第07章02、广义胡克定律

合集下载

广义胡克定律、强度理论、组合变形

广义胡克定律、强度理论、组合变形

1 2 3
b
n
最大切应力理论(第三强度理论)
理论要点
引起材料屈服的主要因素-最大切应力 max
当 max s,单拉 时, 材料屈服
max
1
3
2
s,单拉
s 0 2
s
2
1 3 s -材料的屈服条件
强度条件
r,3 1 3 [ ]
1 , 3 - 构件危险点处的工作应力 - 材料单向拉伸时的许用应力
2
2 x
max min
CK
x
2
y
2
2 x
回顾 极值应力的方位
min
y
x
最大正应力方位:
max与min所在截面正交
tan2α0 = -
τx σx - σy
2
tan
0
x
x
min
x max
y
极值与 极值所在截面, 成 45 夹角
回顾 主平面与主应力 (类似单向应力状态)
2
min
2
xy x
min
所在方位切应变为零的正 应变-主应变
主应变位于互垂方位,
主应变表示:1 2 3

εx
+ 2
εy
,0
Rε =
εx
- εy 2
2
+
γ xy 2
2
广义胡克定律(三向应力状态)
因切应力不引起正应变, 故只考虑正应力引起的正应变之和
x
x
E
x
y
E
x
z
(适用于脆性材料) ❖ 最大拉应变理论 (第2强度理论)
屈服强度理论 最大切应力理论 (第3强度理论)

广义胡克定律

广义胡克定律

广义胡克定律 强度理论[知识回顾]1、 轴向拉(压)变形在轴向拉(压)杆件内围绕某点截取单元体,单向应力状态(我们分析过)横向变形2)纯剪切[导入新课]胡克定律反映的是应力与应变间的关系,对复杂应力状态,其应力与应变间的关系由广义胡克定律确定。

[新课教学]广义胡克定律 强度理论一、广义胡克定律(Generalized Hooke Law ) 1、主应力单元体-叠加法只在σ作用下:1方向只在2σ作用下:1方向 1方向由σ、2σ、3σ共同作用引起的应变只在3σ作用下:1方向 即同理: E11σ='1ε-=''E31σμε-='''111εεεε'''+''+'=()[]32111σσμσε+-=E()[]13221σσμσε+-=Exx E εσ=Exx y σμμεε-=-=γτG =小变形,线弹性范围内,符合叠加原理2、非主应力单元体 可以证明:对于各向同性材料,在小变形及线弹性范围内,线应变只与正应力有关,而与剪应力无关; 剪应变只与剪应力有关,而与正应力无关,满足应用叠加原理的条件。

3、体积应变 单元体,边长分别为dx 、dy 和dz 。

在三个互相垂直的面上有主应力1σ、2σ和3σ。

变形前单元体的体积为变形后,三个棱边的长度变为由于是单元体,变形后三个棱边仍互相垂直,所以,变形后的体积为dxdydz V )1)(1)(1(3211εεε+++=将上式展开,略去含二阶以上微量的各项,得 dxdydz V )1(3211εεε+++= 于是,单元体单位体积的改变为 3211εεεθ++=-=VVV θ称为体积应变(或体应变)。

它描述了构件内一点的体积变化程度。

5、体积应变与应力的关系将广义虎克定律(8-22)代入上式,得到以应力表示的体积应变()[]21331σσμσε+-=E[][][]⎪⎪⎪⎭⎪⎪⎪⎬⎫+-=+-=+-=)(1)(1)(1y x z z x z y y z y x x E E E σσμσεσσμσεσσμσε⎪⎪⎪⎭⎪⎪⎪⎬⎫===zx zx yz yz xy xy G G G τγτγτγ111dxdydzV =dz dz dz dydy dy dx dx dx )1()1()1(332211εεεεεε+=++=++=+K E m σσσσμθ=++⋅-==3)21(3321)(21321321σσσμεεεθ++-=++=E式中K 称为体积弹性模量,m σ是三个主应力的平均值。

广义胡克定律

广义胡克定律

§空间应力状态及广义胡克定律一、空间应力状态简介当单元体上三个主应力均不为零时的应力状态称为空间应力状态,也称为三向应力状态。

本节只讨论在已知主应力σ1、σ2、σ3的条件下,单元体的最大正应力和最大剪应力。

先研究一个与σ1平行的斜截面上的应力情况,如图10-16(a)所示。

该斜面上的应力σ、τ与σ1无关,只由主应力σ2、σ3决定。

于是,可由σ2、σ3确定的应力圆周上的点来表示平行于σ1某个斜面上的正应力和剪应力。

同理,在平行于σ2或σ3的斜面上的应力σ、τ,也可分别由(σ1、σ3)或(σ1、σ2)确定的应力圆来表示。

这样作出的3个应力圆称作三向应力圆,如图10-16(d)所示。

当与三个主应力均不平行的任意斜面上的正应力和剪应力必然处在三个应力圆所围成的阴影范围之内的某一点D。

D点的纵横坐标值即为该斜面上的正应力和剪应力。

由于D点的确定比较复杂且不常用,在此不作进一步介绍。

图10-16 空间应力状态及其应力圆二、最大、最小正应力和最大剪应力从图10-16(d)看出,在三个应力圆中,由σ1、σ3所确定的应力圆是三个应力圆中最大的应力圆,又称极限应力圆。

画阴影线的部分内,横坐标的极大值为Al 点,而极小值为B1点,因此,单元体正应力的极值为:σmax =σ1,σmin =σ3单元体中任意斜面上的应力一定在σ1和σ3之间。

