2015-2016八年级数学上册第一次月考试题
八年级数学上学期第一次月考试题(含解析) 新人教版2
广西南宁市新阳中路学校2015-2016学年八年级数学上学期第一次月考试题一、选择题(每小题3分,共36分)1.下列长度的三条线段中,能围成三角形的是()A.5cm,5cm,12cm B.3cm,4cm,5cm C.4cm,6cm,10cm D.3cm,4cm,8cm2.三角形三条高所在直线的交点一定在()A.三角形的内部 B.三角形的外部C.三角形的内部或外部D.三角形的内部、外部或顶点3.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.对角线增加一条D.内角和增加180°4.已知一个三角形的周长为15厘米,且其中两边都等于第三边的2倍,那么这个三角形的最短边为()A.1厘米B.2厘米C.3厘米D.4厘米5.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短 B.矩形的对称性C.矩形的四个角都是直角 D.三角形的稳定性6.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米7.下列说法中错误的是()A.三角形的中线、角平分线、高线都是线段B.边数为n的多边形内角和是(n﹣2)×180°C.有一个内角是直角的三角形是直角三角形D.三角形的一个外角大于任何一个内角8.已知在△ABC中,∠A=70°﹣∠B,则∠C等于()A.35° B.70° C.110°D.140°9.点P是△ABC内一点,连接BP并延长交AC于D,连接PC,则图中∠1,∠2,∠A的大小关系是()A.∠A>∠2>∠1 B.∠A>∠1>∠2 C.∠2>∠1>∠A D.∠1>∠2>∠A10.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)11.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=()A.195°B.250°C.270°D.无法确定12.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A.3个B.4个 C.5个D.6个二、填空题(每小题3分,共18分)13.一个三角形的其中两边分别为3和5,求第三边c的取值范围,如果第三边c为偶数,则这个三角形的周长.14.已知一个多边形的内角和是外角和的3倍,则这个多边形为边形.15.有四条线段,长分别为3cm、5cm、7cm、9cm,如果用这些线段组成三角形,可以组成个三角形.16.在△ABC中,AD是中线,则△ABD的面积△ACD的面积.(填“>”,“<”或“=”)17.如图,将一副直角三角板如图所示摆放,则∠1的度数为度.18.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=30°,当∠A满足时,△AOP为钝角三角形.三、解答题(66分)19.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.20.一个多边形的外角和是它的内角和的,求这个多边形的边数.21.如图,BE平分∠ABD,DE平分∠BDC,∠1+∠2=90°,那么直线AB,CD的位置关系如何?22.如图,一块较为精密的模板中,AB,CD的延长线应该相交成80°的角,因交点不在模板上,不便测量,测得∠BAE=124°,∠DCF=155°,AE⊥EF,CF⊥EF,此时AB,CD的延长线相交成的角是否符合规定?为什么?23.在△ABC中,AB=AC,AC边上的中线BD把三角形ABC的周长分为9cm和12cm的两部分,求三角形各边的长.24.如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.25.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.26.下面是有关三角形内外角平分线的探究,阅读后按要求作答:探究1:如图(1),在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现:∠BOC=90°+∠A(不要求证明).探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的数量关系?请说明理由.探究3:如图(3)中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的数量关系?(只写结论,不需证明).结论:.2015-2016学年广西南宁市新阳中路学校八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.下列长度的三条线段中,能围成三角形的是()A.5cm,5cm,12cm B.3cm,4cm,5cm C.4cm,6cm,10cm D.3cm,4cm,8cm【考点】三角形三边关系.【分析】根据三角形的三边关系“三角形的两边之和大于第三边”进行分析判断.【解答】解:A、5+5<12,所以不能围成三角形;B、4+3>5,所以能围成三角形;C、4+6=10,所以不能围成三角形;D、3+4<8,所以不能围成三角形;故选:B.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形的两边之和大于第三边.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.三角形三条高所在直线的交点一定在()A.三角形的内部 B.三角形的外部C.三角形的内部或外部D.三角形的内部、外部或顶点【考点】三角形的角平分线、中线和高.【分析】根据高的概念知:不同形状的三角形的高所在直线的交点位置不同.锐角三角形的三条高都在内部,交点在其内部;直角三角形的三条高中,两条就是直角边,第三条在内部,交点是直角顶点;钝角三角形有两条在外部,一条在内部,所在直线的交点在外部.【解答】解:A、直角三角形的三条高的交点是直角顶点,不在三角形的内部,错误;B、直角三角形的三条高的交点是直角顶点,不在三角形的外部,错误;C、直角三角形的三条高的交点是直角顶点,既不在三角形的内部,又不在三角形的外部,错误;D、锐角三角形的三条高的交点在其内部;直角三角形的三条高的交点是直角顶点;钝角三角形的三条高所在直线的交点在其外部,正确.故选D.【点评】掌握不同形状的三角形的高所在直线的交点的位置.3.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.对角线增加一条D.内角和增加180°【考点】多边形内角与外角.【分析】利用多边形的内角和定理和外角和特征即可解决问题.【解答】解:因为n边形的内角和是(n﹣2)•180°,当边数增加一条就变成n+1,则内角和是(n﹣1)•180°,内角和增加:(n﹣1)•180°﹣(n﹣2)•180°=180°;根据多边形的外角和特征,边数变化外角和不变.故选:D.【点评】本题主要考查了多边形的内角和定理与外角和特征.先设这是一个n边形是解题的关键.4.已知一个三角形的周长为15厘米,且其中两边都等于第三边的2倍,那么这个三角形的最短边为()A.1厘米B.2厘米C.3厘米D.4厘米【考点】等腰三角形的性质.【分析】可设这个三角形的最短边为x厘米,根据三角形的周长为15厘米可列出方程求解即可.【解答】解:设这个三角形的最短边为x厘米,依题意有x+2x+2x=15,5x=15,x=3.故这个三角形的最短边为3厘米.故选C.【点评】考查了等腰三角形的性质,本题关键是根据三角形的周长列出方程求解.5.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短 B.矩形的对称性C.矩形的四个角都是直角 D.三角形的稳定性【考点】三角形的稳定性.【分析】用木条EF固定矩形门框ABCD,即是组成△AEF,故可用三角形的稳定性解释.【解答】解:加上EF后,原不稳定的四边形ABCD中具有了稳定的△EAF,故这种做法根据的是三角形的稳定性.故选D.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.6.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米【考点】三角形三边关系.【专题】应用题.【分析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围,看哪个数值不在范围即可.【解答】解:∵15﹣10<AB<10+15,∴5<AB<25.∴所以不可能是5米.故选:D.【点评】已知三角形的两边,则第三边的范围是:>已知的两边的差,而<两边的和.7.下列说法中错误的是()A.三角形的中线、角平分线、高线都是线段B.边数为n的多边形内角和是(n﹣2)×180°C.有一个内角是直角的三角形是直角三角形D.三角形的一个外角大于任何一个内角【考点】三角形的外角性质;三角形的角平分线、中线和高;直角三角形的性质;多边形内角与外角.【分析】根据三角形的中线、角平分线、高线的定义,多边形内角和公式,直角三角形的定义及三角形外角的性质,进行判断即可.【解答】解:A.三角形的中线、角平分线、高线是三角形中3种重要的线段,故此选项错误;B.n边形内角和是(n﹣2)×180°,故此选项错误;C.根据直角三角形的定义:有一个内角是直角的三角形是直角三角形,故此选项错误;D.三角形的一个外角大于任何一个与它不相邻的内角,故此选项正确.故选D.【点评】此题重点考查了三角形的外角的性质,熟记三角形的一个外角大于任何一个与它不相邻的内角是解题的关键.8.已知在△ABC中,∠A=70°﹣∠B,则∠C等于()A.35° B.70° C.110°D.140°【考点】三角形内角和定理.【分析】结合已知条件,根据三角形的内角和为180°求解.【解答】解:∵∠A=70°﹣∠B,∴∠A+∠B=70°,∴∠C=180°﹣(∠A+∠B)=180°﹣70°=110°(三角形的内角和为180°).故选C.【点评】此题主要考查了三角形的内角和定理:三角形的内角和为180°.9.点P是△ABC内一点,连接BP并延长交AC于D,连接PC,则图中∠1,∠2,∠A的大小关系是()A.∠A>∠2>∠1B.∠A>∠1>∠2C.∠2>∠1>∠A D.∠1>∠2>∠A【考点】三角形的外角性质;三角形内角和定理.【分析】根据“三角形的一个外角大于任何一个和它不相邻的内角”可知∠1>∠2>∠A.【解答】解:由三角形的一个外角大于任何一个和它不相邻的内角,可知∠1>∠2>∠A故选D.【点评】主要考查了三角形的内角和外角之间的关系.三角形的一个外角大于任何一个和它不相邻的内角.10.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)【考点】多边形的对角线.【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选C.【点评】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.11.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=()A.195°B.250°C.270°D.无法确定【考点】多边形内角与外角;三角形内角和定理.【分析】根据三角形内角和等于180°、邻补角之和等于180°计算即可.【解答】解:∠1+∠2=360°﹣(180°﹣90°)=270°,故选:C.【点评】本题考查的是三角形内角和定理、邻补角的概念,掌握三角形内角和等于180°、邻补角之和等于180°是解题的关键.12.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A.3个B.4个C.5个D.6个【考点】直角三角形的性质.【分析】由“直角三角形的两锐角互余”,结合题目条件,得∠C=∠BDF=∠BAD=∠ADE.【解答】解:∵AD是斜边BC上的高,DE⊥AC,DF⊥AB,∴∠C+∠B=90°,∠BDF+∠B=90°,∠BAD+∠B=90°,∴∠C=∠BDF=∠BAD,∵∠DAC+∠C=90°,∠DAC+∠ADE=90°,∴∠C=∠ADE,∴图中与∠C(除之C外)相等的角的个数是3,故选:A.【点评】此题考查了直角三角形的性质,余角的性质,掌握直角三角形的两锐角互余是解题的关键.二、填空题(每小题3分,共18分)13.一个三角形的其中两边分别为3和5,求第三边c的取值范围2<a<8 ,如果第三边c为偶数,则这个三角形的周长12或14 .【考点】三角形三边关系.【分析】根据三角形的第三边大于任意两边之差,而小于任意两边之和进行求解.【解答】解:假设第三边为a,由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,设第三边长为xcm,根据三角形的三边关系可得:5﹣3<x<5+3,即:2<x<8,∵第三边为偶数,∴x=4或6,∴这个三角形的周长为:①3+5+4=12(cm),②3+5+6=14(cm),故答案为:2<a<8;12或14【点评】此题主要考查了三角形三边关系,此类求范围的问题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.14.已知一个多边形的内角和是外角和的3倍,则这个多边形为八边形.【考点】多边形内角与外角.【分析】根据多边形的内角和定理,多边形的内角和等于(n﹣2)•180°,外角和等于360°,然后列方程求解即可.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为:八.【点评】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键,要注意“八”不能用阿拉伯数字写.15.有四条线段,长分别为3cm、5cm、7cm、9cm,如果用这些线段组成三角形,可以组成 3 个三角形.【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:其中的任意三条组合有3、5、7;3、5、9;3、7、9;5、7、9四种情况.根据三角形的三边关系,则其中的3+5<9,不能组成三角形,应舍去,故可以组成3个三角形.故答案为:3.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.16.在△ABC中,AD是中线,则△ABD的面积= △ACD的面积.(填“>”,“<”或“=”)【考点】三角形的面积.【分析】根据三角形的面积公式以及三角形的中线的概念,知:三角形的中线可以把三角形的面积分成相等的两部分.【解答】解:根据等底同高可得△ABD的面积=△ACD的面积.【点评】注意:三角形的中线可以把三角形的面积分成相等的两部分.此结论是在图形中找面积相等的三角形的常用方法.17.如图,将一副直角三角板如图所示摆放,则∠1的度数为75 度.【考点】三角形内角和定理.【分析】利用三角形的各角度数和图中角与角的关系计算.【解答】解:如图:因为∠4=90°﹣60°=30°,∴∠3=∠4=30°,∴∠2=30°+45°=75°,∴∠1=∠2=75°,故答案为:75【点评】本题考查的是三角形的外角的性质,三角形的一个外角等于和它不相邻的两个内角的和.18.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=30°,当∠A满足0°<∠A<60°或90°<∠A<150°时,△AOP为钝角三角形.【考点】三角形内角和定理.【专题】探究型.【分析】当两角的和小于90°或一个角大于90°时三角形是一个钝角三角形,由此即可得出结论.【解答】解:∵当∠A与∠O的和小于90°时,三角形为钝角三角形,∴0°<∠A<60°,∵当∠A大于90°时候此三角形为钝角三角形,∴此时90°<∠A<150°.故答案为:0°<∠A<60°或90°<∠A<150°.【点评】本题考查的是三角形内角和定理,即三角形内角和是180°.三、解答题(66分)19.如图所示,在△ABC中:(1)画出B C边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.【考点】作图—复杂作图.【分析】(1)延长BC,作AD⊥BC于D;作BC的中点E,连接AE即可;(2)可根据三角形的内角和定理求∠BAC=20°,由外角性质求∠CAD=40°,那可得∠BAD=60°.【解答】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°﹣30°﹣130°=20°,∵∠ACB=∠D+∠CAD,AD⊥BC,∴∠CAD=130°﹣90°=40°,∴∠BAD=20°+40°=60°.【点评】此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.20.一个多边形的外角和是它的内角和的,求这个多边形的边数.【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由题意得等量关系:此多边形的内角和×=外角和,根据等量关系,列出方程,再解即可.【解答】解:设这个多边形的边数为n,由题意得:180(n﹣2)×=360,解得:n=10,答:这个多边形的边数为10.【点评】此题主要考查了多边形的内角与外角,关键是掌握多边形内角和定理:(n﹣2)•180°(n≥3)且n为整数),外角和是360°.21.如图,BE平分∠ABD,DE平分∠BDC,∠1+∠2=90°,那么直线AB,CD的位置关系如何?【考点】平行线的判定.【分析】运用角平分线的定义,结合图形可知∠ABD=2∠1,∠BDC=2∠2,又已知∠1+∠2=90°,可得同旁内角∠ABD和∠BDC互补,从而证得AB∥CD.【解答】解:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义),∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°,∴AB∥CD(同旁内角互补,两直线平行).【点评】本题考查平行线的判定和角平分线的定义.灵活运用角平分线的定义和角的和差的关系是解决本题的关键,注意正确识别“三线八角”中的同位角、内错角、同旁内角.22.如图,一块较为精密的模板中,AB,CD的延长线应该相交成80°的角,因交点不在模板上,不便测量,测得∠BAE=124°,∠DCF=155°,AE⊥EF,CF⊥EF,此时AB,CD的延长线相交成的角是否符合规定?为什么?【考点】多边形内角与外角.【专题】应用题.【分析】AB与CD的延长线交于点G,根据五边形内角和等于540°,结合垂直的定义,计算可求∠G 的度数,然后根据题意进行判断.【解答】解:AB与CD的延长线交于点G,如图,∵AE⊥EF,CF⊥EF,∴∠E=∠F=90°,∵∠BAE=124°,∠DCF=155°,∴∠G=540°﹣(124°+155°+90°×2)=540°﹣459°=81°,∵81°≠80°,∴不符合规定.【点评】考查了多边形内角和定理和垂直的定义,关键是根据图形求出要求的角的度数.23.在△ABC中,AB=AC,AC边上的中线BD把三角形ABC的周长分为9cm和12cm的两部分,求三角形各边的长.【考点】等腰三角形的性质.【分析】等腰三角形一腰上的中线将它的周长分为12厘米和18厘米两部分,但已知没有明确等腰三角形被中线分成的两部分的长,哪个是9cm,哪个是12cm,因此,有两种情况,需要分类讨论.【解答】解:根据题意画出图形,如图,设等腰三角形的腰长AB=AC=2x,BC=y,∵BD是腰上的中线,∴AD=DC=x,若AB+AD的长为12,则2x+x=12,解得x=4cm,则x+y=9,即4+y=9,解得y=5cm;若AB+AD的长为9,则2x+x=9,解得x=3cm,则x+y=12,即3+y=12,解得y=9cm;所以等腰三角形的腰长为8厘米,底边长为5厘米.或腰长为6cm,底长为9cm.【点评】本题考查了等腰三角形的性质及三角形三边关系;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错;利用三角形三边关系判断能否组成三角形是正确解答本题的关键.24.如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【考点】三角形内角和定理.【专题】数形结合.【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.【点评】此题主要是三角形内角和定理的运用.三角形的内角和是180°.25.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【考点】平行线的判定与性质.【专题】证明题;压轴题.【分析】(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.【解答】解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.【点评】本题主要考查了平行线的判定与性质,注意平行线的性质和判定定理的综合运用.26.下面是有关三角形内外角平分线的探究,阅读后按要求作答:探究1:如图(1),在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现:∠BOC=90°+∠A(不要求证明).探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的数量关系?请说明理由.探究3:如图(3)中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的数量关系?(只写结论,不需证明).结论:∠BOC=90°﹣∠A.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.【解答】解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.【点评】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.。
