新人教版八年级上数学期末复习试题(三)及答案
人教版初二第一学期数学期末复习测试卷 (三)及答案-精选.doc
2019—2020学年初二数学期末复习测试卷 (三)(满分:100分时间:120分钟)一、选择题 (每题2分,共20分)1.在-3,0,4这四个数中,最大的数是( )A.-3 B.0 C.4 D2.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.3.若点A (a+1,b-1) 在第二象限,则点B (-a,b+2)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC,BD相交于点O,则图中全等三角形共有( )A.1对B.2对C.3对D.4对5.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,击打白球时,必须保证∠1的度数为( )A.30°B.45°C.60°D.75°6.如图,在△ABC中,AB=AC,∠A=36°,若BD是AC边上的高,则∠DBC的度数是( ) A.18°B.24°C.30°D.36°7.如果一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是( ) A.13 B.17 C.22 D.17或228.如图,一次函数y1=x+b与一次函数y2=kx+4的图像交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( )A.x>-2 B.x>0 C.x>l D.x<1.9.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计).一天,小明从家出发去上学,沿这条公路步行到公交车站,恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计).小明与家的距离s (单位:米) 与他所用的时间t (单位:分钟) 之间的函数关系如图所示.已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟.给出下列说法:①小明从家出发5分钟时乘上公交车;②公交车的速度为400米/分钟;③小明下公交车后跑向学校的速度为100米/分钟;④小明上课没有迟到.其中正确说法的个数是( )A.1 B.2 C.3 D.410.在平面直角坐标系中。
八年级(上)期末数学试卷3答案与解析
八年级(上)期末数学试题(3)参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.)C D3.(3分)在0.010010001…、0.2、π、、中,无理数的个数是()、4.(3分)下列函数中“y是x的一次函数”的是()x y=xy=自变量x7.(3分)如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为40,小正方形的面积为5,则(a+b)2的值为()×ab=408.(3分)为了保证养鱼池水质符合标准,养鱼池需要同时放水和蓄水,养鱼池内的水量y(m3)与时间x(h)的函数关系如图所示,下列说法错误的是()二、填空题(本大题共有10小题,每小题3分,共30分.)9.(3分)(2014•梅州)4的平方根是±2.10.(3分)(2000•河北)比较大小:>(填:“<、>、=”).|所以﹣>﹣11.(3分)1.0159精确到百分位的近似数是 1.02.12.(3分)我国目前总人数约为1339000000,该数用科学记数法可表示为 1.339×109.13.(3分)写出1组勾股数:3、4、5.14.(3分)一次函数y=3x与y=x+2的图象的交点坐标为(1,3).解:联立,解得15.(3分)如图,D、E是△ABC中BC边上的两点,AD=AE,请你再附加一个条件AB=AC或BD=CE或∠B=∠C或∠BAE=∠CAD,使△ABE≌△ACD.16.(3分)如图,在△ABC中,∠C=87°,∠CAB的平分线AD交BC于D,如果DE垂直平分AB,那么∠B=31度.∠CAB=((∠CAB=(17.如图,阴影部分是3个直角三角形,若最大正方形的边长为16,则正方形A,B,C,D的面积和是.解答:25618.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为(﹣1,2).考点:一次函数图象上点的坐标特征;等边三角形的性质;坐标与图形变化-平移.专题:数形结合.分析:先求出直线y=2x+4与y轴交点B的坐标为(0,4),再由C在线段OB的垂直平分线上,得出C点纵坐标为2,将y=2代入y=2x+4,求得x=﹣1,即可得到C′的坐标为(﹣1,2).解答:解:∵直线y=2x+4与y轴交于B点,∴x=0时,得y=4,∴B(0,4).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣1.故答案为:(﹣1,2).点评:本题考查了一次函数图象上点的坐标特征,等边三角形的性质,坐标与图形变化﹣平移,得出C点纵坐标为2是解题的关键.三、解答题(本大题有9小题,共96分)19.(12分)(1)计算:20140﹣+;(2)求x的值:4x2=81.,±.20.(10分)请用3种不同的方法,将正方形ABCD沿网格线分割成两个全等的图形.21.(10分)已知一次函数y=x+2.(1)画出该函数的图象;(2)若y>0,则x的取值范围为x>﹣2.22.(10分)已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.中23.(10分)如图,在平面直角坐标系中,点B、C在x轴上.(1)请在第四象限内画等腰三角形ABC,使△ABC的面积为10;(2)画△ABC关于y轴对称的△A′B′C′;(3)若将所得△A′B′C′向上平移3个单位长度得△A″B″C″,则△A″B″C″各顶点的坐标分别为A″(﹣3,﹣2);B″(﹣1,3);C″(﹣5,3).24.(10分)已知:如图,在四边形ABCD中,∠ABC=∠ADC=90°,点E是AC的中点,连接BE、BD、DE.(1)求证:△BED是等腰三角形;(2)当∠BAD=45°时,△BED是等腰直角三角形.)利用等边对等角以及三角形外角的性质得出BE=ACAC∠25.(10分)折叠如图所示的直角三角形纸片ABC,使点C落在AB上的点E处,折痕为AD(点D在BC边上).(1)用直尺和圆规画出折痕AD(保留画图痕迹,不写画法);(2)若AC=6cm,BC=8cm,求折痕AD的长.AB==AD==26.(12分)为了加强公民的节水意识,合理利用水资源,某市对居民用水实行阶梯水价,收费价x (m3)之间的函数关系.(1)点M的坐标为(0,52),点N的坐标为(0,84);(2)当x>34时,求y与x之间的函数关系式;(3)若某户七月份按照阶梯水价应缴水费100元,则相应用水量为多少立方米?,解得:27.(12分)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),并且与x轴以及y=x+1的图象分别交于点C、D.(1)若点D的衡卓彪为1,①求四边形AOCD的面积;②是否存在y轴上的点P,使得以点P、B、D为顶点的三角形时等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(2)若点D始终在第一象限,则系数k的取值范围是k>1.,解得:x=,,×××2=,得到﹣),即)联立得:,>。
最新人教版八年级数学(上册)期末试题及答案(完美版)
最新人教版八年级数学(上册)期末试题及答案(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.2x1-有意义,则x的取值范围是▲.3.如果不等式组841x xx m+<-⎧⎨>⎩的解集是3x>,那么m的取值范围是________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D5、D6、C7、B8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、x 1≥.3、3m ≤.4、﹣2<x <25、49136、132三、解答题(本大题共6小题,共72分)1、2x =2、112x -;15.3、(1)12,32-;(2)略.4、(1) 65°;(2) 25°.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。
最新人教版八年级上册数学期末考试试题(附答案)
最新人教版八年级上册数学期末考试试题(附答案)最新人教版八年级上册数学期末考试试题(附答案)考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷。
2.请将所有试题的解答都写在答题卷上。
3.全卷共五个大题,满分150分,时间120分钟。
一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上。
1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是()A。
B。
C。
D。
2.使分式x-1有意义的x的取值范围是()A.x=1.B.x≠1.C.x=-1.D.x≠-1.3.计算:(-x)3·2x的结果是()A.-2x4B.-2x3C.2x4D.2x34.化简:=()-x-1x-1A.1.B.0.C.x。
D.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为()A.11.B.12.C.13.D.11或136.如果(x-2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6.B.p=1,q=-6.C.p=1,q=6.D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有()①x2-y2-1x y x-y-1②x3x xx2 1③x-y x2-2xy y2④x2-9y2x3y x-3y 2A.1个B.2个C.3个D.4个.9.如图,在Rt△ABC中,∠A=90°,∠C=30°,∠ABC的平分线BD交AC于点D,若AD=3,则BD+AC=()A、10.B、15.C、20.D、30.10.XXX准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x套,根据题意可得方程为()A。
新人教版八年级数学上册期末试卷(三)及答案
新世纪教育网精选资料版权全部@新世纪教育网新人教版八年级数学上册期末试卷(三)及答案一、选择题:(每题 3 分,共 30 分)1、若一个数的算术平方根等于它的自己,这个数是()A、1B、0C、-1D、0或12、以下图案是轴对称图形有()A、1个B、2个C、3个D、4个3、以下各组数中互为相反数的是()A、 2与(2)22与38C、2与(2)22 与 2B 、 D 、4、、以下说法正确的选项是()A、0.25 是 0.5 的一个平方根B、正数有两个平方根,且这两个平方根之和等于 0的平方根是、负数有一个平方根C、7 27D5、如图, AB∥CD,AD∥BC, OE=OF,则图中全等三角形的组数是()A、3B、 4C、 5 D 、 66、如图,某同学把一块三角形的玻璃打坏成了三块,此刻要到玻璃店去配一配一块完全同样的玻璃,那么最省事的方法是()A、带①去B、带②去 C 、带③去D、带①和②去7、如图,∠ C=90°, AM均分∠ CAB, CM=20cm,那么 M到 AB的距离是()A、10cmB、 15cmC、20cmD、25cmA E DOBFC8、假如等腰三角形的两边长是6cm和 3cm,那么它的周长是()A、 9cmB、 12cmC、 12cm 或 15cm D 、15cm9、√9 的平方根是()A、 3B、√3C、±√3D、± 310、若√5χ+1 存心义,则χ 能取的最小整数是()A、 -1B、 0C、1D、2新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站。
版权全部@新世纪教育网11、已知,如:∠ ABC=∠DEF,AB=DE,要明ABC≌ΔDEF 要增添的条件______________。
(填一种即可)、12、如 , AC ⊥BC于 C , DE ⊥AC于 E , AD ⊥AB于 A , BC=AE.若 AB=5 ,AD=。
13、如:△ ABC中 ,DE 是 AC的垂直均分 ,AE=3cm,△ABD的周 13cm,△ ABC的周 ____________。
人教版八年级上学期期末考试数学试卷(附带答案)精选全文
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
最新人教版八年级数学(上册)期末必考题及答案
最新人教版八年级数学(上册)期末必考题及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是()A.2-B.2 C.12-D.122.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.化简)A B C D5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.107.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为()A.1 B.2 C 3 D.23 39.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD 二、填空题(本大题共6小题,每小题3分,共18分)13x x,则x=__________2.函数132y x x =--+中自变量x 的取值范围是__________. 3.使x 2-有意义的x 的取值范围是________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、D4、C5、A6、B7、D8、D9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、23x -<≤3、x 2≥4、8.5、1(21,2)n n -- 6、32°三、解答题(本大题共6小题,共72分)1、2x =2、-3.3、(1)略(2)1或24、E (4,8) D (0,5)5、24°.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
人教版八年级上册数学期末考试试题及答案