而最大剪应力则等于最大应力圆上Gl 点的纵坐标,即等于该应力圆半径:13max 2σστ-=Gl 点在由σ1和σ3所确定的圆周上,此圆周上各点的纵横坐标就是与σ2轴平行的一组斜截面上的应力,所以单元体的最大剪应力所在的平面与σ2轴平行,且与σ1和σ3主平面交450。

三、广义胡克定律在研究单向拉伸与压缩时,已经知道了在线弹性范围内,应力与应变成线性关系,满足胡克定律 E σε= (a )此外,轴向变形还将引起横向尺寸的变化,横向线应变根据材料的泊松比可得出:'E σεμεμ=-=- (b )在纯剪切的情况下,根据实验结果,在剪应力不超过剪切比例极限时,剪应力和剪应变之间的关系服从剪切胡克定律,即G τγ= 或 G τγ= (c )对于复杂受力情况,描述物体一点的应力状态,通常需要9个应力分量,如图所示。

材料力学广义胡克定律

材料力学广义胡克定律

材料力学广义胡克定律引言材料力学是研究物质在外力作用下的力学行为和性能的学科。

其中,广义胡克定律是材料力学中的重要定律之一。

本文将详细介绍材料力学广义胡克定律的定义、应用以及相关的概念和公式。

胡克定律的定义胡克定律是描述弹性体材料的应力-应变关系的定律。

它的基本假设是当材料受到小应力作用时,其应变是线性的。

根据胡克定律,应力与应变之间的关系可以表示为:σ=E⋅ε其中,σ是材料的应力,单位是帕斯卡(Pa);E是材料的弹性模量,单位是帕斯卡(Pa);ε是材料的应变,无单位。

广义胡克定律的引入广义胡克定律是对胡克定律的扩展和推广,它考虑了材料在大应力下的非线性行为。

在实际应用中,材料通常会遭受较大的应力,此时线性胡克定律不再适用。

为了描述材料在大应力下的力学行为,引入了广义胡克定律。

广义胡克定律的表达式广义胡克定律可以表示为:σ=E⋅ε+K⋅εn其中,σ是材料的应力,单位是帕斯卡(Pa);E是材料的弹性模量,单位是帕斯卡(Pa);ε是材料的应变,无单位;K是材料的非线性系数,单位是帕斯卡(Pa);n是材料的非线性指数,无单位。

广义胡克定律的应用广义胡克定律可以描述材料在大应力下的非线性力学行为。

它广泛应用于工程领域中的材料设计、结构分析和强度计算等方面。

材料设计在材料设计中,广义胡克定律可以帮助工程师选择合适的材料和确定其力学性能。

通过测量材料的弹性模量和非线性系数,可以评估材料的强度和稳定性,从而选择最适合的材料。

结构分析在结构分析中,广义胡克定律可以用来计算结构在大应力下的变形和应力分布。

通过将广义胡克定律应用于结构的力学模型,可以预测结构在实际工作条件下的性能和安全性。

强度计算在强度计算中,广义胡克定律可以用来评估材料和结构的承载能力。

通过将广义胡克定律应用于强度分析,可以确定材料和结构在受到外力时的破坏点和失效机制,从而进行强度设计和优化。

广义胡克定律的实验验证广义胡克定律的有效性可以通过实验进行验证。

广义胡克定律

广义胡克定律

广义胡克定律1. 概述广义胡克定律是描述材料在受到外力作用下变形的力学定律,是胡克定律的一种扩展形式。

广义胡克定律表示了材料的应力与应变之间的线性关系。

根据广义胡克定律,应力与应变的关系可以通过材料的弹性模量来描述,弹性模量是材料特性的重要参数之一。

2. 胡克定律的表达式根据广义胡克定律,应力与应变之间的线性关系可以用以下表达式表示:σ = Eε其中,σ表示应力,单位为Pa(帕斯卡),E表示材料的弹性模量,单位为Pa,ε表示应变,无单位。

3. 弹性模量的定义弹性模量是衡量材料抵抗变形的能力的物理量,表示单位应力下材料的相对应变。

根据胡克定律,弹性模量E可以表示为应力与应变的比值:E = σ/ε这里E为弹性模量,σ为应力,ε为应变。

4. 弹性恢复能力根据广义胡克定律,材料在受到应力作用时,会发生弹性变形,即当外力撤除时,材料会恢复到原始形状。

这是因为材料具有弹性的特性,能够在受到外力作用后恢复原状,这种能力称为弹性恢复能力。

弹性恢复能力可以通过材料的弹性模量来衡量。

弹性模量越大,材料的弹性恢复能力就越强,反之则弹性恢复能力较弱。

5. 应力与应变的关系根据广义胡克定律,应力与应变之间的关系是线性的。

当材料受到外力作用时,会发生应力的产生,应力与应变的关系可以表示为:σ = Eε这里σ表示应力,E表示弹性模量,ε表示应变。

根据这个关系,应变是由应力和弹性模量决定的。

6. 应力应变曲线应力应变曲线是描述材料在受力过程中应力与应变关系的曲线。

根据广义胡克定律,应力应变曲线为直线,与应力与应变的线性关系相对应。

在应力应变曲线上,通常有三个重要点:比例极限点、弹性极限点和断裂点。

比例极限点表示材料可以承受的最大应力,弹性极限点表示材料开始发生塑性变形的点,断裂点表示材料完全破坏的点。

7. 应用广义胡克定律在工程领域有着广泛的应用。

它是材料力学的基础,可以帮助工程师分析和设计结构的性能。

在材料选择和设计过程中,根据材料的弹性模量可以选择合适的材料,以满足工程需求。

材料力学广义胡克定律ppt课件ppt课件

材料力学广义胡克定律ppt课件ppt课件
ab
x
1 1 ( 45 45 ) ( ) E E 1 16(1 )m E Ed 3
[例5] 壁厚 t =10mm , 外径 D=60mm 的薄壁圆筒, 在表面上 k 点
处与其轴线成 45°和135° 角即 x, y 两方向分别贴上应变片,然后在
四、应力--应变关系
E ( y z ) x 2 x 1
E ( z x ) y 2 y 1 E ( x y ) z 2 z 1
xy G xy
yz G yz
主应变2为:
联立两式可解得:
0.3 6 2 1 3 44 . 3 20 . 3 10 9 E 21010 34.3 106
其方向必与1和3垂直,沿构件表面的法线方向。