2015-2016八年级数学第一次月考试卷及答案
2015-2016学年度第一学期八年级第一次月考数 学 试 卷一、选择题(本大题共10小题,每小题3分,共30分)1.任意画一个三角形,它的三个内角之和为( )A .180°B .270°C .360°D .720°2.△ABC≌△DEF,且△ABC 的周长为100cm ,A 、B 分别与D 、E 对应,且AB=35cm ,DF=30cm ,则EF 的长为( )A .35cmB .30cmC .45cmD .55cm3.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A .2B .4C .6D .84.如图1,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对5.如图2,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( )A .15° B.25° C .30°D .10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A .5B .6C .7D .87.如图3,已知点A 、D 、C 、F 在同一直线上,且AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加的一个条件是( )A .∠A=∠EDFB .∠B=∠EC .∠BCA=∠FD .BC∥EF8.具备下列条件的三角形ABC 中,不为直角三角形的是( )A .∠A+∠B=∠CB .∠A=∠B=∠C C .∠A=90°﹣∠BD .∠A﹣∠B=90°9.如图4,AM 是△ABC 的中线,若△ABM 的面积为4,则△ABC 的面积为( )A .2B .4C .6D .8图1 图2 图3 图4 图5 图610.如图5,在△ABC 中,∠ABC=45°,AC=8cm ,F 是高AD 和BE 的交点,则BF 的长是( )A .4cmB .6cmC .8cmD .9cm二、填空题(本大题共8个小题,每小题3分,共24分)11.三角形的重心是三角形的三条__________的交点.12.如图6,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是__________.13.如果一个等腰三角形有两边长分别为4和8,那么这个等腰三角形的周长为__________.14.如图,已知△ABD≌△CDB,且∠ABD=40°,∠CBD=20°,则∠A 的度数为__________.15.如图7,AB=AC ,要使△ABE≌△ACD,应添加的条件是__________(添加一个条件即可).16.下列条件:①一锐角和一边对应相等,②两边对应相等,③两锐角对应相等,其中能得到两个直角三角形全等的条件有__________(只填序号).17.如图9,已知∠B=46°,△ABC 的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=__________.18.如图1是二环三角形,可得S=∠A 1+∠A 2+…+∠A=360°,图2是二环四边形,可得S=∠A 1+∠A 2+…+∠A 7=720°,图3是二环五边形,可得S=1080°,…聪明的同学,请你根据以上规律直接写出二环n 边形(n≥3的整数)中,S=__________.(用含n 的代数式表示最后结果)三、解答题(本大题共8小题,共66分)19.如图,点B 在线段AD 上,BC∥DE,AB=ED ,BC=DB .求证:∠A=∠E.图4图7 图8 图920.一个多边形的外角和是内角和的,求这个多边形的边数.21.如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.22.如图,在△ABC中,∠B=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.(1)求∠DAE的度数;(2)写出以AD为高的所有三角形.23.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.24.如图,O是△ABC内任意一点,连接OB、OC.(1)求证:∠BOC>∠A;(2)比较AB+AC与OB+OC的大小,并说明理由.25.看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?26.如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE 的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,CE 的关系如何,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,CE的关系怎样?请直接写出结果,不须证明.(4)归纳(1),(2),(3),请用简捷的语言表述BD与DE,CE的关系.参考答案一、选择题1.:A.2. A.3 B.4.:C.5. A.6. D.7. B.8. D.9. D.10. C.二、填空题(本大题共8个小题,每小题3分,共24分)11:中线.12:三角形的稳定性.13.:20.14.120°.15.∠B=∠C或AE=AD.16①②.17.67°.18. 360(n﹣2)度.三、解答题(本大题共8小题,共66分)19.证明:如图,∵BC∥D E,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.20..解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.21.解:由题意得△DEC≌△DEC',∴∠CED=∠DEC',∵∠C′EB=40°,∴∠CED=∠DEC'=,∴∠EDC′=90°﹣70°=20°.22.解:(1)∵在△ABC中,AE是∠BAC的平分线,且∠B=40°,∠C=60°,∴∠BAE=∠EAC=(180°﹣∠B﹣∠C)=(180°﹣40°﹣60°)=40°.在△ACD中,∠ADC=90°,∠C=60°,∴∠DAC=180°﹣90°﹣60°=30°,∠EAD=∠EAC﹣∠DAC=40°﹣30°=10°.(2)以AD为高的所有三角形:△ABC、△ABD、△ACE、△ABE、△ADF和△ACD.23.(1)解:△ADC≌△ABE,△CDF≌△EBF;(2)证法一:连接CE,∵Rt△ABC≌Rt△ADE,∴AC=AE.∴∠ACE=∠AEC(等边对等角).又∵Rt△ABC≌Rt△ADE,∴∠ACB=∠AE D.∴∠ACE﹣∠ACB=∠AEC﹣∠AED.即∠BCE=∠DEC.∴CF=EF.24.解:(1)证明:延长BO交AC于点D,∴∠BOC>∠ODC,又∠ODC>∠A,∴∠BOC>∠A;(2)AB+AC>OB+OC,∵AB+AD>OB+OD,OD+CD>OC,∴AB+AD+CD>OB+OC,即:AB+AC >OB+OC.25.解:(1)∵n边形的内角和是(n﹣2)•180°,∴内角和一定是180度的倍数,∵2014÷180=11…34,∴内角和为2014°不可能;(2)依题意有(x﹣2)•180°<2014°,解得x<13.因而多边形的边数是13,故小华求的是十三边形的内角和;(2)13边形的内角和是(13﹣2)×180°=1980°,2014°﹣1980°=34°,因此这个外角的度数为34°.26.(1)证明:在△ABD和△CAE中,∵∠CAD+∠BAD=90°,∠BAD+∠ABD=90°,∴∠CAD=∠ABD.又∠ADB=∠AEC=90°,AB=AC,∴△ABD≌△CAE.(AAS)∴BD=AE,AD=CE.又AE=AD+DE,∴AE=DE+CE,即BD=DE+CE.(2)BD=DE﹣CE.证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥DE,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE.又AB=AC,∠ADB=∠CEA=90°,∴△ADB≌△CEA.∴BD=AE,AD=CE.∵DE=AD+AE,∴DE=CE+BD,即 BD=DE﹣CE.(3)同理:BD=DE﹣CE.(4)当点BD、CE在AE异侧时,BD=DE+CE;当点BD、CE在AE同侧时,BD=DE﹣CE.。
八年级数学上学期第一次月考试题(含解析) 新人教版-新人教版初中八年级全册数学试题
某某省某某市鄂城区汀祖中学2015-2016学年八年级数学上学期第一次月考试题一.选择题(每题3分,共30分)1.若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定2.若△ABC的三个内角满足3∠A>5∠B,3∠C<2∠B,则三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.都有可能3.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20° B.30° C.10° D.15°4.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°5.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定6.把一X形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这X纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形7.(北师大版)将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E′、D′,已知∠AFC=76°,则∠CFD′等于()A.31° B.28° C.24° D.22°8.将长为15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有()A.5种B.6种C.7种D.8种9.有一边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,而需要这种瓷砖()块.A.216 B.288 C.384 D.51210.如图,小明从A点出发,沿直线前进8米后左转30°,再沿直线前进8米又左转30°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.48米B.160米C.80米D.96米二.填空题:(每题3分,共24分)11.如图,△ABC中,高BD,CE相交于点H,若∠A=60°,则∠BHC=度.12.不等边三角形的两条边上的高分别为4和12,若第三条边上的高的长也是整数,则这个整数的最大值是.13.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC=.14.一个凸n边形,除去一个内角外其余的内角和是2570°,求这个多边形对角线条数为.15.设△ABC三边为a、b、c,其中a、b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的取值X围.16.如图,小李制作了一X△ABC纸片,点D、E分别在边AB、AC上,现将△ABC沿着DE折叠压平,使点A落在点A′位置.若∠A=75°,则∠1+∠2=.17.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD 的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=.18.如图,求图中∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I度数的和为.三.解答题19.如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.20.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,AB于CD相交于点O,若∠A=40°,∠C=36°,求∠P的度数.21.如图四边形ABCD中,已知AB∥CD,AD∥BC,AE⊥B C于E,AF⊥CD于F,求证:∠BAD+∠EAF=180°.22.如图,已知DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,求∠B的度数.23.如图,已知∠MON=α,点A、B分别在射线ON、OM上移动(不与点O重合),AC平分∠OAB,BD平分∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ACB的大小是否也随之变化?若改变,说明理由;若不改变,求出其值.24.如图,已知四边形ABCD中,∠A+∠DCB=180°,两组对边延长后,分别交于P、Q两点,∠APD、∠AQB的平分线交于M,求证:PM⊥QM.2015-2016学年某某省某某市鄂城区汀祖中学八年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(每题3分,共30分)1.若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【考点】三角形内角和定理.【分析】根据已知及三角形的内角和定理得出.【解答】解:设此三角形的三个内角分别是∠1,∠2,∠3(其中∠3最大),根据题意得∠1=∠3﹣∠2,∴∠1+∠2=∠3,又∵∠1+∠2+∠3=180°,∴2∠3=180°,∴∠3=90°.故选B.2.若△ABC的三个内角满足3∠A>5∠B,3∠C<2∠B,则三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.都有可能【考点】三角形内角和定理.【分析】三角形分锐角,直角,钝角三角形三种.判断种类只需看最大角即可.【解答】解:∵3∠A>5∠B,3∠C≤2∠B,得∠B<∠A,∠C≤∠B,∴∠C<∠A,∴∠B+∠C<∠A.∵∠A+∠B+∠C=180°,∴2(∠B+∠C)<180°,∴∠B+∠C<90°,∴﹣(∠B+∠C)>﹣90°,∴180°﹣(∠B+∠C)>180°﹣90°=90°,即∠A>90°.∴△ABC是钝角三角形,故选A.3.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20° B.30° C.10° D.15°【考点】三角形的角平分线、中线和高;垂线;三角形内角和定理.【分析】首先根据三角形的内角和定理求得∠B,再根据角平分线的定义求得∠BAD,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC,最后根据直角三角形的两个锐角互余即可求解.【解答】解:∵∠BAC=60°,∠C=80°,∴∠B=40°.又∵AD是∠BAC的角平分线,∴∠BAD=∠BAC=30°,∴∠ADE=70°,又∵OE⊥BC,∴∠EOD=20°.故选A.4.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°【考点】三角形内角和定理.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠2=60°,∠3=45°,∴∠1=180°﹣∠2﹣∠3=75°.故选:C.5.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线得出AD=CD,根据三角形的周长求出即可.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=5﹣3=2.故选A.6.把一X形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这X纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形【考点】多边形.【分析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n﹣1)边形.【解答】解:当剪去一个角后,剩下的部分是一个四边形,则这X纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选:A.7.(北师大版)将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E′、D′,已知∠AFC=76°,则∠CFD′等于()A.31° B.28° C.24° D.22°【考点】翻折变换(折叠问题).【分析】根据折叠前后部分是全等的,可知角的关系,再结合三角形内角和定理,即可求∠CFD′的度数.【解答】解:∵折叠前后部分是全等的又∵∠AFC+∠AFD=180°∴∠AFD′=∠AFD=180°﹣∠AFC=180°﹣76°=104°∴∠CFD′=∠AFD′﹣∠AFC=104°﹣76°=28°故选B.8.将长为15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有()A.5种B.6种C.7种D.8种【考点】三角形三边关系.【分析】已知三角形的周长,分别假设三角形的最长边,从而利用三角形三边关系进行验证即可求得不同的截法.【解答】解:∵长棒的长度为15cm,即三角形的周长为15cm∴①当三角形的最长边为7时,有4种截法,分别是:7,7,1;7,6,2;7,5,3;7,4,4;②当三角形的最长边为6时,有2种截法,分别是:6,6,3;6,5,4;③当三角形的最长边为5时,有1种截法,是:5,5,5;④当三角形的最长边为4时,有1种截法,是4,3,8,因为4+3<8,所以此截法不可行;∴不同的截法有:4+2+1=7种.故选C.9.有一边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,而需要这种瓷砖()块.A.216 B.288 C.384 D.512【考点】平面镶嵌(密铺).【分析】根据正六边形的面积除以一个正三角形的面积,可得答案.【解答】解:正六边形的面积为×4×2×6=24m2,一个正三角形的面积××=m2,需要这种瓷砖24÷=384(块).故选:C.10.如图,小明从A点出发,沿直线前进8米后左转30°,再沿直线前进8米又左转30°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.48米B.160米C.80米D.96米【考点】多边形内角与外角.【分析】根据题意,小明走过的路程是正多边形,先用360°除以30°求出边数,然后再乘以8米即可.【解答】解:∵小明每次都是沿直线前进8米后向左转30度,∴他走过的图形是正多边形,∴边数n=360°÷30°=12,∴他第一次回到出发点A时,一共走了12×8=96(米).二.填空题:(每题3分,共24分)11.如图,△ABC中,高BD,CE相交于点H,若∠A=60°,则∠BHC=120 度.【考点】多边形内角与外角.【分析】根据高的性质以及四边形内角和定理的相关知识解答.【解答】解:已知∠A=60°,高BD,CE相交于点H,∴∠EHD=360°﹣∠A﹣∠AEC﹣∠ADH=120°,又∵∠EHD=∠BHC,∴∠BHC=120°.12.不等边三角形的两条边上的高分别为4和12,若第三条边上的高的长也是整数,则这个整数的最大值是 5 .【考点】三角形的面积.【分析】设角形三边分别为a,b,c,面积为S,根据三角形面积公式分别用含S的代数式表示出a、b、c,根据三角形三边之间的关系得a﹣b<c<a+b,列出不等式后解不等式可得.【解答】解:设三角形三边分别为a,b,c,面积为S,则a=,b=,c=,∵a﹣b<c<a+b,∴,解得:3<h<6,故h=4或5,又∵三角形是不等边三角形,故答案为:5.13.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC= 110°.