高中数学综合学习与测试(二)北师大版选修1-1
高中数学模块综合测试2北师大版选修1-1
模块综合测试(二)(时间120分钟 总分值150分)一、选择题(本大题共12小题,每题5分,共60分) 1.命题p :∀x ∈R ,x ≥1,那么命题¬p 为( ) A .∀x ∈R ,x ≤1 B .∃x ∈R ,x <1C .∀x ∈R ,x ≤-1D .∃x ∈R ,x <-1解析:全称命题否认是特称命题. 答案:B2.双曲线x 2a 2-y 2b2=1(a >0,b >0)与抛物线y 2=8x 有一个一样焦点F ,且该点到双曲线渐近线距离为1,那么该双曲线方程为( )A. x 2-y 2=2B.x 23-y 2=1C. x 2-y 2=3D. x 2-y 23=1解析:此题主要考察双曲线与抛物线有关知识.由,a 2+b 2=4 ①,焦点F (2,0)到双曲线一条渐近线bx -ay =0距离为|2b |a 2+b2=1②,由①②解得a 2=3,b 2=1,应选B.答案:B3.命题p ,q ,如果命题“¬p 〞与命题“p ∨q 〞均为真命题,那么以下结论正确是( )A .p ,q 均为真命题B .p ,q 均为假命题C .p 为真命题,q 为假命题D .p 为假命题,q 为真命题解析:命题“¬p 〞为真,所以命题p 为假命题.又命题“p ∨q 〞也为真命题,所以命题q 为真命题.答案:D4.[2021·福建高考]直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,那么“k =1”是“△OAB 面积为12〞( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分又不必要条件解析:假设k =1,那么直线l :y =x +1与圆相交于(0,1),(-1,0)两点,所以△OAB 面积S △OAB =12×1×1=12,所以“k =1〞⇒“△OAB 面积为12〞;假设△OAB 面积为12,那么k =±1,所以“△OAB 面积为12〞D ⇒/“k =1〞,所以“k =1〞是“△OAB 面积为12〞充分而不必要条件,应选A. 答案:A5.设f (x )=x ln x ,假设f ′(x 0)=2,那么x 0等于( )A. e 2B. eC. ln22D. ln2解析:f ′(x )=x ′·ln x +x ·(ln x )′=ln x +1, ∴f ′(x 0)=ln x 0+1=2,∴ln x 0=1,∴x 0=e. 答案:B6.假设直线y =x +1与椭圆x 22+y 2=1相交于A ,B 两个不同点,那么|AB→|等于( )A.43B.423C.83D.823解析:联立方程组⎩⎪⎨⎪⎧y =x +1,x 22+y 2=1,得3x 2+4x =0,解得A (0,1),B (-43,-13),所以|AB →|=-43-02+-13-12=423.答案:B7.假设函数f (x )定义域为(0,+∞),且f (x )>0,f ′(x )>0,那么以下关于函数y =xf (x )说法正确是( )A. 存在极大值B. 存在极小值C. 是减少D. 是增加解析:y′=f(x)+xf′(x),∵x∈(0,+∞),且f(x)>0,f′(x)>0,∴y′>0,即函数y=xf(x)在(0,+∞)上是增加.答案:D8.以下四个结论中正确个数为( )①命题“假设x2<1,那么-1<x<1”逆否命题是“假设x>1或x<-1,那么x2>1”;②p:∀x∈R,sin x≤1,q:假设a<b,那么am2<bm2,那么p∧q为真命题;③命题“∃x∈R,x2-x>0”否认是“∀x∈R,x2-x≤0”;④“x>2〞是“x2>4”必要不充分条件.A.0个B.1个C.2个D.3个解析:只有③中结论正确.答案:B9.如图是函数f(x)=x3+bx2+cx+d大致图像,那么x21+x22等于( )A. 23B.43C. 83D. 4解析:由图像可知,函数f(x)图像过点(0,0),(1,0),(2,0),∴f(x)=x(x-1)(x-2)=x3-3x2+2x.∴f ′(x )=3x 2-6x +2.∵x 1,x 2是极值点,∴x 1,x 2是方程f ′(x )=3x 2-6x +2=0两根.∵x 1+x 2=2,x 1x 2=23.∴x 21+x 22=(x 1+x 2)2-2x 1x 2=83.答案:C10. 把函数f (x )=x 3-3x 图像c 1向右平移u 个单位长度,再向下平移v 个单位长度后得到图像c 2.假设对任意u >0,曲线c 1与c 2至多有一个交点,那么v 最小值为( )A. 2B. 4C. 6D. 8解析:f ′(x )=3x 2-3.令f ′(x )>0,得x >1或x <-1.1min 答案:B11.F 是抛物线y 2=4x 焦点,过点F 且斜率为3直线交抛物线于A 、B 两点,那么||FA |-|FB ||值为( )A. 83B. 163C. 833D. 823解析:此题主要考察直线与抛物线位置关系以及抛物线有关性质.直线AB 方程为y =3(x -1),由⎩⎪⎨⎪⎧y 2=4x ,y =3x -1得3x 2-10x +3=0,故x 1=3,x 2=13,所以||FA |-|FB ||=|x 1-x 2|=83.应选A. 答案:A12.[2021·浙江高考]如图,F 1、F 2分别是双曲线C :x 2a 2-y 2b2=1(a ,b >0)左、右焦点,B 是虚轴端点,直线F 1B 与双曲线C 两条渐近线分别交于P 、Q 两点,线段PQ 垂直平分线与x 轴交于点M .假设|MF 2|=|F 1F 2|,那么双曲线C 离心率是( )A. 233B. 62C.2D.3解析:此题主要考察双曲线离心率求解.结合图形特征,通过PQ 中点,利用线线垂直性质进展求解.不妨设c =1,那么直线PQ :y =bx +b ,双曲线C 两条渐近线为y =±b a x ,因此有交点P (-aa +1,b a +1),Q (a 1-a ,b1-a ),设PQ 中点为N ,那么点N 坐标为(a 21-a 2,b1-a 2),因为线段PQ 垂直平分线与x 轴交于点M ,|MF 2|=|F 1F 2|,所以点M 坐标为(3,0),因此有k MN =b1-a2-0a21-a2-3=-1b,所以3-4a 2=b 2=1-a 2,所以a 2=23,所以e =62.答案:B二、填空题(本大题共4小题,每题5分,共20分)13.命题“∃x ∈R ,x 2+2x +2≤0”否认是__________. 解析:特称命题否认是全称命题,故原命题否认是∀x ∈R ,x 2+2x +2>0.答案:∀x ∈R ,x 2+2x +2>014.双曲线x 2a 2-y 2b2=1(a >0,b >0)与方向向量为k =(6,6)直线交于A ,B 两点,线段AB 中点为(4,1),那么该双曲线渐近线方程是________.解析:设A (x 1,y 1),B (x 2,y 2),那么x 21a 2-y 21b 2=1且x 22a 2-y 22b 2=1得:y 2-y 1x 2-x 1=b 2x 2+x 1a 2y 2+y 1=4b 2a 2,又k =1,∴4b 2a 2=1即:b a =±12.即双曲线渐近线方程为:y =±12x .答案:y =±12x15.函数f (x )=ax 4-4ax 3+b (a >0),x ∈[1,4],f (x )最大值为3,最小值为-6,那么a +b =________.解析:f ′(x )=4ax 3-12ax 2.令f ′(x )=0,得x =0(舍去),或x =3. 所以f (x )最小值为f (3)=b -27a . 又f (1)=b -3a ,f (4)=b , ∴f (4)为最大值,∴⎩⎪⎨⎪⎧b =3,b -27a =-6,解得⎩⎪⎨⎪⎧a =13,b =3,∴a +b =103.答案:10316. [2021·湖北省襄阳五中月考]函数f (x )=|x 2-2ax +b |(x ∈R ),给出以下命题:①假设a 2-b ≤0,那么f (x )在区间[a ,+∞)上是增函数;②假设a 2-b >0,那么f (x )在区间[a ,+∞)上是增函数;③当x =a 时,f (x )有最小值b -a 2;④当a 2-b ≤0时,f (x )有最小值b -a 2.