[例2]边长为a 的一立方钢块正好置于刚性槽中,钢块的弹性
uf
状态1受平均正应力m作用,因各向均匀受力,故只有 体积改变,而无形状改变,相应的比能称为体积改变比能uV。 状态2的体积应变: 1 2 ( V ) 2 [( 1 m ) ( 2 m ) ( 3 m )] 0 E 状态2无体积改变,只有形状改变,相应的比能称为形
uV
uf
[例1]边长为a 的一立方钢块正好置于刚性槽中,钢块的弹性 模量为E 、泊桑比为 ,顶面受铅直压力P 作用,求钢块的体 积应变V 和形状改变比能uf 。 P y
y x z
x
z
解: 由已知可直接求得: N P y 2 , z 0, A a
x 0,
1 y 0 [ x ( y 0)] E P x y 2 , a z P P 1 0, 2 2 , 3 2 a a 1 2 1 2 P P V ( 1 2 3 ) (0 2 2 )

(完整版)广义胡克定律

(完整版)广义胡克定律

广义胡克定律 强度理论[知识回顾]1、 轴向拉(压)变形在轴向拉(压)杆件内围绕某点截取单元体,单向应力状态(我们分析过)横向变形2)纯剪切[导入新课]胡克定律反映的是应力与应变间的关系,对复杂应力状态,其应力与应变间的关系由广义胡克定律确定。

[新课教学]x x E εσ=E xx y σμμεε-=-=γτG =广义胡克定律 强度理论一、广义胡克定律(Generalized Hooke Law )1、主应力单元体-叠加法只在1σ作用下:1方向只在2σ作用下:1方向 1方向由1σ、2σ、3σ共同作用引起的应变只在3σ作用下:1方向即同理:2、非主应力单元体可以证明:对于各向同性材料,在小变形及线弹性范围内,线应变只与正应力有关,而与剪应力无关; 剪应变只与剪应力有关,而与正应力无关, 满足应用叠加原理的条件。

E11σε='E21σμε-=''E 31σμε-='''111εεεε'''+''+'=()[]32111σσμσε+-=E()[]13221σσμσε+-=E()[]21331σσμσε+-=E [][][]⎪⎪⎪⎭⎪⎪⎪⎬⎫+-=+-=+-=)(1)(1)(1y x z z x z y y z y x x E E E σσμσεσσμσεσσμσε⎪⎪⎪⎭⎪⎪⎪⎬⎫===zx zx yz yz xy xy G G G τγτγτγ111小变形,线弹性范围内,符合叠加原理3、体积应变单元体,边长分别为dx 、dy 和dz 。

在三个互相垂直的面上有主应力1σ、2σ和3σ。

变形前单元体的体积为 变形后,三个棱边的长度变为由于是单元体,变形后三个棱边仍互相垂直,所以,变形后的体积为dxdydz V )1)(1)(1(3211εεε+++=将上式展开,略去含二阶以上微量的各项,得dxdydz V )1(3211εεε+++= 于是,单元体单位体积的改变为 3211εεεθ++=-=VVV θ称为体积应变(或体应变)。

广义胡克定律公式推导

广义胡克定律公式推导

广义胡克定律公式推导
广义胡克定律是描述材料弹性行为的重要定律,其公式为 F - k·x 或 F - k·x,其中 F 是施加的外部力,k 是物体的劲度系数,x 是形变量。

在三维情况下,广义胡克定律是三个方程,可以将这三个方程的应力应变提出来写成矩阵形式。

首先,将三维情况下的广义胡克定律写成矢量形式,即 F = k·e,其中 e 是应变矢量,定义为形变前后物体的长度差。

接着,将矢量 F 与应变矢量 e 之间的关系表示为矩阵形式,即 F = k·E,其中 E 是胡克应变矩阵,定义为胡克应变矩阵胡克应变矩阵。

最后,将胡克应变矩阵表示成矢量胡克应变矩阵,即 E = [e_x e_y e_z],然后将其代入矩阵形式的广义胡克定律中,得到三维情况下的广义胡克定律矩阵形式为:
[F_x - k·e_x] = [0 0 0]
[F_y - k·e_y] = [0 0 0]
[F_z - k·e_z] = [0 0 0]
其中,F_x、F_y、F_z 分别表示外部力在 x、y、z 方向上的投影,e_x、e_y、e_z 分别表示对应的应变矢量。

可以看出,三维情况下的广义胡克定律矩阵形式正是反映了物体在三维空间中的弹性行为。

广义胡克定律

广义胡克定律

广义胡克定律 强度理论[知识回顾]1、 轴向拉(压)变形在轴向拉(压)杆件内围绕某点截取单元体,单向应力状态(我们分析过)横向变形2)纯剪切[导入新课]胡克定律反映的是应力与应变间的关系,对复杂应力状态,其应力与应变间的关系由广义胡克定律确定。