【考点】等腰三角形的性质.【分析】先根据等腰三角形两底角相等求出∠ACB,再求出∠2+∠3,再根据三角形内角和定理列式计算即可得解.【解答】解:∵∠ABC=∠ACB,∠A=40°,∴∠ACB==70°,∵∠1=∠2,∴∠2+∠3=∠1+∠3=∠ACB=70°,在△BPC中,∠BPC=180°﹣(∠2+∠3)=180°﹣70°=110°.故答案为:110°.14.一个凸n边形,除去一个内角外其余的内角和是2570°,求这个多边形对角线条数为119 .【考点】多边形内角与外角.【分析】设出相应的边数和未知的那个内角度数,利用内角和公式列出相应等式,根据边数为整数求出边数,然后根据对角线的条数的公式进行计算即可求解即可.【解答】解:设这个内角度数为x,边数为n,则(n﹣2)×180°﹣x=2570°,180°•n=2930°+x,∵n为正整数,∴n=17,∴这个多边形的对角线的条数是n×17×(17﹣3)=119.故答案为:119.15.设△ABC三边为a、b、c,其中a、b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的取值X围4<c<6 .【考点】三角形三边关系;非负数的性质:绝对值;非负数的性质:偶次方;解二元一次方程组.【分析】首先根据非负数的性质计算出a、b的值,再根据三角形两边之和大于第三边,三角形的两边差小于第三边可得c的取值X围.【解答】解:由题意得:,解得,根据三角形的三边关系定理可得5﹣1<c<5+1,即4<c<6.故答案为:4<c<6.16.如图,小李制作了一X△ABC纸片,点D、E分别在边AB、AC上,现将△ABC沿着DE折叠压平,使点A落在点A′位置.若∠A=75°,则∠1+∠2=150°.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.【解答】解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.故答案为:150°.17.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD 的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=.【考点】三角形的角平分线、中线和高;三角形的外角性质.【分析】根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,然后整理即可得到∠A1与∠A的关系,同理得到∠A2与∠A1的关系并依次找出变化规律,从而得解.【解答】解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠A BC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2012=.故答案为:.18.如图,求图中∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I度数的和为540°.【考点】多边形内角与外角;三角形内角和定理.【分析】如图所示,由三角形外角的性质可知:∠A+∠B+∠C=∠IKD,∠E+∠F+∠G=∠HND,然后由多边形的内角和公式可求得答案.【解答】解:如图所示:由三角形的外角的性质可知:∠A+∠B=∠AJC,∠AJC+∠C=∠IKD,∴∠A+∠B+∠C=∠IKD.同理:∠E+∠F+∠G=∠HND.∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠I+∠H=∠IKD+∠D+∠HND+∠I+∠H=(5﹣2)×180°=3×180°=540°,故答案为:540°.三.解答题19.如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.【考点】三角形三边关系.【分析】首先延长BP交AC于点D,再在△ABD中可得PB+PD<AB+AD,在△PCD中,PC<PD+CD 然后把两个不等式相加整理后可得结论.【解答】证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.20.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,AB于CD相交于点O,若∠A=40°,∠C=36°,求∠P的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】根据角平分线的定义可得∠ADP=∠PDF,∠CBP=∠PBA,再根据三角形的内角和定理列出等式整理即可得解.【解答】解:∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠PDF,∠CBP=∠PBA,∵∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,∴∠A+∠C=2∠P,∵∠A=40°,∠C=36°,∴∠P=(40°+36°)=38°.21.如图四边形ABCD中,已知AB∥CD,AD∥BC,AE⊥BC于E,AF⊥CD于F,求证:∠BAD+∠EAF=180°.【考点】平行线的性质.【分析】先证明四边形ABCD是平行四边形,得出对角相等∠BAD=∠C,再由四边形内角和定理和已知条件求出∠C+∠EAF=180°,即可得出结论.【解答】证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠BAD=∠C,∵AE⊥BC于E,AF⊥CD于F,∴∠AEC=∠AFC=90°,∴∠C+∠EAF=360°﹣90°﹣90°=180°,∴∠BAD+∠EAF=180°.22.如图,已知DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,求∠B的度数.【考点】平行线的性质;多边形内角与外角.【分析】可连接AC,得出AE∥BC,进而利用同旁内角互补求解∠B的大小.【解答】解:如图,连接AC,∵AB∥CD,∴∠DCA=∠BAC,又∠BAE=∠BCD,∴∠EAC=∠ACB,∴AE∥BC,在四边形ACDE中,∠D=130°,∠E=90°,∴∠EAC+∠ACD=140°,即∠EAB=140°,又∵∠B+∠EAB=180°,∴∠B=40°.23.如图,已知∠MON=α,点A、B分别在射线ON、OM上移动(不与点O重合),AC平分∠OAB,BD平分∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ACB的大小是否也随之变化?若改变,说明理由;若不改变,求出其值.【考点】三角形内角和定理;三角形的外角性质.【分析】先根据三角形外角的性质∠MON+∠OAB=∠ABM,再由角平分线的性质及三角形内角和定理即可得出结论.【解答】解:∠ACB=为一定值.理由:∵∠ABM是△AOB的外角,∴∠MNO+∠OAB=∠ABM,∠MON=α,∴∠ABM﹣∠OAB=∠MON=α.∵AC平分∠OAB,BD平分∠ABM,∴∠BA C=∠OAB,∠ABD=∠ABM=(∠MNO+∠OAB),∵∠ABD是△ABC的外角,∴∠ABD=∠C+∠BAC,即∠C=∠ABD﹣∠BAC=(∠ABM﹣∠OAB)=.24.如图,已知四边形ABCD中,∠A+∠DCB=180°,两组对边延长后,分别交于P、Q两点,∠APD、∠AQB的平分线交于M,求证:PM⊥QM.【考点】三角形内角和定理;多边形内角与外角.【分析】连接PQ,由三角形内角和定理可得出∠QCP=180°﹣∠1﹣∠2,∠A=180°﹣∠AQP ﹣∠APQ=180°﹣∠1﹣∠2﹣∠AQB﹣∠APD,再根据∠APD、∠AQB的平分线交于点M可知∠AQB=2∠3,∠APD=2∠4,再由三角形外角的性质可得出∠QMP=(∠BCD+∠A),进而得出结论.【解答】证明:连接PQ,∵∠QCP=180°﹣∠1﹣∠2,∠A=180°﹣∠AQP﹣∠APQ=180°﹣∠1﹣∠2﹣∠AQB﹣∠APD,又∵∠APD、∠AQB的平分线交于点M,∴∠AQB=2∠3,∠APD=2∠4,∴∠QCP+∠A=+=360°﹣2∠1﹣2∠2﹣2∠3﹣2∠4,∴(∠QCP+∠A)=180°﹣∠1﹣∠2﹣∠3﹣∠4,又∵∠BCD=∠QCP,∴(∠BCD+∠A)=180°﹣∠1﹣∠2﹣∠3﹣∠4,又∵∠QMP=180°﹣∠MQP﹣∠MPQ=180°﹣∠1﹣∠3﹣∠2﹣∠4,∴∠QMP=(∠BCD+∠A)=×180°=90°,即PM⊥QM.。
八年级上第一次月考数学试题(含解析)
2015-2016学年山东省济宁市邹城市北宿中学八年级(上)第一次月考数学试卷一、精心选一选,慧眼识金!(每小题3分,共计30分)1.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形2.下列说法正确的是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形3.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米4.下列四组图形中,BE是△ABC的高线的图是()A.B. C.D.5.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°6.如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A.63°B.83°C.73°D.53°7.已知△ABC中,∠A,∠B,∠C三个角的比例如下,其中能说明△ABC是直角三角形的是()A.2:3:4 B.1:2:3 C.4:3:5 D.1:2:28.下列度数中,不可能是某个多边形的内角和的是()A.180°B.270°C.2700°D.1080°9.如图,在△ABC中,AD平分∠BAC且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C的度数是()A.70°B.80°C.100°D.110°10.已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个B.4个C.5个D.6个二、耐心填一填,一锤定音!(每小题3分,共计15分)11.八边形的内角和等于度.12.如图,已知∠ABE=142°,∠C=72°,则∠A=度,∠ABC=度.13.AD是△ABC的中线,则△ACD的面积△ABD的面积.(填“<”“>”或“=”)14.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=度.15.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC 内,若∠1=20°,则∠2的度数为度.三、用心做一做,马到成功!(本大题共55分)16.等腰三角形两边长为4cm、6cm,求等腰三角形的周长.17.如图,AB=AC,AD=AE.求证:∠B=∠C.18.如图,C是AB的中点,AD=CE,CD=BE.求证:△DCA≌△EBC.19.在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.20.已知AE、AD分别是△ABC的高和角平分线,且∠B=46°,∠C=60°,求∠DAE的度数.21.如图,要测量河两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长,为什么?22.一个零件的形状如图,按规定∠A=90°,∠ABD和∠ACD,应分别是32°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.2015-2016学年山东省济宁市邹城市北宿中学八年级(上)第一次月考数学试卷参考答案与试题解析一、精心选一选,慧眼识金!(每小题3分,共计30分)1.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形考点:三角形的稳定性.分析:稳定性是三角形的特性.解答:解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.点评:稳定性是三角形的特性,这一点需要记忆.2.下列说法正确的是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形考点:全等图形.分析:能够完全重合的两个图形叫做全等形.做题时严格按定义逐个验证.全等形的面积和周长相等.解答:解:A、全等三角形不仅仅形状相同而且大小相同,错;B、全等三角形不仅仅面积相等而且要边、角完全相同,错;C、全等则重合,重合则周长与面积分别相等,则C正确.D、完全相同的等边三角形才是全等三角形,错.故选C.点评:本题考查了全等形的特点,做题时一定要严格按照全等的定义进行.3.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米考点:三角形三边关系.专题:应用题.分析:根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围,看哪个数值不在范围即可.解答:解:∵15﹣10<AB<10+15,∴5<AB<25.∴所以不可能是5米.故选:D.点评:已知三角形的两边,则第三边的范围是:>已知的两边的差,而<两边的和.4.下列四组图形中,BE是△ABC的高线的图是()A.B. C.D.考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解答:解:过点B作直线AC的垂线段,即画AC边上的高BE,所以画法正确的是A.故选A.点评:考查了三角形的高的概念,能够正确作三角形一边上的高.5.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°考点:全等三角形的性质.分析:根据全等三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB即可.解答:解:∵△ACB≌A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°,故选B.点评:本题考查了全等三角形性质的应用,注意:全等三角形的对应角相等.6.如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A.63°B.83°C.73°D.53°考点:三角形的外角性质;平行线的性质.专题:计算题.分析:因为AC∥ED,所以∠BED=∠EAC,而∠EAC是△ABC的外角,所以∠BED=∠EAC=∠CBE+∠C.解答:解:∵在△ABC中,∠C=26°,∠CBE=37°,∴∠CAE=∠C+∠CBE=26°+37°=63°,∵AC∥ED,∴∠BED=∠CAE=63°.故选A.点评:本题考查的是三角形外角与内角的关系及两直线平行的性质.7.已知△ABC中,∠A,∠B,∠C三个角的比例如下,其中能说明△ABC是直角三角形的是()A.2:3:4 B.1:2:3 C.4:3:5 D.1:2:2考点:三角形内角和定理.分析:根据三角形的内角和公式分别求得各角的度数,从而判断其形状.解答:解:A、设三个角分别为2x,3x,4x,根据三角形内角和定理得三个角分别为:40°,60°,80°,所以不是直角三角形;B、设三个角分别为x,2x,3x,根据三角形内角和定理得三个角分别为:30°,60°,90°,所以是直角三角形;C、设三个角分别为3x,4x,5x,根据三角形内角和定理得三个角分别为:45°,60°,75°,所以不是直角三角形;D、设三个角分别为x,2x,2x,根据三角形内角和定理得三个角分别为:36°,72°,72°,所以不是直角三角形.故选B.点评:本题通过设适当的参数,根据三角形内角和定理建立方程求出三个内角的度数后判断.8.下列度数中,不可能是某个多边形的内角和的是()A.180°B.270°C.2700°D.1080°考点:多边形内角与外角.分析:依据多边形的内角和公式可知多边形的内角和能够整除180°.解答:解:∵270不能整除180,∴270°不能是某个多边形的内角和.故选:B.点评:本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.9.如图,在△ABC中,AD平分∠BAC且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C的度数是()A.70°B.80°C.100°D.110°考点:三角形内角和定理.分析:利用三角形角平分线的定义和三角形内角和定理可求出.解答:解:AD平分∠BAC,∠BAD=30°,∴∠BAC=60°,∴∠C=180°﹣60°﹣40°=80°.故选B.点评:本题主要利用三角形角平分线的定义和三角形内角和定理,关键是熟练掌握相关性质.10.已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个B.4个C.5个D.6个考点:三角形的面积.专题:网格型.分析:怎样选取分类的标准,才能做到点C的个数不遗不漏,按照点C所在的直线分为两种情况:当点C与点A在同一条直线上时,AC边上的高为1,AC=2,符合条件的点C 有4个;当点C与点B在同一条直线上时,BC边上的高为1,BC=2,符合条件的点C有2个.解答:解:C点所有的情况如图所示:故选:D.点评:此类题应选取分类的标准,才能做到不遗不漏.二、耐心填一填,一锤定音!(每小题3分,共计15分)11.八边形的内角和等于1080度.考点:多边形内角与外角.分析:n边形的内角和可以表示成(n﹣2)•180°,代入公式就可以求出内角和.解答:解:(8﹣2)×180°=1080°.故答案为:1080°.点评:本题主要考查了多边形的内角和公式,是需要熟记的内容.12.如图,已知∠ABE=142°,∠C=72°,则∠A=70度,∠ABC=38度.考点:三角形的外角性质.分析:根据三角形的一个外角等于和它不相邻的两个内角和及平角定义计算.解答:解:∠A=142°﹣72°=70°,∠ABC=180°﹣142°=38°.故填70,38.点评:掌握三角形的外角的性质:三角形的一个外角等于和它不相邻的两个内角和.13.AD是△ABC的中线,则△ACD的面积=△ABD的面积.(填“<”“>”或“=”)考点:三角形的面积.分析:根据三角形的面积公式以及三角形的中线的概念,知:三角形的中线把三角形的面积分成相等的两部分.解答:解:根据等底同高可得,△ACD的面积=△ABD的面积.点评:注意此题中的结论,是发现相等面积的三角形的常用的一种方法.14.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=120度.考点:全等三角形的性质;三角形的外角性质.专题:压轴题.分析:结合已知运用两三角形全等及一个角的外角等于另外两个内角的和,就可以得到∠CAE,然后又可以得到∠AEB.解答:解:∵△OAD≌△OBC,∴∠D=∠C=25°,∴∠CAE=∠O+∠D=95°,∴∠AEB=∠C+∠CAE=25°+95°=120°.故填120点评:考查全等三角形的性质和三角形外角的性质,做题时要仔细读图,发现并利用外角是解决本题的核心.15.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC 内,若∠1=20°,则∠2的度数为60度.考点:翻折变换(折叠问题).分析:根据题意,已知∠A=65°,∠B=75°,可结合三角形内角和定理和折叠变换的性质求解.解答:解:∵∠A=65°,∠B=75°,∴∠C=180°﹣(65°+75°)=40度,∴∠CDE+∠CED=180°﹣∠C=140°,∴∠2=360°﹣(∠A+∠B+∠1+∠CED+∠CDE)=360°﹣300°=60度.故填60.点评:本题通过折叠变换考查三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.三、用心做一做,马到成功!(本大题共55分)16.等腰三角形两边长为4cm、6cm,求等腰三角形的周长.考点:等腰三角形的性质;三角形三边关系.分析:两边的长为4m和6cm,具体哪边是底,哪边是腰没有明确,应分两种情况讨论.解答:解:当腰长是4m,底长是6cm时,能构成三角形,则周长是:4+4+6=14cm;当腰长是6m,底长是4cm时,能构成三角形,则周长是4+6+6=16cm;则等腰三角形的周长是14cm或16cm.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.17.如图,AB=AC,AD=AE.求证:∠B=∠C.考点:全等三角形的判定与性质.专题:证明题.分析:要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.解答:证明:在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.点评:本题主要考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观察出公共角∠A是解决本题的关键.18.