人教版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.﹣2的绝对值是()A .2B .12C .12-D .2-3.在下列长度的各组线段中,能组成三角形的是()A .1,2,4B .1,4,9C .3,4,5D .4,5,94.据广东省旅游局统计显示,2018年4月全省旅游住宿设施接待过夜旅客约27700000人,将27700000用科学计数法表示为()A .527710⨯B .80.27710⨯C .72.7710⨯D .82.7710⨯5.在211x 13xy 31a x 22πx y m+++,,,,,中,分式的个数是()A .2B .3C .4D .56.下列计算中正确的是()A .()236ab ab =B .44a a a ÷=C .248a a a ⋅=D .()326a a -=-7.为参加“爱我家园”摄影赛,小明同学将参与植树活动的照片放大为长acm ,宽34acm 的形状,又精心在四周加上了宽2cm 的木框,则这幅摄影作品所占的面积是()A .237442a a -+B .237164a a -+C .237442a a ++D .237164a a ++8.等腰三角形的两边长分别为8cm 和4cm ,则它的周长为()A .12cmB .16cmC .20cmD .16cm 或20cm9.下列条件中,不能判定两个直角三角形全等的是()A .两个锐角对应相等B .一条边和一个锐角对应相等C .两条直角边对应相等D .一条直角边和一条斜边对应相等10.如图,DE 是△ABC 中AC 边的垂直平分线,若BC=6cm ,AB=8cm ,则△EBC 的周长是()A .14cmB .18cmC .20cmD .22cm二、填空题11.已知点A(2,a)与点B(b ,4)关于x 轴对称,则a+b =_____.12.若一个多边形的内角和是900º,则这个多边形是_____边形.13.如图,在△ABC 中,已知AD 是角平分线,DE ⊥AC 于E ,AC=4,S △ADC =6,则点D 到AB 的距离是________.14.二元一次方程组128x y x y -=⎧⎨+=⎩的解为_________.15.如图,将三角形纸板ABC 沿直线AB 平移,使点A 移到点B ,若∠CAB =60°,∠ABC =80°,则∠CBE 的度数为_____.16.现在生活人们已经离不开密码,如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式44x y -,因式分解的结果是()22()()x y x y x y -++,若取9x =,9y =时则各个因式的值是:0x y -=,18x y +=,22162x y +=,把这些值从小到大排列得到018162,于是就可以把“018162”作为一个六位数的密码.对于多项式324x xy -,取10x =,10y =时,请你写出用上述方法产生的密码_________.三、解答题17.计算:102|3|(2----+;18.解方程:32122x x x =---19.先化简,再求值:2()()()x y x y x y x ⎡⎤-+-+÷⎣⎦,其中x =1-,12y =.20.计算:221369324a a a a a a a +--+-÷-+-.21.如图所示,在ABC ∆,A ABC CB =∠∠.(1)尺规作图:过顶点A 作ABC ∆的角平分线AD ,交BC 于D ;(不写作法,保留作图痕迹)(2)在AD 上任取一点E (不与点A 、D 重合),连结BE ,CE ,求证:EB EC =.22.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程刚好如期完成;②乙队单独完成这项工程要比规定日期多用5天;③若甲乙两队合作4天,余下的工程由乙队单独也正好如期完成.(1)甲、乙单独完成各需要多少天?(2)在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?23.如图,已知正方形ABCD 的边长为10厘米,点E 在边AB 上,且AE=4厘米,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.设运动时间为t 秒.(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使△BPE与△CQP 全等;此时点Q的运动速度为多少.24.如图,在四边形ABCD中,//AD BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且GDF ADF∠=∠.(1)求证:ADE∆≌BFE∆.(2)连接EG,判断EG与DF的位置关系并说明理由.25.在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).参考答案1.A【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.考点:轴对称图形.2.A【详解】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.3.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、1+2=3<4,不能组成三角形,故此选项错误;B、4+1=5<9,不能组成三角形,故此选项错误;C、3+4=7>5,能组成三角形,故此选项正确;D、5+4=9,不能组成三角形,故此选项错误;故选:C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将27700000用科学记数法表示为2.77×107,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:在211133122x xy ax x y mπ+++,,,,,中,分式有131ax x y m++,,∴分式的个数是3个.故选:B.【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以象2xπ-不是分式,是整式.6.D 【分析】根据幂的乘除运算法则运算即可.【详解】A.()2326ab a b =,该选项错误B.34a a a ÷=,该选项错误C.246a a a ⋅=,该选项错误D.()326a a -=-,该选项正确故选D.【点睛】本题考查幂的乘除的运算,关键在于熟悉乘除、乘方的运算规律.7.D 【分析】此题涉及面积公式的运用,解答时直接运用面积的公式求出答案.【详解】根据题意可知,这幅摄影作品占的面积是34a 2+4(a +4)+4(34a +4)−4×4=237164a a ++故选:D .【点睛】列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系列出式子.8.C 【分析】根据等腰三角形的两腰相等,可知边长为8,8,4或4,4,8,再根据三角形三边关系可知4,4,8不能组成三角形,据此可得出答案.【详解】∵等腰三角形的两边长分别为8cm 和4cm ,∴它的三边长可能为8cm ,8cm ,4cm 或4cm ,4cm ,8cm ,∵4+4=8,不能组成三角形,∴此等腰三角形的三边长只能是8cm,8cm,4cm8+8+4=20cm故选C.【点睛】本题考查等腰三角形的性质与三角形的三边关系,熟练掌握三角形两边之和大于第三边是解题的关键.9.A【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【详解】A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.【点睛】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.A【分析】先根据线段垂直平分线的性质得出AE=CE,故CE+BE=AB,再由△EBC的周长=BC+CE+BE=BC+AB,即可得出结论.【详解】中AC边的垂直平分线,DE是ABC∴=,AE CE∴+==,CE BE AB8cm,=BC6cmEBC ∴ 的周长()BC CE BE BC AB 6814cm =++=+=+=,故选A .【点睛】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.11.-2【分析】直接利用关于x 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点A (2,a )与点B (b ,4)关于x 轴对称,∴b =2,a =−4,则a +b =−4+2=−2,故答案为:−2.【点睛】此题主要考查了关于x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.12.七【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -︒=⋅︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.13.3【解析】如图,过点D 作DF ⊥AB 于点F ,∵DE ⊥AC 于点E ,∴S△ADC =12AC⋅DE=6,即:142⨯⨯DE=6,解得DE=3.∵在△ABC中,已知AD是角平分线,DE⊥AC于点E,DF⊥AB于点F,∴DF=DE=3,即点D到AB的距离为3.14.32 xy=⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】解128x yx y-=⎧⎨+=⎩①②,①+②得:3x=9,解得:x=3,把x=3代入①得:y=2,则方程组的解为32 xy=⎧⎨=⎩,故答案为:32 xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.40°【分析】根据平移的性质得出△ACB≌△BED,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE 的度数.【详解】∵将△ABC沿直线AB向右平移到达△BDE的位置,∴△ACB≌△BED,∵∠CAB=60°,∠ABC=80°,∴∠EBD=60°,∠BDE=80°,则∠CBE的度数为:180°﹣80°﹣60°=40°.故答案为:40°.【点睛】此题主要考查了平移的性质,根据平移的性质得出∠EBD,∠BDE的度数是解题关键.16.101030【分析】把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.【详解】4x3−xy2=x(4x2−y2)=x(2x+y)(2x−y),当x=10,y=10时,x=10;2x+y=30;2x−y=10,把它们从小到大排列得到101030.用上述方法产生的密码是:101030.故答案为:101030.【点睛】本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.17.−1 2【分析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.【详解】102|3|(2----=12−3−1+3=−1 2.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.x =76【解析】【分析】观察可得方程最简公分母为2(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程两边同乘2(x-1),得2x=3-2(2x-2),2x=3-4x+4,6x=7,∴x =76,检验:当x =76时,2(x-1)≠0,∴x =76是原分式方程的解.【点睛】此题考查了解分式方程.解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.19.2(x-y);-3.【分析】括号内先提取公因式(x-y),整理,再根据整式除法法则化简出最简结果,把x 、y 的值代入求值即可.【详解】2()()()x y x y x y x⎡⎤-+-+÷⎣⎦=(x-y)(x-y+x+y)÷x=2x(x-y)÷x=2(x-y).当x =1-,12y =时,原式=2(x-y)=2×(-1-12)=-3.【点睛】本题考查因式分解的应用——化简求值,正确找出公因式(x-y)是解题关键.20.33a -【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】221369324a a a a a a a +--+-÷-+-=()()2221332(3)a a a a a a a +-+--⋅-+-=1233a a a a +----=33a -.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.21.(1)图见解析(2)证明见解析【分析】(1)利用基本作图(作已知角的平分线)作∠BAC 的平分线交BC 于D ,则AD 为所求;(2)先证明△ABC 为等腰三角形,再根据等腰三角形的性质,由AD 平分∠BAC 可判断AD 垂直平分BC ,然后根据线段垂直平分线的性质可得EB =EC .【详解】(1)解:如图,AD 为所作;(2)证明:如图,∵∠ABC =∠ACB ,∴△ABC 为等腰三角形,∵AD 平分∠BAC ,∴AD ⊥BC ,BD =CD ,即AD 垂直平分BC ,∴EB =EC .【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和线段垂直平分线的性质.22.(1)甲单独20天,乙单独25天完成.(2)方案③最节省.【分析】(1)设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.(2)根据题意可得方案①、③不耽误工期,符合要求,再求出各自的费用,方案②显然不符合要求.【详解】(1)设规定日期x天完成,则有:415xx x+=+解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.(2)方案①:20×1.5=30(万元),方案②:25×1.1=27.5(万元),但是耽误工期,方案③:4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案③最节省.【点睛】本题考查了分式方程的应用,关键知道完成工作的话工作量为1,根据工作量=工作时间×工作效率可列方程求解,求出做的天数再根据甲乙做每天的钱数求出总钱数.23.(1)△BPE与△CQP全等,理由见解析;(2)t=5 2 ,【分析】(1)根据SAS可判定全等;(2)由于点Q的运动速度与点P的运动速度不相等,而运动时间相同,所以BP≠CQ.又△BPE与△CQP全等,则有BP=PC=12BC=5,CQ=BE=6,由BP=5求出运动时间,再根据速度=路程÷时间,即可得出点Q的速度.【详解】(1)△BPE与△CQP全等.∵点Q的运动速度与点P的运动速度相等,且t=2秒,∴BP=CQ=2×2=4厘米,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∵四边形ABCD是正方形,∴在Rt△BPE和Rt△CQP中,{BP CQ BE CP==,∴Rt△BPE≌Rt△CQP;(2)∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴点P,Q运动的时间t=BP522=(秒)此时点Q的运动速度为CQ12t5QV==(厘米/秒).【点睛】本题主要考查了正方形的性质以及全等三角形的判定,解决问题的关键是掌握:正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.解题时注意分类思想的运用.24.(1)见解析;(2)EG DF⊥,见解析【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.【详解】(1)证明:∵AD ∥BC ,∴∠ADE =∠BFE ,∵E 为AB 的中点,∴AE =BE ,在△ADE 和△BFE 中,ADE BFE AED BEF AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BFE (AAS );(2)EG ⊥DF ,理由如下:连接EG,∵∠GDF =∠ADE ,∠ADE =∠BFE ,∴∠GDF =∠BFE ,∴DG =FG ,由(1)得:△ADE ≌△BFE∴DE =FE ,即GE 为DF 上的中线,又∵DG =FG ,∴EG ⊥DF .【点睛】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.25.(1)40°;(2)①补图见解析;②证明见解析.【详解】试题分析:(1)根据等腰三角形的性质得到∠APQ=∠AQP ,由邻补角的定义得到∠APB=∠AQC,根据三角形外角的性质即可得到结论;(2)①根据要求作出图形,如图2;②根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,由点Q 关于直线AC的对称点为M,得到AQ=AM,∠OAC=∠MAC,等量代换得到∠MAC=∠BAP,推出△APM是等边三角形,根据等边三角形的性质即可得到结论.试题解析:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=60°﹣20°﹣20°=20°,∴∠BAQ=∠BAP+∠PAQ=40°;(2)①如图2;②∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.考点:三角形综合题.。