[新课教学]x x E εσ=E xx y σμμεε-=-=γτG =广义胡克定律 强度理论一、广义胡克定律(Generalized Hooke Law )1、主应力单元体-叠加法只在1σ作用下:1方向只在2σ作用下:1方向 1方向由1σ、2σ、3σ共同作用引起的应变只在3σ作用下:1方向即同理:2、非主应力单元体可以证明:对于各向同性材料,在小变形及线弹性范围内,线应变只与正应力有关,而与剪应力无关; 剪应变只与剪应力有关,而与正应力无关, 满足应用叠加原理的条件。

E11σε='E21σμε-=''E 31σμε-='''111εεεε'''+''+'=()[]32111σσμσε+-=E()[]13221σσμσε+-=E()[]21331σσμσε+-=E [][][]⎪⎪⎪⎭⎪⎪⎪⎬⎫+-=+-=+-=)(1)(1)(1y x z z x z y y z y x x E E E σσμσεσσμσεσσμσε⎪⎪⎪⎭⎪⎪⎪⎬⎫===zx zx yz yz xy xy G G G τγτγτγ111小变形,线弹性范围内,符合叠加原理3、体积应变单元体,边长分别为dx 、dy 和dz 。

在三个互相垂直的面上有主应力1σ、2σ和3σ。

变形前单元体的体积为 变形后,三个棱边的长度变为由于是单元体,变形后三个棱边仍互相垂直,所以,变形后的体积为dxdydz V )1)(1)(1(3211εεε+++=将上式展开,略去含二阶以上微量的各项,得dxdydz V )1(3211εεε+++= 于是,单元体单位体积的改变为 3211εεεθ++=-=VVV θ称为体积应变(或体应变)。

材料力学第七章(2)

材料力学第七章(2)

e3 =
23

E
s 1 +s 2
例题 7-3
已知构件受力后其自由表面上一点处x方向的线应变ex =240× 10-6,y 方向的线应变ey=-160 × 10-6,试求该点处x 和y截面上的正应力sx和sy,并求自由表面法线的线应变ez。 已知材料的弹性模量E=210 GPa,泊松比=0.3。
需要注意的是,题文中给出了x和y方向的线应变,并 未说明在xy平面内无切应变,故不能把求得的sx和sy认为 是主应力。

27
例题 7-3
有人认为,根据e'=-e,所以有
e z (e x e y ) 0.3( 240 10 160 10 )
6 6
24 10 6
3
2、主应力已知条件下任意斜截面的应力
(1)平行于z轴方向的斜截面的应力 y
s2
s2
s1
z
s1
x
s1
s3
s
s3
s2
t
s2
s3
(2)平行于x、y轴方向的斜截面的应力
s2
t
s1
2015/12/6 3
s1
s3
O
s3
s2
s1
4
s
s
t
I
s3
s2
II
s2
III
s1
s s1
s3
在s-t平面内,代表任意斜截面的应力的点 或位于应力圆上,或位于三个应力圆所构成的区域 内。
前已讲到,最一般表现形式的空间应力状态有6个独立 的应力分量: sx 、sy 、sz 、txy 、 tyz 、tzx;与之相应 的有6个独立的应变 分量:ex、ey 、ez、 gxy 、gyz 、gzx。