其中正确命题序号是________.解析:此题考察含绝对值二次函数单调区间与最小值问题求解.由题意知f (x )=|x 2-2ax +b |=|(x -a )2+b -a 2|.假设a 2-b ≤0,那么f (x )=|(x -a )2+b -a 2|=(x -a )2+b -a 2,可知f (x )在区间[a ,+∞)上是增函数,所以①正确,②错误;只有在a 2-b ≤0条件下,才有x =a 时,f (x )有最小值b -a 2,所以③错误,④正确.答案:①④三、解答题(本大题共6小题,共70分)17.(10分)(1)设集合M ={x |x >2},P ={x |x <3},那么“x ∈M 或x ∈P 〞是“x ∈(M ∩P )〞什么条件?(2)求使不等式4mx 2-2mx -1<0恒成立充要条件. 解:(1)x ∈R ,x ∈(M ∩P )⇔x ∈(2,3). 因为“x ∈M 或x ∈P 〞x ∈(M ∩P ). 但x ∈(M ∩P )⇒x ∈M 或x ∈P .故“x ∈M 或x ∈P 〞是“x ∈(M ∩P )〞必要不充分条件. (2)当m ≠0时,不等式4mx 2-2mx -1<0恒成立⇔⎩⎪⎨⎪⎧4m <0Δ=4m 2+16m <0⇔-4<m <0.又当m =0时,不等式4mx 2-2mx -1<0对x ∈R 恒成立, 故使不等式4mx 2-2mx -1<0恒成立充要条件是-4<m ≤0. 18.(12分)[2021·山西忻州联考]设函数f (x )=x e x-x (a2x +1)+2.(1)假设a =1,求f (x )单调区间;(2)当x ≥0时,f (x )≥x 2-x +2恒成立,求a 取值范围. 解:(1)∵a =1,∴f (x )=x e x-x (12x +1)+2=x e x-12x 2-x +2,∴f ′(x )=(e x -1)(x +1),∴当-1<x <0时,f ′(x )<0;当x <-1或x >0时,f ′(x )>0,∴f (x )在(-1,0)上单调递减,在(-∞,-1),(0,+∞)上单调递增.(2)由f (x )≥x 2-x +2,得x (e x-a +22x )≥0,即要满足e x≥a +22x ,当x =0时,显然成立;当x >0时,即e x x ≥a +22,记g (x )=e x x ,那么g ′(x )=e x x -1x2, 易知g (x )最小值为g (1)=e ,∴a +22≤e,得a ≤2(e-1).19.(12分)设直线l :y =x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两个不同点,l 与x 轴相交于点F .(1)证明:a 2+b 2>1;(2)假设F 是椭圆一个焦点,且AF→=2FB →,求椭圆方程.(1)证明:将x =y -1代入x 2a 2+y 2b 2=1,消去x ,整理,得(a 2+b 2)y 2-2b 2y +b 2(1-a 2)=0.由直线l 与椭圆相交于两个不同点,得Δ=4b 4-4b 2(a 2+b 2)(1-a 2)=4a 2b 2(a 2+b 2-1)>0,所以a 2+b 2>1.(2)解:设A (x 1,y 1),B (x 2,y 2),那么(a 2+b 2)y 21-2b 2y 1+b 2(1-a 2)=0,① 且(a 2+b 2)y 22-2b 2y 2+b 2(1-a 2)=0.②因为AF →=2FB →,所以y 1=-2y 2. 将y 1=-2y 2代入①,与②联立,消去y 2,整理得(a 2+b 2)(a 2-1)=8b 2.③因为F 是椭圆一个焦点,那么有b 2=a 2-1. 将其代入③式,解得a 2=92,b 2=72,所以椭圆方程为2x 29+2y 27=1.20.(12分)两点M (-1,0)、N (1,0),动点P (x ,y )满足|MN →|·|NP →|-MN→·MP →=0,(1)求点P 轨迹C 方程;(2)假设P 1、P 2是轨迹C 上两个不同点,F (1,0),λ∈R ,FP 1→=λFP 2→,求证:1|FP 1→| +1|FP 2→|=1.解:(1)|MN →|=2,那么MP →=(x +1,y ),NP→=(x -1,y ). 由|MN →||NP →|-MN →·MP →=0, 那么2x -12+y 2-2(x +1)=0,化简整理得y 2=4x .(2)由FP 1→=λ·FP 2→,得F 、P 1、P 2三点共线,设P 1(x 1,y 1)、P 2(x 2,y 2),斜率存在时,直线P 1P 2方程为:y =k (x -1).代入y 2=4x 得:k 2x 2-2(k 2+2)x +k 2=0. 那么x 1x 2=1,x 1+x 2=2k 2+4k2. ∴1|FP 1→| +1|FP 2→| =1x 1+1+1x 2+1 =x 1+x 2+2x 1x 2+x 1+x 2+1=1. 当P 1P 2垂直x 轴时,结论照样成立.21.(12分)[2021·吉林长春调研]函数f (x )=(3x 2-6x +6)e x-x 3.(1)求f (x )单调区间与极值;(2)假设x 1≠x 2,满足f (x 1)=f (x 2),求证:x 1+x 2<0. 解:(1)∵f ′(x )=3x 2e x -3x 2=3x 2(e x -1), ∴当x >0时,f ′(x )>0;当x <0时,f ′(x )<0.那么f (x )单调递增区间是(0,+∞),单调递减区间是(-∞,0). ∴f (x )在x =0处取得极小值f (0)=6,无极大值. (2)f (x 1)=f (x 2)且x 1≠x 2,由(1)可知x 1,x 2异号. 不妨设x 1<0,x 2>0,那么-x 1>0.令g (x )=f (x )-f (-x )=(3x 2-6x +6)e x -(3x 2+6x +6)·e -x -2x 3,那么g ′(x )=3x 2e x +3x 2e -x -6x 2=3x 2(e x +e -x -2)≥0, ∴g (x )在R 上是增函数.又g (x 1)=f (x 1)-f (-x 1)<g (0)=0, ∴f (x 2)=f (x 1)<f (-x 1),又∵f (x )在(0,+∞)上是增函数, ∴x 2<-x 1,即x 1+x 2<0.22.(12分)[2021·四川高考]椭圆C :x 2a 2+y 2b2=1(a >b >0)焦距为4,其短轴两个端点与长轴一个端点构成正三角形.(1)求椭圆C 标准方程;(2)设F 为椭圆C 左焦点,T 为直线x =-3上任意一点,求F 作TF 垂线交椭圆C 于点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点); ②当|TF ||PQ |最小时,求点T 坐标.解:(1)由可得⎩⎪⎨⎪⎧a 2+b 2=2b ,2c =2a 2-b 2=4,解得a 2=6,b 2=2,所以椭圆C 标准方程是x 26+y 22=1. (2)①由(1)可得,F 坐标是(-2,0),设T 点坐标为(-3,m ),那么直线TF 斜率k TF =m -0-3--2=-m .当m ≠0时,直线PQ 斜率k PQ =1m,直线PQ 方程是x =my -2.当m =0时,直线PQ 方程是x =-2,也符合x =my -2形式. 设P (x 1,y 1),Q (x 2,y 2),将直线PQ 方程与椭圆C 方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y22=1,消去x ,得(m 2+3)y 2-4my -2=0, 其判别式Δ=16m 2+8(m 2+3)>0. 所以y 1+y 2=4m m 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3.所以PQ 中点M 坐标为(-6m 2+3,2mm 2+3),所以直线OM 斜率k OM =-m3.又直线OT 斜率k OT =-m3,所以点M 在直线OT 上,因此OT平分线段PQ .②由①可得, |TF |=m 2+1, |PQ |=x 1-x 22+y 1-y 22=m 2+1[y 1+y 22-4y 1y 2]=m 2+1[4m m 2+32-4·-2m 2+3]=24m 2+1m 2+3.所以|TF ||PQ |=124·m 2+32m 2+1=124·m 2+1+4m 2+1+4≥124·4+4=33.当且仅当m 2+1=4m 2+1即m =±1时,等号成立,此时⎪⎪⎪⎪⎪⎪⎪⎪TF PQ 取得最小值.所以当⎪⎪⎪⎪⎪⎪⎪⎪TF PQ 最小时,T 点坐标是(-3,1)或(-3,-1).。