如图,C是AB的中点,AD=CE,CD=BE.求证:△DCA≌△EBC.考点:全等三角形的判定.专题:证明题.分析:根据中点定义可得AC=BC,再利用SSS判定△DCA≌△EBC即可.解答:证明:∵C是AB的中点,∴AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(SSS).点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.考点:多边形内角与外角.专题:计算题.分析:本题可设∠A=x(度),则∠B=x+20,∠C=2x,利用四边形的内角和即可解决问题.解答:解:设∠A=x,则∠B=x+20°,∠C=2x.四边形内角和定理得x+(x+20°)+2x+60°=360°,解得x=70°.∴∠A=70°,∠B=90°,∠C=140°.点评:本题需仔细分析题意,利用多边形的内角和公式结合方程即可解决问题.20.已知AE、AD分别是△ABC的高和角平分线,且∠B=46°,∠C=60°,求∠DAE的度数.考点:三角形内角和定理.分析:先根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的性质可求出∠DAC=∠BAC,而∠EAC=90°﹣∠C,然后利用∠DAE=∠DAC﹣∠EAC进行计算即可.解答:解:在△ABC中,∠B=46°,∠C=60°∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣60°=74°∵AD是的角平分线∴∵AE是△ABC的高∴∠AEC=90°∴在△AEC中,∠EAC=180°﹣∠AEC﹣∠C=180°﹣90°﹣60°=30°∴∠DAE=∠DAC﹣∠EAC=37°﹣30°=7°.点评:考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的高线与角平分线的性质21.如图,要测量河两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长,为什么?考点:全等三角形的应用.专题:应用题.分析:本题是测量两点之间的距离方法中的一种,符合全等三角形全等的条件,方案的操作性强,只要测量的线段和角度在陆地一侧即可实施.解答:解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,又∵直线BF与AE交于点C,∴∠ACB=∠ECD(对顶角相等),∵CD=BC,∴△ABC≌△EDC,∴AB=ED,即测得DE的长就是A,B两点间的距离.点评:本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,做题时要注意寻找所求线段与已知线段之间的等量关系.22.一个零件的形状如图,按规定∠A=90°,∠ABD和∠ACD,应分别是32°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.考点:三角形内角和定理.分析:连接AD,利用三角形内角与外角的关系求出此零件合格时∠CDB的度数与已知度数相比较即可.解答:解:不合格,理由如下:连接AD并延长,则∠1=∠ACD+∠CAD,∠2=∠ABD+∠BAD,故∠BDC=∠ACD+∠ABD+∠A=32°+21°+90°=143°,因为∠BDC实际等于148°,所以此零件不合格.点评:本题考查的是三角形内角与外角的关系,比较简单.。
八年级数学上册第一次月考试题
2015-2016学年度第一学期八年级数学(人教版)第一次练考试卷(考试时间:90分钟 总分:100分)一、亮出你的观点,明智选择!(每小题3分,共30分) 1.下列各组线段为边能组成三角形的是:( )A.1cm ,2cm ,4cm .B.2cm ,3cm ,5cm .C.5cm ,6cm ,12cm .D.4cm ,6cm ,8cm . 2.下列判断不正确的是( )A.形状相同的图形是全等图形B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同D.全等三角形的对应角相等 3.已知,在△ABC 中,∠A=600,∠C=800,则∠B=( ) A.600 B.300 C.200 D.4004.如图,已知AB //DC ,AD //BC ,则△ABC ≌△CDA 的依据是( ) A .SAS B .ASA C .AAS D .以上都不对5.如图,BE=CF ,AB=DE ,添加下列哪些条件可以推证 △ABC ≌△DFE ( )A.BC=EFB.∠A=∠DC.AC ∥DFD.AC=DF 6.若一个多边形的外角和与它的内角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形 7.如图所示,在△ABD 和△ACE 都是等边三角形, 则ΔADC ≌ΔABE 的根据是( )A. SSSB. AASC. ASAD. SAS8.如图,点O 是△ABC 内一点,∠A=80°,∠1=15°, ∠2=40°,则∠BOC 等于( )A .95°B .120°C .135°D .无法确定9.如图,在Rt ΔABC 中,∠ACB=90°,BD 是∠ABC 的角 平分线,过点D 作DE ⊥A B 于E ,且DE=CD ,如果AC=5cm ,则AD+DE 等于( ) A .3 cm B. 4 cm C. 5 cm D. 6 cm 10.如图,△ABC 中,∠1 =∠2,PR = PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则下列三个结论:①AS = AR ;②QP //AR ;③△BRP ≌△QSP ,( ) A .全部正确 B .①和②正确C .仅①正确D .①和③正确二、写出你的结论,完美填空。
人教版八年级数学上度第一次月考试题
初中数学试卷2015-2016学年度上学期第一次月考试题八年级数学(时间:100分钟,满分:120分)一、选择题(每题3分,共30分) 1、下列四组数据中,能构成三角形的一组是( )A 、3,6,8B 、2,3,5C 、3,3,6D 、2,4,72、如图,已知:△ABC 中,DF=FE ,BD=CE ,AF ⊥BC 于F ,则此图中全等三角形共有( )A 、5对B 、4对C 、3对D 、2对3、如图1,△ABD ≌△CDB ,,AB 、CD 是对应边,下面的四个结论中不正确的是( )A 、BC AD =B 、31∠=∠C 、21∠+∠=∠+∠C AD 、AB//CD4、一个多边形的内角和等于︒720,则这个多边形的边数是( )A .3B .4C .5D .65、下列图形具有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形6、如图,在△ABC 中,=∠︒=∠︒=∠1,60,80则B A ( )A 、︒40B 、︒140C 、︒80D 、︒1007、如图,已知在△ABC 中,BD 是△ABC 的中线,AC=8cm ,则AD 等于( )D图3A C F E B A 、2 B 、3 C 、4 D 、不能确定8、已知:EFG ABC ∆≅∆,有∠A=70°,∠B=60°,则∠G ( )。
A .70°B .60°C .65°D .50°9、两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( )A . ASAB . SASC . AAAD . SSS10、已知等腰三角形的两边长分别为3和6,则它的周长等于( )A. 12B. 12或15C. 15D. 15或18二、填空题(每题4分,共24分)11、如图:AB=AC ,BD=CD ,若∠B=28°,则∠C= ;12、如图3,在△ABC 和△FED , AD=FC ,AB=FE ,当添加条件 时,就可得到△ABC ≌△FED.(只需填写一个你认为正确的条件)13、六边形的对角线有 条;14、如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为 .15、如图,△ABC ≌△DEF,则x= ,y= ;16、如右图,从下列四个条件:①BC =B ′C , ②AC =A ′C , ③∠A ′CA =∠B ′CB ④AB =A ′B ′中,任取三个为条件, 就可得到△ABC ≌△A ’B ’C ,则这三个条件可以是 。
八年级数学上学期第一次月考试题(含解析) 新人教版
福建省漳州市华安二中2015-2016学年八年级数学上学期第一次月考试题一、选择题(每小题2分,共20分)1.2的算术平方根是( )A.±B.C.±4D.42.若a3=8,则a的绝对值是( )A.2 B.﹣2 C.D.﹣3.下列说法正确的是( )A.表示49的平方根B.7是的算术平方根C.﹣7是49的平方根D.49的平方根是74.下列判断中,错误的是( )A.不是分数,是无理数B.无理数包括正无理数、0和负无理数C.(1﹣x)2的平方根是x﹣1和1﹣xD.数轴上的点和所有的实数是一一对应的5.(y m)3•y n的运算结果是( )A.y m(3+n)B.y3m+n C.y3(m+n)D.y3mn6.下列各式中,计算不正确的是( )A.()2=3 B.=﹣3C.(a5)2=a10 D.2a2•(﹣3a3)=﹣6a57.在﹣,0,,0.020********…(每两个2之间依次多1个0),,﹣0.33…,,3.1415,2.010101(每两相邻两个1之间有1个0)中,无理数有( )A.4个B.3个C.2个D.1个8.使式子有意义的实数x的取值范围是( )A.x≥0 B.C.x≥D.x≥9.已知22×83=2n,则n的值为( )A.18 B.11 C.8 D.710.﹣x8等于( )A.(﹣x)2•x6B.﹣x3•(﹣x)5 C.﹣x•(﹣x)7D.﹣x4•(﹣x)4二、填空题(每空2分,共20分)11.计算:﹣(﹣2ab3)2=__________;(﹣3)5÷(﹣3)2=__________.12.计算:﹣a2•(﹣a3)=__________;(x﹣y)3(y﹣x)2=__________.13.已知一个正数的平方根是3x﹣2和5x+6,则这个数是__________.14.设m,n为正整数,且m<+1<n,则m+n=__________.15.若2x=3,2y=5,则2x+y=__________,2x﹣y=__________,22x=__________.16.观察下列式子:=3;=33;=333;…猜想:=__________.三.解答题(60分)17.(30分)计算(1)|﹣1|+﹣;(2)﹣2+(3)(x3)2÷x2÷x+x3•(﹣x)2•(﹣x2)(4)2a2b•(﹣4b)2﹣3ab•4ab2(4)(5)(3x﹣1)(2﹣5x)18.若|a﹣b+2|与互为相反数,求21a+2b的立方根.19.已知x,y为实数,且y=+4,求的值.20.解方程:(1)(x+1)(x﹣1)+2x(x+2)=3(x2+1)(2)(x+10)(x﹣8)=x2﹣100.21.先化简,再求值:(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.22.在计算时我们如果能总结规律,并加以归纳,得出数学公式,一定会提高解题的速度,在解答下面问题中请留意其中的规律.(1)计算后填空:(x+1)(x+2)=__________;(x+3)(x﹣1)=__________;(2)归纳、猜想后填空:(x+a)(x+b)=x2+__________x+__________;(3)运用(2)猜想的结论,直接写出计算结果:(x+2)(x+m)=__________.2015-2016学年福建省漳州市华安二中八年级(上)第一次月考数学试卷一、选择题(每小题2分,共20分)1.2的算术平方根是( )A.±B.C.±4D.4【考点】算术平方根.【专题】计算题.【分析】根据开方运算,可得算术平方根.【解答】解:2的算术平方根是,故选;B.【点评】本题考查了算术平方根,开方运算是解题关键.2.若a3=8,则a的绝对值是( )A.2 B.﹣2 C.D.﹣【考点】立方根.【分析】根据立方根的概念求解.【解答】解:开立方得:a=2.故选A.【点评】本题考查了立方根的知识,如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.3.下列说法正确的是( )A.表示49的平方根B.7是的算术平方根C.﹣7是49的平方根D.49的平方根是7【考点】算术平方根;平方根.【分析】依据平方根和算术平方根的定义回答即可.【解答】解:A、表示49的算术平方根,故A错误;B、=7,的算术平方根是,故B错误;C、(﹣7)2=49,故﹣7是49的平方根,故C正确;D、49的平方根是±7,故D错误.故选:C.【点评】本题主要考查的是平方根和算术平方根的定义,掌握平方根和算术平方根的定义是解题的关键.4.下列判断中,错误的是( )A.不是分数,是无理数B.无理数包括正无理数、0和负无理数C.(1﹣x)2的平方根是x﹣1和1﹣xD.数轴上的点和所有的实数是一一对应的【考点】实数.【分析】根据实数的有关概念、平方根的定义和性质回答即可.【解答】解;A、π一个无理数,故此也是一个无理数,故A与要求不符;B、0是有理数,故B错误,与要求相符;C、(1﹣x)2的平方根是x﹣1和1﹣x,正确,与要求不符;D、数轴上的点和所有的实数是一一对应的正确,与要求不符.故选:B.【点评】本题主要考查的是实数的概念和性质,掌握相关概念和性质是解题的关键.5.(y m)3•y n的运算结果是( )A.y m(3+n)B.y3m+n C.y3(m+n)D.y3mn【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方,底数不变指数相乘,同底数幂相乘,底数不变,指数相加,计算即可.【解答】解:(y m)3•y n=y3m•y n=y3m+n.故选B.【点评】考查了幂的乘方和同底数幂相乘的性质,熟练掌握性质是解题的关键.6.下列各式中,计算不正确的是( )A.()2=3 B.=﹣3C.(a5)2=a10 D.2a2•(﹣3a3)=﹣6a5【考点】单项式乘单项式;算术平方根;幂的乘方与积的乘方.【分析】分别利用单项式乘以单项式以及二次根式的性质和幂的乘方运算法则分别化简求出答案.【解答】解:A、()2=3,正确,不合题意;B、=3,原式不正确,符合题意;C、(a5)2=a10,正确,不合题意;D、2a2•(﹣3a3)=﹣6a5,正确,不合题意;故选:B.【点评】此题主要考查了单项式乘以单项式以及二次根式的性质和幂的乘方运算,正确掌握运算法则是解题关键.7.在﹣,0,,0.020********…(每两个2之间依次多1个0),,﹣0.33…,,3.1415,2.010101(每两相邻两个1之间有1个0)中,无理数有( )A.4个B.3个C.2个D.1个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.020********…(每两个2之间依次多1个0),,是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.使式子有意义的实数x的取值范围是( )A.x≥0 B.C.x≥D.x≥【考点】二次根式有意义的条件.【专题】计算题.【分析】二次根式的被开方数是非负数.【解答】解:根据题意,得3x+2≥0,解得,x≥﹣;故选D.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.已知22×83=2n,则n的值为( )A.18 B.11 C.8 D.7【考点】同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】先把原式根据幂的乘方与积的乘方法则化为同底数幂的乘法,再根据同底数幂的乘法法则得出n的值即可.【解答】解:原式可化为22×29=2n,即211=2n,故n=11.故选B.【点评】本题考查的是幂的乘方与积的乘方法则、同底数幂的乘法,熟知以上知识是解答此题的关键.10.﹣x8等于( )A.(﹣x)2•x6B.﹣x3•(﹣x)5 C.﹣x•(﹣x)7D.﹣x4•(﹣x)4【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方和积的乘方、同底数幂的乘法法则求解.【解答】解:A、(﹣x)2•x6=x8≠﹣x8,故本选项错误;B、﹣x3•(﹣x)5=x8≠﹣x8,故本选项错误;C、﹣x•(﹣x)7=x8≠﹣x8,故本选项错误;D、﹣x4•(﹣x4)=﹣x8,故本选项正确.故选D.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方以及同底数幂的乘法法则.二、填空题(每空2分,共20分)11.计算:﹣(﹣2ab3)2=﹣4a2b6;(﹣3)5÷(﹣3)2=9.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据积的乘方等于乘方的积,可得答案;根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:﹣(﹣2ab3)2=﹣(4a2b6)=﹣4a2b6;(﹣3)5÷(﹣3)2=(﹣3)2=32=9,故答案为:﹣4a2b6,9.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.12.计算:﹣a2•(﹣a3)=a5;(x﹣y)3(y﹣x)2=(x﹣y)5.【考点】同底数幂的乘法.【分析】根据单项式的乘法,可得答案;根据互为相反数的偶数次幂相等,可得同底数幂的乘法,根据同底数幂的乘法底数不变指数相加,可得答案.【解答】解:﹣a2•(﹣a3)=a5;(x﹣y)3(y﹣x)2=(x﹣y)3•(x﹣y)2=(x﹣y)5,故答案为:a5,(x﹣y)5.【点评】本题考查了同底数幂的乘法,利用互为相反数的偶数次幂相等得出同底数幂的乘法是解题关键.13.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【考点】平方根.【专题】计算题.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.14.设m,n为正整数,且m<+1<n,则m+n=19.【考点】估算无理数的大小.【分析】首先<,得出9<+1<10,从而求得m=9,n=10,即可求得m+n 的值.【解答】解:∵8<<9,∴9<+1<10,∴m=9,n=10,∴m+n=19.故答案为19.【点评】此题主要考查了估算无理数,得出8<<9是解题关键.15.若2x=3,2y=5,则2x+y=15,2x﹣y=,22x=9.【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】逆用同底数幂的乘法、同底数幂的除法、以及幂的乘方法则计算即可.【解答】解:2x+y=2x•2y=3×5=15;2x﹣y=2x÷2y=3÷5=;22x=(2x)2=32=9.故答案为:15;;9.【点评】本题主要考查的是同底数幂的乘法、同底数幂的除法、积的乘方的应用,逆用法则是解题的关键.16.观察下列式子:=3;=33;=333;…猜想:=.【考点】算术平方根.【专题】规律型.【分析】观察所给算式,可发现规律:被开方数中2的个数与结果中3的个数相同,根据规律,可得答案.【解答】解:=3;=33;=333;…发现被开方数中2的个数与结果中3的个数相同.∴=,故答案为:.【点评】本题考查了算术平方根,观察式子发现其中的规律是解题的关键.三.解答题(60分)17.(30分)计算(1)|﹣1|+﹣;(2)﹣2+(3)(x3)2÷x2÷x+x3•(﹣x)2•(﹣x2)(4)2a2b•(﹣4b)2﹣3ab•4ab2(4)(5)(3x﹣1)(2﹣5x)【考点】实数的运算;整式的混合运算.【分析】(1)先根据绝对值的性质及数的开方法则计算出各数,再根据有理数的加减法则进行计算即可;(2)先根据数的开方法则计算出各数,再根据有理数的加减法则进行计算即可;(3)先算乘方,再算乘除,再算加减即可;(4)把括号中的每一项分别同﹣4xy2相乘,再把结果相加减即可;(5)把两括号中的每一项分别相乘,再把结果相加减即可.【解答】解:(1)原式=1+3﹣4=0;(2)原式=7﹣2×+12=7﹣3+12=17;(3)原式=x6÷x2÷x+x5•(﹣x2)=x4÷x﹣x7=x3﹣x7;(4)原式=3x3y3+2x2y4+10xy5;(5)原式=6x﹣15x2﹣2+5x=﹣15x2+11x﹣2.【点评】本题考查的是实数的运算及整式混合运算的法则,熟知数的乘方及开方法则、同底数幂的乘除法则是解答此题的关键.18.若|a﹣b+2|与互为相反数,求21a+2b的立方根.【考点】立方根;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据互为相反数的两个数的和等于0列式,再根据非负数的性质列式求出a、b的值,然后代入代数式求出其值,再根据立方根的定义解答.【解答】解:∵|a﹣b+2|与互为相反数,∴|a﹣b+2|+=0,∴,解得,∴21a+2b=21×1+2×3=27,∵33=27,∴21a+2b的立方根是3.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;解二元一次方程组,以及代数式求值和立方根的定义,是基础题,列出方程求出a、b的值是解题的关键.19.已知x,y为实数,且y=+4,求的值.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式求出x的值,得到y的值,代入代数式计算即可.【解答】解:由题意得,x﹣16≥0,16﹣x≥0,解得x=16,y=+4=4,则=4﹣2=2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.20.解方程:(1)(x+1)(x﹣1)+2x(x+2)=3(x2+1)(2)(x+10)(x﹣8)=x2﹣100.【考点】整式的混合运算;解一元一次方程.【分析】(1)根据平方差公式和整式的乘法进行解答即可;(2)根据整式的乘法和合并同类项进行解答即可.【解答】解:(1)(x+1)(x﹣1)+2x(x+2)=3(x2+1),x2﹣1+2x2+4x=3x2+1,4x=2,x=0.5;(2)(x+10)(x﹣8)=x2﹣100,x2+2x﹣80=x2﹣100,2x=180,x=90.【点评】此题考查整式的混合计算,关键是把方程利用整式的混合计算整理后解答.21.先化简,再求值:(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.【考点】整式的混合运算—化简求值.【分析】首先利用平方差公式以及单项式与多项式的乘法法则计算,然后合并同类项即可化简,然后代入数值计算即可.【解答】解:原式=4x2﹣1﹣4x2﹣4x=﹣1﹣4x,当x=﹣时,原式=﹣1+4=3.【点评】本题考查了整式的化简求值,正确理解平方差公式的结构是关键.22.在计算时我们如果能总结规律,并加以归纳,得出数学公式,一定会提高解题的速度,在解答下面问题中请留意其中的规律.(1)计算后填空:(x+1)(x+2)=x2+3x+2;(x+3)(x﹣1)=x2+2x﹣3;(2)归纳、猜想后填空:(x+a)(x+b)=x2+(a+b)x+ab;(3)运用(2)猜想的结论,直接写出计算结果:(x+2)(x+m)=x2+(2+m)x+2m.【考点】多项式乘多项式.【专题】规律型.【分析】(1)根据多项式乘以多项式法则进行计算即可;(2)根据(1)的结果得出规律即可;(3)根据(x+a)(x+b)=x2+(a+b)x+ab得出即可.【解答】解:(1)(x+1)(x+2)=x2+2x+x+2=x2+3x+2;(x+3)(x﹣1)=x2﹣x+3x﹣3=x2+2x﹣3,故答案为:x2+3x+2,x2+2x﹣3;(2)(x+a)(x+b)=x2+(a+b)x+ab.故答案为:(a+b),ab;(3)(x+2)(x+m)=x2+(2+m)x+2m.故答案为:x2+(2+m)x+2m.【点评】本题考查了多项式乘以多项式的应用,主要考查学生的计算能力.。