人教版八年级数学上册期末考试综合复习练习题(含答案)
人教版八年级数学上册期末考试综合复习练习题(含答案)一、选择题(本题共10个小题,每小题3分,共 30分。
下列各题,每小题只有一个选项符合题意。
)1. 下面四个图形中,是轴对称图形的是( ) A. B. C. D.2. 熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( )A. 30.15610-⨯B. 31.5610-⨯C. 41.5610-⨯D. 415.610-⨯3. 下列计算正确的是( )A. x •x 3=x 4B. x 4+x 4=x 8C. (x 2)3=x 5D. x ﹣1=﹣x 4. 若分式224x x +-有意义,则x 的取值范围是( ) A. x ≠2 B. x ≠±2 C. x ≠﹣2 D. x ≥﹣25. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )A. 3B. 4C. 6D. 86. 若点A (﹣3,a )与B (b ,2)关于x 轴对称,则点M (a ,b )所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,已知∠ABD =∠BAC ,添加下列条件还不能判定△ABC ≌△BAD 的依据是( )A. AC =BDB. ∠DAB =∠CBAC. ∠C =∠DD. BC =AD8. 计算a ﹣2b 2•(a 2b ﹣2)﹣2正确的结果是( ) A. 66a b B. 66b a C. a 6b 6 D. 661a b9. 如图,等边ABC ∆的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为( )A. 15︒B. 22.5︒C. 30D. 45︒10. 瓜达尔港是我国实施“一带一路”战略构想的重要一步,为了增进中巴友谊,促进全球经济一体化发展,我国施工队预计把距离港口420km 的普通公路升级成同等长度的高速公路,升级后汽车行驶的平均速度比原来提高50%,行驶时间缩短2h ,那么汽车原来的平均速度为( )A. 80km/hB. 75km/hC. 70km/hD. 65km/h二.填空题(共5题,总计 15分)11. 分解因式:5x 4﹣5x 2=________________.12. 若4,8x y a b ==,则232x y -可表示为________(用含a 、b 的代数式表示).13. 若△ABC ≌△DEF ,△ABC 的周长为100,AB =30,DF =25,则BC 为 ________.14. 如图,DE AB ⊥于E ,AD 平分BAC ∠,BD DC =,10AC =cm ,6AB =cm ,则AE =______.15. 如图,△ABC 中,∠BAC =60°,∠BAC 的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE ⊥AB 交AB 的延长线于E ,DF ⊥AC 于F ,现有下列结论:①DE =DF ;②DE +DF =AD ;③DM 平分∠EDF ;④AB +AC =2AE ;其中正确的有________.(填写序号)三.解答题(共8题,总计75分)16. (1)计算:()32(2)32x x x x ---; (2)分解因式:229()()6()x x y y y x xy y x ---+-;17. 先化简,再求值:221x 4x 41x 1x 1-+⎛⎫-÷ ⎪--⎝⎭,其中x=3.18. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于y 轴对称的111A B C △.(2)写出点111,,A B C 的坐标(直接写答案).(3)111A B C △的面积为___________19. 如图,已知BF ⊥AC 于F ,CE ⊥AB 于E ,BF 交CE 于D ,且BD =CD ,求证:点D 在∠BAC 的平分线上.20. 如图,直线m 是中BC 边的垂直平分线,点P 是直线m 上的一动点,若6AB =,4AC =,7BC =.(1)求PA PB +的最小值,并说明理由.(2)求APC △周长的最小值.21. [阅读理解]我们常将一些公式变形,以简化运算过程.如:可以把公式“()2222a b a ab b +=++”变形成()2222a b a b ab +=+-或()()2222ab a b a b =+-+等形式,问题:若x 满足()()203010x x --=,求()()222030x x -+-的值. 我们可以作如下解答;设20a x =-,30b x =-,则()()203010x x ab --==, 即:()()2030203010a b x x +=-+-=-=-.所以()()()()222222203021021080x x a b a b ab -+-=+=+-=--⨯=. 请根据你对上述内容的理解,解答下列问题:(1)若x 满足()()807010x x --=-,求()()228070x x -+-的值. (2)若x 满足()()22202020174051x x -+-=,求()()20202017x x --的值.22. 一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果的单价是多少元?(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a %销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a 的最大值.23. 如图,已知和均为等腰三角形,AB AC =,AD AE =,将这两个三角形放置在一起,使点B ,D ,E 在同一直线上,连接CE .(1)如图1,若50ABC ACB ADE AED ∠=∠=∠=∠=︒,求证:BAD CAE ≌;(2)在(1)的条件下,求BEC ∠的度数;拓广探索:(3)如图2,若120CAB EAD ∠=∠=︒,4BD =,CF 为BAD 中BE 边上的高,请直接写出BEC ∠的度数和EF 的长度。
2019—2020年最新人教版八年级数学上册(第一学期)期末模拟综合测试三及答案解析.doc
八年级(上)期末数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列计划图形,不一定是轴对称图形的是()A.角B.等腰三角形 C.长方形D.直角三角形2.若分式有意义,则x满足的条件是()A.x=1 B.x=﹣1 C.x≠1 D.x≠﹣13.下列运算中正确的是()A.a3+a3=2a6B.a2•a3=a6C.(a2)3=a5D.a2÷a5=a﹣34.分式与的最简公分母是()A.ab B.3ab C.3a2b2D.3a2b65.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC6.若等腰三角形的两边长分别是4和9,则它的周长是()A.17 B.22 C.17或22 D.137.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2 B.2 C.0 D.18.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.三角形中,三个内角的比为1:3:6,它的三个外角的比为()A.1:3:6 B.6:3:1 C.9:7:4 D.3:5:210.如图,△ABC中,BO平分∠ABC,CO平分△ABC的外角∠ACD,MN经过点O,与AB,AC相交于点M,N,且MN∥BC,则BM,CN之间的关系是()A.BM+CN=MN B.BM﹣CN=MN C.CN﹣BM=MN D.BM﹣CN=2MN二、填空题(本大题共6小题,每小题3分,共18分)11.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为m.12.一个n边形的内角和是1260°,那么n= .13.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1等于多少度?.14.已知4y2+my+1是完全平方式,则常数m的值是.15.若分式方程:3无解,则k= .16.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF 上一动点,则△BDM的周长的最小值为.三、解答题(本大题共8小题,共72分)17.分解因式:(1)6xy2﹣9x2y﹣y3;(2)16x4﹣1.18.先化简,再求值:(+)•÷(+),其中x2+y2=17,(x﹣y)2=9.19.如图,点E在AB上,∠CEB=∠B,∠1=∠2=∠3,求证:CD=CA.20.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直接写出点P的坐标;(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直接写出点A2的坐标.21.甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,结果甲比乙早15分钟到达顶峰.求甲的平均攀登速度是每分钟多少米?(2)1月6日甲与丙去攀登另一座h米高的山,甲保持第(1)问中的速度不变,比丙晚出发0.5小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含h的代数式表示)22.如图,在△ABC中,AD是它的角平分线,G是AD上的一点,BG,CG分别平分∠ABC,∠ACB,GH⊥BC,垂足为H,求证:(1)∠BGC=90°+∠BAC;(2)∠1=∠2.23.如图1,我们在2017年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为10×12﹣4×18=48,再选择其他位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为.(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2017,则这个十字星中心的数为(直接写出结果).24.△ABC是等边三角形,点D、E分别在边AB、BC上,CD、AE交于点F,∠AFD=60°.(1)如图1,求证:BD=CE;(2)如图2,FG为△AFC的角平分线,点H在FG的延长线上,HG=CD,连接HA、HC,求证:∠AHC=60°;(3)在(2)的条件下,若AD=2BD,FH=9,求AF长.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列计划图形,不一定是轴对称图形的是()A.角B.等腰三角形 C.长方形D.直角三角形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、角一定是轴对称图形,不符合题意,本选项错误;B、等腰三角形一定是轴对称图形,不符合题意,本选项错误;C、长方形一定是轴对称图形,不符合题意,本选项错误;D、直角三角形不一定是轴对称图形,符合题意,本选项正确.故选D.2.若分式有意义,则x满足的条件是()A.x=1 B.x=﹣1 C.x≠1 D.x≠﹣1【考点】分式有意义的条件.【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣1≠0,解得x≠1.故选C.3.下列运算中正确的是()A.a3+a3=2a6B.a2•a3=a6C.(a2)3=a5D.a2÷a5=a﹣3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据同底数幂的乘除法则、幂的乘方及积的乘方法则,合并同类项,负整数指数幂结合各项进行判断即可.【解答】解:A、a3+a3=2a3,原式计算错误,故本项错误;B、a2•a3=a5,原式计算错误,故本项错误;C.(a2)3=a5,原式计算正确,故本项错误;D.a2÷a5=a﹣3,原式计算正确,故本项正确;故选D.4.分式与的最简公分母是()A.ab B.3ab C.3a2b2D.3a2b6【考点】最简公分母.【分析】先找系数的最小公倍数3,再找字母的最高次幂.【解答】解:分式与的最简公分母是3a2b2,故选C.5.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC【考点】全等三角形的判定.【分析】根据“SAS”可添加BF=EC使△ABC≌△DEF.【解答】解:∵AB∥ED,AB=DE,∴∠B=∠E,∴当BF=EC时,可得BC=EF,可利用“SAS”判断△ABC≌△DEF.故选A.6.若等腰三角形的两边长分别是4和9,则它的周长是()A.17 B.22 C.17或22 D.13【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为7和3,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为9时,周长=9+9+4=22;当腰长为4时,根据三角形三边关系可知此情况不成立;根据三角形三边关系可知:等腰三角形的腰长只能为9,这个三角形的周长是22.