, 由(x +1)2>1, 得x<-2, 当x>-1时, 由2x +2>1, 得x>- , 故选D.答案 D3. (2013·银川一模)设函数f(x)是奇函 数, 并且在R 上为增函数, 若0≤θ≤ 时, f(msin θ)+f(1-m)>0恒成立, 则实数m 的取值范围是( ).A. (0,1)B. (-∞, 0)C.D. (-∞, 1)解析 ∵f(x)是奇函数, ∴f(msin θ)>-f(1-m)=f(m -1).又f(x)在R 上是增函数, ∴msin θ>m -1, 即m(1-si n θ)<1.当θ= 时, m ∈R ;当0≤θ< 时, m< .∵0<1-sin θ ≤1, ∴ ≥1 .∴m<1.故选D.答案 D4. (2013·济南模拟)已知函数f(x)是奇函数, 当x >0时, f(x)=ax(a>0且a≠1), 且f =-3, 则a的值为().A. B. 3 C. 9 D.解析∵f(log 4)=f =f(-2) =-f(2)=-a2=-3, ∴a2=3, 解得a=±, 又a>0, ∴a=.答案 A5. (2013·福州质检)已知a=20.2, b=0.40.2, c=0.40.6, 则().A. a>b>cB. a>c>bC. c>a>bD. b>c>a解析由0.2<0.6,0.4<1, 并结合指数函数的图象可知0.40.2>0.40.6, 即b>c;因为a=20.2>1, b=0.40.2<1, 所以a>b.综上, a>b>c.答案 A6. (2013·广州调研)已知函数f(x)=若f(1)=f (-1), 则实数a的值等于().A. 1B. 2C. 3D. 4解析根据题意, 由f(1)=f(-1)可得a=1-(-1)=2, 故选B.答案 B7. 设a>1, 且m=loga(a2+1), n=loga(a-1), p=loga(2a), 则m, n, p的大小关系为().A. n>m>pB. m>p>nC. m>n>pD. p>m>n解析取a=2, 则m=log25, n=log21=0, p=log24, ∴m>p>n.[来源:]答案 B8. (2013·北京东城区综合练习)设a=log 3, b=0.3, c=ln π, 则().A. a<b<cB. a<c<bC. c<a<bD. b<a<c解析a=log 3<log 1=0,0<b=0.3< 0=1, c=ln π>ln e=1, 故a<b<c. 答案 A9. (2013·安徽名校模拟)设函数f(x)定义在实数集上, f(2-x)=f(x), 且当x≥1时, f(x)=ln x, 则有().A. f <f(2)<fB. f <f(2)<fC. f <f <f(2)D. f(2)<f <f解析由f(2-x)=f(x), 得f(1-x)=f(x+1), 即函数f(x)的对称轴为x=1, 结合图形可知f <f <f(0)=f(2), 故选C.答案 C10. 设函数y=f(x)在(-∞, +∞)内有定义, 对于给定的正数K, 定义函数:fK(x)=取函数f(x)=a-|x|(a>1). 当K=时, 函数fK(x)在下列区间上单调递减的是().A. (-∞, 0)B. (-a, +∞)C. (-∞, -1)D. (1, +∞)解析函数f(x)=a-|x|(a>1)的图象为右图中实线部分, y=K=的图象为右图中虚线部分, 由图象知fK( x)在(1, +∞)上为减函数, 故选D.答案 D二、填空题(每小题5分, 共25分)11. (2012·西安质检)若函数f(x)=且f(f(2))>7, 则实数m的取值范围是________.解析∵f(2)=4, ∴f(f(2))=f(4)=12-m>7, ∴m<5.答案(-∞, 5)12.(2013·福州质检)函数y=log (3x-a)的定义域是, 则a=________.解析由3x-a>0, 得x> , 又因函数y的定义域为, 所以=, a=2.答案213. 若f(x)=1 +lg x, g(x)=x2, 那么使2f[g(x)]=g[f(x)]的x的值是________.解析∵2f[g(x)]=g[f(x)], ∴2(1+lg x2)=(1+lg x)2, ∴(lg x)2-2lg x-1=0, ∴lg x=1±, x=101±.答案101±214. 已知函数f(x)=|log2x|, 正实数m, n满足m<n, 且f(m)=f(n), 若f(x)在区间[m2, n]上的最大值为2, 则m+n=________.解析由已知条件可得m<1<n, 且f(m)=f =f(n), 即=n, ∴m2<m<1, 函数f(x)在[m2, n]上的最大值为f(m2)=2f(m)=2f(n)=2log2n=2, 解得n=2, m =, ∴m+n=.答案5 215. (2012·杭州高中月考)关于函数f(x)=lg (x≠0), 有下列命题:①其图象关于y轴对称;②当x>0时, f(x)是增函数;当x<0时, f(x)是减函数;③f(x)的最小值是lg 2;④f(x)在区间(-1,0), (2, +∞)上是增函数;⑤f(x)无最大值, 也无最小值.其中所有正确结论的序号是________.解析f(x)=lg 为偶函数, 故①正确;又令u(x)=, 则当x>0时, u(x)=x +在(0,1)上递减, [1, +∞)上递增, ∴②错误, ③④正确;⑤错误.答案①③④。
基本初等函数、函数的应用
![基本初等函数、函数的应用](https://img.taocdn.com/s3/m/42dc9100b9f3f90f77c61bb4.png)
第17页
课前自测
课堂探究
返回目录
(2020·陕西百校联盟第一次模拟)设 a=log318,b=log424,c= 大小关系是( D )
A.a<b<c B.a<c<b C.b<c<a D.c<b<a
,则 a,b,c 的
第18页
课前自测
课堂探究
返回目录
解析 c= <2,a=log318=1+log36=1+log163,b=log424=1+log46=1+log164. 因为 0<log63<log64<1,所以log163>log164>1,所以 1+log163>1+log164>2,即 a>b >c,故选 D.
第21页
课前自测
课堂探究
返回目录
解析 ∵函数 f(x)=log3x+x 2-a 在区间(1,2)内有零点,且 f(x)在(1,2)内单调,∴ f(1)·f(2)<0,即(1-a)·(log32-a)<0,解得 log32<a<1.
第22页
课前自测
课堂探究
返回目录
确定函数 f(x)的零点所在区间的常用方法 (1)利用函数零点存在定理:首先看函数 y=f(x)在区间[a,b]上的图像是否连续, 其次看是否有 f(a)·f(b)<0.若有,则函数 y=f(x)在区间(a,b)内必有零点. (2)数形结合法:通过画函数图像,观察图像与 x 轴在给定区间上是否有交点来判 断.
2.函数 f(x)=2x+ln x-1 1的零点所在的大致区间是( B ) A.(1,2) B.(2,3) C.(3,4) D.(1,2)与(2,3)
解析 易知 f(x)=2x+ln x-1 1在(1,+∞)上为减函数, 又 f(2)=1>0,f(3)=23-ln 2=2-33ln 2=2-3ln 8, ∵e2<8,∴2<ln 8,∴f(3)<0, ∴f(x)在(2,3)上存在唯一一个零点,选 B.
基本初等函数及函数的应用
![基本初等函数及函数的应用](https://img.taocdn.com/s3/m/5786901df18583d0496459b8.png)
基本初等函数(Ⅰ)及函数的应用★知识网络1a > )1(02.底数互为倒数的两个指数函数的图像关于y 轴对称.例如:指数函数的图像x a y =与)1,0(≠>=-a a a y x的图象关于y 轴对称3.指数函数的性质:定义域:R ; 值域:(0,+∞);过点(0,1);即x=0时,y=1.当a >1时,在R 上是增函数;当0<a <1时,在R 上是减函数.4.利用复合函数的单调性判断形如)(x f a y =的函数的单调性:若1>a ,则)(x f y =的单调增(减)区间,就是)(x f a y =的单调增(减)区间;若10<<a ,则)(x f y =的单调增(减)区间,就是)(x f a y =的单调减(增)区间;5.指数型的方程和不等式的解法(Ⅰ)形如b a b a b a x f x f x f <>=)()()(,,的形式常用“化同底”转化为利用指数函数的单调性解决,或“取对数”等方法;(Ⅱ)形如02=++C Ba a xx 或)0(02≤≥++C Ba ax x的形式,可借助于换元法转化为二次方程或不等式求解。
考点1 指数幂的运算1. (湛江市09届统考)计算:100.256371.5()86-⨯-+ 2.=-⋅63a a ————————考点2 指数函数的图象及性质的应用 题型1:由指数函数的图象判断底数的大小 3.下图是指数函数(1)y=a x ,(2)y=b x ,(3)y=c x ,(4)y=d x 的图像,则a 、b 、c 、d 与1的大小关系是( ) A .a b c d <<<<1; B .b a d c <<<<1; C .a b c d <<<<1;D .b a c d <<<<1 [名师指引] 1的妙用题型2:解简单的指数方程4. 方程33131=++-xx的解是_________题型3:利用函数的性质解题5.不等式1622<-+x x的解集是___________6.(广东恩城中学09年模拟)不论a 为何正实数,函数12x y a +=-的图象一定通过一定点,则该定点的坐标是_________7.(广东广雅中学09届月考)已知函数()()()f x x a x b =--(其中a b >)的图象如下面右图所示,则函数()x g x a b =+的图象是( )A .B .C .D .8.(08年安徽改编)若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()xf xg x e -=,则)3(f 、)0(g 、)2(f 的大小关系为——————————考点3 与指数函数有关的含参数问题9.(广州六校09届联考)已知函数()22x x af x =-, 将()y f x =的图象向右平移两个单位, 得到()y g x =的图象.(1) 求函数()y g x =的解析式;(2) 若函数()y h x =与函数()y g x =的图象关于直线1y =对称, 求函数()y h x =的解析式;二. 对数及对数函数1.对数的概念如果ab=N (a >0,a≠1),那么b 叫做以a 为底N 的对数,记作logaN=b ab=N ⇔logaN=b (a >0,a ≠1,N >0). 2.对数的运算性质loga (MN )=logaM+logaN. loga N M=logaM -logaN.logaM n =nlogaM.(M >0,N >0,a >0,a ≠1)3.对数换底公式:logb N =bN a a log log (a >0,a ≠1,b >0,b ≠1,N >0).4.对数函数的图像及性质①函数y=loga x (a >0,a≠1)叫做对数函数,其中x 是自变量,图像如下a <11))②对数函数的性质:定义域:(0,+∞); 值域:R ; 过定点(1,0)当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数。
高一基本初等函数复习小题2
![高一基本初等函数复习小题2](https://img.taocdn.com/s3/m/061e27395a8102d276a22f87.png)
1.比较下列各组数的大小:2.03.0,3.02.0,2.02.0 3log 2.0,1.02.02,3.0log2.已知⎪⎩⎪⎨⎧<->=1,21,81log )(x x x x x f ,则关于x 的方程41)(=x f 的解为 。
3.若3232)23()1(+<+a a ,则实数a 的取值范围是 。
4.已知函数⎪⎩⎪⎨⎧≠><-+-≥=)1,0()0(,33)0(,)(a a x a x x x a x f 是R 上的减函数,则a 的取值范围是 。
5.用表示{}c b a ,,min 三个数c b a ,,中最小 设{})0(,10,2,2min )(≥-+=x x x x f x,则)(x f y =最大值为 。
6.已知函数()log (1),()log (1)a a f x x g x x =+=-,其中)10(≠>a a 且,设()()()h x f x g x =-.(1)求函数()h x 的定义域;(2)判断该函数的奇偶性;(3)判断该函数的单调性;7.已知幂函数242)173(m m xm m y --+=的图像不过原点,则m = 。
8.已知函数)(x f y =满足:当4≥x 时,x x f 2)(=;当4<x 时,)1()(+=x f x f , 则)3log 2(2+f = 。
9.若函数log 2(kx 2+4kx +3)的定义域为R ,则k 的取值范围是10.若关于x 的方程335-+=a a x有负根,则实数a 的取值范围是_____________. 11.若log a32<1,则a 的取值范围是_____.12下列函数中既是偶函数又是(,)-∞0上是增函数的是( )A .y x =43B .y x =32C .y x =-2D .y x=-1413. 函数R x x x y ∈=|,|,满足( )(A .奇函数且减函数B .偶函数且增函数C .奇函数且增函数D .偶函数且减函数14.函数f (x )=|lg x |,则f (41),f (31), f (2)的大小关系是__________15. 当0>x 时,函数xa y )8(2-=的值恒大于1,则实数a 的取值范围是________.16.函数1241++=+x xy 的值域是______________. 17.已知bx k x f ++=)12()(在),(+∞-∞上是减函数,则k 的范围18. 已知二次函数的图象顶点为(0,4),且过点(1,5),则其解析式为19.求22)(2+-=ax x x f 在[2,4]上的最小值20. 已知幂函数()f x 的图象经过点(2,4),则()f x 的解析式为21. 已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上是减函数,则实数a 的取值范围为__ _.22. 比较大小π3log 与8.0log 2 7log 6与6log 723. 解不等式)3(log log 222x x x -<24. 已知函数)1(log 22++=bx ax y 的定义域为)3,2(-,求实数b a 、的值。
基本初等函数测试题及答案
![基本初等函数测试题及答案](https://img.taocdn.com/s3/m/e281f326336c1eb91b375d53.png)