高中数学 综合素质检测1 北师大版高二选修1-1数学试题
第一章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题是真命题的是( ) A .若1x =1y,则x =yB .若x 2=1,则x =1 C .若x =y ,则x =y D .若x <y ,则x 2<y 2[答案] A[解析] 相应选项中的式子为等式或不等式,通过取特殊值判断命题是假命题.当x =-1时,B 是假命题;当x =y =-1时,C 是假命题;当x =-2,y =-1时,D 是假命题.易知A 是真命题.2.设a ∈R ,则“a >1”是“1a<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] A[解析]a >1⇒1a <1,1a<1⇒/a >1,故选A.3.“若a ⊥α,则a 垂直于α内任一条直线”是( ) A .全称命题 B .特称命题 C .不是命题 D .假命题[答案] A[解析] 命题中含有全称量词,故为全称命题,且是真命题. 4.“B =60°”是“△ABC 三个内角A 、B 、C 成等差数列”的( ) A .充分而不必要条件 B .充要条件 C .必要而不充分条件 D .既不充分也不必要条件 [答案] B[解析] 在△ABC 中,若B =60°,则A +C =120°, ∴2B =A +C ,则A 、B 、C 成等差数列;若三个内角A、B、C成等差,则2B=A+C,又A+B+C=180°,∴3B=180°,B=60°.5.若集合A={1,m2},B={2,4},则“m=2”是“A∩B={4}”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析]由“m=2”可知A={1,4},B={2,4},所以可以推得A∩B={4},反之,如果“A∩B={4}”可以推得m2=4,解得m=2或-2,不能推得m=2,所以“m=2”是“A∩B ={4}”的充分不必要条件.6.(2014·某某理,5)设a,b,c是非零向量,已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c,则下列命题中真命题是( ) A.p或q B.p且qC.(¬p)且(¬q) D.p或(¬q)[答案] A[解析]取a=c=(1,0),b=(0,1)知,a·b=0,b·c=0,但a·c≠0,∴命题p为假命题;∵a∥b,b∥c,∴∃λ,μ∈R,使a=λb,b=μc,∴a=λμc,∴a∥c,∴命题q是真命题.∴p或q为真命题.7.有下列四个命题①“若b=3,则b2=9”的逆命题;②“全等三角形的面积相等”的否命题;③“若c≤1,则x2+2x+c=0有实根”;④“若A∪B=A,则A⊆B”的逆否命题.其中真命题的个数是( )A.1 B.2C.3 D.4[答案] A[解析]“若b=3,则b2=9”的逆命题:“若b2=9,则b=3”,假;“全等三角形的面积相等”的否命题是:“不全等的三角形,面积不相等”,假;若c≤1,则方程x2+2x+c=0中,Δ=4-4c=4(1-c)≥0,故方程有实根;“若A∪B=A,则A⊆B”为假,故其逆否命题为假.8.已知实数a >1,命题p :函数y =log 12(x 2+2x +a )的定义域为R ,命题q :x 2<1是x <a的充分不必要条件,则( )A .p 或q 为真命题B .p 且q 为假命题C .¬p 且q 为真命题D .¬p 或¬q 为真命题[答案] A[解析]∵a >1,∴Δ=4-4a <0,∴x 2+2x +a >0恒成立,∴p 为真命题;由x 2<1得-1<x <1,∴-1<x <1时,x <a 成立,但x <a 时,-1<x <1不一定成立,∴q 为真命题,从而A 正确.9.“a =-1”是方程“a 2x 2+(a +2)y 2+2ax +a =0”表示圆的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件 [答案] C[解析] 当a =-1时,方程为x 2+y 2-2x -1=0, 即(x -1)2+y 2=2表示圆,若a 2x 2+(a +2)y 2+2ax +a =0表示圆,则应满足⎩⎪⎨⎪⎧a 2=a +2≠02a 2-4a 3>0,解得a =-1,故选C.10.已知命题p :存在x 0∈R ,使mx 20+1≤1;命题q :对任意x ∈R ,x 2+mx +1≥0.若p ∨(¬q )为假命题,则实数m 的取值X 围是( )A .(-∞,0)∪(2,+∞)B .(0,2]C .[0,2]D .R[答案] B[解析] 对于命题p ,由mx 2+1≤1,得mx 2≤0,若p 为真命题,则m ≤0,若p 为假命题,则m >0;对于命题q ,对任意x ∈R ,x 2+mx +1≥0,若命题q 为真命题,则m 2-4≤0,即-2≤m ≤2,若命题q 为假命题,则m <-2或m >2.因为p ∨(¬q )为假命题,所以命题p 为假命题且命题q 为真命题,则有⎩⎪⎨⎪⎧m >0-2≤m ≤2,得0<m ≤2.故选B.二、填空题(本大题共5个小题,每小题5分,共25分,将正确答案填在题中横线上) 11.命题:“在平面直角坐标系中,若直线l 1垂直于直线l 2,则它们的斜率之积为-1”的逆命题为________________________.[答案] 在平面直角坐标系中,若直线l 1与直线l 2的斜率之积为-1,则这两条直线互相垂直12.存在实数x 0,y 0,使得2x 20+3y 20≤0,用符号“∀”或“∃”可表示为____________,其否定为________________.[答案]∃x 0,y 0∈R,2x 20+3y 20≤0 ∀x ,y ∈R,2x 2+3y 2>013.在平面直角坐标系中,点(2m +3-m 2,2m -32-m )在第四象限的充要条件是________.[答案] -1<m <32或2<m <3[解析] 点(2m +3-m 2,2m -32-m )在第四象限⇔⎩⎪⎨⎪⎧2m +3-m 2>02m -32-m <0⇔-1<m <32或2<m <3.14.给出下列四个命题: ①∀x ∈R ,x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,故x >1;③命题“若a >b >0,且c <0,则c a >c b”的逆否命题是真命题;④“a =1”是“直线x +y =0与直线x -ay =0互相垂直”的充分不必要条件. 其中正确的命题为________(只填正确命题的序号). [答案]①②③[解析]①中,x 2+2x >4x -3⇔x 2-2x +3>0⇔(x -1)2+2>0,故①正确.②中,显然x ≠1且x >0,若0<x <1,则log 2x <0,log x 2<0,从而log 2x +log x 2<0,与已知矛盾,故x >1,故②正确③中,命题“若a >b >0,且c <0,则c a >c b”为真命题,故其逆否命题是真命题,∴③正确. ④“a =1”是直线x +y =0与直线x -ay =0互相垂直的充要条件,故④不正确. 15.在下列所示电路图中,闭合开关A 是灯泡B 亮的什么条件:(1)如图①所示,开关A 闭合是灯泡B 亮的______条件; (2)如图②所示,开关A 闭合是灯泡B 亮的______条件; (3)如图③所示,开关A 闭合是灯泡B 亮的______条件; (4)如图④所示,开关A 闭合是灯泡B 亮的______条件. [答案] 充分不必要 必要不充分 充要 既不充分也不必要[解析] (1)A 闭合,B 亮;而B 亮时,A 不一定闭合,故A 是B 的充分不必要条件.(2)A 闭合,B 不一定亮;而B 亮,A 必须闭合,故A 是B 的必要不充分条件.(3)A 闭合,B 亮;而B 亮,A 必闭合,所以A 是B 的充要条件.(4)A 闭合,B 不一定亮;而B 亮,A 不一定闭合,所以A 是B 的既不充分也不必要条件.