人教版八年级数学上第一次月考数学试卷
初中数学试卷卢氏县木桐中学2015-2016学年八年级(上)第一次月考数学试卷一、选择题(每题3分,共24分)1.下列四个图案,其中轴对称图形有()A.0个B.1个C.2个D.3个2.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°3.在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是()①AC=DF ②BC=EF ③∠B=∠E ④∠C=∠F.A.①②③ B.②③④ C.①③④ D.①②④4.下列说法中,正确的是()A.一个轴对称图形一定只有一条对称轴B.全等三角形一定是关于某直线对称的C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.两个图形关于某直线对称,则这两个图形对应点所连线段一定被这条直线垂直平分5.如图,正方形网格中,已有两个小正方形被涂黑,再将图其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有()A.5 B.6 C.4 D.76.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)7.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A. B.4 C. D.8.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA二、填空题(每题2分,共16分)9.从地面小水洼观察到一辆小汽车的车牌号为,它的实际号是.10.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.11.如图,∠1=∠2,要使△ABE≌△ACE,若以“SAS”为依据,还缺条件.12.如图,△ABC≌△DEF,BE=4,则AD的长是.13.如图,∠A=30°,∠C′=60°,△ABC 与△A′B′C′关于直线l对称,则∠B=.14.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为厘米.15.如图,E点为△ABC的边AC中点,CN∥AB,过E点作直线交AB与M点,交CN于N点,若MB=6cm,CN=4cm,则AB=cm.16.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、解答题(共60分)17.(8分)(1)作△ABC关于直线MN对称的△A′B′C′.(2)如果网格中每个小正方形的边长为1,求△ABC的面积.18.(8分)如图:点C、D在AB上,且AC=BD,AE=FB,DE=FC.求证:(1)△ADE≌△BCF;(2)AE∥BF.19.(8分)如图,D是△ABC的边AB上一点,E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.若CF=6.BD=2,求AB的长.20.(8分)如图,已知△ABC中,AB=AC=20cm,∠ABC=∠ACB,BC=16cm,点D是AB的中点.点P在线段BC上以6厘米/秒的速度由B点向C点运动,同时点Q在线段CA 上由C点向A点运动,且点Q的运动速度与点P的运动速度相等.经过几秒后,△BPD与△CQP全等?请说明理由.21.(8分)如图,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD.图中的CE、BD有怎样的大小和位置关系?试证明你的结论.22.(10分)数学课上,探讨角平分线的作法时,王老师用直尺和圆规作角平分线,方法如下:①如图1,在OA和OB上分别截取OD、OE,使OD=OE;②分别以D、E为圆心,以大于DE的长为半径作弧,两弧交于点C;③作射线OC,则OC就是∠AOB的平分线.王老师用尺规作角平分线运用了我们第一章学过的知识,你知道吗,请说明OC是角平分线的理由.下课小聪找到王老师告诉他,他发现利用直角三角板也可以作角平分线,方法如下:步骤:①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP.则OP为∠AOB的平分线.小聪的作法正确吗?请说明理由.23.(10分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB 边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.。
八年级上册第一次月考数学试题
2015—2016学年第一学期第一次月考检测八年级数学试题时间:100分钟 分值:120分一. 选择题(本题共12个小题,每小题3分,共36分) 1. 下列图形是轴对称图形的有( )A.2个B.3个C.4个D.5个2.一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是( )3用直尺和圆规作一个角等于已知角的示意图如下,则说明A O B AOB '''=∠∠的依据是( )A.SSS B.SAS C.ASA D.AAS(第3题图) (第5题图) 4. 下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形 5.如图,∠BAC=130°,若MP 和QN 分别垂直平分AB 和AC,则∠PAQ 等于( )MQA PN CBAO CBDA 'C 'B 'D 'A.50°B.75°C.80°D.105°6.如图在不等边△ABC中,PM⊥AB,垂足为M,PN⊥AC,垂足为N,且PM=PN,Q在AC上,PQ=QA,下列结论:①AN=AM,②QP∥AM,③△BMP≌△QNP,其中正确的个数有()A. 0个B. 1个C. 2个D. 3个(第6题图)(第7题图)(第8题图)7.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝,则△DEB的周长是()A.6㎝B.4㎝C.10㎝D.以上都不对8.如图,直线a,b,c表示三条相互交叉环湖而建的公路,现在建立一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1个B.2个C.3个D.4个9.到三角形的各顶点距离相等的点是()A.三角形的三条角平分线的交点 C.三角形的三条中线的交点B.三角形的三条高的交点 D.三角形的三边的垂直平分线的交点10.已知∠AOB=30°,点P在∠AOB的内部,P1与P关于OA对称,P2与P关于OB对称,则△P1OP2是()A.含30°角的直角三角形;B.顶角是30的等腰三角形;C.等边三角形D.等腰直角三角形.11平面上有A、B两个点,以线段AB为一边作等腰直角三角形能作( )A.3个 B.4个 C.6个 D.无数个12.等腰三角形一腰上的高与底边所成的角等于()A .顶角B .顶角的一半C .顶角的三分之一D .底角的一半 二. 填空题(本题共5个小题,每小题4分,共20分)13.在△ABC 中,AD 为BC 边上的中线,若AC=5,中线AD=4,则边AB 的取值范围是 . 14.已知点M (a ,-4)与点N (6,b )关于直线2x 对称,那么a -b 等于 . 15.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 交EF 于F ,若BF=AC ,则∠ABC 等于 .16.等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为 . 17. 如图,长方形纸片ABCD ,M 为AD 边的中点,将纸片沿BM 、CM 折叠,使A 点落在A 1处,D 点落在D 1处,若∠1=40°,则∠BMC= .(第15题图)三、解答题(共64分)18.(本题12分,每小题6分)作图题:(1)在两条公路的交叉处有两个村庄C 、D ,政府想在交叉处的内部建一座加油站P ,并且使加油站到村庄C 、D 的距离和两条公路的距离相等。
八年级数学上学期第一次月考试题(含解析)
重庆市合川区渭溪中学2015-2016学年八年级数学上学期第一次月考试题一、选择题(本大题共12个小题,每题4分,共48分)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm2.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性 D.两直线平行,内错角相等3.如果正多边形的一个内角是144°,则这个多边形是()A.正十边形 B.正九边形 C.正八边形 D.正七边形4.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠C等于()A.120°B.80° C.60° D.40°5.已知△ABC与△DEF全等,BC=EF=4cm,△ABC的面积是12cm2,则EF边上的高是()A.3cm B.4cm C.6cm D.无法确定6.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②7.一定能确定△ABC≌△DEF的条件是()A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F8.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30° B.40° C.50° D.60°9.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个B.2个C.3个D.4个10.一个多边形内角和是1080°,则这个多边形的对角线条数为()A.26 B.24 C.22 D.2011.如图:△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且AC=6cm,则DE+BD 等于()A.5cm B.4cm C.6cm D.7cm12.在等腰三角形ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为()A.7 B.7或11 C.11 D.7或10二、填空题(本大题共6个小题,每题4分,共24分)13.如图,P为△ABC中BC边的延长线上一点,∠A=50°,∠B=70°,则∠ACP= 度.14.等腰三角形一边长为3cm,周长7cm,则腰长是.15.已知如图,△ABC≌△FED,且BC=DE,∠A=30°,∠B=80°,则∠FDE=.16.如图,小亮从A点出发,沿直线前进100m后,向左转30°,再沿直线前进100m,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了m.17.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为.18.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.三、解答题(本大题2个小题,每小题各7分,共14分.)解答时必须给出必要的演算过程或推理步骤.19.在△ABC中,∠BAC=50°,∠B=45°,AD是△ABC的一条角平分线,求∠ADB的度数.20.已知:如图,AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.四、解答题(本大题4个小题,每小题各10分,共40分)解答时必须给出必要的演算过程或推理步骤.21.已知:如图,C是线段AB的中点,∠A=∠B,∠ACE=∠BCD.求证:AD=BE.22.已知:如图,C、D在AB上,且AC=BD,AE∥FB,DE∥FC.求证:AE=BF.23.已知:如图AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE⊥AC.24.如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=70°时,求∠EBC的度数.五、解答题(本大题2个小题,共24分)解答时必须给出必要的演算过程或推理步骤.25.问题1如图①,一张三角形ABC纸片,点D、E分别是△ABC边上两点.研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是研究(2):如果折成图②的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是研究(3):如果折成图③的形状,猜想∠BDA′、∠CEA′和∠A的数量关系,并说明理由.猜想:理由问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是.26.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕着点C旋转到如图1所示的位置时,求证:①△ADC≌△CEB;②DE=AD+BE(2)当直线MN绕着点C旋转到如图2所示的位置时,①找出图中一对全等三角形;②DE、AD、BE 之间有怎样的数量关系,并加以证明.2015-2016学年重庆市合川区渭溪中学八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每题4分,共48分)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、5+6>10,能够组成三角形;C、1+1<3,不能组成三角形;D、3+4<9,不能组成三角形.故选B.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.2.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性 D.两直线平行,内错角相等【考点】三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是三角形具有稳定性.故选:C.【点评】数学要学以致用,会对生活中的一些现象用数学知识解释.3.如果正多边形的一个内角是144°,则这个多边形是()A.正十边形 B.正九边形 C.正八边形 D.正七边形【考点】多边形内角与外角.【分析】正多边形的每个角都相等,同样每个外角也相等,一个内角是144°,则外角是180﹣144=36°.又已知多边形的外角和是360度,由此即可求出答案.【解答】解:360÷(180﹣144)=10,则这个多边形是正十边形.故选A.【点评】本题主要利用了多边形的外角和是360°这一定理.4.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠C等于()A.120°B.80° C.60° D.40°【专题】计算题.【分析】设∠A=x,则∠B=2x,∠C=x+20°,则根据三角形内角和定理得到x+2x+x+20°=180°,解得x=40°,然后计算x+20°即可.【解答】解:设∠A=x,则∠B=2x,∠C=x+20°,∵∠A+∠B+∠C=180°,∴x+2x+x+20°=180°,解得x=40°,∴∠C=x+20°=60°.故选C.【点评】本题考查了三角形内角和定理:三角形内角和是180°.5.已知△ABC与△DEF全等,BC=EF=4cm,△ABC的面积是12cm2,则EF边上的高是()A.3cm B.4cm C.6cm D.无法确定【考点】全等三角形的性质.【分析】根据全等三角形的性质求出△DEF的面积,再根据三角形的面积公式求出即可.【解答】解:∵△ABC与△DEF全等,△ABC的面积是12cm2,∴△DEF的面积为12cm2,∵BC=EF=4cm,∴EF边上的高为2×12÷4=6(cm).故选C.【点评】本题考查了全等三角形的性质的应用,能根据全等三角形的性质求出△DEF的面积是解此题的关键.6.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】此题可以采用排除法进行分析从而确定最后的答案.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选C.【点评】此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.7.一定能确定△ABC≌△DEF的条件是()A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看每个选项是否符合定理即可.【解答】解:A、根据ASA即可推出△ABC≌△DEF,故本选项正确;B、根据∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、根据AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、根据AAA不能推出△ABC≌△DEF,故本选项错误;故选A.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.8.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30° B.40° C.50° D.60°【考点】全等三角形的判定与性质.【分析】根据直角三角形两锐角互余求出∠3,再利用“HL”证明Rt△ABC和Rt△ADC全等,根据全等三角形对应角相等可得∠2=∠3.【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选D.【点评】本题考查了全等三角形的判定与性质,直角三角形两锐角互余的性质,熟练掌握三角形全等的判定方法是解题的关键.9.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个B.2个C.3个D.4个【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:首先可以组合为13,10,5;13,10,7;13,5,7;10,5,7.