基本初等函数测试题一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有下列各式: ①na n =a ;②若a ∈R ,则(a 2-a +1)0=1;③44333x y x y +=+; ④6-22=3-2.其中正确的个数是( )A .0B .1C .2D .32.函数y =a |x |(a >1)的图象是( )3.下列函数在(0,+∞)上是增函数的是( ) A .y =3-x B .y =-2x C .y = D .y =x 12>4.三个数log 215,,2-1的大小关系是( )A .log 215<<2-1B .log 215<2-1<C .<2-1<log 215 D .<log 215<2-1 5.已知集合A ={y |y =2x ,x <0},B ={y |y =log 2x },则A ∩B =( ) A .{y |y >0} B .{y |y >1} C .{y |0<y <1} D .∅6.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P 且x ∉Q },如果P ={x |log 2x <1},Q={x |1<x <3},那么P -Q 等于( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}7.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则( ) A .x >y >z B .x >y >x C .y >x >z D .z >x >y 8.函数y =2x -x 2的图象大致是( )¥9.已知四个函数①y =f 1(x );②y =f 2(x );③y =f 3(x );④y =f 4(x )的图象如下图:则下列不等式中可能成立的是( )A .f 1(x 1+x 2)=f 1(x 1)+f 1(x 2)B .f 2(x 1+x 2)=f 2(x 1)+f 2(x 2)C .f 3(x 1+x 2)=f 3(x 1)+f 3(x 2)D .f 4(x 1+x 2)=f 4(x 1)+f 4(x 2)10.设函数121()f x x =,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2010)))等于( ) A .2010 B .2010211.函数f (x )=3x 21-x +lg(3x +1)的定义域是( )\12.(2010·石家庄期末测试)设f (x )=⎩⎪⎨⎪⎧2e x -1, x <2,log 3x 2-1, x ≥2. 则f [f (2)]的值为( ) A .0 B .1 C .2 D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.给出下列四个命题:(1)奇函数的图象一定经过原点;(2)偶函数的图象一定经过原点; (3)函数y =lne x 是奇函数;(4)函数13y x =的图象关于原点成中心对称.其中正确命题序号为________.(将你认为正确的都填上) 14. 函数12log (4)y x =-的定义域是 .15.已知函数y =log a (x +b )的图象如下图所示,则a =________,b =________.¥16.(2008·上海高考)设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=log 2(ax +b ),若f (2)=1,f (3)=2,求f (5)..18.(本小题满分12分)已知函数12()2f x x =-.(1)求f (x )的定义域;(2)证明f (x )在定义域内是减函数. 19.(本小题满分12分)已知函数f (x )=2x -12x +1.(1)判断函数的奇偶性;(2)证明:f (x )在(-∞,+∞)上是增函数. 20.(本小题满分12分)已知函数()223(1)mm f x m m x +-=--是幂函数, 且x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.21.(本小题满分12分)已知函数f (x )=lg(a x -b x ),(a >1>b >0). (1)求f (x )的定义域;…(2)若f (x )在(1,+∞)上递增且恒取正值,求a ,b 满足的关系式. 22.(本小题满分12分)已知f (x )=⎝⎛⎭⎫12x -1+12·x . (1)求函数的定义域; (2)判断函数f (x )的奇偶性; (3)求证:f (x )>0.*参考答案答案速查:1-5 BCDBC 6-10 BCACC 11-12 CC 1.解析:仅有②正确.答案:B2.解析:y =a |x |=⎩⎪⎨⎪⎧a x ,x ≥0,a -x ,x <0,且a >1,应选C.答案:C3.答案:D4.答案:B5.解析:A ={y |y =2x ,x <0}={y |0<y <1},B ={y |y =log 2x }={y |y ∈R },∴A ∩B ={y |0<y <1}.(答案:C6.解析:P ={x |log 2x <1}={x |0<x <2},Q ={x |1<x <3},∴P -Q ={x |0<x ≤1},故选B.答案:B7.解析:x =log a 2+log a 3=log a 6=12log a 6, z =log a 21-log a 3=log a 7=12log a 7. ∵0<a <1,∴12log a 5>12log a 6>12log a 7. 即y >x >z . 答案:C8.解析:作出函数y =2x 与y =x 2的图象知,它们有3个交点,所以y =2x -x 2的图象与x 轴有3个交点,排除B 、C ,又当x <-1时,y <0,图象在x 轴下方,排除D.故选A.答案:A|9.解析:结合图象知,A 、B 、D 不成立,C 成立.答案:C 10.解析:依题意可得f 3(2010)=20102,f 2(f 3(2010)) =f 2(20102)=(20102)-1=2010-2,∴f 1(f 2(f 3(2010)))=f 1(2010-2)=(2010-2)12=2010-1=12010. 答案:C11.解析:由⎩⎪⎨⎪⎧1-x >03x +1>0⇒⎩⎪⎨⎪⎧x <1x >-13⇒-13<x <1. 答案: C12.解析:f (2)=log 3(22-1)=log 33=1,∴f [f (2)]=f (1)=2e 0=2. 答案:C13.解析:(1)、(2)不正确,可举出反例,如y =1x ,y =x -2,它们的图象都不过原点.(3)中函数y =lne x =x ,显然是奇函数.对于(4),y =x 13是奇函数,而奇函数的图象关于原点对称,所以(4)正确.答案:(3)(4)14.答案:(4,5]【15.解析:由图象过点(-2,0),(0,2)知,log a (-2+b )=0,log a b =2,∴-2+b =1,∴b=3,a 2=3,由a >0知a = 3.∴a =3,b =3.答案:3 316.解析:根据题意画出f (x )的草图,由图象可知,f (x )>0的x 的取值范围是-1<x <0或x >1.答案:(-1,0)∪(1,+∞)17.解:由f (2)=1,f (3)=2,得⎩⎪⎨⎪⎧ log 22a +b =1log 23a +b =2⇒⎩⎪⎨⎪⎧ 2a +b =23a +b =4⇒⎩⎪⎨⎪⎧a =2,b =-2.∴f (x )=log 2(2x -2),∴f (5)=log 28=3. 18.·∵x 2>x 1≥0,∴x 2-x 1>0,x 2+x 1>0, ∴f (x 1)-f (x 2)>0,∴f (x 2)<f (x 1). 于是f (x )在定义域内是减函数. 19.解:(1)函数定义域为R .f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ),所以函数为奇函数.(2)证明:不妨设-∞<x 1<x 2<+∞, ∴2x 2>2x 1.又因为f (x 2)-f (x 1)=2x 2-12x 2+1-2x 1-12x 1+1=22x 2-2x 12x 1+12x 2+1>0,∴f (x 2)>f (x 1).%所以f (x )在(-∞,+∞)上是增函数. 20.解:∵f (x )是幂函数, ∴m 2-m -1=1, ∴m =-1或m =2, ∴f (x )=x-3或f (x )=x 3,而易知f (x )=x -3在(0,+∞)上为减函数,f (x )=x 3在(0,+∞)上为增函数. ∴f (x )=x 3.21.解:(1)由a x -b x >0,得⎝⎛⎭⎫a b x >1.∵a >1>b >0,∴ab >1,…∴x >0.即f (x )的定义域为(0,+∞).(2)∵f (x )在(1,+∞)上递增且恒为正值, ∴f (x )>f (1),只要f (1)≥0, 即lg(a -b )≥0,∴a -b ≥1.∴a ≥b +1为所求22.解:(1)由2x -1≠0得x ≠0,∴函数的定义域为{x |x ≠0,x ∈R }.(2)在定义域内任取x ,则-x 一定在定义域内. f (-x )=⎝⎛⎭⎫12-x -1+12(-x )=⎝⎛⎭⎫2x 1-2x +12(-x )=-1+2x 21-2x ·x =2x +122x -1·x .而f (x )=⎝⎛⎭⎫12x -1+12x =2x +122x -1·x ,∴f (-x )=f (x ). ∴f (x )为偶函数.(3)证明:当x >0时,2x >1,∴⎝⎛⎭⎫12x -1+12·x >0. 又f (x )为偶函数, ∴当x <0时,f (x )>0. 故当x ∈R 且x ≠0时,f (x )>0.。
基本初等函数、函数与方程及函数的应用(题型归纳)
![基本初等函数、函数与方程及函数的应用(题型归纳)](https://img.taocdn.com/s3/m/2764f2cef80f76c66137ee06eff9aef8941e48bf.png)
基本初等函数、函数与方程及函数的应用【考情分析】1.考查特点:基本初等函数作为高考的命题热点,多考查指数式与对数式的运算、利用函数的性质比较大小,难度中等;函数的应用问题多体现在函数零点与方程根的综合问题上,题目有时较难,而与实际应用问题结合考查的指数、对数函数模型也是近几年考查的热点,难度中等.2.关键能力:逻辑思维能力、运算求解能力、数学建模能力、创新能力.3.学科素养:数学抽象、逻辑推理、数学建模、数学运算.【题型一】基本初等函数的图象与性质【典例分析】【例1】(2021•焦作一模)若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则函数log ||a y x =的图象大致是()A .B .C .D .【答案】B【解析】若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则1a >,故函数log ||a y x =的图象大致是:故选:B .【例2】(2021·陕西西安市·西安中学高三模拟)若1(,1)x e -∈,ln a x =,ln 1()2xb =,ln 2xc =,则a ,b ,c 的大小关系为()A .c b a >>B .b a c >>C .a b c >>D .b c a>>【答案】D【解析】因1(,1)x e -∈,且函数ln y x =是增函数,于是10a -<<;函数2x y =是增函数,1ln 0ln 1x x -<<<-<,而ln ln 1()22xx -=,则ln 11()22x <<,ln 1212x<<,即1122c b <<<<,综上得:b c a >>故选:D【例3】(2021·湖南长沙长郡中学高三模拟)若函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,则实数m 的取值范围为()A .[)3,0-B .[)1,0-C .[)0,1D .[)3,-+∞【答案】A【解析】因函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,当且仅当f (x )在(-∞,1]有一个零点,x≤1时,()03x f x m =⇔=-,即函数3x y =-在(-∞,1]上的图象与直线y =m 有一个公共点,在同一坐标系内作出直线y =m 和函数3(1)x y x =-≤的图象,如图:而3x y =-在(-∞,1]上单调递减,且有330x -≤-<,则直线y =m 和函数3(1)x y x =-≤的图象有一个公共点,30m -≤<.故选:A【提分秘籍】1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.2.研究对数函数的性质,应注意真数与底数的限制条件.如求f(x)=ln(x 2-3x+2)的单调区间,易只考虑t=x 2-3x+2与函数y=ln t 的单调性,而忽视t>0的限制条件.3.指数、对数、幂函数值的大小比较问题的解题策略:(1)底数相同,指数不同的幂用指数函数的单调性进行比较.(2)底数相同,真数不同的对数值用对数函数的单调性进行比较.(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.【变式演练】1.【多选】(2021·山东省实验中学高三模拟)已知函数()2121x x f x -=+,则下列说法正确的是()A .()f x 为奇函数B .()f x 为减函数C .()f x 有且只有一个零点D .()f x 的值域为[)1,1-【答案】AC【解析】()2121x x f x -=+ ,x ∈R ,2121x=-+2112()()2112x xx xf x f x ----∴-===-++,故()f x 为奇函数,又()21212121x x xf x -==-++ ,()f x ∴在R 上单调递增,20x> ,211x ∴+>,20221x∴<<+,22021x∴-<-<+,1()1f x ∴-<<,即函数值域为()1,1-令()21021x x f x -==+,即21x =,解得0x =,故函数有且只有一个零点0.综上可知,AC 正确,BD 错误.故选:AC2.(2021·山东潍坊市·高二一模(理))设函数()322xxf x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是【答案】(),1-∞-【解析】函数的定义域为R ,()()322xx f x x f x --=--=-,所以函数是奇函数,并由解析式可知函数是增函数原不等式可化为()()213f x f -<-,∴213x -<-,解得1x <-,∴x 的取值范围是(),1-∞-.【题型二】函数与方程【典例分析】【例4】(2021·宁夏中卫市·高三其他模拟)函数3()9x f x e x =+-的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【解析】由x e 为增函数,3x 为增函数,故3()9x f x e x =+-为增函数,由(1)80f e =-<,2(2)10f e =->,根据零点存在性定理可得0(1,2)x ∃∈使得0()0f x =,故选:B.【例5】(2021·北京高三一模)已知函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,则常数t 的一个取值为______.【答案】2(不唯一).【解析】由220x x +=可得0x =或2x =-由ln 0x =可得1x =因为函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,所以1e t >≥,故答案为:2(不唯一)【提分秘籍】1.判断函数零点个数的方法直接法直接求零点,令f(x)=0,则方程解的个数即为函数零点的个数定理法利用零点存在性定理,利用该定理只能确定函数的某些零点是否存在,必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点数形结合法对于给定的函数不能直接求解或画出图象的,常分解转化为两个能画出图象的函数的交点问题2.利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在性定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.【变式演练】1.(2021·湖北十堰市高三模拟)函数()()()23log 111f x x x x =+->-的零点所在的大致区间是()A .()1,2B .()2,3C .()3,4D .()4,5【答案】B【解析】易知()f x 在()1,+∞上是连续增函数,因为()22log 330f =-<,()33202f =->,所以()f x 的零点所在的大致区间是()2,3.故选:B2.(2021·天津高三二模)设函数2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩,若1a =,则()f x 的最小值为______;若()f x 恰有2个零点,则实数a 的取值范围是__________.【答案】1-112a ≤<或2a ≥【解析】当1a =时,()()211()4(1)(2)1x x f x x x x ⎧-<⎪=⎨--≥⎪⎩,1x <,()211xf x =-<,1≥x ,()()()234124112f x x x x ⎛⎫=--=--≥- ⎪⎝⎭所以()f x 的最小值为1-.设()f x 的零点为1x 、2x ,若()1,1x ∈-∞,[)21x ∈+∞,,则20012a a a a->⎧⎪>⎨⎪<≤⎩,得112a ≤<若[)12,1,x x ∈+∞,则0201a a a >⎧⎪-≤⎨⎪≥⎩,得2a ≥,综上:112a ≤<或2a ≥.故答案为:1-;112a ≤<或2a ≥.【题型三】函数的实际应用【典例分析】1.(2021·北京高三二模)20世纪30年代,里克特制定了一种表明地震能量大小的尺度,就是使用地震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是标准地震的振幅,2008年5月12日,我国四川汶川发生了地震,速报震级为里氏7.8级,修订后的震级为里氏8.0级,则修订后的震级与速报震级的最大振幅之比为()A .0.210-B .0.210C .40lg39D .4039【答案】B【解析】由0lg lg M A A =-,可得01AM gA =,即10M A A =,010M A A =⋅,当8M =时,地震的最大振幅为81010A A =⋅,当7.8M =时,地震的最大振幅为7.82010A A =⋅,所以,修订后的震级与速报震级的最大振幅之比是887.80.2017.82010101010A A A A -⋅===⋅.故选:B.2.为加强环境保护,治理空气污染,某环保部门对辖区内一工厂产生的废气进行了监测,发现该厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量(mg /L)P 与时间(h)t 的关系为0ktP P e -=.如果在前5个小时消除了10%的污染物,那么污染物减少19%需要花的时间为()A .7小时B .10小时C .15小时D .18小时【答案】B【解析】因为前5个小时消除了10%的污染物,所以()50010.1kP P P e -=-=,解得ln 0.95k =-,所以ln 0.950tP P e =,设污染物减少19%所用的时间为t ,则()0010.190.81P P -=()()ln 0.92ln 0.955500000.90.9t t t P P e P eP ====,所以25t=,解得10t =,故选:B 3.