三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.写出命题“若x 2+7x -8=0,则x =-8或x =1的逆命题、否命题、逆否命题,并分别判断它们的真假.”[答案] 逆命题:若x =-8或x =1,则x 2+7x -8=0. 逆命题为真.否命题:若x 2+7x -8≠0,则x ≠-8且x ≠1. 否命题为真.逆否命题:若x ≠-8且x ≠1,则x 2+7x -8≠0. 逆否命题为真.17.判断下列命题是全称命题还是特称命题,并判断其真假. (1)对数函数都是单调函数;(2)至少有一个整数,它既能被11整除,又能被9整除; (3)∀x ∈{x |x >0},x +1x≥2;(4)∃x 0∈Z ,log 2x 0>2.[答案] (1)(3)是全称命题,(2)(4)是特称命题,都是真命题[解析] (1)本题隐含了全称量词“所有的”,其实命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,真命题. (3)命题中含有全称量词“∀”,是全称命题,真命题. (4)命题中含有存在量词“∃”,是特称命题,真命题. 18.指出下列各题中,p 是q 的什么条件. (1)p :(x -2)(x -3)=0,q :x -2=0;(2)p :四边形的对角线相等;q :四边形是平行四边形.[答案] (1)p 是q 的必要不充分条件 (2)p 是q 的既不充分也不必要条件[解析] (1)p 是q 的必要不充分条件.这是因为:若(x -2)(x -3)=0,则x -2=0或x -3=0,即(x -2)(x -3)=0⇒/x -2=0,而由x -2=0可以推出(x -2)(x -3)=0.(2)p 是q 的既不充分也不必要条件.这是因为:四边形的对角线相等⇒/四边形为平行四边形;反之,四边形是平行四边形⇒/四边形的对角线相等.19.对于下列命题p ,写出¬p 的命题形式,并判断¬p 命题的真假:(1)p :91∈(A ∩B )(其中全集U =N *,A ={x |x 是质数},B ={x |x 是正奇数}); (2)p :有一个素数是偶数; (3)p :任意正整数都是质数或合数; (4)p :一个三角形有且仅有一个外接圆. [答案] (1)(2)(4)¬p 为假命题 (3)¬p 为真命题 [解析] (1)¬p :91∉A 或91∉B ;假命题. (2)¬p :所有素数都不是偶数;假命题.(3)¬p :存在一个正整数不是质数且不是合数;真命题.(4)¬p :存在一个三角形至少有两个外接圆或没有外接圆;假命题.20.已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若¬p 是¬q 的充分而不必要条件,某某数m 的取值X 围.[答案] [2,4][解析] 由题意p :-2≤x -3≤2,∴1≤x ≤5. ∴¬p :x <1或x >5.q :m -1≤x ≤m +1,∴¬q :x <m -1或x >m +1.又∵¬p 是¬q 的充分而不必要条件,∴⎩⎪⎨⎪⎧m -1≥1m +1≤5,∴2≤m ≤4.经检验m =2,m =4适合条件,即实数m 的取值X 围为2≤m ≤4. ∴m 的取值X 围为[2,4].21.(2014·马某某二中期中)设命题p :f (x )=2x -m在区间(1,+∞)上是减函数;命题q :x 1,x 2是方程x 2-ax -2=0的两个实根,且不等式m 2+5m -3≥|x 1-x 2|对任意的实数a ∈[-1,1]恒成立,若(¬p )且q 为真,试某某数m 的取值X 围.[答案]m >1[解析] 对命题p :x -m ≠0,又x ∈(1,+∞),故m ≤1, 对命题q :|x 1-x 2|=x 1+x 22-4x 1x 2=a 2+8对a ∈[-1,1]有a 2+8≤3,∴m 2+5m -3≥3⇒m ≥1或m ≤-6. 若(¬p )且q 为真,则p 假q 真,∴⎩⎪⎨⎪⎧m >1,m ≥1或m ≤-6,∴m >1.。
高二数学选修1-2模块综合检测题(北师大版附答案)
高二数学选修1-2模块综合检测题(北师大版附答案)模块学习评价(时间120分钟,满分150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z=3-i,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解析】z=3-i在复平面内对应的点为(3,-1),故选D.【答案】D2.对a,b∈R+,a+b≥2ab,大前提x+1x≥2x•1x,小前提所以x+1x≥2.结论以上推理过程中错误的为()A.大前提B.小前提C.结论D.无错误【解析】小前提错误,应满足x>0.【答案】B3.复数z=-1+2i,则z的虚部为()A.1B.-1C.2D.-2【解析】由z=-1+2i,得z=-1-2i,故z的虚部是-2.【答案】D4.用火柴棒摆“金鱼”,如图1所示:图1按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()A.6n-2B.8n-2C.6n+2D.8n+2【解析】第n个“金鱼”图需要火柴棒的根数为8+6(n-1)=6n+2. 【答案】C5.(2013•山东高考)执行两次如图2所示的程序框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次,第二次输出的a的值分别为()图2A.0.2,0.2B.0.2,0.8C.0.8,0.2D.0.8,0.8【解析】由程序框图可知:当a=-1.2时,∵a<0,∴a=-1.2+1=-0.2,a<0,a=-0.2+1=0.8,a>0.∵0.8<1,输出a=0.8.当a=1.2时,∵a≥1,∴a=1.2-1=0.2.∵0.2<1,输出a=0.2.【答案】C6.计算函数y=-1,x>0,0,x=0,1,x图3A.①y=0②x=0?③y=1B.①y=0②xC.①y=-1②xD.①y=-1②x=0?③y=0【解析】∵当x>0时,y=-1,故①为y=-1,∵当x当x=0时,y=0,故③为y=0.【答案】C7.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为()A.89B.0.8C.0.72D.98【解析】设A={种子发芽},AB={种子发芽,又成活为幼苗},出芽后的幼苗成活率为P(B|A)=0.8,P(A)=0.9.根据条件概率公式P(AB)=P(B|A)•P(A)=0.9×0.8=0.72.【答案】C8.(2013•湖北高考)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且y^=2.347x-6.423;②y与x负相关且y^=-3.476x +5.648;③y与x正相关且y^=5.437x+8.493;④y与x正相关且y^=-4.326x-4.578.其中一定不正确的结论的序号是()A.①②B.②③C.③④D.①④【解析】由正负相关性的定义知①④一定不正确.【答案】D9.把平面内两条直线的位置关系填入结构图中的M,N,E,F中,顺序较为恰当的是()图4①平行②垂直③相交④斜交A.①②③④B.①④②③C.①③②④D.②①④③【解析】由平面内两条直线位置关系的分类填写.【答案】C10.甲、乙两人分别对一目标射击一次,记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,则在A与B、A与B、A 与B、A与B中,满足相互独立的有()A.1对B.2对C.3对D.4对【解析】事件A,B为相互独立事件,同时A与B,A与B,A与B都是相互独立的.【答案】D二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.(2013•湖北高考)i为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i,则z2=________.【解析】(2,-3)关于原点的对称点是(-2,3),∴z2=-2+3i.【答案】-2+3i12.