广义胡克定律

广义胡克定律

§10.4 空间应力状态与广义胡克定律一、空间应力状态简介当单元体上三个主应力均不为零时的应力状态称为空间应力状态,也称为三向应力状态.本节只讨论在已知主应力σ1、σ2、σ3的条件下,单元体的最大正应力和最大剪应力.先研究一个与σ1平行的斜截面上的应力情况,如图10-16<a>所示.该斜面上的应力σ、τ与σ1无关,只由主应力σ2、σ3决定.于是,可由σ2、σ3确定的应力圆周上的点来表示平行于σ1某个斜面上的正应力和剪应力.同理,在平行于σ2或σ3的斜面上的应力σ、τ,也可分别由〔σ1、σ3〕或〔σ1、σ2〕确定的应力圆来表示.这样作出的3个应力圆称作三向应力圆,如图10-16〔d〕所示.当与三个主应力均不平行的任意斜面上的正应力和剪应力必然处在三个应力圆所围成的阴影范围之内的某一点D.D点的纵横坐标值即为该斜面上的正应力和剪应力.由于D点的确定比较复杂且不常用,在此不作进一步介绍.图10-16 空间应力状态与其应力圆二、最大、最小正应力和最大剪应力从图10-16<d>看出,在三个应力圆中,由σ1、σ3所确定的应力圆是三个应力圆中最大的应力圆,又称极限应力圆.画阴影线的部分内,横坐标的极大值为Al点,而极小值为B1点,因此,单元体正应力的极值为:σmax=σ1,σmin=σ3单元体中任意斜面上的应力一定在σ1和σ3之间.而最大剪应力则等于最大应力圆上Gl点的纵坐标,即等于该应力圆半径:Gl 点在由σ1和σ3所确定的圆周上,此圆周上各点的纵横坐标就是与σ2轴平行的一组斜截面上的应力,所以单元体的最大剪应力所在的平面与σ2轴平行,且与σ1和σ3主平面交450.三、广义胡克定律在研究单向拉伸与压缩时,已经知道了在线弹性范围内,应力与应变成线性关系,满足胡克定律 E σε= 〔a 〕此外,轴向变形还将引起横向尺寸的变化,横向线应变根据材料的泊松比可得出:'E σεμεμ=-=- 〔b 〕在纯剪切的情况下,根据实验结果,在剪应力不超过剪切比例极限时,剪应力和剪应变之间的关系服从剪切胡克定律,即G τγ= 或 G τγ= 〔c 〕对于复杂受力情况,描述物体一点的应力状态,通常需要9个应力分量,如图10.1所示.根据剪应力互等定律,τxy =-τyx ,τxz =-τzx ,τyz =-τzy ,因而,在这9个应力分量中只有6个是独立的.这种情况可以看成是三组单向应力〔图10-17〕和三组纯剪切的组合.对于各向同性材料,在线弹性范围内,处于小变形时,线应变只与正应力有关,与剪应力无关;而剪应变只与剪应力有关,与正应力无关,并且剪应力只能引起与其相对应的剪应变分量的改变,而不会影响其它方向上的剪应变.因此,求线应变时,可不考虑剪应力的影响,求剪应变时不考虑正应力的影响.于是只要利用〔a 〕、〔b 〕、〔c 〕三式求出与各个应力分量对应的应变分量,然后进行叠加即可.图10-17 应力分解如在正应力σx 单独作用时<图10-17<b>>,单元体在x 方向的线应变xxx E σε=;在σy 单独作用时<图10-17<c>>,单元体在x 方向的线应变为:yxy E σεμ=-;在σz 单独作用时<图10-17 <d>>,单元体在x 方向的线应变为zxz E σεμ=-;在σx 、σy 、σz 共同作用下,单元体在x 方向的线应变为:同理,可求出单元体在y 和z 方向的线应变εy 和εz.最后得 1()y y z x E εσμσσ=-+⎡⎤⎣⎦ 〔10-9〕对于剪应变与剪应力之间,由于剪应变只与剪应力有关,并且剪应力只能引起与其相对应的剪应变分量的改变,而不会影响其它方向上的剪应变.因而仍然是〔c 〕式所表示的关系.这样,在xy 、yz 、zx 三个面内的剪应变分别是12(1)yz yz yz G E μγττ+== 〔10-10〕公式〔10-9〕和〔10-10〕就是三向应力状态时的广义胡克定律.当单元体的六个面是主平面时,使x 、y 、z 的方向分别与主应力σ1、σ2、σ3的方向一致,这时有广义胡克定律化为:[]22311()E εσμσσ=-+ 〔10-11〕ε1、ε2、ε3方向分别与主应力σ1、σ2、σ3的方向一致,称为一点处的主应变.三个主应变按代数值的大小排列,ε1 ≥ ε2 ≥ε3,其中,ε1和ε3分别是该点处沿各方向线应变的最大值和最小值.四、 体积应变单位体积的改变称为体积应变〔体应变〕.图10-18所示的主单元体,边长分别是dx 、dy 和dz.在3个互相垂直的面上有主应力σ1、σ2和σ3.单元体变形前的体积为: v = dxdydz ;变形后的体积为:v 1=〔dx +ε1dx><dy +ε2dy><dz+ε3dz>则体积应变为:略去高阶微量,得 123θεεε=++ 〔10-12〕将广义胡克定律式<10-11>代入上式,得到以应力表示的体积应变图10-18 主应力单12312312()E μθεεεσσσ-=++=++ 〔10-13〕令 1231()3m σσσσ=++ 〔10-14〕则 3(12)m m E K μσσθ-== 〔10-15〕式中:3(12)E K μ=-称为体积弹性模量,σm 称为平均主应力.公式〔10-15〕表明,体积应变θ与平均主应力σm 成正比,即体积胡克定律.单位体积的体积改变只与三个主应力之和有关,至于三个主应力之间的比例对体积应变没有影响.若将图10-19〔a 〕中所示单元体分解为〔b 〕和〔c 〕两种情况的叠加,在〔c 〕图中,由于各面上的主应力为平均主应力,该单元体各边长按相同比例伸长或缩短,所以单元体只发生体积改变而不发生形状改变.在图〔b 〕中,三个主应力之和为零,由式〔10-13〕可得其体积应变θ也为零,表明该单元体只发生形状改变而不发生体积改变.由此可知,图〔a 〕所示的单元体的变形将同时包括体积改变和形状改变.五、 复杂应力状态下的弹性变形比能弹性变形比能是指物体在外力作用处于弹性状态下,在单位体积内储存的变形能.在单向应力状态下,当应力σ与应变ε满足线性关系时,根据外力功和应变能在数值上相等的关系,导出变形比能的计算公式为图10-19 单元体应力的组合在复杂应力状态下的单元体的变形比能为将将广义胡克定律<10.11>式代入上式,经过整理后得出:22212312233112()2E σσσμσσσσσσ⎡⎤=++-++⎣⎦ 〔10-16〕 式〔10-16〕就是在复杂应力状态下杆件的弹性变形比能计算公式.由于单元体的变形包括体积改变和形状改变,所以变形比能也可以看成由体积改变比能和形状改变比能这两部分的组合.式中:u θ为体积改变比能,d u 为形状改变比能.对于图〔10-19〔c 〕〕中的单元体,各面上的正应力为:1231()3m σσσσ==++,将σm 代入式〔10-16〕得体积改变比能: 212312()6E μσσσ-=++ 〔10-17〕形状改变比能:2221223311[()()()]6E μσσσσσσ+=-+-+- 〔10-18〕 例10-7 如图10-20所示钢梁,在梁的A 点处测得线应变640010,x ε-=⨯612010,y ε-=-⨯ 试求:A 点处沿x 、y 方向的正应力和z 方向的线应变.已知弹性模量E=200GPa,泊松比μ=0.3.图10-20 钢梁上某点A 的位置解:因为A 点的单元体上σz=0,该单元体处于平面应力状态,将εx 、εy 、E 、μ代入公式〔10-9〕,得解得:σx=80MPa,σy=0再由。