(2021·山东滕州一中高三模拟)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102ta t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是A .9:40B .9:30C .9:20D .9:10【答案】9:30【解析】根据函数的图象,可得函数的图象过点(10,1),代入函数的解析式,可得1121a-⎛⎫⎪⎝⎭=,解得1a =,所以1100.1,0101,102t t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,令0.25y ≤,可得0.10.25t ≤或11020.251t -⎛⎝≤⎫⎪⎭,解得0 2.5t <≤或30t ≥,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.故选:B.【提分秘籍】1.构建函数模型解决实际问题的失分点:(1)不能选择相应变量得到函数模型;(2)构建的函数模型有误;(3)忽视函数模型中变量的实际意义.2.解决新概念信息题的关键:(1)依据新概念进行分析;(2)有意识地运用转化思想,将新问题转化为我们所熟知的问题.【变式演练】(2020·湖北黄冈市·黄冈中学高三模拟)“百日冲刺”是各个学校针对高三学生进行的高考前的激情教育,它能在短时间内最大限度激发一个人的潜能,使成绩在原来的基础上有不同程度的提高,以便在高考中取得令人满意的成绩,特别对于成绩在中等偏下的学生来讲,其增加分数的空间尤其大.现有某班主任老师根据历年成绩在中等偏下的学生经历“百日冲刺”之后的成绩变化,构造了一个经过时间()30100t t ≤≤(单位:天),增加总分数()f t (单位:分)的函数模型:()()1lg 1kPf t t =++,k 为增分转化系数,P 为“百日冲刺”前的最后一次模考总分,且()1606f P =.现有某学生在高考前100天的最后一次模考总分为400分,依据此模型估计此学生在高考中可能取得的总分约为()(lg 61 1.79≈)A .440分B .460分C .480分D .500分【答案】B【解析】由题意得:()1601lg 61 2.796kP kP f P ===+, 2.790.4656k ∴≈=;∴()0.465400186186100621lg1011lg100lg1.013f ⨯==≈=+++,∴该学生在高考中可能取得的总分约为40062462460+=≈分.故选:B.1.(2021·江苏金陵中学高三模拟)函数()2ln 1xf x x =+-的零点所在的区间为().A .31,2⎛⎫⎪⎝⎭B .3,22⎛⎫⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】D【解析】函数()2ln 1xf x x =+-为()0,∞+上的增函数,由()110f =>,1311112ln 21ln 21ln 2ln 0222222f e ⎛⎫=-<--=-<-=⎪⎝⎭,可得函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:D.2.(2021·山东潍坊一中高三模拟)若函数()1af x x x =+-在(0,2)上有两个不同的零点,则a 的取值范围是()A .1[2,]4-B .1(2,)4-C .1[0,]4D .1(0,)4【答案】D【解析】函数()1a f x x x=+-在(0,2)上有两个不同的零点等价于方程10ax x +-=在(0,2)上有两个不同的解,即2a x x =-+在(0,2)上有两个不同的解.此问题等价于y a =与2(02)y x x x =-+<<有两个不同的交点.由下图可得104a <<.故选:D.3.(2021·长沙市·湖南师大附中高三三模)已知函数()()()ln 2ln 4f x x x =-+-,则().A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+-函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增,在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A4.(2021·辽宁本溪高级中学高三模拟高三模拟)设函数2ln(1)ln(1)()1x x f x x +--=-,则函数的图象可能是()A .B .C .D .【答案】D【解析】2ln(1)ln(1)()1x x f x x +--=-,定义域为()1,1-,且()()f x f x -=-,故函数为奇函数,图象关于原点对称,故排除A,B,C ,故选:D.5.(2021·新安县第一高级中学高三模拟)被誉为信息论之父的香农提出了一个著名的公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭,其中C 为最大数据传输速率,单位为bit /s :W 为信道带宽,单位为Hz :SN为信噪比.香农公式在5G 技术中发挥着举足轻重的作用.当99SN=,2000Hz W =时,最大数据传输速率记为1C ;在信道带宽不变的情况下,若要使最大数据传输速率翻一番,则信噪比变为原来的多少倍()A .2B .99C .101D .9999【答案】C【解析】当99S N =,2000Hz W =时,()1222log 12000log 1994000log 10S C W N ⎛⎫=+=+= ⎪⎝⎭,由228000log 102000log 1S N ⎛⎫=+⎪⎝⎭,得224log 10log 1S N ⎛⎫=+ ⎪⎝⎭,所以9999S N =,所以999910199=,即信噪比变为原来的101倍.故选:C .6.(2021·浙江温州市·瑞安中学高三模拟)已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是()A .2B .3C .4D .5【答案】B【解析】由()()2f x f x +=-可得()f x 关于1x =对称,由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,由图像可得共有3个交点,故共有3个零点,故选:B.7.(2021·珠海市第二中学高三模拟)设21()log (1)f x x a=++是奇函数,若函数()g x 图象与函数()f x 图象关于直线y x =对称,则()g x 的值域为()A .11(,)(,)22-∞-+∞ B .11(,22-C .(,2)(2,)-∞-+∞D .(2,2)-【答案】A【解析】因为21()log (1)f x x a=++,所以1110x a x a x a+++=>++可得1x a <--或x a >-,所以()f x 的定义域为{|1x x a <--或}x a >-,因为()f x 是奇函数,定义域关于原点对称,所以1a a --=,解得12a =-,所以()f x 的定义域为11(,)(,)22-∞-+∞ ,因为函数()g x 图象与函数()f x 图象关于直线y x =对称,所以()g x 与()f x 互为反函数,故()g x 的值域即为()f x 的定义域11(,)(,)22-∞-+∞ .故选:A .8.(2021·浙江杭州高级中学高三模拟)已知函数22log ,0,()44,0.x x f x x x x ⎧>=⎨--+<⎩若函数()()g x f x m =-有四个不同的零点1234,,,x x x x ,则1234x x x x 的取值范围是()A .(0,4)B .(4,8)C .(0,8)D .(0,)+∞【答案】A【解析】函数()g x 有四个不同的零点等价于函数()f x 的图象与直线y m =有四个不同的交点.画出()f x 的大致图象,如图所示.由图可知(4,8)m ∈.不妨设1234x x x x <<<,则12420x x -<<-<<,且124x x +=-.所以214x x =--,所以()()212111424(0,4)x x x x x =--=-++∈,则3401x x <<<,因为2324log log x x =,所以2324log log x x -=,所以12324log log x x -=,所以341x x ⋅=,所以123412(0,4)x x x x x x ⋅⋅⋅=∈⋅.故选:A9.(2021·天津南开中学高三模拟)若函数()1x f x e =-与()g x ax =的图象恰有一个公共点,则实数a 可能取值为()A .2B .1C .0D .1-【答案】BCD【解析】函数()1x f x e =-的导数为()x f x e '=;所以过原点的切线的斜率为1k =;则过原点的切线的方程为:y x =;所以当1a 时,函数()1x f x e =-与()g x ax =的图象恰有一个公共点;故选BCD10.(2021·广东佛山市·高三模拟)函数()()()ln 1ln 1xxf x e e =+--,下列说法正确的是()A .()f x 的定义域为(0,)+∞B .()f x 在定义域内单调递増C .不等式(1)(2)f m f m ->的解集为(1,)-+∞D .函数()f x 的图象关于直线y x =对称【答案】AD【解析】要使函数有意义,则10(0,)10x xe x e ⎧+>⇒∈+∞⎨->⎩,故A 正确;()()12()ln 1ln 1ln ln(111x xxx x e f x e e e e +=+--==+--,令211xy e =+-,易知其在(0,)+∞上单调递减,所以()f x 在(0,)+∞上单调递减,故B 不正确;由于()f x 在(0,)+∞上单调递减,所以对于(1)(2)f m f m ->,有1020(1,)12m m m m m ->⎧⎪>⇒∈+∞⎨⎪-<⎩,故C 不正确;令()ln(211x y f x e +=-=,解得11ln()11y xy y y e e e x e e ++=⇒=--,所以()f x 关于直线y x =对称,故D 正确.故选:AD11.(2021·福建厦门市高三模拟)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y (微克)与时间t (小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则()A .3a =B .注射一次治疗该病的有效时间长度为6小时C .注射该药物18小时后每毫升血液中的含药量为0.4微克D .注射一次治疗该病的有效时间长度为31532时【答案】AD【解析】由函数图象可知()4(01)112t at t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,当1t =时,4y =,即11()42a-=,解得3a =,∴()34(01)112t t t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,故A 正确,药物刚好起效的时间,当40.125t =,即132t =,药物刚好失效的时间31()0.1252t -=,解得6t =,故药物有效时长为131653232-=小时,药物的有效时间不到6个小时,故B 错误,D 正确;注射该药物18小时后每毫升血液含药量为140.58⨯=微克,故C 错误,故选:AD .12.(2021·辽宁省实验中学高三模拟)(多选题)已知函数()f x ,()g x 的图象分别如图1,2所示,方程(())1f g x =,(())1g f x =-,1(())2g g x =-的实根个数分别为a ,b ,c ,则()A .a b c +=B .b c a+=C .b a c=D .2b c a+=【答案】AD【解析】由图,方程(())1f g x =,1()0g x -<<,此时对应4个解,故4a =;方程(())1g f x =-,得()1f x =-或者()1f x =,此时有2个解,故2b =;方程1(())2g g x =-,()g x 取到4个值,如图所示:即2()1g x -<<-或1()0g x -<<或0()1g x <<或1()2g x <<,则对应的x 的解,有6个,故6c =.根据选项,可得A ,D 成立.故选AD .13.(2021·山东淄博实验中学高三模拟)如果函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.【答案】3或13【解析】令a x =t ,则y =a 2x +2a x -1=t 2+2t -1=(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈1,a a ⎡⎤⎢⎥⎣⎦,又函数y =(t +1)2-2在1,a a ⎡⎤⎢⎥⎣⎦上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去).当0<a <1时,因为x ∈[-1,1],所以t ∈1a a ⎡⎤⎢⎥⎣⎦,,又函数y =(t +1)2-2在1a a ⎡⎤⎢⎥⎣⎦,上单调递增,则y max =211a ⎛⎫+ ⎪⎝⎭-2=14,解得a =13(负值舍去).综上,a =3或a =13.14.(2021·北京高三一模)已知函数22,1,()log ,1,x x f x x x ⎧<=⎨-⎩则(0)f =________;()f x 的值域为_______.【答案】1(),2-∞【解析】0(0)2=1=f ;当1x <时,()()20,2=∈xf x ,当1x ≤时,()2log 0=-≤f x x ,所以()f x 的值域为(),2-∞故答案为:1;(),2-∞.15.(2021·重庆南开中学高三模拟)已知定义域为[4,4]-的函数()f x 的部分图像如图所示,且()()0f x f x --=,函数(lg )1f a ≤,则实数a 的取值范围为______.【答案】1,1010⎡⎤⎢⎥⎣⎦【解析】由题意知()()f x f x -=,且函数()f x 的定义域为[4,4]-,所以()f x 是偶函数.由图知()11f =,且函数()f x 在[0,4]上为增函数,则不等式(lg )1f a ≤等价于(|lg |)(1)f a f ≤,即|lg |1a ≤,所以1lg 1a -≤≤,解得11010a ≤≤.故实数a 的取值范围为1,1010⎡⎤⎢⎥⎣⎦.故答案为:1,1010⎡⎤⎢⎥⎣⎦16.(2021·湖南长沙市·长沙一中高三其他模拟)设函数()222,034,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________.【答案】41,3⎛⎤ ⎥⎝⎦【解析】作出函数()f x 图像如下互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==不妨设123x x x <<,则23,x x 关于1x =对称,所以232x x +=根据图像可得1213x -<≤-所以123413x x x <++≤,所以123x x x ++的取值范围为41,3⎛⎤ ⎥⎝⎦。
第二章 基本初等函数
![第二章 基本初等函数](https://img.taocdn.com/s3/m/9c5c61dd524de518964b7dc0.png)