故选:B.7.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2 B.2 C.0 D.1【考点】多项式乘多项式.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:根据题意得:(x+m)(2﹣x)=2x﹣x2+2m﹣mx,∵x+m与2﹣x的乘积中不含x的一次项,∴m=2;故选B.8.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)【考点】等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.【分析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.【解答】解:阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.9.三角形中,三个内角的比为1:3:6,它的三个外角的比为()A.1:3:6 B.6:3:1 C.9:7:4 D.3:5:2【考点】三角形的外角性质;三角形内角和定理.【分析】由三角形中,三个内角的比为1:3:6,根据三角形的外角的性质,即可求得它的三个外角的比.【解答】解:∵三角形中,三个内角的比为1:3:6,∴它的三个外角的比为:(3+6):(1+6):(1+3)=9:7:4.故选:C.10.如图,△ABC中,BO平分∠ABC,CO平分△ABC的外角∠ACD,MN经过点O,与AB,AC相交于点M,N,且MN∥BC,则BM,CN之间的关系是()A.BM+CN=MN B.BM﹣CN=MN C.CN﹣BM=MN D.BM﹣CN=2MN【考点】等腰三角形的判定与性质;平行线的性质.【分析】只要证明BM=OM,ON=CN,即可解决问题.【解答】证明:∵ON∥BC,∴∠MOC=∠OCD∵CO平分∠ACD,∴∠ACO=∠DCO,∴∠NOC=∠OCN,∴CN=ON,∵ON∥BC,∴∠MOB=∠OBD∵BO平分∠ABC,∴∠MBO=∠CBO,∴∠MBO=∠MOB,∴OM=BM∵OM=ON+MN,OM=BM,ON=CN,∴BM=CN+MN,∴MN=BM﹣CN.故选B.二、填空题(本大题共6小题,每小题3分,共18分)11.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为 1.02×10﹣7m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.12.一个n边形的内角和是1260°,那么n= 9 .【考点】多边形内角与外角.【分析】根据多边形的内角和公式:(n﹣2).180 (n≥3)且n为整数)可得方程:(n﹣2)×180=1260,再解方程即可.【解答】解:由题意得:(n﹣2)×180=1260,解得:n=9,故答案为:9.13.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1等于多少度?66°.【考点】全等三角形的性质.【分析】根据图形和亲弟弟三角形的性质得出∠1=∠C,∠D=∠A=54°,∠E=∠B=60°,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∴∠1=∠C,∠D=∠A=54°,∠E=∠B=60°,∴∠1=180°﹣∠E﹣∠F=66°,故答案为:66°.14.已知4y2+my+1是完全平方式,则常数m的值是±4 .【考点】完全平方式.【分析】利用完全平方公式的结构特征确定出m的值即可.【解答】解:∵4y2+my+1是完全平方式,∴m=±4,故答案为:±415.若分式方程:3无解,则k= 3或1 .【考点】分式方程的解.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:3(x﹣3)+2﹣kx=﹣1,整理得(3﹣k)x=6,当整式方程无解时,3﹣k=0即k=3,当分式方程无解时,x=3,此时3﹣k=2,k=1,所以k=3或1时,原方程无解.故答案为:3或1.16.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF 上一动点,则△BDM的周长的最小值为8 .【考点】轴对称﹣最短路线问题;线段垂直平分线的性质;等腰三角形的性质;勾股定理.【分析】连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM 有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.【解答】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值6.∴△BDM的周长的最小值为DB+AD=2+6=8.三、解答题(本大题共8小题,共72分)17.分解因式:(1)6xy2﹣9x2y﹣y3;(2)16x4﹣1.【考点】提公因式法与公式法的综合运用.【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式利用平方差公式分解即可.【解答】解:(1)原式=﹣y(y2﹣6xy+9x2)=﹣y(y﹣3x)2;(2)原式=(4x2+1)(4x2﹣1)=(4x2+1)(2x+1)(2x﹣1).18.先化简,再求值:(+)•÷(+),其中x2+y2=17,(x﹣y)2=9.【考点】分式的化简求值.【分析】先将原式进行化简,然后根据x2+y2=17,(x﹣y)2=9求出x+y和xy的值并代入求解即可.【解答】解:∵x2+y2=17,(x﹣y)2=9,∴2xy=x2+y2﹣(x﹣y)2=17﹣9=8,∴(x+y)2=x2+y2+2xy=17+8=25,∴x+y=5,xy=4,∴原式=×÷=×=×=.19.如图,点E在AB上,∠CEB=∠B,∠1=∠2=∠3,求证:CD=CA.【考点】全等三角形的判定与性质.【分析】由∠1=∠3、∠CFD=∠EFA知∠D=∠A,由∠1=∠2知∠DCE=∠ACB,由∠CEB=∠B知CE=CB,从而证△DCE≌△ACB得CD=CA.【解答】证明:如图,∵∠1=∠3,∠CFD=∠EFA,∴180°﹣∠1﹣∠CFD=180°﹣∠3﹣∠EFA,即∠D=∠A,∵∠1=∠2,∴∠1+∠ACE=∠2+∠ACE,即∠DCE=∠ACB,又∵∠CEB=∠B,∴CE=CB,在△DCE和△ACB中,∵,∴△DCE≌△ACB(AAS),∴CD=CA.20.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直接写出点P的坐标;(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直接写出点A2的坐标.【考点】作图﹣轴对称变换;轴对称﹣最短路线问题.【分析】(1)先作出各点关于y轴的对称点,再顺次连接即可;(2)连接AB1交y轴于点P,利用待定系数法求出直线AB1的解析式,进而可得出P点坐标;(3)找出点A关于直线BC的对称点,并写出其坐标即可.【解答】解:(1)如图所示;(2)设直线AB1的解析式为y=kx+b(k≠0),∵A(﹣1,5),B1(1,0),∴,解得,∴直线AB1的解析式为:y=﹣x+,∴P(0,2.5);(3)如图所示,A2(﹣6,0).21.甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,结果甲比乙早15分钟到达顶峰.求甲的平均攀登速度是每分钟多少米?(2)1月6日甲与丙去攀登另一座h米高的山,甲保持第(1)问中的速度不变,比丙晚出发0.5小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含h的代数式表示)【考点】分式方程的应用.【分析】(1)根据题意可以列出相应的分式方程,从而可以求得甲的平均攀登速度;(2)根据(1)中甲的速度可以表示出丙的速度,再用甲的速度比丙的平均攀登速度即可解答本题.【解答】解:(1)设乙的速度为x米/分钟,,解得,x=10,经检验,x=10是原分式方程的解,∴1.2x=12,即甲的平均攀登速度是12米/分钟;(2)设丙的平均攀登速度是y米/分,,化简,得y=,∴甲的平均攀登速度是丙的:倍,即甲的平均攀登速度是丙的倍.22.如图,在△ABC中,AD是它的角平分线,G是AD上的一点,BG,CG分别平分∠ABC,∠ACB,GH⊥BC,垂足为H,求证:(1)∠BGC=90°+∠BAC;(2)∠1=∠2.【考点】三角形内角和定理.【分析】(1)由三角形内角和定理可知∠ABC+∠ACB=180°﹣∠BAC,然后利用角平分线的性质即可求出∠BGC=90°+∠BAC.(2)由于AD是它的角平分线,所以∠BAD=∠CAD,然后根据图形可知:∠1=∠BAD+∠ABG,∠2=90°﹣∠GCH,最后根据三角形的内角和定理以及外角的性质即可求出答案.【解答】解:(1)由三角形内角和定理可知:∠ABC+∠ACB=180°﹣∠BAC,∵BG,CG分别平分∠ABC,∠ACB,∠GBC=∠ABC,∠GCB=∠ACB∴∠GBC+∠GCB=(∠ABC+∠ACB)==90°﹣∠BAC∴∠BGC=180°﹣(∠GBC+∠GCB)=180°﹣(∠ABC+∠ACB)=90°+∠BAC;(2)∵AD是它的角平分线,∴∠BAD=∠CAD∴∠1=∠BAD+∠ABG,∵GH⊥BC,∴∠GHC=90°∴∠2=90°﹣∠GCH=90°﹣∠ACB=90°﹣=∠DAC+∠ADC∵∠ADC=∠ABC+∠BAD,∴∠ADC=∠ABC+∠∠BAD=∠ABG+∠BAD,∴∠2=∠DAC+∠ADC=∠BAD+∠BAD+∠ABG=∠BAD+∠ABG,∴∠1=∠2,23.如图1,我们在2017年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为10×12﹣4×18=48,再选择其他位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为24 .(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2017,则这个十字星中心的数为975 (直接写出结果).【考点】规律型:数字的变化类.【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值;(2)定值为k2﹣1=(k+1)(k﹣1),理由为:设十字星中心的数为x,表示出十字星左右两数,上下两数,进而表示出十字差,化简即可得证;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据相应的“十字差”为2017求出a的值即可.【解答】解:(1)根据题意得:6×8﹣2×12=48﹣24=24;故答案为:24;(2)定值为k2﹣1=(k+1)(k﹣1);证明:设十字星中心的数为x,则十字星左右两数分别为x﹣1,x+1,上下两数分别为x﹣k,x+k(k≥3),十字差为(x﹣1)(x+1)﹣(x﹣k)(x+k)=x2﹣1﹣x2+k2=k2﹣1,故这个定值为k2﹣1=(k+1)(k﹣1);(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据题意得:(a﹣1)(a+1)﹣(a﹣62)(a+64)=2017,解得:a=975.故答案为:975.24.△ABC是等边三角形,点D、E分别在边AB、BC上,CD、AE交于点F,∠AFD=60°.(1)如图1,求证:BD=CE;(2)如图2,FG为△AFC的角平分线,点H在FG的延长线上,HG=CD,连接HA、HC,求证:∠AHC=60°;(3)在(2)的条件下,若AD=2BD,FH=9,求AF长.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的性质得出AB=BC,∠BAC=∠C=∠ABE=60°,根据SAS推出△ABE≌△BCD,即可证得结论;(2)根据角平分线的性质定理证得CM=CN,利用∠CEM=∠ACE+∠CAE=60°+∠CAE,∠CGN=∠AFH+∠CAE=60°+∠CAE,得出∠CEM=∠CGN,然后根据AAS 证得△ECM≌△GCN,得出CG=CE,EM=GN,∠ECM=∠GCN,进而证得△AMC ≌△HNC,得出∠ACM=∠HCN,AC=HC,从而证得△ACH是等边三角形,证得∠AHC=60°;(3)在FH上截取FK=FC,得出△FCK是等边三角形,进一步得出FC=KC=FK,∠ACF=∠HCK,证得△AFC≌△HKC得出AF=HK,从而得到HF=AF+FC=9,由AD=2BD可知AG=2CG,再由=,根据等高三角形面积比等于底的比得出===2,再由AF+FC=9求得.【解答】解:(1)如图1,∵△ABC是等边三角形,∴∠B=∠ACE=60°BC=AC,∵∠AFD=∠CAE+∠ACD=60°∠BCD+∠ACD=∠ACB=60°,∴∠BCD=∠CAE,在△ABE和△BCD中,∴△ABE≌△BCD(ASA),∴BD=CE;(2)如图2,作CM⊥AE交AE的延长线于M,作CN⊥HF于N,∵∠EFC=∠AFD=60°∴∠AFC=120°,∵FG为△AFC的角平分线,∴∠CFH=∠AFH=60°,∴∠CFH=∠CFE=60°,∵CM⊥AE,CN⊥HF,∴CM=CN,∵∠CEM=∠ACE+∠CAE=60°+∠CAE,∠CGN=∠AFH+∠CAE=60°+∠CAE,∴∠CEM=∠CGN,在△ECM和△GCN中∴△ECM≌△GCN(AAS),∴CE=CG,EM=GN,∠ECM=∠GCN,∴∠MCN=∠ECG=60°,∵△ABE≌△BCD,∵AE=CD,∵HG=CD,∴AE=HG,∴AE+EM=HG+GN,即AM=HN,在△AMC和△HNC中∴△AMC≌△HNC(SAS),∴∠ACM=∠HCN,AC=HC,∴∠ACM﹣∠ECM=∠HCN﹣∠GCN,即∠ACE=∠HCG=60°,∴△ACH是等边三角形,∴∠AHC=60°;(3)如图3,在FH上截取FK=FC,∵∠HFC=60°,∴△FCK是等边三角形,∴∠FKC=60°,FC=KC=FK,∵∠ACH=60°,∴∠ACF=∠HCK,在△AFC和△HKC中∴△AFC≌△HKC(SAS),∴AF=HK,∴HF=AF+FC=9,∵AD=2BD,BD=CE=CG,AB=AC,∴AG=2CG,∴==,作GW⊥AE于W,GQ⊥DC于Q,∵FG为△AFC的角平分线,∴GW=GQ,∵===,∴AF=2CF,∴AF=6.2017年3月19日。
人教版八年级数学上册-期末复习 试卷3(含答案)