再根据三角形的三边关系,发现其中的13,5,7不符合,则可以画出的三角形有3个.故选:C.【点评】考查了三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边.这里一定要首先把所有的情况组合后,再看是否符合三角形的三边关系.10.一个多边形内角和是1080°,则这个多边形的对角线条数为()A.26 B.24 C.22 D.20【考点】多边形内角与外角;多边形的对角线.【分析】先根据多边形的内角和公式求出边数,然后根据对角线的条数的公式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=1080°,解得n=8,∴多边形的对角线的条数是: ==20.故选D.【点评】本题考查了多边形的内角和定理与多边形的对角线的条数的公式,熟记公式是解题的关键.11.如图:△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且AC=6cm,则DE+BD 等于()A.5cm B.4cm C.6cm D.7cm【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,然后求出DE+BD=AC.【解答】解:∵∠C=90°,AD平分∠CAB交BC于D,DE⊥AB,∴CD=DE,∴DE+BD=CD+BD=BC,∵AC=BC,∴DE+BD=AC=6cm.故选C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并求出DE+BD=AC是解题的关键.12.在等腰三角形ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为()A.7 B.7或11 C.11 D.7或10【考点】等腰三角形的性质.【专题】计算题.【分析】因为已知条件给出的15或12两个部分,哪一部分是腰长与腰长一半的和不明确,所以分两种情况讨论.【解答】解:根据题意,①当15是腰长与腰长一半时,即AC+AC=15,解得AC=10,所以底边长=12﹣×10=7;②当12是腰长与腰长一半时,AC+AC=12,解得AC=8,所以底边长=15﹣×8=11.所以底边长等于7或11.故选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确给出哪一部分长要一定要想到两种情况,此题要采用分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.这也是学生容易忽视的地方,应注意向学生特别强调.二、填空题(本大题共6个小题,每题4分,共24分)13.如图,P为△ABC中BC边的延长线上一点,∠A=50°,∠B=70°,则∠ACP=120 度.【考点】三角形的外角性质.【分析】利用三角形外角与内角的关系解答即可.【解答】解:∵∠A=50°,∠B=70°,∵∠ACP=∠A+∠B=50°+70°=120°,∴∠ACP=120°.【点评】本题解题的关键是熟记三角形外角与内角的关系,即三角形的外角等于和它不相邻的两个内角的和.14.等腰三角形一边长为3cm,周长7cm,则腰长是3cm或2cm .【考点】等腰三角形的性质;三角形三边关系.【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【解答】解:①当3cm为腰长时,则腰长为3cm,底边=7﹣3﹣3=1cm,因为1+3>3,所以能构成三角形;②当3cm为底边时,则腰长=(7﹣3)÷2=2cm,因为2+2>3,所以能构成三角形.故答案为:3cm或2cm.【点评】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.15.已知如图,△ABC≌△FED,且BC=DE,∠A=30°,∠B=80°,则∠FDE=70°.【考点】全等三角形的判定与性质.【分析】首先根据全等三角形的性质可得∠EDF=∠BCA,再根据三角形内角和定理计算出∠BCA=70°,进而得到答案.【解答】解:∵△ABC≌△FED,∴∠EDF=∠BCA,∵∠A=30°,∠B=80°,∴∠BCA=70°,∴∠EDF=70°.故答案为:70°.【点评】此题主要考查了全等三角形的性质,解题的关键是掌握全等三角形的对应边相等,题目比较简单,是中考常见题型.16.如图,小亮从A点出发,沿直线前进100m后,向左转30°,再沿直线前进100m,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了1200 m.【考点】多边形内角与外角.【分析】根据多边形的外角和为360°,照这样走下去,他第一次回到出发地A点时,他需要转动360°,即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×100=1200(米).故答案为:1200.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.17.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.【考点】多边形内角与外角;三角形内角和定理.【分析】连接BE,由三角形内角和外角的关系可知∠C+∠D=∠CBE+∠DEB,由四边形内角和是360°,即可求∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.【解答】解:如图连接BE.∵∠1=∠C+∠D,∠1=∠CBE+∠DEB,∴∠C+∠D=∠CBE+∠DEB,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠CBE+∠DEB+∠DEF+∠F=∠A+∠ABE+∠BEF+∠F.又∵∠A+∠ABE+∠BEF+∠F=360°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.故答案为:360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.18.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=74 度.【考点】三角形内角和定理.【分析】利用三角形的内角和外角之间的关系计算.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,CD⊥AB于D,∴∠BCE=34°,∠BCD=90﹣72=18°,∵DF⊥CE,∴∠CDF=90°﹣(34°﹣18°)=74°.故答案为:74.【点评】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;(3)三角形的一个外角>任何一个和它不相邻的内角.注意:垂直和直角总是联系在一起.三、解答题(本大题2个小题,每小题各7分,共14分.)解答时必须给出必要的演算过程或推理步骤.19.在△ABC中,∠BAC=50°,∠B=45°,AD是△ABC的一条角平分线,求∠ADB的度数.【考点】三角形内角和定理.【分析】先根据角平分线的定义求出∠BAD的度数,再由三角形内角和定理即可得出结论.【解答】解:∵∠BAC=50°,AD是△ABC的角平分线,∴∠BAD=×50°=25°.∵∠B=45°,∴∠ADB=180°﹣25°﹣45°=110°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.20.已知:如图,AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.【考点】全等三角形的判定;全等三角形的性质.【分析】根据SSS推出△ABD≌△CDB,根据全等三角形性质推出即可.【解答】证明:在△ABD和△CDB中,∴△ABD≌△CDB(SSS),∴∠A=∠C.【点评】本题考查了全等三角形性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.四、解答题(本大题4个小题,每小题各10分,共40分)解答时必须给出必要的演算过程或推理步骤.21.已知:如图,C是线段AB的中点,∠A=∠B,∠ACE=∠BCD.求证:AD=BE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据题意得出∠ACD=∠BCE,AC=BC,进而得出△ADC≌△BEC即可得出答案.【解答】证明:∵C是线段AB的中点,∴AC=BC.∵∠ACE=∠BCD,∴∠ACD=∠BCE,在△ADC和△BEC中,,∴△ADC≌△BEC(ASA).∴AD=BE.【点评】本题考查三角形全等的性质和判定方法以及等边三角形的性质.判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.已知:如图,C、D在AB上,且AC=BD,AE∥FB,DE∥FC.求证:AE=BF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由AC=BD,利用等式的性质得到AD=BC,利用ASA得到△AED与△FBC全等,利用全等三角形的对应边相等即可.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,即AD=BC,∵AE∥FB,DE∥FC,∴∠A=∠B,∠EDA=∠BCF,在△ADE和△BCF中,,∴△ADE≌△BCF(ASA),∴AE=BF【点评】此题考查了全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.23.已知:如图AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE⊥AC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由题中条件可得Rt△BDF≌Rt△ADC,得出对应角相等,再通过角之间的转化,进而可得出结论.【解答】证明:∵BF=AC,FD=CD,AD⊥BC,∴Rt△BDF≌Rt△ADC(HL)∴∠C=∠BFD,∵∠DBF+∠BFD=90°,∴∠C+∠DBF=90°,∵∠C+∠DBF+∠BEC=180°∴∠BEC=90°,即BE⊥AC.【点评】本题主要考查了全等三角形的判定及性质,能够熟练运用其性质求解一些简单的计算、证明问题.24.如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=70°时,求∠EBC的度数.【考点】全等三角形的判定与性质.【分析】(1)利用“角角边”证明△ABE和△DCE全等即可;(2)根据全等三角形对应边相等可得BE=CE,再根据邻补角的定义求出∠BEC,然后根据等腰三角形两底角相等列式计算即可得解.【解答】(1)证明:在△ABE和△DCE中,,∴△ABE≌△DCE(AAS);(2)∵△ABE≌△DCE,∴BE=CE,又∵∠AEB=70°,∴∠BEC=180°﹣∠AEB=180°﹣70°=110°,∴∠EBC=(180°﹣∠BEC)=(180°﹣110°)=35°.【点评】本题考查了全等三角形的判定与性质,等腰三角形两底角相等的性质,是基础题,熟练掌握三角形全等的判断方法是解题的关键.五、解答题(本大题2个小题,共24分)解答时必须给出必要的演算过程或推理步骤.25.问题1如图①,一张三角形ABC纸片,点D、E分别是△ABC边上两点.研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是∠BDA′=2∠A 研究(2):如果折成图②的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是∠BDA′+∠CEA′=2∠A 研究(3):如果折成图③的形状,猜想∠BDA′、∠CEA′和∠A的数量关系,并说明理由.猜想:∠BDA′﹣∠CEA′=2∠A理由问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是∠1+∠2=2(∠A+∠B)﹣360°.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【专题】阅读型.【分析】(1)根据三角形的外角的性质以及折叠的特点即可得到结论;(2)连接AA′,根据三角形的外角的性质即可得到结论;(3)连接AA′构造等腰三角形,然后结合三角形的外角性质进行探讨证明;(4)根据平角的定义以及四边形的内角和定理进行探讨.【解答】解:(1)根据折叠的性质可知∠DA′E=∠A,∠DA′E+∠A=∠BDA′,故∠BDA′=2∠A;(2)由图形折叠的性质可知,∠CEA′=180°﹣2∠DEA′…①,∠BDA′=180°﹣2∠A′DE…②,①+②得,∠BDA′+∠CEA′=360°﹣2(∠DEA′+∠A′DE即∠BDA′+∠CEA′=360°﹣2(180°﹣∠A),故∠BDA′+∠CEA′=2∠A;(3)∠BDA′﹣∠CEA′=2∠A.证明如下:连接AA′构造等腰三角形,∠BDA′=2∠DA'A,∠CEA'=2∠EA'A,得∠BDA'﹣∠CEA'=2∠A,(4)如图④,由图形折叠的性质可知∠1=180°﹣2∠AEF,∠2=180°﹣2∠BFE,两式相加得,∠1+∠2=360°﹣2(∠AEF+∠BFE)即∠1+∠2=360°﹣2(360°﹣∠A﹣∠B),所以,∠1+∠2=2(∠A+∠B)﹣360°.【点评】注意此类一题多变的题型,基本思路是相同的,主要运用三角形的内角和定理及其推论进行证明.26.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕着点C旋转到如图1所示的位置时,求证:①△ADC≌△CEB;②DE=AD+BE(2)当直线MN绕着点C旋转到如图2所示的位置时,①找出图中一对全等三角形;②DE、AD、BE 之间有怎样的数量关系,并加以证明.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据余角和补角的性质易证得∠DAC=∠ECB,已知∠ADC=∠CEB=90°,AC=CB,根据全等三角形的判定AAS即可证明△ADC≌△CEB,根据各边的相等关系即可得DE=AD+BE.(2)同理可证得△ADC≌△CEB,再根据各边的相等关系可得DE=AD﹣BE.【解答】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=180°﹣90°=90°,∴∠DAC=∠ECB;在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(AAS)①,(7分)∴DC=EB,AD=CE,∴DE=AD+BE.(9分)(2)解:同理可得△ADC≌△CEB①;(11分)∴AD=CE,CD=BE,∴DE=AD﹣BE②.(14分)【点评】本题考查了全等三角形的判定和性质,涉及到补角和余角的性质,熟练掌握全等三角形的判定方法是解题的关键.。
八年级上第一次月考数学试卷(解析版)
2015-2016学年福建省泉州市惠安县八年级(上)第一次月考数学试卷一、选择题:(本大题有7小题,每小题3分,共21分)1.下列说法中,正确的是()A.(﹣6)2的平方根是﹣6 B.带根号的数都是无理数C.27的立方根是±3 D.立方根等于﹣1的实数是﹣12.下列运算正确的是()A.a3•a2=a6B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a23.在实数,0,,﹣3.14,π,,0.2020020002…中,无理数的个数是()A.2 B.3 C.4 D.54.如图,以数轴的单位长度为边作一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.1.4 C.D.5.若一个正数的平方根是2a+1和﹣a+2,则a=()A.1 B.3 C.﹣3 D.﹣16.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6 B.p=1,q=﹣6 C.p=1,q=6 D.p=5,q=﹣67.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是()A.a2﹣b2=(a+b)(a﹣b) B.(a﹣b)(a+2b)=a2+ab﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b2二、填空题(本大题有10小题,每小题4分,共40分.)8.①36的算术平方根是;②的立方根是.9.计算:①(﹣a)2•(﹣a)3= ;②(﹣3x2)3= .10.①比较大小:32;②化简|﹣3|= .11.计算:﹣3x•(2x2﹣x+4)= ;82015×(﹣)2015= .12.如果x、y为实数,且,则x+y= .13.若a m=3,a n=2,则a m﹣2n的值为.14.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是.15.如果x2﹣Mx+9是一个完全平方式,则M的值是.16.如图,数轴上点A表示2,点B表示,点B关于点A的对称点是点C,则点C所表示的数是.17.定义运算a⊗b=a(1﹣b),下列给出了关于这种运算的几个结论:①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+(b⊗b)=2ab;④若a⊗b=0,则a=0.其中正确结论的序号是.(把在横线上填上你认为所有正确结论的序号)三、解答题18.计算(1)++(2)(n2)3•(n4)2(3)2a2(3ab2﹣5ab3).(4)a•(﹣a)3÷(﹣a)4(5)(﹣x+4y)(﹣x﹣4y)(6)(x+2y)(x2﹣2xy+4y2)19.已知2a=5,2b=3,求2a+b+3的值.20.(1)解方程:3x2﹣27=0(2)已知22x+1+4x=48,求x的值.21.先化简,后求值:已知:[(x﹣2y)2﹣2y(2y﹣x)]÷2,其中x=1,y=2.22.已知x+y=4,xy=﹣12,求(1)x2+y2的值;(2)求(x﹣y)2的值.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.用四块长为acm、宽为bcm的矩形材料(如图1)拼成一个大矩形(如图2)或大正方形(如图3),中间分别空出一个小矩形A和一个小正方形B.(1)求(如图1)矩形材料的面积;(用含a,b的代数式表示)(2)通过计算说明A、B的面积哪一个比较大;(3)根据(如图4),利用面积的不同表示方法写出一个代数恒等式.2015-2016学年福建省泉州市惠安县八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:(本大题有7小题,每小题3分,共21分)1.下列说法中,正确的是()A.(﹣6)2的平方根是﹣6 B.带根号的数都是无理数C.27的立方根是±3 D.立方根等于﹣1的实数是﹣1考点:立方根;平方根;无理数.分析:根据平方根及立方根的定义,结合各选项进行判断即可.解答:解:A、(﹣6)2=36,36的平方根是±6,原说法错误,故本选项错误;B、带根号的数不一定都是无理数,例如是有理数,故本选项错误;C、27的立方根是3,故本选项错误;D、立方根等于﹣1的实数是﹣1,说法正确,故本选项正确;故选D.点评:本题考查了立方根、平方根及无理数的知识,注意熟练掌握各知识点.2.下列运算正确的是()A.a3•a2=a6B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法、幂的乘方及同底数幂的除法法则,分别进行各选项的判断即可.解答:解:A、a3•a2=a5,故本选项错误;B、(a2b)3=a6b3,故本选项正确;C、a8÷a2=a6,故本选项错误;D、a+a=2a,故本选项错误.故选B.点评:本题考查了幂的乘方、同底数幂的乘除法及合并同类项的法则,属于基础题,掌握各部分的运算法则是关键.3.在实数,0,,﹣3.14,π,,0.2020020002…中,无理数的个数是()A.2 B.3 C.4 D.5考点:无理数.分析:根据无理数的三种形式求解.解答:解:无理数有:,π,0.2020020002…,共3个.故选B.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,以数轴的单位长度为边作一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.1.4 C.D.考点:勾股定理;实数与数轴.分析:本题利用实数与数轴的关系及直角三角形三边的关系解答.解答:解:由勾股定理可知,∵OA=,∴点A表示的数是.故A,B,C错误,应选D.点评:本题很简单,关键运用勾股定理计算出该数,在数轴上表示.5.若一个正数的平方根是2a+1和﹣a+2,则a=()A.1 B.3 C.﹣3 D.﹣1考点:平方根.专题:计算题.分析:根据一个正数的平方根互为相反数得到2a+1+(﹣a+2)=0,然后解关于a的方程即可.