第二章 基本初等函数一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)一、选择题1.下列各式正确的是( ) A.(-3)2=-3 B.4a 4=a C.22=2D .a 0=1[答案] C[解析] 由根式的意义知A 错;4a 4=|a |,故B 错;当a =0时,a 0无意义,故D 错. 2.函数y =log 12(x -1)的定义域是( ) A .[2,+∞) B .(1,2]C .(-∞,2] D.⎣⎡⎭⎫32,+∞ [答案] B [解析] log 12(x -1)≥0,∴0<x -1≤1,∴1<x ≤2.故选B.3.(2010·浙江文,2)已知函数f (x )=log 2(x +1),若f (α)=1,则α=( ) A .0 B .1 C .1 D .3 [答案] B[解析] 由题意知,f (α)=log 2(α+1)=1,∴α+1=2,∴α=1. 4.如果lg x =lg a +2lg b -3lg c ,则x 等于( ) A .a +2b -3c B .a +b 2-c 3 C.ab 2c 3D.2ab 3c[答案] C[解析] lg x =lg a +2lg b -3lg c =lg ab 2c 3,∴x =ab 2c3,故选C.5.已知a =log 32,那么log 38-2log 36用a 表示为( ) A .a -2B .5a -2C .3a -(1+a )2D .3a -a 2-1[答案] A[解析] 由log 38-2log 36=3log 32-2(log 32+log 33)=3a -2(a +1)=a -2. 6. 的值等于( )A .2+ 5B .2 5C .2+52D .1+52[答案] B[解析] 据对数恒等式及指数幂的运算法则有:7.(2010·重庆理,5)函数f (x )=4x +12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称 [答案] D[解析] ∵f (-x )=2-x +12-x =2x +12x =f (x )∴f (x )是偶函数,其图象关于y 轴对称.8.(09·天津文)设a =log 132,b =log 1213,c =⎝⎛⎭⎫120.3,则( ) A .a <b <c B .a <c <b C .b <c <aD .b <a <c[答案] B[解析] ∵a =log 132=-log 32∈(-1,0),b =log 1213=log 23∈(1,+∞),9.设lg2=a ,lg3=b ,则log 512等于( ) A.2a +b 1+a B.a +2b 1+a C.2a +b 1-aD.a +2b 1-a[答案] C[解析] log 512=lg12lg5=2lg2+lg31-lg2=2a +b1-a ,故选C.10.log 23·log 34·log 45·log 56·log 67·log 78=( ) A .1B .2C .3D .4[答案] C[解析] log 23·log 34·log 45·log 56·log 67·log 78=lg3lg2×lg4lg3×lg5lg4×lg6lg5×lg7lg6×lg8lg7=lg8lg2=3,故选C.11.已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=(13)x ,那么f (12)的值是( )A.33B. 3 C .- 3D .9[答案] C[解析] f (12)=-f (-12)=-(13)-12=- 3.12.已知集合A ={y |y =log 2x ,x >1},B ={y |y =(12)x ,x >1},则A ∩B =( )A .{y |0<y <12} B .{y |0<y <1}C .{y |12<y <1} D .∅[答案] A[解析] A ={y |y >0},B ={y |0<y <12}∴A ∩B ={y |0<y <12},故选A.1.(5116)0.5+(-1)-1÷0.75-2+(21027)-23=( )A.94 B.49 C .-94D .-49[答案] A[解析] 原式=(8116)12-1÷(34)-2+(6427)-23=94-1÷(43)2+(2764)23=94-916+916=94. 3.(2010·四川理,3)2log 510+log 50.25=( ) A .0 B .1 C .2D .4[答案] C[解析] 2log 510+log 50.25=log 5100+log 50.25=log 525=2.7.已知f (log 2x )=x ,则f (12)=( )A.14B.12C.22D. 2[答案] D[解析] 令log 2x =12,∴x =2,∴f (12)= 2.9.(09·湖南文)log 22的值为( ) A .- 2 B. 2 C .-12D.12[答案] D[解析] log 22=log 2212=12.3.设0<x <y <1,则下列结论中错误..的是( ) ①2x <2y ②⎝⎛⎭⎫23x <⎝⎛⎭⎫23y ③log x 2<log y 2 ④log 12x >log 12yA .①②B .②③C .①③D .②④[答案] B[解析] ∵y =2u 为增函数,x <y ,∴2x <2y ,∴①正确; ∵y =⎝⎛⎭⎫23u为减函数,x <y ,∴⎝⎛⎭⎫23x >⎝⎛⎭⎫23y ,∴②错误; ∵y =log 2x 为增函数,0<x <y <1,∴log 2x <log 2y <0,∴log x 2>log y 2,∴③错误; ∵y =log 12u 为减函数0<x <y ,∴log 12x >log 12y ,∴④正确.2.一批价值a 万元的设备,由于使用时磨损,每年比上一年价值降低b %,则n 年后这批设备的价值为( )A .na (1-b %)B .a (1-nb %)C .a [1-(b %)n ]D .a (1-b %)n[答案] D6.已知f (x )=⎩⎪⎨⎪⎧f (x +2) x ≤0log 12x x >0,则f (-8)等于( )A .-1B .0C .1D .2[答案] A[解析] f (-8)=f (-6)=f (-4)=f (-2)=f (0)=f (2)=log 122=-1,选A.11.已知log 12b <log 12a <log 12c ,则( ) A .2b >2a >2c B .2a >2b >2c C .2c >2b >2aD .2c >2a >2b[答案] A[解析] ∵由log 12b <log 12a <log 12c ,∴b >a >c , 又y =2x 为增函数,∴2b >2a >2c .故选A. 1.12log 612-log 62等于( ) A .22 B .12 2 C.12D .3[答案] C[解析] 12log 612-log 62=12log 612-12log 62=12log 6122=12log 66=12,故选C. 7.(2010·湖北文,5)函数y =1log 0.5(4x -3)的定义域为( )A.⎝⎛⎭⎫34,1B.⎝⎛⎭⎫34,+∞ C .(1,+∞)D.⎝⎛⎭⎫34,1∪(1,+∞)[答案] A[解析] log 0.5(4x -3)>0=log 0.51,∴0<4x -3<1, ∴34<x <1. 6.若2x +2-x =5,则4x +4-x 的值是( )A .29B .27C .25D .23[答案] D[解析] 4x +4-x =(2x +2-x )2-2=23. 1.已知幂函数f (x )的图象经过点(2,22),则f (4)的值为( ) A .16 B.116 C.12D .2解析:选C.设f (x )=x n ,则有2n=22,解得n =-12, 即f (x )=x -12,所以f (4)=4-12=12.3.不论a 取何正实数,函数f (x )=a x +1-2恒过点( )A .(-1,-1)B .(-1,0)C .(0,-1)D .(-1,-3)解析:选A.f (-1)=-1,所以,函数f (x )=a x +1-2的图象一定过点(-1,-1).1.使不等式23x -1>2成立的x 的取值为( )A .(23,+∞) B .(1,+∞)C .(13,+∞)D .(-13,+∞)解析:选A.23x -1>2⇒3x -1>1⇒x >23.2.下列幂函数中,定义域为{x |x >0}的是( )A .y =x 23 B .y =x 32 C .y =x -13D .y =x -34解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x ≥0;C.y =x -13=13x,x ≠0;D.y =x -34=14x 32.根式1a 1a(式中a >0)的分数指数幂形式为( ) A .a -43 B .a 43C .a -34 D .a 34解析:选C.1a1a= a -1·(a -1)12=a -32=(a -32)12=a -34.3.(a -b )2+5(a -b )5的值是( ) A .0 B .2(a -b ) C .0或2(a -b ) D .a -b 解析:选C.当a -b ≥0时, 原式=a -b +a -b =2(a -b ); 当a -b <0时,原式=b -a +a -b =0. 二、填空题13.若3log 3x =19,则x 等于________.解析:∵3log 3x =19=3-2∴log 3x =-2,∴x =3-2=19.答案:1914.函数y =a x +1(0<a ≠1)的反函数图象恒过点______.[答案] (1,-1)[解析] 由于y =a x +1的图象过(-1,1)点,因此反函数图象必过点(1,-1). 15.函数y =log a (x +2)+3(a >0且a ≠1)的图象过定点________.解析:当x =-1时,log a (x +2)=0,y =log a (x +2)+3=3,过定点(-1,3). 答案:(-1,3)16.log 6[log 4(log 381)]=________. [答案] 0[解析] log 6[log 4(log 381)]=log 6(log 44)=log 61=0.17.函数f (x )=a x (a >0且a ≠1),在x ∈[1,2]时的最大值比最小值大a2,则a 的值为________.[答案] 32或12[解析] 注意进行分类讨论(1)当a >1时,f (x )=a x 为增函数,此时 f (x )max =f (2)=a 2,f (x )min =f (1)=a ∴a 2-a =a 2,解得a =32>1.(2)当0<a <1时,f (x )=a x 为减函数,此时 f (x )max =f (1)=a ,f (x )min =f (2)=a 2 ∴a -a 2=a 2,解得a =12∈(0,1)综上所述:a =32或12.9.指数函数y =f (x )的图象过点(-1,12),则f [f (2)]=________.[答案] 16[解析] 设f (x )=a x (a >0且a ≠1),∵f (x )图象过点(-1,12),∴a =2,∴f (x )=2x ,∴f [f (2)]=f (22)=f (4)=24=16.14.已知log a 12<1,那么a 的取值范围是__________.[答案] 0<a <12或a >1[解析] 当a >1时,log a 12<0成立,当0<a <1时,log a 12<log a a ,∴12>a >0.12.使对数式log (x -1)(3-x )有意义的x 的取值范围是________. [答案] 1<x <3且x ≠2[解析] y =log (x -1)(3-x )有意义应满足 ⎩⎪⎨⎪⎧3-x >0x -1>0x -1≠1,解得1<x <3且x ≠2.4.计算:(π)0+2-2×(214)12=________.解析:(π)0+2-2×(214)12=1+122×(94)12=1+14×32=118. 答案:1189.(lg5)2+lg2·lg50=________. [答案] 1[解析] 原式=(lg5)2+(1-lg5)(1+lg5) =(lg5)2+1-(lg5)2=1. 18.计算:(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2=________;(3)lg 23-lg9+1=________; (4)13log 168+2log 163=________; (5)log 6112-2log 63+13log 627=________.[答案] 2,1,lg 103,-1,-2[解析] (1)2log 210+log 20.04=log 2(100×0.04)=log 24=2 (2)lg3+2lg2-1lg1.2=lg(3×4÷10)lg1.2=lg1.2lg1.2=1(3)lg 23-lg9+1=lg 23-2lg3+1=(1-lg3)2=1-lg3=lg 103(4)13log 168+2log 163=log 162+log 163=log 166=-1 (5)log 6112-2log 63+13log 627=log 6112-log 69+log 63=log 6(112×19×3)=log 6136=-2.19.化简求值: (1)0.064-13-(-18)0+1634+0.2512;(2)a -1+b -1(ab )-1(a ,b ≠0). 解:(1)原式=(0.43)-13-1+(24)34+(0.52)12=0.4-1-1+8+12=52+7+12=10. (2)原式=1a +1b 1ab =a +b ab1ab=a +b .10.计算:(1)log 2(3+2)+log 2(2-3);(2)22+log 25-2l og 23·log 35. 解:(1)log 2(3+2)+log 2(2-3) =log 2(2+3)(2-3)=log 21=0.(2)22+log25-2log23·log35=22×2log25-2lg3lg2×lg5lg3=4×5-2log 25=20-5=15. 20.求下列函数的定义域:(1)y =log 333x +4;(2)y =log (x -1)(3-x ).解:(1)∵33x +4>0,∴x >-43,∴函数y =log 333x +4的定义域为(-43,+∞).(2)∵⎩⎪⎨⎪⎧3-x >0x -1>0x -1≠1,∴⎩⎨⎧1<x <3x ≠2.∴函数的定义域为(1,2)∪(2,3).21.求函数f (x )=log a (x 2-2x )(a >0且a ≠1)的定义域和单调增区间. [解析] 由x 2-2x >0得,x <0或x >2,∴定义域为(-∞,0)∪(2,+∞).∵函数u =x 2-2x =(x -1)2-1的对称轴为x =1,∴函数u =x 2-2x 在(-∞,0)上单调减,在(2,+∞)上单调增, ∴当a >1时,函数f (x )的单调增区间为(2,+∞), 当0<a <1时,函数f (x )的单调增区间为(-∞,0). 22.已知f (x )=log a 1+x1-x (a >0且a ≠1),(1)求f (x )的定义域; (2)判断y =f (x )的奇偶性; (3)求使f (x )>0的x 的取值范围.[解析] (1)依题意有1+x1-x >0,即(1+x )(1-x )>0,所以-1<x <1,所以函数的定义域为(-1,1).(2)f (x )为奇函数.因为函数的定义域为(-1,1), 又f (-x )=log a 1-x 1+x =log a (1+x 1-x )-1=-log a 1+x1-x =-f (x ),因此y =f (x )为奇函数.(3)由f (x )>0得,log a 1+x1-x >0(a >0,a ≠1),①当0<a <1时,由①可得0<1+x1-x <1,②解得-1<x <0;当a >1时,由①知1+x1-x >1,③解此不等式得0<x <1.22.已知幂函数f (x )=x α的图象过(8,14)点,试指出该函数的定义域、奇偶性、单调区间.[解析] ∵f (x )=x α过⎝⎛⎭⎫8,14点,∴14=8α,即2-2=23α,∴α=-23.∴f (x )=x -23,即f (x )=13x 2 .(1)欲使f (x )有意义,须x 2>0,∴x ≠0,∴定义域为{x ∈R |x ≠0}.(2)对任意x ∈R 且x ≠0,有f (-x )=13(-x )2=f (x ),∴f (x )为偶函数.(3)∵α<0,∴f (x )在(0,+∞)上是减函数,又f (x )为偶函数,∴f (x )在(-∞,0)上为增函数,故单调增区间为(-∞,0),单调减区间为(0,+∞).15.对于函数y =(12)x 2-6x +17,(1)求函数的定义域、值域;(2)确定函数的单调区间. [解析] (1)设u =x 2-6x +17,∵函数y =(12)u 及u =x 2-6x +17的定义域是R , ∴函数y =(12)x 2-6x +17的定义域是R . ∵u =x 2-6x +17=(x -3)2+8≥8,∴(12)u ≤(12)8=1256, 又∵(12)u >0,∴函数的值域为{y |0<y ≤1256}. (2)∵函数u =x 2-6x +17在[3,+∞)上是增函数,∴当3≤x 1<x 2<+∞时,有u 1<u 2.∴y 1>y 2,即[3,+∞)是函数y =(12)x 2-6x +17的单调递减区间; 同理可知,(-∞,3]是函数y =(12)x 2-6x +17的单调递增区间. 15.求函数y =log 2(x 2-6x +5)的定义域和值域.[解析] 由x 2-6x +5>0得x >5或x <1因此y=log2(x2-6x+5)的定义域为(-∞,1)∪(5,+∞)设y=log2t,t=x2-6x+5∵x>5或x<1,∴t>0,∴y∈(-∞,+∞)因此y=log2(x2-6x+5)的值域为R.16.已知函数f(x)=log a(a x-1)(a>0且a≠1)(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)x为何值时,函数值大于1.[解析](1)f(x)=log a(a x-1)有意义,应满足a x-1>0即a x>1当a>1时,x>0,当0<a<1时,x<0因此,当a>1时,函数f(x)的定义域为{x|x>0};0<a<1时,函数f(x)的定义域为{x|x<0}.(2)当a>1时y=a x-1为增函数,因此y=log a(a x-1)为增函数;当0<a<1时y=a x-1为减函数,因此y=log a(a x-1)为增函数综上所述,y=log a(a x-1)为增函数.(3)a>1时f(x)>1即a x-1>a∴a x>a+1∴x>log a(a+1)0<a<1时,f(x)>1即0<a x-1<a∴1<a x<a+1∴log a(a+1)<x<0.。
(完整版)新高考真题《函数的概念与基本初等函数》小题专题训练(含答案)
![(完整版)新高考真题《函数的概念与基本初等函数》小题专题训练(含答案)](https://img.taocdn.com/s3/m/0b02404f302b3169a45177232f60ddccda38e6b4.png)