在平面直角坐标系中,以点(x0,y0)为圆心,r为半径的圆的方程为(x-x0)2+(y-y0)2=r2,类比圆的方程,请写出在空间直角坐标系中以点(x0,y0,z0)为球心,半径为r的球面的方程为________.【答案】(x-x0)2+(y-y0)2+(z-z0)2=r213.(2013•商洛高二检测)已知1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),则第5个等式为______________,…,推广到第n个等式为__________________.(注意:按规律写出等式的形式,不要求计算结果)【解析】根据前几个等式的规律可知,等式左边的各数是自然数的平方,且正负相间,等式的右边是自然数之和且隔项符号相同,由此可推得结果.【答案】1-4+9-16+25=1+2+3+4+51-22+32-42+…+(-1)n+1•n2=(-1)n+1•(1+2+3+…+n) 14.已知等式□3×6528=3□×8256中“□”表示的是同一个一位数字.算法框图(如图5所示)表示的就是求等式中“□”表示的数字的算法,请将算法框图补充完整.其中①处应填______,②处应填______.图5【解析】①处应填“y=x?”,因为y=x成立时,则输出i,否则指向②,并转入循环,因此②应具有计数功能,故应填“i=i+1”.【答案】y=x?i=i+115.给出下面的数表序列:图6其中表n(n=1,2,3)有n行,表中每一个数“两脚”的两数都是此数的2倍,记表n中所有的数之和为an,例如a2=5,a3=17,a4=49.则(1)a5=________;(2)数列{an}的通项an=________.【解析】(1)a5=129,(2)依题意,an=1×1+2×2+3×22+4×23+…+n×2n -1,利用错位相减法可得an=(n-1)×2n+1.【答案】(1)129(2)(n-1)×2n+1三、解答题(本大题共6小题,共75分.解答时应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)(2013•临汾检测)调查某桑场采桑员和辅助工关于桑毛虫皮炎发病情况结果如表:采桑不采桑合计患者人数181230健康人数57883合计2390113利用2×2列联表的独立性检验估计患桑毛虫皮炎病与采桑是否有关?认为两者有关系会犯错误的概率是多少?【解】a=18,b=12,c=5,d=78,∴a+b=30,c+d=83,a+c=23,b+d=90,n=113.∴χ2=n ad-bc 2 a+b c+d a+c b+d=113× 18×78-5×12 230×83×23×90≈39.6>6.635.∴有99%的把握认为患桑毛虫皮炎病与采桑有关系,认为两者有关系会犯错误的概率是1%.17.(本小题满分12分)某市居民2009~2013年货币收入x与购买商品支出Y的统计资料如下表所示:年份20092010201120122013货币收入x4042444750购买商品支出Y3334363941图7(1)画出散点图,试判断x与Y是否具有相关关系;(2)已知b=0.842,a=-0.943,请写出Y对x的回归直线方程,并估计货币收入为52(亿元)时,购买商品支出大致为多少亿元?【解】(1)由某市居民货币收入预报支出,因此选取收入为自变量x,支出为因变量Y.作散点图,从图中可看出x与Y具有相关关系.(2)Y对x的回归直线方程为y=0.842x-0.943,货币收入为52(亿元)时,即x=52时,y=42.841,所以购买商品支出大致为43亿元.18.(本小题满分12分)已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1,求证:a,b,c,d中至少有一个是负数.【证明】假设a,b,c,d都是非负数,因为a+b=c+d=1,所以(a+b)(c+d)=1,又(a+b)(c+d)=ac+bd+ad+bc≥ac+bd,所以ac+bd≤1,这与已知ac+bd≥1矛盾.所以a,b,c,d中至少有一个是负数.19.(本小题满分13分)已知方程x2-(2i-1)x+3m-i=0有实数根,求实数m的值.【解】设方程的实根为x0,则x20-(2i-1)x0+3m-i=0,因为x0,m∈R,所以方程变形为(x20+x0+3m)-(2x0+1)i=0,由复数相等得x20+x0+3m=0,2x0+1=0,解得x0=-12,m=112,故m=112.20.(本小题满分13分)(2013•南昌检测)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在每一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求再赛2局结束这次比赛的概率;(2)求甲获得这次比赛胜利的概率.【解】记“第i局甲获胜”为事件Ai(i=3,4,5),“第j局乙获胜”为事件Bj(j=3,4,5).(1)设“再赛2局结束这次比赛”为事件A,则A=A3A4+B3B4.由于各局比赛结果相互独立,故P(A)=P(A3A4+B3B4)=P(A3A4)+P(B3B4)=P(A3)P(A4)+P(B3)P(B4)=0.6×0.6+0.4×0.4=0.52.(2)设“甲获得这次比赛胜利”为事件B,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而B=A3A4+B3A4A5+A3B4A5,由于各局比赛结果相互独立,故P(B)=P(A3A4+B3A4A5+A3B4A5)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648.21.(本小题满分13分)先解答(1),再通过结构类比解答(2).(1)求证:tan(x+π4)=1+tanx1-tanx;(2)设x∈R,a≠0,f(x)是非零函数,且函数f(x+a)=1+f x 1-f x ,试问f(x)是周期函数吗?证明你的结论.【解】(1)证明tan(x+π4)=tanπ4+tanx1-tanπ4tanx=1+tanx1-tanx.(2)猜想:f(x)是以T=4a为周期的周期函数.∵f(x+2a)=f(x+a+a)=1+f x+a 1-f x+a =1+1+f x 1-f x 1-1+f x 1-f x =-1f x ,∴f(x+4a)=-1f x+2a =-1-1f x =f(x),∴f(x)是以T=4a为周期的周期函数.。
2019—2020年新课标北师大版高中数学选修1-1全册综合考点学习与测试及答案答案解析.docx
(新课标)2017-2018学年北师大版高中数学选修1-1综合学习与测试(一)一、选择题(本大题共10小题,每题5分,共50分)1.以下四个命题,判断正确的是( )(1)原命题:若一个自然数的末位数字为零,则这个自然数能被5整除.(2)逆命题:若一个自然数能被5整除,则这个自然数的末位数字为零.(3)否命题:若一个自然数的末位数字不为零,则这个自然数不能被5整除.(4)逆否命题:若一个自然数不能被5整除,则这个自然数末位数字不为零.A.(1)与(3)为真,(2)与(4)为假B.(1)与(2)为真,(3)与(4)为假C.(1)与(4)为真,(2)与(3)为假D.(1)与(4)为假,(2)与(3)为真2.若a,b∈R,且a2+b2≠0,则(1)a、b全为零;(2)a、b不全为零;(3)a、b全不为零;(4)a、b至少有一个不为零,其中真命题的个数为( )A.0B. 1C.2D.33.设命题p:已知a、b为实数,若a+b是无理数.则a是无理数或b是无理数.则下列结论中正确的是( )A.p为真命题B.p的逆命题为真命题C.p 的否命题为真命题D. p 的逆否命题为假命题4.抛物线2y x =的焦点坐标是( )A .()1,0B .10,4⎛⎫ ⎪⎝⎭C . 1,04⎛⎫ ⎪⎝⎭D .10,8⎛⎫ ⎪⎝⎭5.若抛物线22(0)y px p =>上横坐标为6的点到焦点的距离等于8,则焦点到准线的距离是( )A .6B .2C .8D .46. 对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件;②“5+a 是无理数”是“a 是无理数”的充要条件③“a>b ”是“a 2>b 2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是 ( )A .1B .2C .3D .4 7.