八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列各数中为无理数的是()A.﹣1 B.3.14 C.πD.02.以下列各组数为边长,不能构成直角三角形的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,153.直线a、b、c、d的位置如图,如果∠1=100°,∠2=100°,∠3=125°,那么∠4等于()A.80°B.65°C.60°D.55°4.某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm5.一个正比例函数的图象经过点(﹣2,4),它的表达式为()A.y=﹣2x B.y=2x C.y=﹣x D.y=x6.下列各式计算正确的是()A. += B.4﹣3=1 C.2×3=6D.÷=7.如图,在平面直角坐标系中,直线y=﹣x+1上一点A关于x轴的对称点为B(2,m),则m的值为()A.﹣1 B.1 C.2 D.38.某公司去年的利润(总产值﹣总支出)为300万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为980万元,如果去年的总产值x万元,总支出y万元,则下列方程组正确的是()A.B.C.D.9.如图,若△A′B′C′与△ABC关于直线AB对称,则点C的对称点C′的坐标是()A.(0,1)B.(0,﹣3)C.(3,0)D.(2,1)10.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,二车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,则下列说法中:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③相遇时,快车距甲地240km;④快车到达甲地时,慢车距离甲地60km,正确的个数是()A.1个 B.2个 C.3个 D.4个二、填空题.11.计算:=.12.一次函数y=3﹣x与y=3x﹣5的图象的交点为(2,1),则方程组的解为.13.已知x、y满足方程组:,则(x+y)x﹣y的值为.14.如图,AD是△ABC的高,BE是△ABC的内角平分线,BE、AD相交于点F,已知∠BAD=40°,则∠BFD=°.15.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为.16.如图,当四边形PABN的周长最小时,a=.三、解答题17.计算:(1)(﹣)(+)+(2﹣)(2).18.如图,已知单位长度为1的方格中有个△ABC,若A(﹣3,﹣3),B(﹣2,﹣1),C(0,﹣4).(1)建立△ABC所在平面直角坐标系.(2)画出与△ABC关于x轴对称的△A′B′C′,则B′(,)19.2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词、根据调查结果,该小组绘制了两幅不完整的统计图如图所示,请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学;(2)条形统计图中,m=,n=.(3)若该校有3000名同学,请估计出选择C、D的一共有多少名同学?20.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E,若∠B=35°,∠ACB=85°.(1)求∠DAC的度数;(2)求∠E的度数.21.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A 种机器人的搬运量y A(千克)与时间x(时)的函数图象,线段EF表示B种机器人的搬运量y B(千克)与时间x(时)的函数图象.根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?22.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费=自来水销售费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值.(2)小王家6月份交水费184元,则小王家6月份用水多少吨?23.如图,在平面直角坐标系中,直线AB:y=kx+1(k≠0)交y轴于点A,交x轴于点B(3,0),平行于y轴的直线x=2交AB于点D,交x轴于点E,点P是直线x=2上一动点,且在点D的上方,设P(2,n)(1)求直线AB的表达式和点A的坐标;(2)求△ABP的面积(用含n的代数式表示);【平行班】=4时,以PB为直角边在第一象限作等腰直角三角形BPC,直接写出点C的坐标.(3)当S△ABP【双语班,实验班】=S△BPC时,以PB为边在第一象限作等腰直角三角形BPC,直接写出点C的坐标.(4)当S△ABP四、附加题:24.(1)问题如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90,请直接写出线段AM长的最大值及此时点P的坐标参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列各数中为无理数的是()A.﹣1 B.3.14 C.πD.0【考点】无理数.【分析】π是圆周率,是无限不循环小数,所以π是无理数.【解答】解:∵π是无限不循环小数,∴π是无理数.故选C.2.以下列各组数为边长,不能构成直角三角形的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+1.52≠32,故不是直角三角形,故此选项符合题意;B、72+242=252,故是直角三角形,故此选项不符合题意;C、82+62=102,故是直角三角形,故此选项不符合题意;D、92+122=152,故是直角三角形,故此选项不符合题意.故选A.3.直线a、b、c、d的位置如图,如果∠1=100°,∠2=100°,∠3=125°,那么∠4等于()A.80°B.65°C.60°D.55°【考点】平行线的判定与性质.【分析】根据平行线的判定得出a∥b,根据平行线的性质得出∠4=∠5,求出∠5即可.【解答】解:∵∠1=100°,∠2=100°,∴∠1=∠2,∴直线a∥直线b,∴∠4=∠5,∵∠3=125°,∴∠4=∠5=180°﹣∠3=55°,故选D.4.某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm【考点】众数;中位数.【分析】根据表格可以直接得到这10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列即可得到中位数.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选B.5.一个正比例函数的图象经过点(﹣2,4),它的表达式为()A.y=﹣2x B.y=2x C.y=﹣x D.y=x【考点】待定系数法求正比例函数解析式.【分析】设该正比例函数的解析式为y=kx(k≠0),再把点(﹣2,4)代入求出k的值即可.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(﹣2,4),∴4=﹣2k,解得k=﹣2,∴这个正比例函数的表达式是y=﹣2x.故选A.6.下列各式计算正确的是()A. += B.4﹣3=1 C.2×3=6D.÷=【考点】二次根式的混合运算.【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B 、原式=,所以B选项错误;C、原式=6×3=18,所以C选项错误;D、原式==,所以D选项正确.故选D.7.如图,在平面直角坐标系中,直线y=﹣x+1上一点A关于x轴的对称点为B(2,m),则m的值为()A.﹣1 B.1 C.2 D.3【考点】一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】根据关于x轴的对称点的坐标特点可得A(2,﹣m),然后再把A点坐标代入y=﹣x+1可得m的值.【解答】解:∵点B(2,m),∴点B关于x轴的对称点A(2,﹣m),∵A在直线y=﹣x+1上,∴﹣m=﹣2+1=﹣1,m=1.故选:B.8.某公司去年的利润(总产值﹣总支出)为300万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为980万元,如果去年的总产值x万元,总支出y万元,则下列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】分别根据:去年总产值﹣去年总支出=300和今年增加后的总产值﹣今年减少后的总支出=980,可列方程组.【解答】解:设去年的总产值x万元,总支出y万元,根据题意可列方程组:,故选:A.9.如图,若△A′B′C′与△ABC关于直线AB对称,则点C的对称点C′的坐标是()A.(0,1)B.(0,﹣3)C.(3,0)D.(2,1)【考点】坐标与图形变化﹣对称.【分析】根据对称的性质可知点C和对称点C′到直线AB的距离是相等的则易解.【解答】解:∵△A′B′C'与△ABC关于直线AB对称,∴通过网格上作图或计算可知,C’的坐标是(2,1).故选D.10.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,二车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,则下列说法中:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③相遇时,快车距甲地240km;④快车到达甲地时,慢车距离甲地60km,正确的个数是()A.1个 B.2个 C.3个 D.4个【考点】一次函数的应用.【分析】①由t=0时,s=560即可得出说法①符合题意;②根据速度=路程÷时间即可算出快车的速度,再根据慢车的速度=路程÷4﹣快车的速度即可求出慢车的速度,二者相比后即可得出说法②不符合题意;③根据路程=速度×时间即可算出相遇时,快车距甲地的距离,由此可得出说法③符合题意;④根据距离=240﹣慢车速度×5即可求出快车到达甲地时,慢车距离甲地距离,由此可得出说法④符合题意.综上即可得出结论.【解答】解:①∵当t=0时,s=560,∴甲、乙两地之间的距离为560km,∴说法①符合题意;②快车的速度为560÷7=80(km/h),慢车的速度为560÷4﹣80=60(km/h).∵80÷60=,∴快车速度是慢车速度的倍,∴说法②不符合题意;③∵80×(7﹣4)=240(km),∴相遇时,快车距甲地240km,∴说法③符合题意;④∵240﹣60×(7﹣4)=60(km),∴快车到达甲地时,慢车距离甲地60km,∴说法④符合题意.故选C.二、填空题.11.计算:=.【考点】二次根式的加减法.【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:=3﹣=2.故答案为:2.12.一次函数y=3﹣x与y=3x﹣5的图象的交点为(2,1),则方程组的解为.【考点】一次函数与二元一次方程(组).【分析】根据两函数交点即为两函数组成的方程组的解,从而求出答案.【解答】解:∵一次函数y=3﹣x与y=3x﹣5的图象的交点为(2,1),∴方程组的解为.故答案为.13.已知x、y满足方程组:,则(x+y)x﹣y的值为.【考点】解二元一次方程组.【分析】方程组两方程相加减求出x+y与x﹣y的值,代入原式计算即可得到结果.【解答】解:,①+②得:7(x+y)=21,即x+y=3;①﹣②得:﹣3(x﹣y)=3,即x﹣y=﹣1,则原式=,故答案为:14.如图,AD是△ABC的高,BE是△ABC的内角平分线,BE、AD相交于点F,已知∠BAD=40°,则∠BFD=65°【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】根据高线的定义可得∠ADB=90°,然后根据∠BAD=40°,求出∠ABC的度数,再根据角平分线的定义求出∠FBD,然后利用三角形的内角和等于180°列式计算即可得解.【解答】解:∵AD是高线,∴∠ADB=90°∵∠BAD=40°,∴∠ABC=50°,∵BE是角平分线,∴∠FBD=25°,在△FBD中,∠BFD=180°﹣90°﹣25°=65°.故答案为:65°.15.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为2.【考点】翻折变换(折叠问题);矩形的性质.【分析】由翻折易得△DFE≌△DCE,则DF=DC,∠DFE=∠C=90°,再由AD∥BC得∠DAF=∠AEB,根据AAS证出△ABE≌△DFA;则AE=AD,设CE=x,从而表示出BE,AE,再由勾股定理,求得DE.【解答】证明:由矩形ABCD,得∠B=∠C=90°,CD=AB,AD=BC,AD∥BC.由△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处,得△DFE≌△DCE,∴DF=DC,∠DFE=∠C=90°,∴DF=AB,∠AFD=90°,∴∠AFD=∠B,由AD∥BC得∠DAF=∠AEB,∴在△ABE与△DFA中,,∴△ABE≌△DFA(AAS).∵由EC:BE=1:4,∴设CE=x,BE=4x,则AD=BC=5x,由△ABE≌△DFA,得AF=BE=4x,在Rt△ADF中,由勾股定理可得DF=3x,又∵DF=CD=AB=6,∴x=2,在Rt△DCE中,DE===2.故答案是:2.16.如图,当四边形PABN的周长最小时,a=.【考点】坐标与图形性质.【分析】因为AB,PN的长度都是固定的,所以求出PA+NB的长度就行了.问题就是PA+NB什么时候最短.把B点向左平移2个单位到B′点;作B′关于x轴的对称点B″,连接AB″,交x轴于P,从而确定N点位置,此时PA+NB最短.设直线AB″的解析式为y=kx+b,待定系数法求直线解析式.即可求得a的值.【解答】解:将N点向左平移2单位与P重合,点B向左平移2单位到B′(2,﹣1),作B′关于x轴的对称点B″,根据作法知点B″(2,1),设直线AB″的解析式为y=kx+b,则,解得k=4,b=﹣7.∴y=4x﹣7.当y=0时,x=,即P(,0),a=.故答案填:.三、解答题17.计算:(1)(﹣)(+)+(2﹣)(2).【考点】二次根式的混合运算;解二元一次方程组.【分析】(1)根据平方差公式和二次根式的乘法可以解答本题;(2)根据解二元一次方程组的方法可以解答本题.【解答】解:(1)(﹣)(+)+(2﹣)=7﹣6+2﹣2=﹣1+2;(2),化简,得,②×3﹣①×2,得y=12,将y=12代入①,得x=21,故原方程组的解为.18.如图,已知单位长度为1的方格中有个△ABC,若A(﹣3,﹣3),B(﹣2,﹣1),C(0,﹣4)(1)建立△ABC所在平面直角坐标系.(2)画出与△ABC关于x轴对称的△A′B′C′,则B′(﹣2,1)【考点】作图﹣轴对称变换.【分析】(1)根据A点坐标建立直角坐标系即可;(2)画出△ABC关于x轴对称的△A′B′C′,写出B′点的坐标即可.【解答】解:(1)如图;(2)如图,△A′B′C′即为所求,B′(﹣2,1).故答案为:﹣2,1.19.2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词、根据调查结果,该小组绘制了两幅不完整的统计图如图所示,请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学;(2)条形统计图中,m=60,n=90.