因为 为偶函数,故 ,
时 ,整理得到 ,
故 ,
7.【2020年高考全国I卷理数】若 ,则
A. B.
C. D.
【答案】B
【解析】设 ,则 为增函数,因为
所以 ,
所以 ,所以 .
,
当 时, ,此时 ,有
当 时, ,此时 ,有 ,所以C、D错误.
【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题.
13.【2020年高考天津】函数 的图象大致为
A B
CD
【答案】A
【解析】由函数的解析式可得: ,则函数 为奇函数,其图象关于坐标原点对称,选项CD错误;
当 时, ,选项B错误.
【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
14.【2020年高考天津】设 ,则 的大小关系为
A. B.
C. D.
【答案】D
【解析】因为 ,
,
,
所以 .
故选:D.
【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.
比较指对幂形式的数的大小关系,常用方法:
(1)利用指数函数的单调性: ,当 时,函数递增;当 时,函数递减;
A.10名B.18名
C.24名D.32名
【答案】B
【解析】由题意,第二天新增订单数为 ,设需要志愿者x名,
高一数学基本初等函数与应用试题
![高一数学基本初等函数与应用试题](https://img.taocdn.com/s3/m/b15a19d8192e45361166f57d.png)
高一数学基本初等函数与应用试题1.的值为 .【答案】【解析】。
【考点】正弦二倍角公式、诱导公式。
2.用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用一个单位的水可洗掉蔬菜上残留农药的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数.⑴试规定的值,并解释其实际意义;⑵试根据假定写出函数应满足的条件和具有的性质;⑶设,现有单位量的水,可以清洗一次,也可以把水平均分成两份后清洗两次.试问用那种方案清洗后蔬菜上残留的农药量比较少?说明理由.【答案】(1)没有用水洗时,蔬菜上的农药量将保持原样(2),,在上单调递减,且;(3)当时,清洗两次后残留的农药量较少;当时,两种清洗方法具有相同的效果;当时,一次清洗残留的农药量较少【解析】(1)规定:“f(0)=1”,表示没有用水洗时,盘子上洗洁净的量将保持原样.(2)根据实际意义确定函数f(x)应该满足的条件和具有的性质;(3)先设仅清洗一次,计算出残留在洗洁净量,清洗两次后,残留的洗洁净量,再比较它们的大小关系即得.⑴表示没有用水洗时,蔬菜上的农药量将保持原样⑵根据题意,用一个单位的水可洗掉蔬菜上残留农药的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数.则可知函数应该满足的条件和具备的性质有第一问的结论,同时根据题意,用一个单位的水可洗掉蔬菜上残留农药的,则,并且用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上故可知在上单调递减,且;(3)由于设,现有单位量的水,可以清洗一次,也可以把水平均分成两份后清洗两次.如果清洗一次,那么可知残留的农药量为,如果把水平均分成两份后清洗一次,再清洗一次可知,当=解得a=,清洗两次后残留农药相等,当<,a>,清洗两次后残留的农药量较少;当>,a<,清洗两次后残留的农药量较多。
第二章 必刷小题3 基本初等函数-2024-2025学年高考数学大一轮复习(人教A版)配套PPT课件
![第二章 必刷小题3 基本初等函数-2024-2025学年高考数学大一轮复习(人教A版)配套PPT课件](https://img.taocdn.com/s3/m/17311735a55177232f60ddccda38376baf1fe027.png)
用于去除铁锈、泥沙、悬浮物等各种大颗粒杂质.假设每一层PP棉滤芯可
以过滤掉三分之一的大颗粒杂质,过滤前水中大颗粒杂质含量为25 mg/L,
若要满足过滤后水中大颗粒杂质含量不超过2.5 mg/L,则PP棉滤芯层数
最少为(参考数据:lg 2≈0.30,lg 3≈0.48)
A.5
√B.6
C.7
D.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
因此loga(1+a)<loga1=0,故B正确;
因为0<a<1,所以0<1-a<1,
1
1
因此 (1 a)3 (1 a)2 ,故C不正确;
因为0<a<1,所以0<1-a<1,
因此a1-a<a0=1,故D正确.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
11.(2024·绥化模拟)已知函数f(x)=a·12|x|+b的图象经过原点,且无限接近 直线y=2,但又不与该直线相交,则下列说法正确的是
第二章
必刷小题3 基本初等函数
一、单项选择题
1.已知函数f(x)=log3x与g(x)的图象关于y=x对称,则g(-1)等于
A.3
√B.13
C.1
D.-1
由题意知g(x)是f(x)=log3x的反函数, 所以 g(x)=3x,所以 g(-1)=3-1=13.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.(2023·邯郸质检)已知幂函数 f(x)满足ff62=4,则 f 13的值为
A.2
√B.14
C.-14
D.-2
函数与基本初等函数测试题及答案
![函数与基本初等函数测试题及答案](https://img.taocdn.com/s3/m/9b185afa915f804d2a16c1a9.png)
函数与基本初等函数测试题一、选择题(本大题共12小题,每小题5分,共60分) 1.函数y =)23(log 21-x 的定义域是( ) A .[)+∞,1 B .),32(+∞ C .⎥⎦⎤⎢⎣⎡1,32 D .(32,1] 答案 D2.下列同时满足条件①是奇函数;②在[0,1]上是增函数;③在[0,1]上最小值为0的函数是 ( ) A .y =x 5-5x B .y =sin x +2xC .y =xx 2121+- D .y =x-1答案B3.(2008·湛江模拟)下列函数在其定义域内既是奇函数又是增函数的是 ( )A .21x y =(x ∈(0,+∞))B .y =3x (x ∈R )C . 31x y =(x ∈R )D .y =lg|x |(x ≠0) 答案C4.(2008·杭州模拟)已知偶函数f (x )满足条件:当x ∈R 时,恒有f (x +2)=f (x ),且0≤x ≤1时,有 ,0)(>'x f 则f )15106(),17101()1998f f ,(的大小关系是( ) A .)17101()15106()1998(f f f >> B .)17101()1998()15106(f f f >> C .)15106()1998()17101(f f f >> D .)1998()17101()15106(f f f >> 答案 B5.如图为函数y =m +log n x 的图象,其中m ,n 为常数,则下列结论正确的是 ( )A .m <0,n >1B .m >0,n >1C .m >0,0<n <1D .m <0,0<n <1 答案D6.已知f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=2x -1,则f (log 212)的值为 ( )A .31 B .34C .2D .11 答案 A7.(2008·杭州模拟)已知函数f (x )=(x 2-3x +2)g (x )+3x -4,其中g(x )是定义域为R 的函数,则方程f (x )=0在下面哪个范围内必有实数根( )A.(0,1)B.(1,2)C.(2,3)D.(2,4)答案B8.若方程2ax2-x-1=0在(0,1)内恰有一解,则a的取值范围是( )A.a<-1B.a>1C.-1<a<1D.0≤a<1答案 B9.f(x)是定义在R上的以3为周期的偶函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是 ( )A.5B.4C.3D.2答案 B10.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表1 市场供给表单价(元/kg) 2 2.4 2.8 3.2 3.6 4供给量(1 000 kg)50 60 70 75 80 90表2 市场需求表单价(元/kg ) 4 3.42.92.62.32需求量(1 000 kg )50 60 65 70 75 8根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间 ( ) A .(2.3,2.4)内 B .(2.4,2.6)内C .(2.6,2.8)内D .(2.8,2.9)内 答案C11.(2008·成都模拟)已知函数f (x )=log a (12+x +bx ) (a >0且a ≠1),则下列叙述正确的是 ( )A.若a =21,b =-1,则函数f (x )为R 上的增函数B.若a =21,b =-1,则函数f (x )为R 上的减函数C.若函数f (x )是定义在R 上的偶函数,则b =±1 D .若函数f (x )是定义在R 上的奇函数,则b =1答案A12.设函数f (x )=,0,20,2⎪⎩⎪⎨⎧>≤++x x c bx x若f (-4)=f (0),f (-2)=-2,则关于x的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4 答案 C二、填空题(本大题共4小题,每小题4分,共16分) 13.设函数f (x )=(]⎪⎩⎪⎨⎧+∞∈∞-∈-).,1(,log ,1,,281x x x x 则满足f (x )=41的x 值为 . 答案 314.已知函数f (x )=⎪⎩⎪⎨⎧<+≥)4()1()4()21(x x f x x ,则f (log 23)的值为 .答案 24115.(2008· 通州模拟)用二分法求方程x 3-2x -5=0在区间[2,3]内的实根,取区间中点x 0=2.5,那么下一个有实根的区间是 . 答案 (2,2.5)16.(2008·福州模拟)对于函数f (x )定义域中任意的x 1,x 2 (x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)f (x 2); ②f (x 1·x 2)=f (x 1)+f (x 2); ③;0)()(2121>--x x x f x f④2)()()2(2121x f x f x x f +<+当f (x )=2x 时,上述结论中正确结论的序号是 . 答案 ①③④三、解答题(本大题共6小题,共74分)17.(12分)设直线x =1是函数f (x )的图象的一条对称轴,对于任意x ∈R ,f (x +2)=-f (x ),当-1≤x ≤1时,f (x )=x 3. (1)证明:f (x )是奇函数;(2)当x ∈[3,7]时,求函数f (x )的解析式. (1)证明 ∵x =1是f (x )的图象的一条对称轴, ∴f (x +2)=f (-x ).又∵f (x +2)=-f (x ),∴f (x )=-f (x +2)=-f (-x ),即f (-x )=-f (x ).∴f (x )是奇函数. (2)解 ∵f (x +2)=-f (x ),∴f (x +4)=f [(x +2)+2] =-f (x +2)=f (x ),∴T =4.若x ∈[3,5],则(x -4)∈[-1,1],∴f (x -4)=(x -4)3.又∵f (x -4)=f (x ),∴f (x )=(x -4)3,x ∈[3,5].若x ∈(5,7],则(x -4)∈(1,3],f (x -4)=f (x ).由x =1是f (x )的图象的一条对称轴可知f [2-(x -4)]=f (x -4) 且2-(x -4)=(6-x )∈[-1,1],故f (x )=f (x -4)=f (6-x )=(6-x )3=-(x -6)3.综上可知f (x )=⎪⎩⎪⎨⎧≤<--≤≤-.75,)6(,53,)4(33x x x x18.(12分)等腰梯形ABCD 的两底分别为AB =10,CD =4,两腰AD =CB =5,动点P 由B 点沿折线BCDA 向A 运动,设P 点所经过的路程为x ,三角形ABP 的面积为S. (1)求函数S =f (x )的解析式;(2)试确定点P 的位置,使△ABP 的面积S 最大.解 (1)过C 点作CE ⊥AB 于E , 在△BEC 中,CE =2235-=4,∴sin B =54.由题意,当x ∈(0,5]时,过P 点作PF ⊥AB 于F ,∴PF =x sin B =54x ,∴S =21×10×54x =4x , 当x ∈(5,9]时,∴S =21×10×4=20. 当x ∈(9,14]时,AP =14-x ,PF =AP ·sin A =5)14(4x -, ∴S =21×10×(14-x ) ×54=56-4x .综上可知,函数S =f (x )=(](](]⎪⎩⎪⎨⎧∈-∈∈14,9456.9,5205,04x x x x x(2)由(1)知,当x ∈(0,5]时,f (x )=4x 为增函数, 所以,当x =5时,取得最大值20. 当x ∈(5,9]时,f (x )=20,最大值为20.当x ∈(9,14]时,f (x )=56-4x 为减函数,无最大值. 综上可知:当P 点在CD 上时,△ABP 的面积S 最大为20.19. (2008·深圳模拟)(12分)据调查,某地区100万从事传统农业的农民,人均收入3 000元,为了增加农民的收入,当地政府积极引进资本,建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作,据估计,如果有x (x >0)万人进企业工作,那么剩下从事传统农业的农民的人均收入有望提高2x %,而进入企业工作的农民的人均收入为3 000a 元 (a >0).