解答:解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1+(﹣a+2)=0,∴a=﹣3.故选C.点评:本题考查了平方根:若一个数的平方等于a,那么这个数叫a的平方根,记作±(a≥0);零的平方根为零.6.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6 B.p=1,q=﹣6 C.p=1,q=6 D.p=5,q=﹣6考点:多项式乘多项式.专题:计算题.分析:已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出p与q 的值即可.解答:解:∵(x﹣2)(x+3)=x2+x﹣6=x2+px+q,∴p=1,q=﹣6,故选B点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.7.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是()A.a2﹣b2=(a+b)(a﹣b) B.(a﹣b)(a+2b)=a2+ab﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b2考点:完全平方公式的几何背景.分析:根据空白部分的面积等于大正方形的面积减去两个长方形的面积再加上右上角小正方形的面积列式整理即可得解.解答:解:空白部分的面积:(a﹣b)2,还可以表示为:a2﹣2ab+b2,所以,此等式是(a﹣b)2=a2﹣2ab+b2.故选C.点评:本题考查了完全平方公式的几何背景,利用两种方法表示出空白部分的面积是解题的关键.二、填空题(本大题有10小题,每小题4分,共40分.)8.①36的算术平方根是 6 ;②的立方根是 2 .考点:立方根;算术平方根.分析:依据算术平方根的定义和立方根的定义计算即可.解答:解:①∵62=36,∴36的算术平方根是6.②∵82=64,∴=8.∵23=8,∴8的立方根是2.∴的立方根是2.故答案为:①6;②2.点评:本题主要考查的是算术平方根和立方根的定义,先求得=8是解题的关键.9.计算:①(﹣a)2•(﹣a)3= ﹣a5;②(﹣3x2)3= ﹣27x6.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方和积的乘方运算法则求解.解答:解:①原式=﹣a5;②原式=﹣27x6.故答案为:﹣a5;﹣27x6.点评:本题考查了幂的乘方和积的乘方,掌握运算法则是解答本题的关键.10.①比较大小:3>2;②化简|﹣3|=3﹣.考点:实数大小比较;实数的性质.分析:①先把根号外的移到根号内,再比较被开方数的大小,即可得出答案;②根据绝对值的性质直接去掉绝对值即可.解答:解:①∵3=,2=,∴>,∴3>2;②|﹣3|=3﹣;故答案为:>,3﹣.点评:此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.11.计算:﹣3x•(2x2﹣x+4)= ﹣6x3+3x2﹣12x ;82015×(﹣)2015= ﹣1 .考点:单项式乘多项式;幂的乘方与积的乘方.分析:根据单项式乘多项式的法则分别进行计算即可;把要求的式子进行整理得出82015×(﹣)2015=[8×(﹣)]2015,再进行计算即可.解答:解:﹣3x•(2x2﹣x+4)=﹣6x3+3x2﹣12x;82015×(﹣)2015=[8×(﹣)]2015=﹣1.故答案为:﹣6x3+3x2﹣12x,﹣1.点评:此题考查了单项式乘多项式以及幂的乘方与积的乘方,熟练数掌握运算法则是解题的关键,第二个要用简便方法计算.12.如果x、y为实数,且,则x+y= 0 .考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,x+2=0,y﹣2=0,解得x=﹣2,y=2,所以,x+y=﹣2+2=0.故答案为:0.点评:本题考查了平方数非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.13.若a m=3,a n=2,则a m﹣2n的值为.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法法则和幂的乘方的运算法则求解.解答:解:a m﹣2n=3÷4=.故答案为:.点评:本题考查了同底数幂的除法和幂的乘方的知识,掌握运算法则是解答本题的关键.14.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是﹣32 .考点:平方差公式.专题:计算题.分析:由题目可发现x2﹣y2=(x+y)(x﹣y),然后用整体代入法进行求解.解答:解:∵x+y=﹣4,x﹣y=8,∴x2﹣y2=(x+y)(x﹣y)=(﹣4)×8=﹣32.故答案为:﹣32.点评:本题考查了平方差公式,由题设中代数式x+y,x﹣y的值,将代数式适当变形,然后利用“整体代入法”求代数式的值.15.如果x2﹣Mx+9是一个完全平方式,则M的值是±6 .考点:完全平方式.专题:计算题.分析:利用完全平方公式的结构特征判断即可得到M的值.解答:解:∵x2﹣Mx+9是一个完全平方式,∴﹣M=±6,解得:M=±6,故答案为:±6.点评:此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.如图,数轴上点A表示2,点B表示,点B关于点A的对称点是点C,则点C所表示的数是4﹣.考点:实数与数轴.分析:根据中心对称的点的坐标特征列式计算即可得解.解答:解:设点C表示的数为x,∵点B关于点A的对称点是点C,∴=2,解得x=4﹣.故答案为:4﹣.点评:本题考查了实数与数轴,主要利用了中心对称点的坐标特征.17.定义运算a⊗b=a(1﹣b),下列给出了关于这种运算的几个结论:①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+(b⊗b)=2ab;④若a⊗b=0,则a=0.其中正确结论的序号是①③.(把在横线上填上你认为所有正确结论的序号)考点:整式的混合运算;代数式求值.专题:压轴题;新定义.分析:本题需先根据a⊗b=a(1﹣b)的运算法则,分别对每一项进行计算得出正确结果,最后判断出所选的结论.解答:解:∵a⊗b=a(1﹣b),①2⊗(﹣2)=6=2×[1﹣(﹣2)]=2×3=6故本选项正确;②a⊗ b=a×(1﹣b)=a﹣abb⊗a=b(1﹣a)=b﹣ab,故本选项错误;③∵(a⊗a)+(b⊗b)=[a(1﹣a)]+[b(1﹣b}]=a﹣a2+b﹣b2,∵a+b=0,∴原式=(a+b)﹣(a2+b2)=0﹣[(a+b)2﹣2ab]=2ab,故本选项正确;④∵a⊗ b=a(1﹣b)=0,∴a=0错误.故答案为:①③点评:本题主要考查了整式的混合运算,在解题时要根据所提供的公式是解题的关键.三、解答题18.计算(1)++(2)(n2)3•(n4)2(3)2a2(3ab2﹣5ab3).(4)a•(﹣a)3÷(﹣a)4(5)(﹣x+4y)(﹣x﹣4y)(6)(x+2y)(x2﹣2xy+4y2)考点:整式的混合运算;实数的运算.专题:计算题.分析:(1)原式利用算术平方根,以及立方根定义计算即可得到结果;(2)原式利用幂的乘方运算法则计算,再利用同底数幂的乘法法则计算即可得到结果;(3)原式利用单项式乘以多项式法则计算即可得到结果;(4)原式利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;(5)原式利用平方差公式计算即可得到结果;(6)原式利用多项式乘以多项式法则计算即可得到结果.解答:解:(1)原式=3﹣3+=;(2)原式=n6•n8=n14;(3)原式=6a3b2﹣10a3b3;(4)原式=﹣a4÷a4=﹣1;(5)原式=x2﹣16y2;(6)原式=x3﹣2x2y+4xy2+2x2y﹣4xy2+8y3=x3+8y3.点评:此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.19.已知2a=5,2b=3,求2a+b+3的值.考点:同底数幂的乘法.分析:直接利用同底数幂的乘法运算法则求出即可.解答:解:2a+b+3=2a•2b•23=5×3×8=120.点评:此题主要考查了同底数幂的乘法运算,熟练掌握运算法则是解题关键.20.(1)解方程:3x2﹣27=0(2)已知22x+1+4x=48,求x的值.考点:幂的乘方与积的乘方;平方根;同底数幂的乘法.分析:(1)先移项,然后系数化为1,求出平方根;(2)根据幂的乘方和积的乘方的运算法则求解.解答:解:(1)移项得:3x2=27,系数化为1得:x2=9,开平方得:x=±3;(2)∵22x+1+4x=2×22x+22x=3×22x=48,∴22x=16,∴2x=4,解得:x=2.点评:本题考查了幂的乘方和积的乘方和平方根的知识,解答本题的关键是掌握幂的乘方和积的乘方的运算法则以及平方根的求法.21.先化简,后求值:已知:[(x﹣2y)2﹣2y(2y﹣x)]÷2,其中x=1,y=2.考点:整式的混合运算—化简求值.分析:先算括号内的乘法,合并同类项,算除法,最后代入求出即可.解答:解:[(x﹣2y)2﹣2y(2y﹣x)]÷2=[x2﹣4xy+4y2﹣4y2+2xy]÷2=(x2﹣2xy)÷2=x2﹣xy,当x=1,y=2时,原式=×12﹣1×2=﹣.点评:本题考查了整式的混合运算和求值的应用,主要考查学生的计算和化简能力.22.已知x+y=4,xy=﹣12,求(1)x2+y2的值;(2)求(x﹣y)2的值.考点:完全平方公式.专题:计算题.分析:(1)所求式子利用完全平方公式变形,将x+y与xy的值代入计算即可求出值;(2)所求式子利用完全平方公式变形,计算即可得到结果.解答:解:∵x+y=4,xy=﹣12,∴(1)x2+y2=(x+y)2﹣2xy=16+24=40;(2)(x﹣y)2=(x+y)2﹣4xy=16+48=64.点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.考点:整式的混合运算.专题:应用题.分析:长方形的面积等于:(3a+b)•(2a+b),中间部分面积等于:(a+b)•(a+b),阴影部分面积等于长方形面积﹣中间部分面积,化简出结果后,把a、b的值代入计算.解答:解:S阴影=(3a+b)(2a+b)﹣(a+b)2,=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2,=5a2+3ab(平方米)当a=3,b=2时,5a2+3ab=5×9+3×3×2=45+18=63(平方米).点评:本题考查了阴影部分面积的表示和多项式的乘法,完全平方公式,准确列出阴影部分面积的表达式是解题的关键.24.用四块长为acm、宽为bcm的矩形材料(如图1)拼成一个大矩形(如图2)或大正方形(如图3),中间分别空出一个小矩形A和一个小正方形B.(1)求(如图1)矩形材料的面积;(用含a,b的代数式表示)(2)通过计算说明A、B的面积哪一个比较大;(3)根据(如图4),利用面积的不同表示方法写出一个代数恒等式.考点:平方差公式的几何背景.专题:几何图形问题.分析:(1)根据矩形的面积公式可得出答案.(2)分别求出矩形的长和宽,求出正方形的边长,从而计算出面积即可作出比较.(3)求出新形成的矩形的长和宽,根据面积相等即可得出答案.解答:解:(1)S=长×宽=ab;(2)根据图形可得:矩形的长=(2b+a),宽=a;正方形的边长=a+b,矩形的面积=2ab+a2,正方形的面积=a2+2ab+b2,正方形面积﹣矩形的面积=b2,∴矩形的面积大;(3)根据图形可得:a2﹣b2=(a﹣b)(a+b).点评:本题考查平方差公式的背景,难度不大,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.。
最新人教版数学2015-2016学年八年级上第一次月考试卷含答案
2015--2016八年级(上)第一次月考数学试卷一、选择题(每题3分,共30分)1.(3分)如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得(第1题)(第3题)(第5题)半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两4.(3分)下面说法正确的是个数有()①如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=∠C,那么△ABC是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;6.(3分)(2011•芜湖)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,(笫6题)(第7题)(第8题)几何原理是()11.(2分)已知a、b、c是三角形的三边长,化简:|a﹣b+c|+|a﹣b﹣c|=_________.12.(2分)一个多边形截去一个角后,形成新多边形的内角和为1800°,则原多边形边数为_________.13.(4分)等腰三角形的两边的长分别为2cm和7cm,则三角形的周长是_________.14.(2分)如图,∠1+∠2+∠3+∠4=_________度.(第14题)(第15题).15.(2分)(2005•宿迁)如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是_________.16.(2分)如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,则∠CAE=_________°.(第16题)(第17题)17.(4分)如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=_________,若BM、CM分别平分∠ABC,∠ACB的外角平分线,则∠M=。
人教版八年级(上)数学第一次月考试题
2015-2016学年八年级(上)第一次月考数学试卷一、选择题(每题3分共24分)1.下列长度的三条线段能组成三角形的是( )A . 3,4,8B . 5,6,11C . 1,2,3D . 5,6,102.下列图形中有稳定性的是( )A . 正方形B . 长方形C . 直角三角形D . 平行四边形3.下面四个图形中,线段BE 是△ABC 中AC 边上的高是()A .B .C .D .4.如图,点O 是△ABC 内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC 等于( )A . 95°B . 120°C . 135°D . 无法确定5.如图,△ACB ≌△A ′CB ′,∠BCB ′=30°,则∠ACA ′的度数为( ) A . 20° B . 30° C . 35° D . 40°6.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A . 30°B . 20°C . 15°D . 14°(6题) (5题) (8题)7一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为 ( )A.5B.5或6C. 5或7D.5或6或78如图, A B C D E ∠+∠+∠+∠+∠等于( )A. 90 °B. 180°C.360°D.270°二、填空(每空题3分共21分)9.三角形的两条边为2cm 和4cm ,第三边长是一个偶数,第三边的长是 . 10.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 . 11. 如图, ∠1=______.12.如图,已知AB=AD ,需要条件(用图中的字母表示) 可得△ABC ≌△ADC ,. 13.如图△ABC 中,AD 是BC 上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积是. .(11题) (12题) (13题)14.如图,AE=AD ,AB=AC,BD=EC ,BE=6,AD=4,则AC= .(14题) (15题)15.如图,将纸片△ABC 沿DE 折叠,点A 落在点P 处,已知∠1+∠2=100°,则∠A 的大小等于 度.CABDE三、解答题(共计55分)16.用一条长为18cm细绳围成一个等腰三角形(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4cm的等腰三角形吗?为什么?17.如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.18.如图,AB=AC,BD=CD.求证:∠B=∠C.19.如图,A点在B处的北偏东40°方向,C点在B处的北偏东85°方向,A点在C处的北偏西45°方向,求∠BAC及∠BCA的度数.BACE D20.如图AD、AE分别是△ABC的高和角平分线,∠B=20°,∠C=80°,求∠AED的度数.21、归纳推理证明(12)(1)(6分)填空:如图,过△ABC的顶点A有一直线EF,且E F∥BC,求证:∠B AC+∠B+∠C=180°;证明:∵EF∥BC (已知)∴∠BAE=∠B,∠CAF=∠C;()又∵∠BAE+∠BAC+∠CAF=180°(平角定义)∴∠B AC+∠B+∠C=180°()本题所证明的命题可用一句话概括为。
2015-2016学年人教版八年级上第一次月考数学试题及答案
AC B A 'C 'B '3050(第9题)NM PBAO睢中附属学校2015-2016学年度第一学期第一次月考八 年 级 数 学 试 题命题人:任润水(考试时间:90分钟,满分:120分 )一、 选择题: (每题3分,共30分)请将正确答案填写在下列方框内题 号 1 2 3 4 5 6 7 8 9 10 答 案1、下面有4个汽车标致图案,其中不是轴对称图形的是( ▲ )A .B .C .D .2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为 ( ▲ ) A .2 B.3 C.5 D.2.53、如图,与关于直线对称,则的度数为( ▲ ) A . B . C .D .4、下列说法中,正确的是 ( ▲ ) A.关于某直线对称的两个三角形是全等三角形B.全等三角形一定是关于某直线对称的C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.有一条公共边的两个全等三角形关于公共边所在的直线对称5、下列条件中不能判断两个三角形全等的是 ( ▲ )A.有两边和它们的夹角对应相等.B.有两边和其中一边的对角对应相等.C.有两角和它们的夹边对应相等.D.有两角和其中一角的对边对应相等.6、在ΔABC 和ΔFED 中,∠A=∠F ,∠B=∠E ,要使这两三角形全等,还需要的条件是 ( ▲ ) A.AB=DE B.BC=EF C.AB=FE D.∠C=∠D7、如图,已知AD 平分∠BAC ,AB=AC ,则此图中全等三角形有 ( ▲ )A . 2对 B.3 对 C.4对 D.5对 8、工人师傅常用角尺平分一个任意角,如图在∠AOB 的边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,得到∠AOB 的平分线OP ,做法中用到三角形全等的判定方法是. ( ▲ ) A.SAS B.SSS C.ASA D.HL第7题 第9题F EDABCADCBEF 姓名_____________ 班级____________________ 考号:________________________··························密·························封······················线·· (8)9、AD 是的中线, .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ; ④△BDF ≌△CDE .其中正确的有 ( ▲ )A.1个B.2个C.3个D.4个10、△ABC 中,AB=AC=12厘米,∠B=∠C ,BC=8厘米,点D 为AB 的中点.如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q的运动速度为v 厘米/秒,则当△BPD 与△CQP 全等时,v 的值为( ▲ ) A.2 B.3 C.2或3 D.1或5 二、填空题:(每题3分,共24分)11、国旗上的一个五角星有 条对称轴.12、如图,已知△ABC 的两条高AD 、BE 交于F ,AE =BE ,若要运用“HL ”说明△AEF ≌△BEC ,还需添加条件: .13、某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带第__________块去(填序号)14、如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3 = °.第12题 第14题 第15题 15、如图,方格纸中△ABC 的三个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,则在图中能够作出与△ABC 全等且有一条公共边的格点三角形(不含△ABC )的个数是__________个16、工人师傅在做完门框后,为防止变形,经常如图所示钉上两条斜拉的木条(即图中的AB 、CD 两根木条),这样做根据的数学原理是 _______ __ . 17、如图,给出下列四组条件:①AB=DE,BC=EF ,AC=DF ; ②AB=DE,∠B=∠E,BC=EF ; ③∠B=∠E,BC=EF ,∠ACB =∠DFE ;④AB=DE,AC=DF ,∠B=∠E.其中,能使△ABC≌△DEF 的条件是 ;(填序号)18、如图,在△ABC 中,∠B=∠C ,BF=CD ,BD=CE ,∠FDE=α ,则∠B_________α(填“>”“﹦”或“<”)ADC B E F(第18题)αFEDCBA 第16题第17题①②③第13题三、作图题(本大题共2小题,共8分)19、用直尺和圆规按下列要求作图:(不写作法,保留作图痕迹) (1)作出△ABC 关于直线l 对称的△DEF ;CAB l第(1)题 第(2)题(2)如图②:在3×3网格中,已知线段AB 、CD ,以格点为端点再画1条线段,使它与AB 、CD 组成轴对称图形.(画出所有可能情况)四、解答题(本大题共有6小题,共58分,解答时应写出文字说明、推理过程或演算步骤) 20、( 8分)已知: 如图, AC 、BD 相交于点O , ∠A =∠D , AB=CD.求证:△AOB ≌△DOC ,。