若椭圆22110036x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是( )A .4B .194C .94D .148.下列命题是真命题的是 ( )A “a(a-b)≤0”是“b a≥1”的必要条件 B “x ∈{1,2}”是“1-x =0”的充分条件C “A ∩B ≠φ”是“A ⊂B ”的充分条件D “x>5”是“x>2”的必要条件9.抛物线28x y =-的准线方程是 ( ) A 132x = B.y =2 C.14x = D.y=4 10.双曲线229436x y -=-的渐近线方程是( ) A 23y x =± B.32y x =± C.94y x =± D.49y x =± 二,填空题:(每小题5分,共20分)11.命题: 若a 、b 都是偶数,则a+b 是偶数. 其逆否命题为_______________.12.下列命题: ①5≥5 ②5>1且1<2 ③3>4或3<4 ④. x,y ∈R. “若x 2+y 2=0,则x,y 全为0”的否命题 ⑤“全等三角形是相似三角形”的逆命题 ⑥若ac 2>bc 2,则a>b. 其中假命题的序号是_______________.13.当a+b=10, c=25时的椭圆的标准方程是.14.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ’,则线段PP ’的中点M 的轨迹方程为.三、解答题:15.(本小题满分5分)求经过点P(―3,27)和Q(―62,―7)且焦点在坐标轴上的双曲线的标准方程。
高中数学 期末综合测试(含解析)北师大版选修1-2-北师大版高二选修1-2数学试题
单元综合测试五(期末综合测试)时间:120分钟 分值:150分一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z =1i -1的模为( )A.12B.22 C.2 D .2 【答案】B【解析】 本题考查复数的运算和复数的模. ∵z =1i -1=-12-12i ,∴|z |=(-12)2+(-12)2=22.故选B. 2.已知复数z =2-i ,则z ·z -的值为( ) A .5 B. 5 C .3 D. 3 【答案】A【解析】 ∵z =2-i ,∴z =2+i ,∴z ·z =(2+i)(2-i)=4-(-1)=5.3.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a ,b ∈R )”,其反设正确的是( ) A .a 、b 至少有一个不为0 B .a 、b 至少有一个为0 C .a 、b 全不为0 D .a 、b 中只有一个为0 【答案】A【解析】 对“全为0”的否定是“不全为0”,故选A.4.在平面直角坐标系内,方程x a +yb =1表示在x ,y 轴上的截距分别为a ,b 的直线,拓展到空间,在x ,y ,z 轴上的截距分别为a ,b ,c (abc ≠0)的方程为( )A.x a +y b +z c =1B.x ab +y bc +zac =1 C.xy ab +yz bc +zxca =1 D .ax +by +zc =1 【答案】A【解析】 由类比推理可知,方程为x a +y b +zc=1.5.阅读如下程序框图,如果输出i =4,那么空白的判断框中应填入的条件是( )A .S <8B .S <9C .S <10D .S <11 【答案】B【解析】 本题考查了程序框图的循环结构.依据循环要求有i =1,S =0;i =2,S =2×2+1=5;i =3,S =2×3+2=8;i =4,S =2×4+1=9,此时结束循环,故应为S <9.6.对a ,b ∈R +,a +b ≥2ab ,大前提 x +1x≥2x ·1x,小前提 所以x +1x≥2.结论以上推理过程中的错误为( )A .大前提B .小前提C .结论D .无错误 【答案】B【解析】 小前提错误,应满足x >0.7.执行如图所示的程序框图,若输入n 的值为3,则输出s 的值是( )A .1B .2C .3D .7 【答案】C【解析】 本题考查程序框图中的循环结构.i =1,s =1→s =1+(1-1)=1,i =2→s =1+(2-1)=2,i =3→s =2+(3-1)=4,i =4→输出s .8.甲、乙两人各进行1次射击,如果两人击中目标的概率都是0.7,则其中恰有1人击中目标的概率是( )A .0.49B .0.42C .0.7D .0.91 【答案】B【解析】 两人都击中概率P 1=0.49,都击不中的概率P 2=0.09,∴恰有一人击中的概率P =1-0.49-0.09=0.42.9.将正奇数按如图所示规律排列,则第31行从左向右的第3个数为( )1 3 5 7 17 15 13 11 9 19 21 23 25 27 29 31A .1 915B .1 917C .1 919D .1 921 【答案】B【解析】 如题图,第1行1个奇数,第2行3个奇数,第3行5个奇数,归纳可得第31行有61个奇数,且奇数行按由大到小的顺序排列,偶数行按由小到大的顺序排列.又因为前31行共有1+3+…+61=961个奇数,则第31行第1个数是第961个奇数即是1 921,则第3个数为1 917.10.已知x >0,y >0,2x +1y =1,若x +2y >m 2-2m 恒成立,则实数m 的取值X 围是( )A .m ≥4或m ≤-2B .m ≥2或m ≤-4C .-2<m <4D .-4<m <2 【答案】C【解析】 x +2y =(x +2y )(2x +1y )=4+4y x +x y ≥4+4=8,当且仅当4y x =xy ,即x =4,y =2时取等号.∴m 2-2m <8,即m 2-2m -8<0,解得-2<m <4. 二、填空题(本大题共5小题,每小题5分,共25分)11.i 是虚数单位,i +2i 2+3i 3+…+8i 8=________(用a +b i 的形式表示,a ,b ∈R ).【答案】4-4i【解析】 i +2i 2+3i 3+4i 4+5i 5+6i 6+7i 7+8i 8=i -2-3i +4+5i -6-7i +8=4-4i.12.阅读如图所示的程序框图,运行相应的程序,若输入m 的值为2,则输出的结果i =______.【答案】4【解析】 本题考查程序框图的循环结构. i =1,A =2,B =1; i =2,A =4,B =2; i =3,A =8,B =6; i =4,A =16,B =18; 此时A <B ,则输出i =4.13.已知f (x )是定义在R 上的函数,且f (x )=1+f (x -2)1-f (x -2),若f (1)=2+3,则f (2 009)=________.【答案】2+ 3【解析】 ∵f (x )=1+f (x -2)1-f (x -2),∴f (x -2)=1+f (x -4)1-f (x -4).代入得f (x )=1+1+f (x -4)1-f (x -4)1-1+f (x -4)1-f (x -4)=2-2f (x -4)=-1f (x -4).∴f (x )=f (x -8),即f (x )的周期为8. ∴f (2 009)=f (251×8+1)=f (1)=2+ 3.14.古希腊数学家把数1,3,6,10,15,21,…,叫做三角数,它有一定的规律性,则第30个三角数减去第28个三角数的值为________.【答案】59【解析】 设数1,3,6,10,15,21,…各项为a 1,a 2,a 3,…, 则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,即数列{a n +1-a n }构成首项为2,公差为1的等差数列. 利用累加法得a 28=a 1+(2+3+…+28), a 30=a 1+(2+3+…+28+29+30), ∴a 30-a 28=29+30=59.15.在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比AE EB =ACBC ,把这个结论类比到空间:在三棱锥A —BCD 中,如图,面DEC 平分二面角A —CD —B 且与AB 相交于E ,则得到的类比的结论是________.