(3)若该校有3000名同学,请估计出选择C、D的一共有多少名同学?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A的人数为105人,所占的百分比为35%,求出总人数,即可解答;(2)C所对应的人数为:总人数×30%,B所对应的人数为:总人数﹣A所对应的人数﹣C所对应的人数﹣D所对应的人数,即可解答;(3)用3000乘以选择C、D共占的百分比,即可得出答案.【解答】解:(1)根据题意得:105÷35%=300(人),答:一共调查了300名同学,(2)n=300×30%=90(人),m=300﹣105﹣90﹣45=60(人).故答案为:60,90;(3)根据题意得:3000×=1350(名),答:选择C、D的一共有1350名同学.20.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E,若∠B=35°,∠ACB=85°.(1)求∠DAC的度数;(2)求∠E的度数.【考点】三角形内角和定理.【分析】(1)利用三角形内角和定理得出∠BAC的度数,根据角平分线的定义即可得到结论;(2)进而得出∠ADC的度数,再利用三角形内角和定理和外角性质得出即可.【解答】解:(1)∵∠B=35°,∠ACB=85°,∴∠BAC=60°,∵AD平分∠BAC,∴∠DAC=BAC=30°,(2)∵∠BAD=BAC=30°,∴∠ADC=35°+30°=65°,∵∠EPD=90°,∴∠E的度数为:90°﹣65°=25°.故答案为:25°.21.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A 种机器人的搬运量y A(千克)与时间x(时)的函数图象,线段EF表示B种机器人的搬运量y B(千克)与时间x(时)的函数图象.根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【考点】一次函数的应用.【分析】(1)设y B关于x的函数解析式为y B=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式(2)设y A关于x的解析式为y A=k1x.将(3,180)代入可求得y A关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得y A,y B的值,最后求得y A与y B的差即可.【解答】解:(1)设y B关于x的函数解析式为y B=kx+b(k≠0).将点(1,0)、(3,180)代入得:,解得:k=90,b=﹣90.所以y B关于x的函数解析式为y B=90x﹣90(1≤x≤6).(2)设y A关于x的解析式为y A=k1x.根据题意得:3k1=180.解得:k1=60.所以y A=60x.当x=5时,y A=60×5=300(千克);x=6时,y B=90×6﹣90=450(千克).450﹣300=150(千克).答:如果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.22.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费=自来水销售费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值.(2)小王家6月份交水费184元,则小王家6月份用水多少吨?【考点】二元一次方程组的应用.【分析】(1)根据题意和表格可以列出相应的二元一次方程组,从而可以求出a、b的值;(2)根据题意可以列出相应的方程,从而可以求得小王家本月用水量为多少吨.【解答】解:(1)根据题意可得,,解得,,即a的值是2.2,b的值是4.4;(2)设小王家6月份用水x吨,根据题意知,30吨的水费为:17×2.2+13×4.2+30×0.8=116,∵184>116,∴小王家6月份计划用水超过了30吨∴6.0(x﹣30)+116+0.80×(x﹣30)=184,解得,x=40即小王家6月份用水量40吨.23.如图,在平面直角坐标系中,直线AB:y=kx+1(k≠0)交y轴于点A,交x轴于点B(3,0),平行于y轴的直线x=2交AB于点D,交x轴于点E,点P是直线x=2上一动点,且在点D的上方,设P(2,n)(1)求直线AB的表达式和点A的坐标;(2)求△ABP的面积(用含n的代数式表示);【平行班】=4时,以PB为直角边在第一象限作等腰直角三角形BPC,直接写出点C的坐标.(3)当S△ABP【双语班,实验班】=S△BPC时,以PB为边在第一象限作等腰直角三角形BPC,直接写出点C的坐标.(4)当S△ABP【考点】三角形综合题.【分析】(1)把B的坐标代入直线AB的解析式,即可求得k的值,然后在解析式中,令x=0,求得y的值,即可求得A的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAD的面积,二者的和即可求得;=4时,n﹣1=2,解得n=3,分两种情况:①以P为直角顶点,②以B为直角项点,证明(3)当S△ABP△CNP≌△BEP,根据三角形全等的性质可得点C的坐标;=S△BPC列式求出n的值,同(3)可依次求出C的坐标.(4)根据S△ABP【解答】解:(1)∵直线AB:y=kx+1(k≠0)交y轴于点A,交x轴于点B(3,0),∴0=3k+1,∴k=﹣,直线AB的解析式是y=﹣x+1.当x=0时,y=1,∴点A(0,1);(2)如图1、过点A作AM⊥PD,垂足为M,则有AM=2,∵x=2时,y=﹣x+1=,∵P在点D的上方,∴PD=n﹣,=AM•PD=×2×(n﹣)=n﹣;∴S△APD由点B(3,0),可知点B到直线x=2的距离为1,即△BDP的边PD上的高长为1,=1×(n﹣)=(n﹣),∴S△BPD=S△APD+S△BPD=n﹣;∴S△PAB=4时,n﹣=4,解得n=3,(3)当S△ABP∴点P(2,3).∵E(2,0),∴PE=3,BE=1,①如图2,∠CPB=90°,BP=PC,过点C作CN⊥直线x=2于点N.则△CNP≌△BEP,∴PN=EB=1,CN=PE=3,∴NE=NP+PE=1+3=4,∴C(5,4);②如图3、∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.同理可得△CBF≌△PBE.∴BF=PE=3,CF=BE=1,∴OF=OB+BF=3+3=6,∴C(6,1),综上所述,以PB为直角边在第一象限作等腰直角三角形BPC,点C的坐标是(5,4)或(6,1);(4)如图2,在Rt△BPE中,∵P(2,n),B(3,0),∴PE=n,BE=1,由勾股定理得:PB2=PE2+BE2=n2+1,=S△BPC,∵S△ABP∴n﹣=(n2+1),3n﹣1=n2+1,n2﹣3n+2=0,n=1或2,∵D(2,),且P在点D的上方,∴P(2,1)或(2,2),①当n=1时,如图2,NC=PE=1,PN=BE=1,∴C(3,2),如图3,BF=CF=1,∴C(4,1),②当n=2时,如图2,同理得C(4,3),如图3,得C(5,1),综上所述,点C的坐标是(3,2)或(4,1)或(4,3)或(5,1).四、附加题:24.(1)问题如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为a+b(用含a,b的式子表示)(2)应用点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90,请直接写出线段AM长的最大值及此时点P的坐标.【考点】三角形综合题;全等三角形的判定与性质;等腰直角三角形;旋转的性质.【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;过P作PE⊥x轴于E,根据等腰直角三角形的性质,即可得到结论.【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,∴由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)如图1,连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).。
人教版初二数学上学期期末复习测试卷(3)含答案
初二数学上学期期末复习测试卷(3)(满分:100分时间:90分钟)一、选择题(每题2分,共16分)1.在下列各数中,3.14159,-38,0.131131113…,-π,25,-17无理数的个数是( )A.1 B.2 C.3 D.42.下列表情图属于轴对称图形的是( )3.如图,在△ABC和△DEC中,已知AB=DE,还需要添加两个条件才能使△ABC ≌△DEC,不能添加的一组是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D4.如图,在△,ABC中,∠ABC=45°,AC=8cm.若F是高AD和BE的交点,则BF的长是( )A.4cm B.6cm C.8cm D.9cm5.若等腰三角形的一个角是80°,则它的顶角的度数是( )A.80°B.80°或20°C.80°或50°D.20°6.若一个三角形的三边a,b,c满足a2+b2+c2=10a+24b+26c-338,则这个三角形一定是( )A.直角三角形B.锐角三角形C.等腰三角形D.等腰直角三角形7.张师傅驾车从甲地到乙地,两地相距500km,汽车出发前油箱有油25L,途中加油若干升,加油前、后汽车都以100km/h的速度匀速行驶.已知油箱中剩余油量y(L)与行驶时间t(h)之间的关系如图所示.则以下说法错误的是( )A.加油前油箱中剩余油量y(L)与行驶时间t(h)之间的函数关系式是y=-8t+25B.途中加油21LC.汽车加油后还可行驶4hD.汽车到达乙地时油箱中还余油6L8.如图,在平面直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0) B.(0,1)C.(0,2) D.(0,3)二、填空题(每题2分,共20分)9.平方根等于本身的数是_______.10.在△ABC中,∠A=40°,当∠B=_______时,△ABC是等腰三角形.11.如图,∠AOB=70°,QC⊥OA,QD⊥OB,垂足分别为点C,D.若OC=OD,则∠AOQ=_______.12.如图,AB∥CD,AE=AF,CE交AB于点F.若∠C=110°,则∠A=_______.13.给出下列函数:①y=2x+8;②y=-2+4x;③y=-2x+8;④y=4x.其中y 随x的增大而减小的函数是_______.(填序号)14.写出一个过点(0,3)且函数值y随自变量x的增大而减小的一次函数关系式:_______.(写一个答案即可)15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D.若BC=15,且BD=9,则△ADC与△ADB的面积比为_______.16.钓鱼岛自古就是中国的领土,中国政府已对钓鱼岛展开常态化巡逻.某天,为按计划准点到达指定海域,某巡逐艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准时到达,该艇行驶韵路程y(海里)与所用时间t(小时)的函数图像如图所示,该巡逻艇原计划准点到达的时刻是_______.17.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位长度,得到点A1(0,1)、A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n是自然数)的坐标为_______.18.如图,在长方形ABCD 中,AB =3,BC =4,点E 是边BC 上的一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为_______.三、解答题(共64分)19.(本题6分)计算下列各题,. (1).4-23÷2-×(-7+5);(2)()3392322-+---.20.(本题6分)下图是单位长度为1的正方形网格.(1)在图1中画出一条长度10为的线段AB ;(2)在图2中画出一个以格点为顶点、面积为5的正方形.21.(本题6分)在△ABC 中,∠BAC =90°,AB =20,AC =15,AD ⊥BC ,垂足为点D ,(1)求BC 的长;(2)求AD 的长.22.(本题10分)如图,在△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A =∠D ,AB =DC .(1)求证:△ABF ≌△DCE ;(2)当∠AEB =50°,求∠EBC 的度数.23.(本题10分)如图,△ABC 是等边三角形,D 是边AB 上的一点,以CD 为边作等边兰角形CDE ,使点E ,A 在直线DC 的同侧,连接AE .求证:AE ∥BC .24.(本题9分)已知一次函数y=kx+b的图像经过点(-1,-5),且与正比例函数y=12x的图像相交于点(2,m).(1)求m的值;(2)求一次函数y=kx+b的解析式;(3)求这两个函数图像与x轴所围成的三角形的面积.25.(本题8分)某生物小组观察-植物生长,得到植物高度y( cm)与观察时间x(天)的关系,并画出如图所示的图像(AC是线段,直线CD平行于x轴).(1)该植物从观察时起,多少天以后停止长高?(2)求直线AC的解析式,并求该植物最高长多少厘米.26.(本题8分)如图,△ABC是边长为6的等边三角形,P是边AC上一动点、,由点A向点C运动(与点A,C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由点B向CB延长线方向运动(点Q不与点B重合),过点P作PE⊥AB,垂足为点E,连接PQ交AB于点D.(1)当∠BQD=30°时,求AP的长.(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.27.(本题9分)如图1,A,B,C为三个超市,在从A通往C的道路(粗实线部分)上有一点D,D与B有道路(细实线部分)相通,A与D、D与C、D与B之间的路程分别为25km,10km,5km.现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货,该货车每天从H出发,单独为A送货1次,为B 送货1次,为C送货2次,货车每次仅能给一家超市送货,每次送货后均返回配货中心H.设H到A的路程为xkm,这辆货车每天行驶的路程为ykm.(1)用含有x的代数式填空:当0≤x≤25时,货车从H到A往返1次的路程为2xkm,货车从H到B往返1次的路程为_______km,货车从H到C往返2次的路程为_______km,这辆货车每天行驶的路程y=_______km;当25<x≤35时,这辆货车每天行驶的路程y=_______.(2)请在图2中画出y与x(0≤x≤35)的函数图像.(3)配货中心H建在哪段可使这辆货车每天行驶的路程最短?参考答案一、选择题1.B2.D3.C4.C5.B6.A7.C8.D二、填空题9.0 10.40°,70°或100 11.35°12.40°13.③14.答案不唯一,如y=-x+315.2:3 16.7:00 17.(2n,1) 18.3或3 2三、解答题19.(1)10 (2)-120.图略21.(1)BC的长为25 (2)AD的长为12 22.(1)略(2)25°23.略24.(1)m=1(2)y=2x-3 (3)3 425.(1)50天以后停止长高(2)16cm26.(1)2 (2)DE的长不变27.(1)60-2x 140-4x -4x+200 100 (2)函数图像如图所示:(3)建在CD上路程最短.。