胡克定理

胡克定理

胡克定理胡克定律科技名词定义中文名称:胡克定律定义:材料在弹性变形范围内,力与变形成正比的规律。

应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(三级学科)本内容由全国科学技术名词审定委员会审定公布百科名片胡克定律是力学基本定律之一。

适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比。

这个定律是英国科学家胡克发现的,所以叫做胡克定律。

目录定律简介历史证明编辑本段定律简介胡克定律的表达式为F=k/x或△F=k/&Delta;x,其中k是常数,是物体的胡克定律劲度(倔强)系数。

在国际单位制中,F的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米。

倔强系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力。

弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一。

在现代,仍然是物理学的重要基本理论。

胡克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力Ff和弹簧的伸长量(或压缩量)x成正比,即F= -kx。

k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。

为了证实这一定律,胡克还做了大量实验,制作了各种材料构成的各种形状的弹性体。

编辑本段历史证明Hooke law 材料力学和弹性力学的基本规律之一。

由R.胡克于1678年提胡克定律相关图表出而得名。

胡克定律的内容为:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力&sigma;与应变&epsilon;成正比,即&sigma;=&Epsilon;&epsilon;,式中E 为常数,称为弹性模量或杨氏模量。

把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。

胡克定律为弹性力学的发展奠定了基础。

各向同性材料的广义胡克定律有两种常用的数学形式: &sigma;11=&lambda;(&epsilon;11+&epsilon;22+&epsilon;33)+2G&epsilon;11,&sigma;23=2G&epsilon;23,&sigma;22=&lambda;(&epsilon;11+&epsilon;22+&epsilon;33)+2G&epsilon;22,&sigma;31=2G&epsilon;31,(1)&sigma;33=&lambda;(&epsilon;11+&epsilon;22+&epsilon;33)+2G&epsilon;33,&sigma;12=2G&epsilon;12,及式中&sigma;ij为应力分量;&epsilon;ij为应变分量(i,j=1,2,3);&lambda;和G为拉梅常量,G又称剪切模量;E为弹性模量(或杨氏模量);v为泊松比。

材料力学课件-广义胡克定律102页文档

材料力学课件-广义胡克定律102页文档


27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
材料力学课件-广义胡克定律

6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。

胡克定律的定义

胡克定律的定义

胡克定律的定义胡克定律的别称是弹性定律,适用的领域范围是现实世界中复杂的非线性现象。

下面是店铺给大家整理的胡克定律的定义,供大家参阅!胡克定律的定义与表达式胡克定律(Hooke's law),又译为虎克定律,是力学弹性理论中的一条基本定律,表述为:固体材料受力之后,材料中的应力与应变(单位变形量)之间成线性关系。

满足胡克定律的材料称为线弹性或胡克型(英文Hookean)材料。

从物理的角度看,胡克定律源于多数固体(或孤立分子)内部的原子在无外载作用下处于稳定平衡的状态。

许多实际材料,如一根长度为L、横截面积A的棱柱形棒,在力学上都可以用胡克定律来模拟——其单位伸长(或缩减)量(应变)在常系数E(称为弹性模量)下,与拉(或压)应力σ成正比例,即:F=-k·x或△F=-k·Δx。

其中为总伸长(或缩减)量。

胡克定律用17世纪英国物理学家罗伯特·胡克的名字命名。

胡克提出该定律的过程颇有趣味,他于1676年发表了一句拉丁语字谜,谜面是:ceiiinosssttuv。

两年后他公布了谜底是:ut tensio sic vis,意思是“力如伸长(那样变化)”,这正是胡克定律的中心内容。

胡克定律的表达式为F=k·x或△F=k·Δx,其中 k是常数,是物体的劲度(倔强)系数。

在国际单位制中, F的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米。

劲度系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力。

弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一。

在现代,仍然是物理学的重要基本理论。

胡克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力Ff和弹簧的伸长量(或压缩量)x成正比,即F= -k·x 。

k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。

为了证实这一定律,胡克还做了大量实验,制作了各种材料构成的各种形状的弹性体。

胡克定律

胡克定律
如果物体是非均匀材料构成的,物体内各点受力后将有不同的弹性效应,因此一般的讲,Cmn 是坐标x,y,z的函数。
但是如果物体是由均匀材料构成的,那么物体内部各点,如果受同样的应力,将有相同的应变;反之,物体内各点如果有相同的应变,必承受同样的应力。
这一条件反映在广义胡克定理上,就是Cmn 为弹性常数。
Welcome To
Download !!!
欢迎您的下载,资料仅供参考!
材料

绿石英
混凝土

玻璃
花岗石


松木 (平行于纹理)
E∕10^10Pa
7.0
9.1
2.0
11
5.5
4.5
19
1.6
1.0
2历史证明
Hookelaw
材料力学和弹性力学的基本规律之一。由R.胡克于1678年提
胡克定律相关图表
出而得名。胡克定律的内容为:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力σ与应变ε成正比,即σ=Εε,式中E为常数,称为弹性模量或杨氏模量。把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。胡克定律为弹性力学的发展奠定了基础。各向同性材料的广义胡克定律有两种常用的数学形式:
胡克定律的表达式为F=k·x或△F=k·Δx,其中k是常数,是物体的劲度(倔强)系数。在国际单位制中,F的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米。劲度系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力。
弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一。在现代,仍然是物理学的重要基本理论。胡克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力Ff和弹簧的伸长量(或压缩量)x成正比,即F= -k·x 。k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。