(1)在建立加工企业后,要使从事传统农业的农民的年总收入不低于加工企业建立前的农民的年总收入,试求x 的取值范围;(2)在(1)的条件下,当地政府应该如何引导农民(即x 多大时),能使这100万农民的人均年收入达到最大. 解(1)由题意得(100-x )·3 000·(1+2x %)≥100×3 000, 即x 2-50x ≤0,解得0≤x ≤50. 又∵x >0,∴0<x ≤50.(2)设这100万农民的人均年收入为y 元, 则y =100000300)1(0003601000003%)21(0003)100(2+++-=++⨯⨯-x a x ax x x=-0003)1(301062+++x a x .∴若25(a +1)≤50,即0<a ≤1时,当x =25(a +1)时,y max =.37537503750003)1(25)1(30)1(25106222++=++⨯+++⨯-a a a a a 若a >1时,函数在(]50,0上是增函数.∴当x =50时,y max =106-×502+30(a +1) ×50+3 000=-1500+1 500a +1 500+3 000=1 500a +3 000.答 若0<a ≤1,当x =25(a +1)时,使100万农民人均年收入最大.若a >1,当x =50时,使100万农民的人均年收入最大. 20.(12分)设a ,b ∈R ,且a ≠2,定义在区间(-b ,b )内的函数f (x )=xax211lg ++是奇函数. (1)求b 的取值范围; (2)讨论函数f (x )的单调性. 解 (1)f (x )=lgxax211++(-b <x <b )是奇函数等价于:对任意x ∈(-b ,b )都有⎪⎩⎪⎨⎧>++-=-②0211①)()(,,x axx f x f ①式即为axxx ax ++=--121lg 211lg,由此可得axxx ax ++=--121211,也即a 2x 2=4x 2,此式对任意x ∈(-b ,b )都成立相当于a 2=4,因为a ≠2,所以a =-2,代入②式,得x x2121+->0,即-21<x <21,此式对任意x ∈(-b ,b )都成立相当于-21≤-b <b ≤21, 所以b 的取值范围是(0, 21]. (2)设任意的x 1,x 2∈(-b ,b ),且x 1<x 2,由b ∈(0,21],得-21≤-b <x 1<x 2<b ≤21, 所以0<1-2x 2<1-2x 1,0<1+2x 1<1+2x 2, 从而f (x 2)-f (x 1)=.01lg )21)(21()21)(21(lg 2121lg 2121lg12121122=<-++-=+--+-x x x x x x x x 因此f (x )在(-b ,b )内是减函数,具有单调性.21.(12分)已知定义域为R 的函数f (x )满足f (f (x )-x 2+x )=f (x )-x 2+x .(1)若f (2)=3,求f (1);又若f (0)=a ,求f (a );(2)设有且仅有一个实数x 0,使得f (x 0)=x 0,求函数f (x )的解析表达式.解 (1)因为对任意x ∈R , 有f (f (x )-x 2+x )=f (x )-x 2+x , 所以f (f (2)-22+2)=f (2)-22+2又由f (2)=3,得f (3-22+2)=3-22+2,即f (1)=1. 若f (0)=a ,则f (a -02+0)=a -02+0,即f (a )=a .(2)因为对任意x ∈R ,有f (f (x )-x 2+x )=f (x )-x 2+x .又因为有且只有一个实数x 0,使得f (x 0)=x 0.所以对任意x ∈R ,有f (x )-x 2+x =x 0. 在上式中令x =x 0,有f (x 0)-x 20+x 0=x 0.又因为f (x 0)=x 0,所以x 0-x 20=0,故x 0=0或x 0=1.若x 0=0,则f (x )-x 2+x =0,即f (x )=x 2-x .但方程x 2-x =x 有两个不同实根,与题设条件矛盾, 故x 0≠0.若x 0=1,则有f (x )-x 2+x =1,即f (x )=x 2-x +1. 易验证该函数满足题设条件.22.(2008·南京模拟)(14分)已知函数y =f (x )是定义在区间[-23,23]上的偶函数,且x ∈[0,23]时,f (x )=-x 2-x +5(1)求函数f (x )的解析式;(2)若矩形ABCD 的顶点A ,B 在函数y =f (x )的图象上,顶点C ,D 在x 轴上,求矩形ABCD 面积的最大值.解 (1)当x ∈[-23,0]时,-x ∈[0,23]. ∴f (-x )=-(-x )2-(-x )+5=-x 2+x +5.又∵f (x )是偶函数,∴f (x )=f (-x )=-x 2+x +5.∴f (x )=⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤ ⎝⎛∈+--⎥⎦⎤⎢⎣⎡-∈++-.23,0,50,23,522x x x x x x (2)由题意,不妨设A 点在第一象限,坐标为(t ,-t 2-t +5),其中t ∈(0,23].由图象对称性可知B 点坐标为(-t ,-t 2-t +5).则S (t )=S 矩形ABCD =2t (-t 2-t +5)=-2t 3-2t 2+10t .)(t S '=-6t 2-4t +10.由)(t S '=0,得t 1=-35(舍去),t 2=1.当0<t <1时,)(t S '>0;t >1时,)(t S '<0.∴S (t )在(0,1]上单调递增,在[1,23]上单调递减.∴当t =1时,矩形ABCD 的面积取得极大值6, 且此极大值也是S (t )在t ∈(0,23]上的最大值,从而当t =1时,矩形ABCD 的面积取得最大值6.。
03基本初等函数小题专练
![03基本初等函数小题专练](https://img.taocdn.com/s3/m/6a28b32d2e3f5727a5e96285.png)
03基本初等函数小题专练基本初等函数班级13、 14、 15、 16、一、选择题1.(2014·江西文,4)已知函数f (x )=⎩⎪⎨⎪⎧a ·2x ,x ≥02-x,x <0(a ∈R ),若f [f (-1)]=1,则a =( )A.14B.12 C .1 D .2[答案] A[解析] ∵f (-1)=2-(-1)=2, ∴f (f (-1))=f (2)=4a =1,∴a =14.2.(文)(2013·江西八校联考)已知实数a 、b ,则“2a >2b ”是“log 2a >log 2b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] B[解析] 由y =2x 为增函数知,2a >2b ⇔a >b ;由y =log 2x 在(0,+∞)上为增函数知,log 2a >log 2b ⇔a >b >0,∴a >b ⇒/ a >b >0,但a >b >0⇒a >b ,故选B.(理)(2014·陕西文,7)下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( )A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=(12)x [答案] B[解析] 本题考查了基本初等函数概念及幂的运算性质.只有B 选项中3x +y =3x ·3y 成立且f (x )=3x 是增函数.3.(2014·哈三中二模)幂函数f (x )的图象经过点(-2,-18),则满足f (x )=27的x 的值是( )A.12B.13 C.14 D.15[答案] B[解析] 设f (x )=x α,则-18=(-2)α,∴α=-3,∴f (x )=x -3,由f (x )=27得,x -3=27,∴x =13.4.(文)(2013·霍邱二中模拟)设a =log 954,b =log 953,c =log 545,则( )A.a <c <b B .b <c <aC .a <b <cD .b<a <c[答案] D[解析] ∵y =log 9x 为增函数,∴log 954>log 953,∴a >b ,又c =log 545=1+log 59>2,a =log 954=1+log 96<2,∴c >a >b ,故选D.答案] D解析] 由指数函数、对数函数的图象与性质知正确,又C 是B 中函数图象位于x 轴下方部分轴翻折到x 轴上方,故C 正确.y =log 2|x |=⎩⎨⎧log 2x (x >0)log (-x ) (x <0)是偶函数,其图象-∞,x0)不单调递减,的取值范围是________[答案](-时,直线y=m与函数f(x)的图象有三个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本初等函数、函数的应用(小题)热点一 基本初等函数的图象与性质1.指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)互为反函数,其图象关于y =x 对称,它们的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中异同.2.幂函数y =x α的图象和性质,主要掌握α=1,2,3,12,-1五种情况.例1 (1)(2019·天津市十二重点中学联考)已知a =0.313log 0.6,b =121log 4,c =0.413log 0.5,则实数a ,b ,c 的大小关系为( ) A.c <a <b B.b <a <c C.a <c <b D.c <b <a答案 C解析 由题得b =121log 4=2, 因为0.60.3>0.60.4>0.50.4, ∴0.313log 0.6<0.413log 0.5,0.413log 0.5=130.4log 0.5<1310.4log 3=0.4,所以a <c <b .(2)已知函数f (x )=e x +2(x <0)与g (x )=ln(x +a )+2的图象上存在关于y 轴对称的点,则a 的取值范围是( ) A.⎝⎛⎭⎫-∞,1e B.(-∞,e) C.⎝⎛⎭⎫-1e ,e D.⎝⎛⎭⎫-e ,1e 答案 B解析 由题意知,方程f (-x )-g (x )=0在(0,+∞)上有解, 即e -x +2-ln(x +a )-2=0在(0,+∞)上有解, 即函数y =e-x与y =ln(x +a )的图象在(0,+∞)上有交点.函数y =ln(x +a )可以看作由y =ln x 左右平移得到, 当a =0时,两函数有交点,当a <0时,向右平移,两函数总有交点,当a >0时,向左平移,由图可知,将函数y =ln x 的图象向左平移到过点(0,1)时,两函数的图象在(0,+∞)上不再有交点,把(0,1)代入y =ln(x +a ),得1=ln a ,即a =e ,∴a <e.跟踪演练1 (1)(2019·天津市和平区质检)已知log 2a >log 2b ,则下列不等式一定成立的是( ) A.1a >1b B.ln(a -b )>0 C.2a -b <1 D.⎝⎛⎭⎫13a <⎝⎛⎭⎫12b答案 D解析 由log 2a >log 2b 可得a >b >0,故a -b >0,逐一考查所给的选项: A 项,1a <1b;B 项,a -b >0,ln(a -b )的符号不能确定;C 项,2a -b >1; D 项,⎝⎛⎭⎫13a <⎝⎛⎭⎫12a <⎝⎛⎭⎫12b.(2)在同一直角坐标系中,函数f (x )=2-ax 和g (x )=log a (x +2)(a >0且a ≠1)的大致图象可能为( )答案 A解析由题意知,当a>0时,函数f(x)=2-ax为减函数.若0<a<1,则函数f(x)=2-ax的零点x0=2a∈(2,+∞),且函数g(x)=log a(x+2)在(-2,+∞)上为减函数;若a>1,则函数f(x)=2-ax的零点x0=2a∈(0,2),且函数g(x)=log a(x+2)在(-2,+∞)上为增函数.热点二函数的零点1.判断函数零点的方法:(1)解方程法,即解方程f(x)=0,方程有几个解,函数f(x)有几个零点;(2)图象法,画出函数f(x)的图象,图象与x轴的交点个数即为函数f(x)的零点个数;(3)数形结合法,即把函数等价地转化为两个函数,通过判断两个函数图象的交点个数得出函数的零点个数;(4)利用零点存在性定理判断.2.解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.例2 (1)(2019·石家庄质检)已知函数f (x )=⎩⎪⎨⎪⎧e x ,x <0,4x 3-6x 2+1,x ≥0,其中e 为自然对数的底数,则函数g (x )=3[f (x )]2-10f (x )+3的零点个数为( ) A.4 B.5 C.6 D.3 答案 A解析 当x ≥0时,f (x )=4x 3-6x 2+1的导数为f ′(x )=12x 2-12x , 当0<x <1时,f (x )单调递减,x >1时,f (x )单调递增, 可得f (x )在x =1处取得最小值,最小值为-1,且f (0)=1,作出函数f (x )的图象,g (x )=3[f (x )]2-10f (x )+3,可令g (x )=0,t =f (x ), 可得3t 2-10t +3=0, 解得t =3或13,当t =13,即f (x )=13时,g (x )有三个零点;当t =3时,可得f (x )=3有一个实根, 综上,g (x )共有四个零点.(2)已知函数f (x )=⎩⎪⎨⎪⎧x e x ,x ≥0,-x ,x <0,又函数g (x )=[f (x )]2+tf (x )+1(t ∈R)有4个不同的零点,则实数t 的取值范围是( ) A.⎝⎛⎭⎫-∞,-e 2+1e B.⎝⎛⎭⎫e 2+1e ,+∞ C.