新人教版八年级数学上册期末试卷(三)及答案
教师林宗皇学科数学年段八年级课题16·1·1分式(1)时间年月日教学目标1、使学生了解分式的概念,明确分式中分母不能为0是分式成立的条件。
2、使学生能求出分式有意义的条件。
3、通过对分式的学习,培养学生严谨的学习态度,培养学生数学建模的思想。
教学重点理解分式的概念,明确分式成立的条件。
教学难点明确分式有意义的条件。
教学步骤(体现教学内容、教学问题设计、时间安排、学法指导作业布置和预习等)教学方法教学手段问题情境1、在小学人们学习了分数,那么5÷3可以写成什么?2、根据上面的问题,填空:(1)长方形的面积为10cm2,长为7cm,宽 cm;长方形的面积为S,长为a,宽应为。
(2)把体积为200cm的水倒入底面积为33cm2的圆柱形容器中,水面高度为 cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度为。
新课:请同学们根据问题1 的回答,回答出第2题的问题。
教师与学生一起及时纠正学生出现的错误。
学生回答,教师写出答案:(1),。
(2) ,。
新课:下面请同学们看一下这四个式了,看它们有什么相同点和不同点?学生根据自己的观察,说出、是分数,是整式。
而另两个式子,看他们有什么特点,请同学们自己总结一下,学生说出分母中有字母。
请大家归纳一下这个式子是什么式子,有什么特点?学生回答分母中含有字母。
学生归纳:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫分式。
引导学生回答出,(1)分式与分数一样,A叫分子,B叫分母。
那么小学学习过的分数中的分母有什么限制,(分母不能为零。
)分式中对分母的要求也是分母不能为零。
对于分式分母为零时分式才有意义。
(2)分母中含有字母。
请同学们再举出一些分式的例子。
例1 填空:(1)当x 时,分式有意义。
(2)当x 时,分式有意义。
(3)当b____时,分式有意义。
(4)当x、y满足关系时,分式有意义。
解:(1)当分母3x ≠ 0时,x ≠ 0时,分式有意义。
2019—2020年最新人教版八年级数学上册期末总复习专项测试题(三)含答案.doc
八年级数学人教版上册期末总复习专项测试题(三)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、计算的值为,则的值等于( )A.B.C.D.【答案】D【解析】解:先化简由题可得则,解得.故答案为:.2、已知,,则的值为( ).A.B.C.D.【答案】C【解析】解:∵,,∴,故答案应选:.3、已知分式的值为,那么的值是()A. 或B.C.D.【答案】C【解析】解:分式的值为,且,解得.4、在直角坐标平面内,已知在轴与直线之间有一点,如果该点关于直线的对称点的坐标为,那么的值为()A.B.C.D.【答案】D【解析】解:该点关于直线的对称点的坐标为,对称点到直线的距离为,点到直线的距离为,.5、如图,在中,,平分,于.如果,,那么等于()A.B.C.D.【答案】C【解析】解:,,,,,,平分,,.6、如图,设和是镜面平行相对且间距为的两面镜子,把一个小球放在和之间,小球在镜中的像为,在镜是中的像为,则等于()A.B.C.D.【答案】D【解析】解:如图所示,经过反射后,,,.7、如图,在的正方形网格中,已有四个小正方形被涂黑.若将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形,则该小正方形的位置可以是()A. (一,2)B. (二,4)C. (三,2)D. (四,4)【答案】B【解析】解:如图,把(二,4)位置的正方形涂黑,则整个图案构成一个以直线为轴的轴对称图形.8、能够铺满地面的正多边形组合是()A. 正六边形和正方形B. 正五边形和正八边形C. 正方形和正八边形D. 正三角形和正十边形【答案】C【解析】解:正六边形的每个内角是,正方形的每个内角是,,显然取任何正整数时,不能得正整数,故不能铺满;正五边形每个内角是,正八边形每个内角为度,,显然取任何正整数时,不能得正整数,故不能铺满;正方形的每个内角为,正八边形的每个内角为,两个正八边形和一个正方形刚好能铺满地面;正三角形每个内角为,正十边形每个内角为,,显然取任何正整数时,不能得正整数,故不能铺满.9、如图,在中,、分别是、上的点,若,则的度数是( )A.B.C.D.【答案】D【解析】解:,,,又,,,,在中,,,.10、下列三角形:①有两个角等于;②有一个角等于的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A. ①②③B. ①②④C. ①③D. ①②③④【答案】D【解析】解:①两个角为度,则第三个角也是度,则其是等边三角形,故正确;②这是等边三角形的判定,故正确;③三个外角相等则三个内角相等,则其是等边三角形,故正确;④根据等边三角形三线合一性质,故正确.所以都正确.11、如图,在四边形中,,的平分线与的平分线交于点,则()A.B.C.D.【答案】C【解析】解:四边形中,,和分别为、的平分线,,则.12、如图,在中,,分别以点和为圆心,以相同的长(大于)为半径作弧,两弧相交于点和,作直线交于点,交于点,连接,下列结论错误的是()A.B.C.D.【答案】D【解析】解:为的垂直平分线,,;,;,;,,,.13、下面说法中,正确的是()A. 把分式方程化为整式方程,则这个整式方程的解就是这个分式方程的解B. 分式方程中,分母中一定含有未知数C. 分式方程就是含有分母的方程D. 分式方程一定有解【答案】B【解析】分式方程不一定有解;方程必须具备两个条件:①含有未知数;②是等式;把分式方程化为整式方程,这个整式方程的解不一定是这个分式方程的解;答案中正确的只有:分式方程中,分母中一定含有未知数.14、若分式的值为正数,则的取值范围是()A. 且B.C.D.【答案】A【解析】,且.,分式的值为正数,解得,且.15、若与的公因式为,则之值为何?()A.B.C.D.【答案】C【解析】与,公因式为,故.二、填空题(本大题共有5小题,每小题5分,共25分)16、计算:__________.【答案】【解析】解:,,,故答案为:.17、已知,则代数式 .【答案】0.5【解析】解:原式,把代入得:原式.故答案为:.18、已知等腰三角形顶角的度数是底角的倍,则它的顶角是度.【答案】120【解析】解:设此等腰三角形底角的度数为,则它顶角的度数为.由三角形内角和定理可得:,,,,即此等腰三角形项角为.正确答案是:.19、如图,光线照射到平面镜上,然后在平面镜和之间来回反射,这时光线的入射角等于反射角.若已知,,则.【答案】60【解析】解:,,,.20、如图,点关于,的对称点分别是,,分别交,于点,,,则的周长为 .【答案】6【解析】解:点关于、的对称点、,,,的周长等于.三、解答题(本大题共有3小题,每小题10分,共30分) 21、在中,平分,,垂足为,过作,交于,若,求线段的长.【解析】解:平分,,,,,,,,,,,,,.22、化简:结果为______【解析】解:正确答案是:23、如图,在正方形中,点、点分别在边、上,,.(1) 若点在上,且,求证:.【解析】证明:,,又是等边三角形,(已证),点、、、四点共圆,,,延长交的延长线于,,,,又,,,在和中,,(),,,,是等边三角形,,即.。
人教版八年级数学上册期末综合复习测试题(含答案)
八年级数学上册期末综合复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分) 1.下列图形中具有稳定性的是( ) A .正方形 B .长方形 C .直角三角形 D .平行四边形 2.计算:a 6÷a 3=( ) A .a 2 B .a 3 C .1 D .0 3.点(-3,-2)关于x 轴对称的点是( )A .(3,-2)B .(-3,2)C .(3,2)D .(-2,-3) 4.若分式x +3x -2的值为0,则x 的值为( ) A .x =-3 B .x =2 C .x ≠-3 D .x ≠25.如图1,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是( )图1A .AC =BDB .AD =BC C .∠ABD =∠BAC D .∠CAD =∠DBC 6.若x 2+2mx +9是一个完全平方式,则m 的值是( ) A .6 B .±6 C .3 D .±3 7.如图2,在△ABC 中,D ,E 分别是边BC ,AB 的中点.若△ABC 的面积是8,则△BDE 的面积是( )图2A.2 B .3 C .4 D .5 8.已知2m +3n =3,则9m ·27n 的值是( ) A .9 B .18 C .27 D .819.某生产小组计划生产3 000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务.设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3 000x -3 000x +2=5 B .3 0002x -3 000x =5C .3 000x +2-3 000x =5D .3 000x -3 0002x=510.如图3,在平面直角坐标系中,点A ,B 分别在y 轴、x 轴上,∠ABO =60°,在坐标轴上找一点P ,使得△P AB 是等腰三角形,则符合条件的点P 的个数是( )图3A .5个B .6个C .7个D .8个 二、填空题(本大题7小题,每小题4分,共28分)11.人体淋巴细胞的直径大约是0.000 009米,将0.000 009用科学记数法表示为__________.12.如果等腰三角形的一个内角是80°,那么它的顶角的度数是__________.13.当a =4b 时,a 2+b 2ab的值是__________.14.如图4,在△ABC 中,分别以点A 和点C 为圆心,大于12 AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若△ABC 的周长为23 cm ,△ABD 的周长为13 cm ,则AE 的长为__________cm.图415.若x +y =6,xy =-3,则2x 2y +2xy 2=__________.16.如图5,在△ABC 中,AB =BC ,BE 平分∠ABC ,AD 为BC 边上的高,且AD =BD ,则∠DAC =__________°.图517.如图6,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点, P 是AD 上一动点,当PC 与PE 的和最小时,∠ACP 的度数是__________.图6三、解答题(一)(本大题3小题,每小题6分,共18分)18.解方程:4x 2-9 -x3-x =1.19.先化简,再求值:(-x -y )2-(-y +x )(x +y )+2xy ,其中x =-2,y =12.20.如图7,在△ABC 中,∠BAC =60°,∠C =80°,AD 是△ABC 的角平分线,E 是AC 上一点,且∠ADE =12∠B ,求∠CDE 的度数.图7四、解答题(二)(本大题3小题,每小题8分,共24分)21.在平面直角坐标系中,△ABC 的三个顶点的位置如图8所示.(1)请画出△ABC 关于y 轴对称的△A ′B ′C ′;(其中A ′,B ′,C ′分别是A ,B ,C 的对应点,不写画法)(2)请直接写出点A ′,B ′,C ′的坐标; (3)求出△A ′B ′C ′的面积.图822.如图9,点B ,C ,E ,F 在同一条直线上,点A ,D 在BC 的异侧,AB =CD ,BF =CE ,∠B =∠C .(1)求证:AE ∥DF ; (2)若∠A +∠D =144°,∠C =30°,求∠AEC 的度数.图923.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8 000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.(1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作?五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图10①,把一个长为2m 、宽为2n 的矩形,沿图中虚线用剪刀均分成四块小矩形,然后拼成一个如图10②所示的正方形.(1)请用两种不同的方法求图10②中阴影部分的面积.(直接用含m ,n 的式子表示) 方法1:____________________________; 方法2:____________________________.(2)根据(1)中结论,下列三个式子(m +n )2,(m -n )2,mn 之间的等量关系为____________________.(3)根据(2)中的等量关系,解决如下问题:已知x +1x =3,请求出x -1x的值.图1025.(1)【问题发现】如图11①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一条直线上,连接BE ,求∠AEB 的度数.(2)【拓展探究】如图11②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,CM 为△DCE 中DE 边上的高,连接BE .请求出∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.图11答案1.C 2.B 3.B 4.A 5.D 6.D 7.A 8.C 9.D 10.B11.9×10-6 12.80°或20° 13.174 14.5 15.-36 16.22.5 17.30°18.解:方程两边乘(x -3)(x +3),得4+x (x +3)=x 2-9.解得x =-133.检验:当x =-133 时,(x -3)(x +3)≠0.所以,原分式方程的解是x =-133.19.解:原式=x 2+y 2+2xy -(x 2-y 2)+2xy =x 2+y 2+2xy -x 2+y 2+2xy =2y 2+4xy . 当x =-2,y =12 时,原式=2×⎝⎛⎭⎫12 2 +4×(-2)×12 =-72 .20.解:在△ABC 中,∠BAC =60°,∠C =80°,∴∠B =180°-60°-80°=40°. ∵AD 平分∠BAC ,∴∠BAD =12 ∠BAC =30°.∴∠ADC =∠B +∠BAD =70°.∵∠ADE =12 ∠B =20°,∴∠CDE =∠ADC -∠ADE =70°-20°=50°.21.解:(1)如答图1,△A ′B ′C ′即为所求.