广义胡克定律表达式

广义胡克定律表达式

广义胡克定律表达式
嘿,朋友们!今天咱们来聊聊广义胡克定律表达式!
你知道吗?广义胡克定律表达式就像是材料世界里的神奇密码。

它能告诉我们材料在受到外力作用时会发生怎样的变形。

比如说,当一个物体受到拉伸或者压缩的时候,它的长度变化就和所受的力有关系啦。

广义胡克定律表达式就把这种关系清晰地展现出来。

这个表达式看起来可能有点复杂,但其实也没那么可怕啦。

它就像一个聪明的小,帮助我们理解材料的行为。

想象一下,一根弹簧被拉伸,广义胡克定律表达式就能算出它伸长了多少。

是不是很神奇?
而且哦,这个定律不仅仅适用于简单的情况,对于复杂的受力状态也能发挥作用呢!不管是多个方向的力同时作用,还是力的大小和方向不断变化,它都能给出有用的信息。

就像我们在生活中遇到各种难题,总有解决的办法一样。

广义胡克定律表达式就是解决材料变形问题的好办法。

它让工程师们在设计建筑、制造机械的时候心里更有底。

能保证我们的高楼大厦稳稳矗立,各种机器正常运转。

呀,广义胡克定律表达式虽然看起来有点高深,但却是非常实用和有趣的呢!
怎么样,朋友们,是不是对广义胡克定律表达式有了一点新的认识?。

广义胡克定律及应用

广义胡克定律及应用

广义胡克定律及应用广义胡克定律是描述弹性力学中弹簧力的一个定律,也被称为胡克定律。

它的表达式可以写为:F = kδl,其中F是弹簧力,k是弹簧的弹性系数,δl是弹簧的伸长(或压缩)量。

胡克定律是一个理想化的模型,用来描述弹簧的力学性质。

虽然它基于一些简化的假设,但在许多现实世界的应用中都是非常有效的。

下面将详细介绍胡克定律及其应用。

广义胡克定律描述了弹簧受力时的基本规律,即弹簧的伸长(或压缩)量与受力之间成正比。

根据胡克定律,当一个弹簧受到外力作用时,弹簧会产生一个与伸长量成正比的弹力,而弹力的方向与伸长(或压缩)方向相反。

弹簧的弹性系数k反映了弹簧的硬度,其数值越大,弹簧越难伸长(或压缩)。

胡克定律的应用非常广泛,以下是其中几个主要的应用领域:1.弹簧力学系统:胡克定律是对弹簧力学系统行为的一个基本描述。

在弹性力学中,弹簧经常被用来实现机械装置中的力传递和力的调节功能。

通过调整弹簧的弹性系数k和伸长(或压缩)量δl,可以控制弹簧力的大小和方向,从而实现不同的应用需求。

2.弹簧测力计:胡克定律的应用之一是在测力计中。

测力计是一种用来测量力的仪器,在弹簧测力计中,胡克定律被用来计算外力的大小。

根据胡克定律,当外力作用于弹簧测力计时,弹簧会产生一个与伸长(或压缩)量成正比的弹力。

通过测量弹簧的伸长(或压缩)量,可以推断出外力的大小。

3.弹簧悬挂系统:胡克定律在弹簧悬挂系统中也有广泛的应用。

在汽车和自行车的悬挂系统中,弹簧常常被用来减震和调节车辆的姿态。

通过调整弹簧的弹性系数k和车辆的质量,可以实现合适的减震效果和乘坐舒适度。

4.弹簧振动系统:胡克定律在弹簧振动系统中也扮演着重要的角色。

在弹簧振子、弹簧阻尼器等系统中,胡克定律用来描述弹簧的回复力和周期性振动的特性。

根据胡克定律,振动的周期与弹簧的弹性系数k和质量有关,通过调整这些参数可以改变振动的频率和振幅。

除了上述主要的应用领域,广义胡克定律还在其他力学系统中得到应用,包括弹簧能量储存系统、弹簧均衡系统等。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
90
0
x
m t D
45
0
k
y
90
0
x
m
t D
y
τ max
k
3
x
45
0
k
τ max
1
解: 从圆筒表面 k 点处取出单元体, 如图 所示
可求得:
y 1 max 80MPa x 3 max 80MPa z 2 0
k点处的线应变 x , y 为
x y 0, x
m d A
a
45°
m b B
45°
-45°
T 16m 3, y 0, x Wn d 45 x sin 90 45 x sin(90)
ab
x
1 1 ( 45 45 ) ( ) E E 1 16(1 )m E Ed 3

1 '
1
E
2 " 1 ' 1
E
1" 2 ' 2 E 2 2'
E
2 ′ 1 ″
二、三向应力状态的广义胡克定律 y
y
1 x [ x ( y z )] E 1 y [ y ( z x )] E 1 z [ z ( x y )] E
关于断裂的强度理论: 最大拉应力理论和最大伸长线应变理论
(2) 塑性屈服:材料破坏前发生显著的塑性变形,破坏断面粒 子较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸 铁压。 关于屈服的强度理论: 最大切应力理论和最大畸变能密度理论
§7-11
四种常见强度理论及强度条件
1. 最大拉应力理论(第一强度理论) 最大拉应力是引起材料断裂的主要因素。即认为无论材料 处于什么应力状态,只要最大拉应力达到简单拉伸时破坏的极 限值,就会发生脆性断裂。
2、不能解释三向均拉下可能发生断裂的现象。
4. 最大畸变能密度理论(第四强度理论)
最大畸变能密度是引起材料屈服的主要因素。即认为无论 材料处于什么应力状态,只要最大畸变能密度达到简单拉伸屈服 时的极限值,材料就会发生屈服。
d-构件危险点的形状改变比能