【答案】AE EB =S △ACDS △BCD三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分)16.实数m 为何值时,复数z =m 2(1m +5+i)+(8m +15)i +m -6m +5.(1)为实数; (2)为虚数; (3)为纯虚数; (4)对应点在第二象限?【解析】 z =m 2+m -6m +5+(m 2+8m +15)i ,(1)z 为实数⇔m 2+8m +15=0且m +5≠0, 解得m =-3.(2)z 为虚数⇔m 2+8m +15≠0且m +5≠0, 解得m ≠-3且m ≠-5. (3)z 为纯虚数⇔⎩⎪⎨⎪⎧m 2+m -6m +5=0m 2+8m +15≠0,解得m =2.(4)z 对应的点在第二象限⇔⎩⎪⎨⎪⎧m 2+m -6m +5<0m 2+8m +15>0,解得m <-5或-3<m <2.17.设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论.【解析】 f (0)+f (1)=130+3+131+3=11+3+13+3=3-12+3-36=33,同理可得f (-1)+f (2)=33, f (-2)+f (3)=33, 并注意到在这三个特殊式子中,自变量之和均等于1.归纳猜想得:当x1+x2=1时,均有f(x1)+f(x2)=3 3.18.已知f(x)=-x3-x+1(x∈R).(1)求证:y=f(x)是定义域上的减函数;(2)求证满足f(x)=0的实数根x至多只有一个.【证明】(1)∵f′(x)=-3x2-1=-(3x2+1)<0(x∈R),∴y=f(x)是定义域上的减函数.(2)假设f(x)=0的实数根x至少有两个,不妨设x1≠x2,且x1,x2∈R,f(x1)=f(x2)=0.∵y=f(x)在R上单调递减,∴当x1<x2时,f(x1)>f(x2),当x1>x2时,f(x1)<f(x2),这与f(x1)=f(x2)=0矛盾,故假设不成立,所以f(x)=0至多只有一个实数根.19.如图是某工厂加工笔记本电脑屏幕的流程图:根据此流程图可回答下列问题:(1)一件屏幕成品可能经过几次加工和检验程序?(2)哪些环节可能导致废品的产生,二次加工产品的来源是什么?(3)该流程图的终点是什么?【解析】 (1)一件屏幕成品经过一次加工、二次加工两道加工程序和检验、最后检验两道检验程序;也可能经过一次加工、返修加工、二次加工三道加工程序和检验、返修检验、最后检验三道检验程序.(2)返修加工和二次加工可能导致屏幕废品的产生,二次加工产品的来源是一次加工的合格品和返修加工的合格品.(3)流程图的终点是“屏幕成品”和“屏幕废品”.20.已知数学、英语的成绩分别有1,2,3,4,5五个档次,某班共有60人,在每个档次的人数如下表:(1)求m =4,n =3(2)求在m ≥3的条件下,n =3的概率;(3)若m =2与n =4是相互独立的,求a ,b 的值. 【解析】 本题为条件概率和相互独立事件的概率. (1)m =4,n =3时,共7人,故概率为P =760.(2)m ≥3时,总人数为35.当m ≥3,n =3时,总人数为8,故概率为P =835.(3)若m =2与n =4是相互独立的, 则P (m =2)·P (n =4)=P (m =2,n =4). ∴1+b +6+0+a 60×3+0+1+b +060=b 60.故总人数为60,知a +b =13. ∴13×(4+b )=b .∴a =11,b =2.21.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2P (χ2≥k )0.100 0.050 0.010 0.001 k2.7063.8416.63510.828(注:此公式也可以写成χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ))【解析】 (1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名. 所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A 1,A 2,A 3;25周岁以下组工人有40×0.05=2(人),记为B 1,B 2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结构共有7种,它们是:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60×0.25=15(人),“25周岁以下组”中的生产能手40×0.375=15(人),据此可得2×2列联表如下:所以得χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=100×(15×25-15×45)2 60×40×30×70=2514≈1.79.因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.。
北师大版高中数学选修1-1第二章《圆锥曲线与方程》测试题(含答案解析)
一、选择题1.已知斜率为16的直线l 与双曲线22221(0,0)x y C a b a b-=>>:相交于B 、D 两点,且BD 的中点为(1,3)M ,则C 的离心率为( )A .2B C .3 D2.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .63.双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2223x y -+=截得的弦长为2,则C 的离心率为( )A .3B .2C D4.已知斜率为(0)k k >的直线l 与抛物线2:4C y x =交于,A B 两点,O 为坐标原点,M 是线段AB 的中点,F 是C 的焦点,OFM ∆的面积等于3,则k =( )A .14B .13C .12D .35.直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点,则k 的取值有( )个A .1B .2C .3D .46.已知M 是抛物线2:C x y =上一点,记点M 到抛物线C 的准线的距离为1d ,到直线:3490l x y ++=的距离为2d ,则12d d +的最小值为( )A .1B .2C .3D .47.已知1F 、2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左右焦点,点P 在双曲线右支上且不与顶点重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A ,O 为坐标原点,若OA =,则该双曲线的离心率为( )A B C .2 D 8.已知圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,动圆M 与圆1C ,圆2C 均相切,P 是12MC C 的内心,且12123PMC PMC PC C SSS+=,则a 的值为( )A .9B .11C .17D .199.已知抛物线2:C x y =,点()2,0A ,()0,2B -,点P 在抛物线上,则满足PAB △为直角三角形的点P 的个数有( ) A .2B .4C .6D .810.过抛物线24y x =的焦点的直线与抛物线交于A ,B 两点,若AB 的中点的纵坐标为2,则AB 等于( ) A .4B .6C .8D .1011.“04a <<”是“方程2214x y a a+=-表示为椭圆”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件12.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .(D .(二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.