⎝⎛⎭⎫-e 2+1e ,-2 D.⎝⎛⎭⎫2,e 2+1e答案 A解析 因为f (x )=⎩⎪⎨⎪⎧x e x ,x ≥0,-x ,x <0,当x <0时,f (x )=-x ,所以f (x )在(-∞,0)上为单调递减函数, 当x ≥0时,f ′(x )=e x1-xe x 2, 令f ′(x )=0,解得x =1,当0≤x <1时,f ′(x )>0, 所以f (x )在[0,1)上为单调递增函数, 当x ≥1时,f ′(x )<0,所以f (x )在[1,+∞)上为单调递减函数,且f (x )>0, 所以当x ≥0时,f (x )在x =1处取得极大值1e ,g (x )=[f (x )]2+tf (x )+1(t ∈R)有四个零点,令f (x )=m ,则关于m 的一元二次方程m 2+tm +1=0有两个不等实数根, 且一个在区间⎝⎛⎭⎫0,1e 上,一个在区间⎝⎛⎭⎫1e ,+∞上, 令h (m )=m 2+tm +1, 因为h (0)=1>0,所以只需h ⎝⎛⎭⎫1e <0即可满足m 2+tm +1=0有两个不等实数根,一个在⎝⎛⎭⎫0,1e ,一个在⎝⎛⎭⎫1e ,+∞,即⎝⎛⎭⎫1e 2+1e t +1<0,解不等式得t <-1+e 2e , 所以t 的取值范围为⎝⎛⎭⎫-∞,-e 2+1e .跟踪演练2 (1)(2019·凉山州质检)设函数f (x )是定义在R 上的偶函数,且f (x +2)=f (2-x ),当x ∈[-2,0)时,f (x )=⎝⎛⎭⎫22x -1,则在区间(-2,6)内关于x 的方程f (x )-log 8(x +2)=0解的个数为( ) A.1 B.2 C.3 D.4答案 C解析 对于任意的x ∈R ,都有f (2+x )=f (2-x ), ∴f (x +4)=f [2+(x +2)]=f [2-(x +2)]=f (-x )=f (x ), ∴函数f (x )是一个周期函数,且T =4. 又∵当x ∈[-2,0)时,f (x )=⎝⎛⎭⎫22x -1,且函数f (x )是定义在R 上的偶函数, 且f (6)=1,则函数y =f (x )与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f (x )与y =log 8(x +2)在区间(-2,6)上有3个不同的交点.(2)(2019·吉林调研)已知函数f (x )=⎩⎪⎨⎪⎧x +3,x >a ,x 2+6x +3,x ≤a ,若函数g (x )=f (x )-2x 恰有2个不同的零点,则实数a 的取值范围为________. 答案 [-3,-1)∪[3,+∞)解析 由题意得g (x )=⎩⎪⎨⎪⎧x +3-2x ,x >a ,x 2+6x +3-2x ,x ≤a ,即g (x )=⎩⎪⎨⎪⎧3-x ,x >a ,x 2+4x +3,x ≤a ,如图所示,因为g(x)恰有两个不同的零点,即g(x)的图象与x轴有两个交点.若当x≤a时,g(x)=x2+4x+3有两个零点,则令x2+4x+3=0,解得x=-3或x=-1,则当x>a时,g(x)=3-x没有零点,所以a≥3.若当x≤a时,g(x)=x2+4x+3有一个零点,则当x>a时,g(x)=3-x必有一个零点,即-3≤a<-1,综上a∈[-3,-1)∪[3,+∞).热点三函数建模与信息题1.构建函数模型解决实际问题的失分点:(1)不能选择相应变量得到函数模型;(2)构建的函数模型有误;(3)忽视函数模型中变量的实际意义.2.解决新概念信息题的关键:(1)依据新概念进行分析;(2)有意识地运用转化思想,将新问题转化为我们所熟知的问题.例3(1)将甲桶中的a升水缓慢注入空桶乙中,t min后甲桶剩余的水量符合指数衰减曲线y=a e nt.假设过5 min后甲桶和乙桶的水量相等,若再过m min甲桶中的水只有a4升,则m的值为()A.5B.6C.8D.10答案 A解析根据题意知,因为5 min后甲桶和乙桶的水量相等,所以函数f(x)=a e nt满足f(5)=a e5n=12a ,可得n =15ln 12,设当k min 后甲桶中的水只有a 4升,所以f (k )=a 4,即15ln 12·k =ln 14,所以15ln 12·k =2ln 12,解得k =10,k -5=5,即m =5,故选A.(2)(2019·闽粤赣三省十校联考)若函数y =f (x )的图象上存在两个点A ,B 关于原点对称,则称点对[A ,B ]为y =f (x )的“友情点对”,点对[A ,B ]与[B ,A ]可看作同一个“友情点对”,若函数f (x )=⎩⎪⎨⎪⎧2,x <0,-x 3+6x 2-9x +a ,x ≥0,恰好有两个“友情点对”,则实数a 的值为( )A.0B.1C.2D.-2 答案 C解析 设A (x ,2),其中x <0,则点A 关于原点对称的点B 为B (-x ,-2), 因为函数f (x )有两个友情点对,所以-(-x )3+6(-x )2-9(-x )+a =-2在(-∞,0)上有两个不同解, 即x 3+6x 2+9x +2=-a 在(-∞,0)上有两个不同解,即g (x )=x 3+6x 2+9x +2与y =-a 在(-∞,0)上有两个不同交点, g ′(x )=3x 2+12x +9,令g ′(x )=0,解得x 1=-3,x 2=-1,可知g (x )在(-∞,-3),(-1,0)上单调递增;在(-3,-1)上单调递减, 所以g (x )极小值为g (-1)=-2;极大值为g (-3)=2, 且x →0时,g (x )→2, ∴-a =g (-1)=-2,∴a =2.跟踪演练3 (1)某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元,该设备每年生产的收入均为21万元,设该设备使用了n (n ∈N *)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( ) A.6 B.7 C.8 D.6或7 答案 B解析 盈利总额为21n -9-⎣⎡⎦⎤2n +12×n n -1×3=-32n 2+412n -9,n ∈N *,由于对称轴为n =416,所以当n =7时,取最大值,故选B.(2)(2019·安徽省定远重点中学模拟)定义:如果函数f (x )的导函数为f ′(x ),在区间[a ,b ]上存在x 1,x 2(a <x 1<x 2<b )使得f ′(x 1)=f b -f a b -a ,f ′(x 2)=f b -f ab -a,则称f (x )为区间[a ,b ]上的“双中值函数”.已知函数g (x )=13x 3-m 2x 2是[0,2]上的“双中值函数”,则实数m 的取值范围是( ) A.⎣⎡⎦⎤43,83 B.(-∞,+∞) C.⎝⎛⎭⎫43,+∞ D.⎝⎛⎭⎫43,83答案 D解析 ∵函数g (x )=13x 3-m 2x 2,∴g ′(x )=x 2-mx ,∵函数g (x )=13x 3-m 2x 2是区间[0,2]上的双中值函数,∴区间[0,2]上存在x 1,x 2(0<x 1<x 2<2), 满足g ′(x 1)=g ′(x 2)=g2-g2-0=43-m , ∴x 21-mx 1=x 22-mx 2=43-m , ∴关于x 的一元二次方程x 2-mx +m -43=0在区间(0,2)上有两个不相等的解,令f (x )=x 2-mx +m -43,∴⎩⎪⎨⎪⎧f 0=m -43>0,f 2=83-m >0,Δ=m 2-4m -43>0,0<m2<2,解得43<m <83.∴实数m 的取值范围是⎝⎛⎭⎫43,83.真题体验1.(2019·全国Ⅰ,理,3)已知a=log20.2,b=20.2,c=0.20.3,则()A.a <b <cB.a <c <bC.c <a <bD.b <c <a答案 B解析 ∵a =log 20.2<0,b =20.2>1,c =0.20.3∈(0,1),∴a <c <b .故选B.2.(2018·全国Ⅰ,理,9)已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( ) A.[-1,0) B.[0,+∞) C.[-1,+∞) D.[1,+∞)答案 C解析 令h (x )=-x -a , 则g (x )=f (x )-h (x ).在同一坐标系中画出y =f (x ),y =h (x )图象的示意图,如图所示.若g (x )存在2个零点,则y =f (x )的图象与y =h (x )的图象有2个交点,平移y =h (x )的图象可知,当直线y =-x -a 过点(0,1)时,有2个交点, 此时1=-0-a ,a =-1.当y =-x -a 在y =-x +1上方,即a <-1时,仅有1个交点,不符合题意; 当y =-x -a 在y =-x +1下方,即a >-1时,有2个交点,符合题意. 综上,a 的取值范围为[-1,+∞).3.(2017·江苏,14)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________. 答案 8解析 由于f (x )∈[0,1),则只需考虑1≤x <10的情况,在此范围内,当x ∈Q ,且x ∉Z 时,设x =q p ,p ,q ∈N *,p ≥2且p ,q 互质.若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =nm ,m ,n ∈N *,m ≥2且m ,n 互质.因此10n m=q p,则10n =⎝⎛⎭⎫q p m,此时左边为整数,右边为非整数,矛盾.因此lg x ∉Q ,因此lg x 不可能与每个周期内x ∈D 对应的部分相等,只需考虑lg x 与每个周期内x ∉D 部分的交点,画出函数草图.图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期内x ∉D 部分,且x =1处(lg x )′=1x ln 10=1ln 10<1,则在x =1附近仅有1个交点,因此方程解的个数为8.押题预测1.设a =-log 232,b =log 26,c =log 412,则( )A.c >b >aB.b >c >aC.a >c >bD.a >b >c答案 B解析 -log 232=log 223<log 21=0,1<log 412=log 212<log 26, ∴b >c >a .2.设函数f (x )的定义域为R ,若存在常数m >0,使|f (x )|≤m |x |对一切实数x 均成立,则称f (x )为“倍约束函数”.现给出下列函数: ①f (x )=0; ②f (x )=x 2; ③f (x )=xx 2+x +1;④f (x )是定义在实数集R 上的奇函数,且对一切x 1,x 2均有|f (x 1)-f (x 2)|≤2|x 1-x 2|. 其中是“倍约束函数”的序号是( ) A.①②④ B.③④ C.①④ D.①③④ 答案 D解析 对于①,m 是任意正数时都有0≤m |x |,f (x )=0是倍约束函数,故①正确; 对于②,f (x )=x 2,|f (x )|=|x 2|≤m |x |,即|x |≤m ,不存在这样的m 对一切实数x 均成立,故②错误; 对于③,要使|f (x )|≤m |x |成立, 即⎪⎪⎪⎪xx 2+x +1≤m |x |,当x =0时,m 可取任意正数; 当x ≠0时,只需m ≥⎝⎛⎭⎫1x 2+x +1max ,因为x 2+x +1≥34,所以m ≥43,故③正确;对于④,f (x )是定义在实数集R 上的奇函数, 故|f (x )|是偶函数,因而由|f (x 1)-f (x 2)|≤2|x 1-x 2|得到, |f (x )|≤2|x |成立,存在m ≥2>0,使|f (x )|≤m |x |对一切实数x 均成立,符合题意, 故④正确.3.已知函数f (x )=⎩⎪⎨⎪⎧e x -1x ,x >0,ax +2a +1,x ≤0,a ∈R ,若方程f (x )-2=0恰有3个不同的根,则a的取值范围是________. 答案 (-∞,0)∪⎣⎡⎭⎫12,+∞ 解析 当x >0时,f (x )=e x -1x ,f ′(x )=e x-1x -1x 2,当0<x <1时,f ′(x )<0,函数f (x )单调递减; 当x >1时,f ′(x )>0,函数f (x )单调递增, 且f (1)=1,当x ≤0时,f (x )=ax +2a +1的图象恒过点(-2,1), 当a <0时,f (x )≥f (0)=2a +1, 当a ≥0时,f (x )≤f (0)=2a +1, 作出大致图象如图所示,方程f(x)-2=0有3个不同的根,即方程f(x)=2有3个解.结合图象可知,当a≥0时,若方程f(x)=2有三个根,则2a+1≥2,即a≥12,而当a<0时,结合图象可知,方程f(x)=2一定有3个解,综上所述,方程f(x)-2=0在a<0或a≥12时恰有3个不同的根.A组专题通关1.已知点(2,8)在幂函数f(x)=x n图象上,设a=f ⎝⎛⎭⎫⎝⎛⎭⎫450.3,b=f ⎝⎛⎭⎫⎝⎛⎭⎫540.2,c=125log4f⎛⎫⎪⎝⎭,则a,b,c的大小关系为()A.b>a>cB.a>b>cC.c>b>aD.b>c>a答案 A解析因为点(2,8)在幂函数f(x)=x n图象上,所以8=2n,所以n=3,即f(x)=x3,0<⎝⎛⎭⎫450.3<1,⎝⎛⎭⎫540.2>1,125log4<0,即125log4<⎝⎛⎭⎫450.3<⎝⎛⎭⎫540.2,因为f (x )为R 上的单调递增函数, 所以c <a <b .2.函数f (x )=ln x +2x -6的零点一定位于区间( ) A.(1,2) B.(2,3) C.(3,4) D.(4,5) 答案 B解析 函数f (x )=ln x +2x -6在其定义域上连续且单调, f (2)=ln 2+2×2-6=ln 2-2<0, f (3)=ln 3+2×3-6=ln 3>0,故函数f (x )=ln x +2x -6的零点在区间(2,3)上. 3.