vd v
0 d
0 -形状改变比能的极限值,由单拉实验测得 d
屈服条件 强度条件
实验表明:对塑性材料,此理论比第三强度理论更符合试验结 果,在工程中得到了广泛应用。
强度理论的统一表达式: r [ ]
相当应力
r ,1 1
r ,2 1 ( 2 3 )
r ,3 1 3
例1:试用第三强度理论分析图示三种应力状态中哪种最危险?
y x z
x
z
解: 由已知可直接求得: N P y 2 , z 0, A a
x 0,
P y
y x z
x
z
x y
P
a
2
,
1 0 [ x ( y 0)] E 1 y [ y (0 x )] E 1 z [0 ( x y )] E
1-构件危险点的最大拉应力 0 -极限拉应力,由单拉实验测得
1
0
b
0
断裂条件
1 b
1 b
n
强度条件
铸铁拉伸
铸铁扭转
实验表明:此理论对于大部分脆性材料受拉应力作用,结果 与实验相符合,如铸铁受拉、扭。
局限性:
1、未考虑另外二个主应力影响, 2、对没有拉应力的应力状态无法应用, 3、对塑性材料的破坏无法解释, 4、无法解释三向均压时,既不屈服、也不破坏的现象。
2 0
即为平面应力状态,有
1 1 1 3 E 1 3 3 1 E
联立两式可解得:
E 210109 6 1 240 0 . 3 160 10 1 3 2 2 1 1 0.3 44.3MP a E 210109 6 3 3 1 160 0.3 240 10 2 2 1 1 0.3 20.3MP a
0
max
0
屈服条件
强度条件
s 1 3 ns
低碳钢拉伸
低碳钢扭转
第三强度理论在工程中实际问题中的应用
轴向拉、压(单向应力状态)
max
r 3 1 3 max
圆轴扭转(纯剪切应力状态)
N A

45

T 16 7000 35.7MPa 3 Wn 0.1

max min
6.37 6.37 2 ( ) ( ) 35.7 2 39 32 MPa 2 2 2 2
2 2


1 39 MPa , 2 0, 3 32 MPa
τ max
Tmax Wt
( 45 )
r 3 1 3
max

2
实验表明:此理论对于塑性材料的屈服破坏能够得到较为 满意的解释。并能解释材料在三向均压下不发生塑性变形 或断裂的事实。
局限性:
1、未考虑
2
的影响,试验证实最大影响达15%。
0
0 -极限伸长线应变,由单向拉伸实验测得
断裂条件
b 1 [ 1 ( 2 3 )] E E

1 ( 2 3 ) b
b 1 ( 2 3 ) [ ] n
强度条件
实验表明:此理论对于一拉一压的二向应力状态的脆 性材料的断裂较符合,如铸铁受拉压比第一强度理论 更接近实际情况。
2. 最大伸长线应变理论(第二强度理论)
最大伸长线应变是引起断裂的主要因素。即认为无论材
料处于什么应力状态,只要最大伸长线应变达到简单拉伸时破 坏的极限值,就会发生脆性断裂。
1-构件危险点的最大伸长线应变

1
0
1 [ 1 ( 2 3 )] / E
b / E
45
y
x y x
D
解: 筒壁一点的轴向应力:
4 x Dt
p
D2
pD 4t
pDl pD 筒壁一点的环向应力: y 2tl 2t
y
D
p t k
45
45°
45°
x y
-45°
x
1 1 3 pD 45 ( 45 45 ) E E 8t 8Et 45 p 3(1 ) D
四、应力--应变关系
E ( y z ) x 2 x 1
E ( z x ) y 2 y 1 E ( x y ) z 2 z 1
xy G xy
yz G yz
30
90
90
90
10
90
10
r 3 80MPa r 3 100 MPa r 3 90MPa

最危险
例2 直径为d=0.1m的铸铁圆杆受力 T=7kNm, P=50kN
[]=40MPa, 用第一强度理论校核强度
T P A T
A A
解:危险点A的应力状态如图
P

P 4 50 3 10 6.37MPa 2 A 0.1
广义胡克定律
主讲教师:王明禄
2015年3月18日星期三
§7–8 广义胡克定律

P P



E
'
E


一、平面应力状态的广义胡克定律
1
2
1 = 1
2 ″
2
2
1 ′
1
+
2
1 1 1 '1" ( 1 2 ) E 1 2 2 ' 2 " ( 2 1 ) E 1 1 ( 1 2 ) E 1 2 ( 1 1 ) E
[例5] 壁厚 t =10mm , 外径 D=60mm 的薄壁圆筒, 在表面上 k 点
处与其轴线成 45°和135° 角即 x, y 两方向分别贴上应变片,然后在
圆筒两端作用矩为 m 的扭转力偶,如图 所示已知圆筒材料的弹性模 量为 E = 200GPa 和 = 0.3 ,若该圆筒的变形在弹性范围内,且 max = 80MPa , 试求k点处的线应变 x ,y 以及变形后的筒壁厚度。
3. 最大切应力理论(第三强度理论)
最什么应力状态,只要最大切应力达到了简单拉伸屈服时 的极限值,材料就会发生屈服。
max-构件危险点的最大切应力 max ( 1 3 ) / 2 0 -极限切应力,由单向拉伸实验测得
s /2
1 1 x ( x y ) ( max max ) E E
(1 ) max 5.2 104 (压应变 ) E
4 5 . 2 y x 10 (拉应变)
圆筒表面上k点处沿径向 (z轴) 的应变为
z ( x y ) ( max max ) 0 E E

2 (1 ) P 1 ( 1 )P 2 ( ) y [ y y ] , z y y 2 2 E Ea E Ea
[例3]薄壁筒内压容器(t/D≤1/20),筒的平均直径为D ,壁厚为
t ,材料的E、 已知。已测得筒壁上 k 点沿45°方向的线应 变 45°,求筒内压强p。 p t k
相关文档
最新文档