八年级数学上学期第一次月考试题
陕西省西北农林科技大学附属中学2015-2016学年八年级数学上学期第一次月考试题考试时间:90分钟试卷总分:120分必答题(共100分)一、选择题:(每小题3分,共30分)1. 已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A. 13cm B. 6cm C. 5cm D. 4cm2. 等腰三角形的两边分别为5和10,则它的周长是()A. 20B. 15C. 25D.20或253.若一个正多边形的每个内角为140°,则这个多边形的边数为()A.9 B.8 C.7 D. 64.能将三角形面积平分的是三角形的()A.角平分线 B.高 C.中线 D.外角平分线5.如图,将一副三角板按图中方式叠放,则角α等于()A.30° B.45° C.60° D.75°6.一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是()A.15或17 B.16或15 C.15 D.16或15或177.如图,已知∠BAC=∠DAE,AB=AD,下列条件无法确定△≌△的是()A. B.C. D.∠B=∠D8.在△ABC中,满足下列条件:①∠A=60°,∠C=30°;②∠A +∠B=∠C;③∠A:∠B:∠C=2:3:4;④∠A=90°- ∠C,能确定△ABC是直角三角形的有() A.1个 B.2个 C.3个 D.4个9.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A. 60° B. 120° C. 60°或150° D. 60°或120°10.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,DE⊥AB于E.AB=6cm,则△DEB 的周长为()A.4cm B.6cm C.10cm D.14cm西北农林科大附中2015-2016学年度第一学期第一次月考试题(卷)初二数学一、选择题:(每小题3分,共30分,把正确的选项填在相应的表格中)2二、填空题:(每题3分,共24分)B 11.木工师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉的木板条(即图中的AB 和CD),这样做的根据是 .第11题图 第12题图12.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么,图中共有 对全等三角形.13.若从一个多边形一个顶点出发的对角线可将这个多边形分成10个三角形,则它是 边形.14.如图,在等腰△ABC 中,AB=AC ,∠A=40°,BE 是AC 边上的高,∠CBE= °.第14题图 第15题图 15.如图,已知AC=BD ,∠A=∠D ,≌△DEB .(写出一种答案即可)16.如图,∠A+∠B+∠D+∠E+∠F+∠G = °.17.观察下列图形,则第n 个图形中三角形的个数是________°第17题图 第18题图18.如图,已知等边△ABC 中,BD=CE ,AD 与BE 相交于点P ,则∠APE 的度数是_____ _. 三、解答题:(共46分)19.(6分)已知:∠AOB (不写作法,保留作图痕迹) 求作:∠B O A ''',使得∠='''B O A ∠AOB .20.(8分)如图,已知∠B=∠C ,AD=AE ,则AB=AC ,请说明理由(填空) 解:在△ABC 和△ACD 中, ( ) ( ) (已知) …… 第1个 第2个 第3个E PD BA⎪⎩⎪⎨⎧=∠=∠∠=∠AE A B∴△ABE ≌△ACD ( )∴AB=AC ( ) 21.(10分)如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且DE AB =,且BC AB ⊥,EF DE ⊥,DC AF =. 求证:BC ∥EF . 22.(10分)已知,如图,在△ABC 中,AD ,AE 分别是△ABC 的高和角平分线,若∠B=30°,∠C=50°.(1)求∠DAE 的度数;(2)试写出∠DAE 与∠C ﹣∠B 有何关系?(不必证明)23.(12)如图所示,已知:△ABC 和△CDE 都是等边三角形. 求证:AD=BE附加题:(共20分)1.如图所示的图形中,若去掉一个50︒的角得到一个五边形,则12=∠+∠ °.第1题图 第2题图2.(4分)如图,在直角梯形ABCD 中,AD ∥BC ,∠C=90°,AD=5,BC=9,以A 为中心将腰AB 顺时针旋转90°至AE ,连接DE ,则△ADE 的面积等于 .3.(12)如图所示,在ABC ∆中,BP 和CP 是角平分线,两线交于点P,试探求下列各图中∠A 与∠P 之间的关系,并选择一个加以证明.最新中小学教案、试题、试卷(1)图1中∠P与∠A之间的关系: ;(2)图1中∠P与∠A之间的关系: ;(3)图1中∠P与∠A之间的关系: .最新中小学教案、试题、试卷西北农林科大附中2015-2016学年度第一学期第一次月考试题(卷)答案 初二数学一、选择题:(每小题3分,共30分,把正确的选项填在相应的表格中)二、填空题:(每题3分,共24分)11.三角形具有稳定性 12. 3 13. 十二 14. 20° 15. AF=DE (或∠F=∠E 或∠ACF=∠DBE ) 16.︒360 17. 4n 18. ︒60 三、解答题:(共46分) 19.(6分)略 20.(8分)略 21.(10分)略22.(10分)(1)︒=∠10DAE (2) )(21B C DAE ∠-∠=∠ 23. (本题12分)略 附加题﹙共20分﹚ ︒230 10(1)A P ∠+︒=∠2190 (2) A P ∠=∠21 (3) A P ∠-︒=∠2190 证明略。
2015-2016学年八年级(上)第一次月考数学试卷
2015-2016学年八年级(上)第一次月考数学试卷 2016.9.18 一、选择题(每小题3分,共30分)命1.下列语句是命题的是()A.作直线AB的垂线B.在线段AB上取点CC.同旁内角互补D.垂线段最短吗?2.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm3.工人师傅砌门时,常用一根木条固定长方形门框,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角4.如图,∠BAC=90°,AD⊥BC,则图中互余的角有()A.2对B.3对C.4对D.5对5.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.2;SAS B.4;ASA C.2;AAS D.4;SAS6.在数学课上,同学们在练习画边AC上的高时,有一部分同学画出下列四种图形,请你判断一下,正确的是()A.B.C.D.7.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;正确的有()个.A.1 B.2 C.3 D.48.如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180° B.360° C.540° D.720°9.如图,点D、E分别在AC、AB上,已知AB=AC,添加下列条件,不能说明△ABD≌△ACE的是()A.∠B=∠C B.AD=AE C.∠BDC=∠CEB D.BD=CE10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2B.1cm2C. cm2 D. cm2二、填空题(每小题4分,共24分)11.把“对顶角相等”改写成“如果…那么…”的形式是:_______.12.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BDC=_______度,∠BOC=_______度.13.已知图中的两个三角形全等,则∠α的度数是_______.14.如图,在△ABC中,AB=2013,AC=2010,AD为中线,则△ABD与△ACD的周长之差=_______.15.如图,已知AC=DB,再添加一个适当的条件_______,使△ABC≌△DCB.(只需填写满足要求的一个条件即可).16.已知,在△ABC中,AD是BC边上的高线,且∠ABC=26°,∠ACD=55°,则∠BAC=_______.三、综合题(共46分)17.如图,在△ABC中,∠BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹,并分别写出结论)①用尺规作∠BAC的角平分线AE.②用三角板作AC边上的高BD.③用尺规作AB边上的垂直平分线MN.18.如图,已知∠B=∠C,AD=AE,则AB=AC,请说明理由(填空)解:在△ABC和△ACD中,∠B=∠_______ (_______)∠A=∠_______ (_______)AE=_______ (已知)∴△ABE≌△ACD (_______)∴AB=AC(_______)19.已知:如图,∠ACD=2∠B,CE平分∠ACD.求证:CE∥AB.20.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠C、∠DAE的度数.21.如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:BE=CD.22.在△ABC中,∠AOB=90°,AO=BO,直线MN经过点O,且AC⊥MN 于C,BD⊥MN于D(1)当直线MN绕点O旋转到图①的位置时,求证:CD=AC+BD;(2)当直线MN绕点O旋转到图②的位置时,求证:CD=AC﹣BD;(3)当直线MN绕点O旋转到图③的位置时,试问:CD、AC、BD有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案一、选择题(每小题3分,共30分)1.故选C. 2.故选C.3.故选B.4.故选C.5.故选:B.6.故选C.7.故选B.8.故选B.9.故选D.10.故选:B.二、填空题(每小题4分,共24分)11.如果两个角是对顶角,那么它们相等.12.110 度.13.50°.14. 3 .15.AB=DC ,16 99°或29°.三、综合题(共46分)17.【解答】解:如图所示:.18.【解答】证明:在△ABC和△ACD中,,∴△ABC≌△ACD(AAS),∴AB=AC(全等三角形对应边相等).19.【解答】证明:∵CE平分∠ACD,∴∠ACD=2∠DCE,∵∠ACD=2∠B,∴∠DCE=∠B,∴AB∥CE.20.【解答】解:在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣80°﹣60°=40°,∵AD⊥BC于D,∴∠ADC=90°,在△ADC中,∠DAC=90°﹣∠C=90°﹣40°=50°,∵AE平分∠DAC,∴∠DAE=∠DAC=25°.21.【解答】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△BAE≌△CAD(SAS),∴BE=CD.22.【解答】解:(1)如图1,∵△AOB中,∠AOB=90°,∴∠AOC+∠BOD=90°,直线MN经过点O,且AC⊥MN于C,BD⊥MN于D,∴∠ACO=∠BDO=90°∴∠AOC+∠OAC=90°,∴∠OAC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴OC=BD,AC=OD,∴CD=AC+BD;(2)如图2,∵△AOB中,∠AOB=90°,∴∠AOC+∠BOD=90°,直线MN经过点O,且AC⊥MN于C,BD⊥MN于D,∴∠ACO=∠BDO=90°∴∠AOC+∠OAC=90°,∴∠OAC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴OC=BD,AC=OD,∴CD=OD﹣OC=AC﹣BD,即CD=AC﹣BD.(3)如图3,∵△AOB中,∠AOB=90°,∴∠AOC+∠BOD=90°,直线MN经过点O,且AC⊥MN于C,BD⊥MN于D,∴∠ACO=∠BDO=90°∴∠AOC+∠OAC=90°,∴∠OAC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴OC=BD,AC=OD,∴CD=OC﹣OD=BD﹣AC,即CD=BD﹣AC.2016年9月15日。
2015-2016年新人教版初二上第一次月考数学试卷及答案
滨州留守少年儿童寄宿制学校2015-2016学年上学期第一次月考初二数学试题第I卷(选择题)一、选择题(本大题共12小题,共36分)1、下列三条线段,能组成三角形的是()A、3,3,3B、3,3,6C、3,2,5D、3,2,62、在ΔABC中,AB=AC,∠B的外角=100゜,那么∠A=( )A、10゚B、20゚C、60゚D、80゚3. 从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A. n个B. (n-1)个C. (n-2)个D. (n-3)个4、已知△ABC中,∠A、∠B、∠C三个角的比例如下,其中能说明△ABC是直角三角形的是()A、2:3:4B、1:2:3C、4:3:5D、1:2:25. 下列图形中有稳定性的是()A. 正方形B. 直角三角形C. 长方形D. 平行四边形6.已知△ABC中,∠ABC和∠ACB的平分线交于点O,则∠BOC一定()A.小于直角B.等于直角C.大于直角D.不能确定7、下列正多边形材料中,不能单独用来铺满地面的是()(A)正三角形(B)正四边形(C)正五边形(D)正六边形8、正多边形的每个内角都等于135º,则该多边形是正()边形。
(A)8 (B)9 (C)10 (D)119、三角形一个外角小于与它相邻的内角,这个三角形()(A)是钝角三角形(B)是锐角三角形(C)是直角三角形(D)属于哪一类不能确定。
10.六边形的对角线的条数是()(A)7 (B)8 (C)9 (D)1011.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A、90 ºB、120 ºC、160 ºD、180 º12.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E, ∠A=60º, ∠BDC=95º,则∠BED的度数是()A、35 ºB、70ºC、110 ºD、130 º第12题图第II卷(非选择题)评卷人得分二、填空题(本大题共6小题,共24分)13.五边形的内角和是__________,外角和是__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015~2016学年度第一学期第一次月考
八年级数学
一、选择题(每小题3分,共36分)
1、下列所给的各组线段,能组成三角形的是:( ) A 、10cm 、20cm 、30cm B 、20cm 、30cm 、40cm C 、10cm 、20cm 、40cm D 、10cm 、40cm 、50cm
2、如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是:( )
A 、带①去,
B 、带②去
C 、带③去
D 、①②③都带去 3、如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2011个三角形,那么这个多边形是:( )
A 、2012边形,
B 、2013边形,
C 、2014边形
D 、2015边形
4、一个正多边形的一个内角等于144°,则该多边形的边数为:( ) A .8 B .9 C .10 D .11
5、等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( )
A.150°
B.80°
C.50°或80°
D.70° 6、下列说法正确的是 ( )
A 、全等三角形是指形状相同大小相等的三角形;
B 、全等三角形是指面积相等的三角形
C 、周长相等的三角形是全等三角形
D 、所有的等边三角形都是全等三角形
7、.如图所示,在下列条件中,不能作为判断△ABD ≌△BAC 的条件是 ( )
班级 姓名 座号
A. ∠D =∠C ,∠BAD =∠ABC B .∠BAD =∠ABC ,∠ABD =∠BAC C .BD =AC ,∠BAD =∠ABC D .AD =BC ,BD =AC
8、如图所示,E 、B 、F 、C 四点在一条直线上,EB=CF ,∠A=∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是 ( )
A.AB=DE
B. DF ∥AC
C. ∠E=∠ABC
D. AB ∥DE
9.如图,已知△ACE ≌△DBF ,下列结论中正确的个数是( ) ①AC=DB ;②AB=DC ;③∠1=∠2;④AE ∥DF ;⑤S △ACE =S △DFB ;⑥BC=AE ;⑦BF ∥EC .
A 4
B 5
C 6
D 7
10.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是( )
A . (S 、S 、S )
B . (S 、A 、S )
C . (A 、S 、A )
D . (A 、A 、S ) 11,.小芳画一个有两边长分别为5和6的等腰三角形,则这个等腰三角形的周长是( )
A . 16
B . 17
C . 11
D . 16或17
12、△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是 ( )
A.1<AB<29
B.4<AB<24
C.5<AB<19
D.9<AB<19 二、填空题(每小题5分,共30分)
13、如图,∠1=_____.
14080
1
第13题图
第16题图
第9题图
14、小亮截了四根长分别为5cm ,6cm ,10cm ,13cm 的木条,任选其中三条组成一个三角形,这样拼成的三角形共有( )个 15、如图8,已知∠1=∠2,要说明△ABC ≌△BAD , 需再添加一个条件,可能的条件有: 16,工人师傅在做完门框后,为防止变形,经常如图所示钉上两条斜拉的木条(即图中的AB 、CD 两根木条),这样做根据的数学原理是 _________ 17,一个多边形的内角和是1980°,则它的边数是 ,它的外角和是 .
18,△ABC 中,O 是三条角平分线的交点,∠A=m 度 ,则∠BOC= .
三、解答题(共54分)
19尺规作图:已知∠AOB ,直线MN (8分) 求作:在MN 上作一点P 使它到∠AOB 的距离相等( 不写作法,保留痕迹 )
20、(10分)如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,∠D=42°,求∠ACD 的度数.
21、(10分)如图所示,点B 、F 、C 、E 在同一条直线上,
A
M
O
B
N
F D
C
B E A
AB∥DF,AC∥DE,AC=DE,FC与BE相等吗?请说明理由.
22 (12分)如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD,BC=AD,小明动手测量了一下,发现∠A确实与∠C相等,但他不能说明其中的道理,请你帮助他说明这个道理.
23.(本题满分14分)
如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F。
求∠AFE的度数.。