(2019·恩施州质检)设a =log 0.12,b =log 302,则( ) A.4ab >2(a +b )>3ab B.4ab <2(a +b )<3ab C.2ab <3(a +b )<4ab D.2ab >3(a +b )>4ab答案 B解析 因为a =log 0.12<0,b =log 302>0,所以ab <0,1a +1b =log 20.1+log 230=log 23∈⎝⎛⎭⎫32,2, 所以32<1a +1b <2,所以4ab <2(a +b )<3ab .4.国家规定某行业收入税如下:年收入在280万元及以下的税率为p %;超过280万元的部分按(p +2)%征税.现有一家公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( ) A.560万元 B.420万元 C.350万元 D.320万元答案 D解析 设该公司的年收入为a 万元, 则280p %+(a -280)(p +2)%=a (p +0.25)%, 解得a =280×22-0.25=320.5.(2019·济南模拟)若log 2x =log 3y =log 5z <-1,则( ) A.2x <3y <5z B.5z <3y <2x C.3y <2x <5z D.5z <2x <3y答案 B解析 ∵log 2x =log 3y =log 5z <-1, ∴设k =log 2x =log 3y =log 5z ,则k <-1, 设x =2k ,y =3k ,z =5k , 则2x =2k +1,3y =3k +1,5z =5k +1,设函数f(t)=t k+1,k+1<0,∴f(t)在t∈(0,+∞)时单调递减,f(5)<f(3)<f(2),即5k+1<3k+1<2k+1,因此5z<3y<2x.6.函数f(x)=2sin x-sin 2x在[0,2π]上的零点个数为()A.2B.3C.4D.5答案 B解析令f(x)=0,得2sin x-sin 2x=0,即2sin x-2sin x cos x=0,∴2sin x(1-cos x)=0,∴sin x=0或cos x=1.又x∈[0,2π],∴由sin x=0得x=0,π或2π,由cos x=1得x=0或2π.故函数f(x)的零点为0,π,2π,共3个.7.(2019·咸阳模拟)已知a,b,c分别是方程2x=-x,log2x=-x,log2x=x的实数解,则()A.b<c<aB.a<b<cC.a<c<bD.c<b<a答案 B解析根据题干要求得到,在同一坐标系中画出函数y=2x,y=log2x,y=-x,y=x四个函数图象,如图所示,方程的根就是两个图象的交点的横坐标,根据图象可得到a<b<c.8.(2019·朝阳市重点高中模拟)已知函数f (x )=[x ]([x ]表示不超过实数x 的最大整数),若函数g (x )=e x -e -x -2的零点为x 0,则g [f (x 0)]等于( ) A.1e -e -2 B.-2 C.e -1e -2 D.e 2-1e 2-2 答案 B解析 因为g (x )=e x -e -x -2, 所以g ′(x )=e x +e -x >0在R 上恒成立, 即函数g (x )=e x -e -x -2在R 上单调递增. 又g (0)=e 0-e 0-2=-2<0,g (1)=e 1-e -1-2>0, 所以g (x )在(0,1)上必然存在零点,即x 0∈(0,1), 因此f (x 0)=[x 0]=0, 所以g [f (x 0)]=g (0)=-2.9.(2019·南充模拟)已知定义在R 上的函数f (x )满足:f (x +4)=f (x ),f (x )=⎩⎪⎨⎪⎧-x 2+1,-1≤x ≤1,-|x -2|+1,1<x ≤3.若方程f (x )-ax =0有5个实根,则正数a 的取值范围是( ) A.⎝⎛⎭⎫14,13 B.⎝⎛⎭⎫16,14 C.⎝⎛⎭⎫16,8-25 D.⎝⎛⎭⎫16-67,16 答案 C解析 由f (x +4)=f (x ),得函数f (x )是以4为周期的周期函数,作出函数y =f (x )与函数y =ax 的图象, 由图象可得,f (x )=ax 在(3,5)内有两个实数根,当x ∈(3,5)时, y =-(x -4)2+1,即 x 2+(a -8)x +15=0在(3,5)上有2个实数根,由⎩⎪⎨⎪⎧Δ=a -82-60>0,32+3a -8+15>0,52+5a -8+15>0,3<8-a 2<5,解得 0<a <8-215.再由方程f (x )=ax 在(5,6)内无解,可得6a >1,a >16.综上可得16<a <8-215.10.(2019·衡水质检)已知函数f (x )=⎩⎪⎨⎪⎧|log 3x |,0<x <3,-cos ⎝⎛⎭⎫π3x ,3≤x ≤9,若存在实数x 1,x 2,x 3,x 4,当x 1<x 2<x 3<x 4时,满足f (x 1)=f (x 2)=f (x 3)=f (x 4),则x 1·x 2·x 3·x 4的取值范围是( ) A.⎝⎛⎭⎫21,1354 B.⎝⎛⎭⎫7,294 C.⎝⎛⎭⎫27,1354 D.[27,30)答案 C解析 先作函数图象, 若f (x 1)=f (x 2)=f (x 3)=f (x 4),则x 1x 2=1,x 3+x 4=12,x 3∈(3,4.5), 因此x 1·x 2·x 3·x 4=x 3(12-x 3),因为y =x 3(12-x 3)在(3,4.5)上单调递增, 所以y ∈⎝⎛⎭⎫27,1354. 11.(2019·宜宾诊断)已知奇函数f (x )是定义在R 上的单调函数,若函数g (x )=f (x 2)+f (a -2|x |)恰有4个零点,则a 的取值范围是( ) A.(-∞,1) B.(1,+∞) C.(0,1] D.(0,1)答案 D解析 函数g (x )=f (x 2)+f (a -2|x |)恰有4个零点, 令f (x 2)+f (a -2|x |)=0, 由函数f (x )为奇函数可得 f (x 2)=-f (a -2|x |)=f (2|x |-a ),由函数f (x )是定义在R 上的单调函数得x 2=2|x |-a , 则x 2-2|x |+a =0有4个根, 只需x 2-2x +a =0有2个不等正根,即⎩⎪⎨⎪⎧a >0,22-4a >0,解得0<a <1, 即a 的取值范围是0<a <1.12.(2019·天津市十二重点中学联考)已知函数f (x )=⎩⎪⎨⎪⎧|log 32-x |,x <2,-x -32+2,x ≥2,g (x )=x +1x -1,则方程f (g (x ))=a 的实根个数最多为( ) A.6 B.7 C.8 D.9 答案 C解析 由题意得,函数g (x )=x +1x -1的值域为[1,+∞)∪(-∞,-3], 设g (x )=t (t ∈[1,+∞)∪(-∞,-3]), 作出函数f (x )的图象如图,所以f (g (x ))=f (t )=a ,当1≤a <2时,直线和图象交点个数最多,有四个交点,也就是关于t 的方程f (t )=a 有四个实根.且可以有一个t ≤-3,有三个t >1.因为函数g (x )=x +1x -1在(0,1),(-1,0)上单调递减,在(1,+∞),(-∞,-1)上单调递增.所以g (x )=t ,当t 在[1,+∞)∪(-∞,-3]上每取一个t 值时,x 都有两个值和它对应, 因为方程f (t )=a 最多有4个根,所以方程f (g (x ))=a 最多有8个解. 13.(2019·甘肃、青海、宁夏联考)若函数f (x )=1+|x |+cos xx,则f (lg 2)+f ⎝⎛⎭⎫lg 12+f (lg 5)+f ⎝⎛⎭⎫lg 15=________. 答案 6解析 由题意得,f (x )+f (-x )=2+2|x |, ∵lg 2=-lg 12,lg 5=-lg 15,∴f (lg 2)+f (lg 12)+f (lg 5)+f (lg 15)=2×2+2(lg 2+lg 5)=6.14.对于函数f (x )与g (x ),若存在λ∈{x ∈R|f (x )=0},μ∈{x ∈R|g (x )=0},使得|λ-μ|≤1,则称函数f (x )与g (x )互为“零点密切函数”,现已知函数f (x )=e x -2+x -3与g (x )=x 2-ax -x +4互为“零点密切函数”,则实数a 的取值范围是________. 答案 [3,4]解析 由题意知,函数f (x )的零点为x =2, 设g (x )满足|2-μ|≤1的零点为μ,因为|2-μ|≤1,解得1≤μ≤3. 因为函数g (x )的图象开口向上,所以要使g (x )的至少一个零点落在区间[1,3]上,则需满足g (1)g (3)≤0,或⎩⎪⎨⎪⎧g 1>0,g 3>0,Δ≥0,1<a +12<3,解得103≤a ≤4,或3≤a <103,得3≤a ≤4.故实数a 的取值范围为[3,4].15.(2019·河北省中原名校联盟联考)已知函数f (x )=⎩⎪⎨⎪⎧x 4-3x 2-ax ,x >0,x 4-3x 2+ax ,x <0有四个零点,则实数a 的取值范围是________. 答案 (-2,0)解析 因为f (x )是偶函数,根据对称性,x 4-3x 2-ax =0在(0,+∞)上有两个不同的实根, 即a =x 3-3x 在(0,+∞)上有两个不同的实根,等价转化为直线y =a 与曲线y =x 3-3x (x >0)有两个交点, 而y ′=3x 2-3=3(x +1)(x -1),则当0<x <1时,y ′<0,当x >1时,y ′>0,所以函数y =x 3-3x 在(0,1)上是减函数,在(1,+∞)上是增函数, 于是y min =y |x =1=-2,x →0,y →0,故a ∈(-2,0).16.(2019·六安模拟)己知函数f (x )=⎩⎪⎨⎪⎧|ln x |,x >0,x 2+4x +1,x ≤0,若关于x 的方程[f (x )]2-bf (x )+c =0(b ,c ∈R)有8个不等的实数根,则b +c 的取值范围是________. 答案 (0,3)解析 根据题意作出f (x )的简图,由图象可得当f (x )∈(0,1]时,有四个不同的x 与f (x )对应. 再结合题中“方程[f (x )]2-bf (x )+c =0有8个不同实数解”,可知关于k 的方程k 2-bk +c =0有两个不同的实数根k 1,k 2,且k 1和k 2均为大于0且小于等于1的实数.所以⎩⎪⎨⎪⎧b 2-4c >0,0<b 2<1,02-b ×0+c >0,12-b +c ≥0,化简得⎩⎪⎨⎪⎧c <b 24,0<b <2,c >0,1-b +c ≥0,此不等式组表示的区域如图,令z =b +c ,则z =b +c 在(2,1)处取得最大值3,在(0,0)处取得最小值0, 所以b +c 的取值范围为(0,3).B 组 能力提高17.(2019·泰安质检)已知函数f (x )=|x 2-2x -1|-t 有四个不同的零点x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则2(x 4-x 1)+(x 3-x 2)的取值范围是( ) A.(8,45] B.(8,62) C.(62,45] D.(62,45)答案 A解析 由f (x )=|x 2-2x -1|-t =0,得|x 2-2x -1|=t , 作出y =|x 2-2x -1|的图象如图,要使f (x )有四个不同的零点, 则0<t <2,同时x 1,x 4是方程x 2-2x -1-t =0的两个根, x 2,x 3是方程x 2-2x -1+t =0的两个根,则x 1x 4=-1-t ,x 1+x 4=2,x 2x 3=-1+t ,x 2+x 3=2, 则x 4-x 1=x 4+x 12-4x 1x 4=8+4t =22+t ,x 3-x 2=x 3+x 22-4x 2x 3=8-4t =22-t ,则2(x 4-x 1)+(x 3-x 2)=42+t +22-t , 设h (t )=42+t +22-t ,0<t <2, h ′(t )=422+t -222-t =22+t -12-t,由h ′(t )>0,得22+t -12-t >0,即22+t >12-t, 平方得42+t >12-t,即8-4t >2+t , 解得0<t <65,此时h (t )为增函数,由h′(t)<0,得65<t<2,此时h(t)为减函数,故当t=65时,h(t)取得最大值h⎝⎛⎭⎫65=42+65+22-65=4165+245=1655+455=45,当t→0时,h(t)→62,当t→2时,h(t)→ 8,又8<62,所以8<h(t)≤45,即2(x4-x1)+(x3-x2)的取值范围是(8,45].18.(2019·河南省十所名校联考)已知函数f(x)=ax(x2-1)+x(a>0),方程f[f(x)]=b对于任意b∈[-1,1]都有9个不等实根,则实数a的取值范围为()A.(1,+∞)B.(2,+∞)C.(3,+∞)D.(4,+∞)答案 D解析因为方程f[f(x)]=b对于任意b∈[-1,1]都有9个不等实根,不妨令b=0,则方程f[f(x)]=0有9个不等实根,令f(x)=ax(x2-1)+x=0,解得x1=-a-1a,x2=0,x3=a-1a.所以f(x)=x1,f(x)=0,f(x)=x3都要有3个不同的根,由f(x)=ax(x2-1)+x(a>0),可得f(-x)=a(-x)[(-x)2-1]+(-x)=-[ax(x2-1)+x]=-f(x),所以函数f(x)为奇函数,又f′(x)=a(x2-1)+ax·2x+1=3ax2-(a-1),由f(x)=x1有3个不等实根,可得f(x)不是单调函数,即a>1,令f′(x)=0,解得x=±a-1 3a,作出x,f′(x),f(x)的关系如下表:作出f (x )的简图如下:要使得f (x )=x 1有3个根,至少要满足f ⎝ ⎛⎭⎪⎫a -13a <x 1, 即a ⎝⎛⎭⎪⎫a -13a ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a -13a 2-1+a -13a<-a -1a, 解得a >33+22≈3.6.即a >3.6,排除A ,B ,C.。