答图1(2)A ′(3,3),B ′(-1,-3),C ′(0,4).(3)由图可得S △A ′B ′C ′=4×7-12 ×1×7-12 ×3×1-12 ×4×6=11.22.(1)证明:∵BF =CE ,∴BF +EF =CE +EF ,即BE =CF . 在△ABE 和△DCF 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF (SAS).∴∠AEB =∠DFC .∴AE ∥DF .(2)解:∵△ABE ≌△DCF ,∴∠A =∠D ,∠B =∠C =30°. ∵∠A +∠D =144°,∴∠A =72°. ∴∠AEC =∠A +∠B =72°+30°=102°.23.解:(1)设使用传统分拣方式,每人每小时可分拣快件x 件,则使用智能分拣设备后,每人每小时可分拣快件25x 件.依题意,得 8 00020x -8 0005×25x=4.解得x =84.经检验,x =84是原方程的解,且符合题意.∴25x =2 100.答:使用智能分拣设备后,每人每小时可分拣快件2 100件. (2)100 000÷8÷2 100=52021 (名),5+1=6(名).答:每天只需要安排6名工人就可以完成分拣工作. 24.解:(1)(m +n )2-4mn (m -n )2. (2)(m -n )2=(m +n )2-4mn .(3)∵x +1x =3,∴⎝⎛⎭⎫x -1x 2 =⎝⎛⎭⎫x +1x 2 -4x ·1x =9-4=5.∴x -1x=±5 .25.解:(1)∵△ACB 和△DCE 均为等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =∠CDE =∠CED =60°. ∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴∠ADC =∠BEC .∵点A ,D ,E 在同一条直线上,∴∠ADC =180°-∠CDE =120°. ∴∠BEC =120°.∴∠AEB =∠BEC -∠CED =60°. (2)∠AEB =90°,AE =BE +2CM .理由:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE ,∠ADC =∠BEC . ∵△DCE 为等腰直角三角形, ∴∠CDE =∠CED =45°.∵点A ,D ,E 在同一条直线上, ∴∠ADC =180°-∠CDE =135°. ∴∠BEC =135°.∴∠AEB =∠BEC -∠CED =90°. ∵CD =CE ,CM ⊥DE , ∴DM =ME ,∠DCM =90°-∠CDE =45°. ∴∠DCM =∠CDE . ∴DM =ME =CM .∴AE =AD +DE =BE +2CM。
人教版八年级数学上册期末试卷及答案【含答案】
人教版八年级数学上册期末试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?()A. 21B. 29C. 35D. 39()1分2. 如果 a > b,那么下列哪个式子一定成立?()A. a c > b cB. a + c > b + cC. a c > b cD. a / c > b / c()1分3. 下列哪个图形是平行四边形?()A. 矩形B. 梯形C. 正方形D. 圆形()1分4. 下列哪个数是无理数?()A. √9B. √16C. √25D. √26()1分5. 下列哪个图形是轴对称图形?()A. 等边三角形B. 等腰三角形C. 等腰梯形D. 长方形()1分二、判断题1. 两个质数的和一定是偶数。
()()1分2. 任何两个奇数的和都是偶数。
()()1分3. 任何两个偶数的和都是偶数。
()()1分4. 任何两个奇数的积都是奇数。
()()1分5. 任何两个偶数的积都是偶数。
()()1分三、填空题1. 如果 a = 3,那么 a 的平方是______。
()1分2. 如果 a = 5,那么 a 的立方是______。
()1分3. 如果 a = 2,那么 a 的平方根是______。
()1分4. 如果 a = 9,那么 a 的立方根是______。
()1分5. 如果 a = 4,那么 a 的平方根是______。
()1分四、简答题1. 请简述质数的定义。
()2分2. 请简述偶数的定义。
()2分3. 请简述奇数的定义。
()2分4. 请简述无理数的定义。
()2分5. 请简述有理数的定义。
()2分五、应用题1. 如果 a = 6,那么 a 的平方是多少?()2分2. 如果 a = 7,那么 a 的立方是多少?()2分3. 如果 a = 8,那么 a 的平方根是多少?()2分4. 如果 a = 27,那么 a 的立方根是多少?()2分5. 如果 a = 16,那么 a 的平方根是多少?()2分六、分析题1. 请分析两个质数的和是否一定是偶数,并给出理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学期末复习题三一、填空题(每小题2分,共20分)1.计算:(Π-3.14)O= 。
2.如图,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B 的度数为 .3.函数34x y x -=-的自变量x 的取值范围是 .4.若单项式22mx y 与313n x y -是同类项,则m n +的值是 . 5.分解因式:2233ax ay -= .6.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 .7.如图,AC 、BD 相交于点O ,∠A =∠D ,请你再补充一个条件,使得△AOB ≌△DOC ,你补充的条件是 .8. 如图,ABC ∆中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD= 。
9.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为 .10.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax-3的解集是_______________。
二、选择题(每小题3分,共18分) 11.下列计算正确的是( ).A 、a 2·a 3=a 6B 、y 3÷y 3=yC 、3m +3n =6mnD 、(x 3)2=x 6 12.下列图形中,不是..轴对称图形的是( )13.已知一次函数(1)y a x b =-+的图象如图所示,那么a 的取值范围是( ) A .1a >B .1a <C .0a >D .0a <14、、如图,将两根钢条AA'、BB'的中点O 连在一起,使AA'、BB'可以绕着点O 自由转动,就做成了一个测量工件,则A' B'的长等于内槽宽AB ,那么判定△OAB ≌△OAB 的理由是( ) (A )边角边 (B )角边角A. B. C. D.CB′(第2题)l(C )边边边 (D )角角边15.如图,在长方形ABCD 中,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F ,则图中全等的直角三角形共有( ) A .3对 B .4对 C .5对 D .6对16.2007年我国铁路进行了第六次大提速,一列火车由甲市匀速驶往相距600千米的乙市,火车的速度是200千米/小时,火车离乙市的距离S (单位:千米)随行驶时间t (单位:小时)变化的函数关系用图象表示正确的是( )三、解答题(每小题5分,共20分)17.先化简,再求值:(x +2)(x -2)-x(x -1),其中x =-1.18.小丽一家利用元旦三天驾车到某景点旅游。
小汽车出发前油箱有油36L ,行驶若干小时后,途中在加油站加油若干升。
油箱中余油量Q (L )与行驶时间t (h )之间的关系如图所示。
根据图象回答下列问题:(1)小汽车行驶________h 后加油, 中途加油__________L ; (2)求加油前油箱余油量Q 与行驶时间t 的函数关系式;(3)如果加油站距景点200km ,车速为80km/h ,要到达目的地,油箱中的油是否够用?请说明理由.19.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S (千米)与行驶时间t (时)之间的函数图象.S A .B .C .D .20. (1(2)将ABC △向下平移3个单位长度,画出平移后的222A B C △. 四、解答题(每小题6分,共18分) 21.先化简,再求值:223(2)()()a b ab b b a b a b --÷-+-,其中112a b ==-,.22.如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,以△ABC 的一边为边画等腰三角形,使它的第三个顶点在△ABC 的其它边上.请在图①、图②、图③中分别画出一个符合条件的等腰三角形,且三个图形中的等腰三角形各不相同,并在图中表明所画等腰三角形的腰长(不要求尺规作图).23.两块含30°角的相同直角三角板,按如图位置摆放,使得两条相等的直角边AC 、C 1A 1共线。
(1)问图中有多少对全等三角形?并将他们写出来;(2)选出其中一对全等三角形进行证明。
(△ABC ≌△A 1B 1C 1除外) 五、解答题(每小题8分,共24分)24.如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求直线2l 的解析表达式; (2)求ADC △的面积;A 1 C 1B (第23题) B 1 OAB C (第22题) 图① 图② 图③AB C ABC25.2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港. (1)哪个队先到达终点?乙队何时追上甲队?(2)在比赛过程中,甲、乙两队何时相距最远?26.已知,如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,A B ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE ,BF =CE 。
求证:(1)△ABC ≌△DEF ;(2)GF =GC 。
六、解答题(每小题10分,共20分)27.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =; (2)求证:12CE BF =; (3)CE 与BG 的大小关系如何?试证明你的结论.时间/时164020八年级数学上期末试题二参考答案一、填空题(每小题2分,共20分)1、1;2、1000;3、x ≠4;4、5;5、3a(x+y)(x-y);6、200或1200; 7、答案不唯一; 8、3; 9、6; 10、x ﹥-2.二、选择题(每小题3分,共18分)11、D 12、A 13、A 14、C 15、B 16、D三、解答题(每小题5分,共20分) 17、解:原式=x 2-4-x 2+x=x-4, 当x=-1时, 原式=-1-4=-5 18、(1)如图;(2)诸如公交优先;或宣传步行有利健康。
19、解:如图20、解:如右图四、解答题(每小题6分,共18分) 21、解:原式22222()a ab b a b =---- 22222a ab b a b =---+2ab =- 将112a b ==-,代入上式得: 原式12(1)2=-⨯⨯-1= 22、解:如图:23、(1)有3对.分别是⊿ABC ≌⊿A 1B 1C 1,⊿B 1EO ≌⊿BFO ,⊿AC 1E ≌⊿A 1CF,(2)(以⊿AC 1E ≌⊿A 1CF 为例)证明:∵AC=A 1C 1,∴AC 1=A 1C,又∵∠A=∠A 1=300,∠AC 1E=∠A 1CF=900,∴Rt ⊿AC 1E ≌Rt ⊿A 1CF.五、解答题(每小题8分,共24分)t(时)第19题图24、(1)(2)如图(3)如果此地汽车时速超过60千米即为违章则违章车辆共有76辆. 25、解:(1)乙队先达到终点,对于乙队,x =1时,y =16,所以y =16x ,对于甲队,出发1小时后,设y 与x 关系为y =kx +b , 将x =1,y =20和x =2.5,y =35分别代入上式得:⎩⎨⎧+=+=bk bk 5.23520 解得:y =10x +10 解方程组⎩⎨⎧+==101016x y x y 得:x =35,即:出发1小时40分钟后(或者上午10点40分)乙队追上甲队.(2)1小时之内,两队相距最远距离是4千米,乙队追上甲队后,两队的距离是16x -(10x +10)=6x -10,当x 为最大,即x =1635时,6x -10最大,此时最大距离为6×1635-10=3.125<4,(也可以求出AD 、CE 的长度,比较其大小)所以比赛过程中,甲、乙两队在出发后1小时(或者上午10时)相距最远。
26、(1)∵BF =CE ∴BF +FC =CE +FC ,即BC =EF 又∵AB ⊥BE ,DE ⊥BE ∴∠B =∠E =900又∵AB =DE ∴△ABC ≌△DEF(2)∵△ABC ≌△DEF ∴∠ACB =∠DFE ∴GF =GC 六、解答题(每小题10分,共20分) 27、(1)证明:CD AB ⊥∵,45ABC ∠=°,BCD ∴△是等腰直角三角形.BD CD =∴. 在Rt DFB △和Rt DAC △中,90DBF BFD ∠=-∠∵°,90DCA EFC ∠=-∠°,且BFD EFC ∠=∠, DBF DCA ∠=∠∴.又90BDF CDA ∠=∠=∵°,BD CD =, Rt Rt DFB DAC ∴△≌△.BF AC =∴.(2)证明:在Rt BEA △和Rt BEC △中 BE ∵平分ABC ∠,ABE CBE ∠=∠∴.又90BE BE BEA BEC =∠=∠=∵,°,Rt Rt BEA BEC ∴△≌△.12CE AE AC ==∴.又由(1),知BF AC =,1122CE AC BF ==∴. (3)CE BG <.证明:连结CG .BCD ∵△是等腰直角三角形,BD CD =∴.又H 是BC 边的中点,DH ∴垂直平分BC . BG CG =∴.在Rt CEG △中,CG ∵是斜边,CE 是直角边,CE CG <∴.CE BG <∴. 28、(1)晚0.5,甲、乙两城相距300 ㎞ (2)如图 (3)①设直线BC 的解析式为s=kt+b.时间/时D AE FCHG B∵B(0.5,300),C(3.5,0) ∴3.5k+b=0,0.5k+b=300.解得k=-100,b=350∴s=-100t+350.自变量t的取值范围是0.5≦t≦3.5②设直线MN的解析式为s=150t+b1.∵点M(1,0)在直线上,∴0=150×1+ b1.解得b1=-150.∴s=150t-150. ∴-100 t+350=150t-150. 解得t=2∴2-1=1 答:第二列动车组列车出发1小时后与普通列车相遇.(另解:设第二列动车组列车出发x小时后与普通列车相遇,根据图中信息,得150 x+100(x+0.5)=300.解得x=1. 答:第二列动车组列车出发1小时后与普通列车相遇.)③0.6小时(或36分钟)。