设点P 是椭圆2213x y +=的短轴的一个上端点,Q 是椭圆上的任意一个动点,则线段PQ |∣长的最大值是________.15.知直线m 过抛物线()220y px p =>的焦点F ,且交抛物线于A 、B 两点,交其准线l于点C .若6AF =,2CB BF =,则p =____________16.已知点F 为抛物线2:2C x y =的焦点,过点F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,则4AB DE +的最小值为_________.17.如图,椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,B 为椭圆C 的上顶点,若12BF F △的外接圆的半径为23b,则椭圆C 的离心率为________.18.已知抛物线C :2y x =的焦点为F ,A ()00,x y 是C 上一点,054AF x =,则0x =________.19.已知双曲线M :22221x y a b-=(0a >,0b >),ABC 为等边三角形.若点A 在y轴上,点B ,C 在双曲线M 上,且双曲线M 的实轴为ABC 的中位线,则双曲线M 的离心率为________.20.已知下列几个命题:①ABC 的两个顶点为(4,0)A -,(4,0)B ,周长为18,则C 点轨迹方程为221259x y +=; ②“1x >”是“||0x >”的必要不充分条件;③已知命题:33p ≥,:34q >,则p q ∨为真,p q ∧为假,p ⌝为假;④双曲线221916x y -=-的离心率为54.其中正确的命题的序号为_____.三、解答题21.已知椭圆的中心在坐标原点O ,焦点在x 轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F 与x 轴不垂直的直线l 交椭圆于P ,Q 两点. (1)求椭圆的方程;(2)当直线l 的斜率为2时,求POQ △的面积;(3)在线段OF 上是否存在点M (m ,0),使得MPQ 为等腰三角形?若存在,求出m 的取值范围;若不存在,请说明理由.22.在平面直角坐标系xOy 中,已知抛物线()2:20C x py p =>,过抛物线焦点F 的直线l 与抛物线相交于M 、N 两点.(1)若l 与y 轴垂直,且OMN 的周长为425+C 的方程; (2)在第一问的条件下,过点()1,2P 作直线m 与抛物线C 交于点A ,B ,若点P 是AB 的中点,求直线m 的方程.23.已知椭圆()2222:10x y C a b a b+=>>左右焦点分别为()12(,0),,0F c F c -,点Р为椭圆C 上一点,满足1290F PF ∠=︒,且12F PF △的面积为2c .(1)求椭圆C 的离心率;(2)已知直线()122y x =-与椭圆C 交于,M N 两点,点Q 坐标为()2,0,若3MQ NQ =,求椭圆C 的方程.24.已知点M 是圆222:(2)(2)C x y r r -+=>与x 轴负半轴的交点,过点M 作圆C 的弦MN ,并使弦MN 的中点恰好落在y 轴上. (1)求点N 的轨迹方程;(2)设点N 的轨迹为曲线E ,延长NO 交直线2x =-于点A ,延长NC 交曲线E 于点B ,曲线E 在点B 处的切线交y 轴于点D ,求证:AD BD ⊥.25.(1)已知椭圆2222:1(0)x y E a b a b+=>>的焦距为1F 、2F 为左、右焦点,M 为椭圆E 上一点,且123F MF π∠=,12F MF S =△,求椭圆E 的方程. (2)过点()()00P m m a <<,的直线交椭圆E 于A 、B 两点,交直线4x m=于点M ,设MA AP λ=,MB BP μ=,求λμ+的值.26.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,过左顶点与上顶点的直线与圆2243x y +=相切. (1)求椭圆C 的方程﹔ (2)已知斜率为k 的直线l 在y 轴上的截距为()0m m b <<,l 与椭圆交于,A B 两点,是否存在实数k 使得2OA OB k k k ⋅=成立?若存在,求出k 的值,若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设()()1122,,B x y D x y 、,用“点差法”表示出a 、b 的关系,即可求出离心率 【详解】设()()1122,,B x y D x y 、,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式作差得:22221212220x xy y a b---=, 整理得:()()()()2121221212y y y y b a x x x x +-=+-BD 的中点为(1,3)M ,且直线l 的斜率为16 ,代入有:22611262b a =⨯=即22212c a a -=,解得62cea . 故选:D 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.2.C解析:C 【分析】设E 是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.3.D解析:D 【分析】设双曲线C 的渐近线方程为y kx =,其中bk a=±,利用圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理可求得k的值,再利用e =可求得双曲线C 的离心率e 的值. 【详解】设双曲线C 的渐近线方程为y kx =,其中b k a=±, 圆()2223x y -+=的圆心坐标为()2,0,半径为r =圆心到直线y kx =的距离为d =另一方面,由于圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理,可得d ===,解得1k =±,1ba∴=, 因此,双曲线C的离心率为c e a ===== 故选:D. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.4.B解析:B 【分析】先求出F ,设出A 、B 、M ,用“点差法”找出121202y y k x x y -==-,利用OFM ∆的面积等于3计算出0y ,求出斜率k .由抛物线2:4C y x =知:焦点()1,0F设()()()112200,,,,,,A x y B x y M x y因为M 是线段AB 的中点,所以0121222x x x y y y =+⎧⎨=+⎩将2114y x =和2224y x =两式相减可得:()2212124y y x x -=-,即121202y y k x x y -==- ∵000k y >∴>∴00113,62OFM S y y ∆=⨯⨯=∴=, 022163k y ∴===.故选:B 【点睛】“中点弦”问题通常用“点差法”处理.5.D解析:D 【分析】将直线方程与双曲线的方程联立,得出关于x 的方程,根据直线与双曲线只有一个公共点,求出对应的k 值,即可得解. 【详解】联立22341169y kx k x y =-+⎧⎪⎨-=⎪⎩,消去y 并整理得()()()2221693243164390k x k k x k ⎡⎤-+-+-+=⎣⎦,由于直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点, 所以,21690k -=或()()()222216903243641694390k k k k k ⎧-≠⎪⎨⎡⎤⎡⎤∆=----+=⎪⎣⎦⎣⎦⎩, 解得34k =±或2724250k k +-=, 对于方程2724250k k +-=,判别式为22447250'∆=+⨯⨯>,方程2724250k k +-=有两个不等的实数解.显然34k=±不满足方程2724250k k+-=.综上所述,k的取值有4个.故选:D.【点睛】方法点睛:将直线与圆锥曲线的两个方程联立成方程组,然后判断方程组是否有解,有几个解,这是直线与圆锥曲线位置关系的判断方法中最常用的方法,注意:在没有给出直线方程时,要对是否有斜率不存在的直线的情况进行讨论,避免漏解.6.B解析:B【分析】作出图形,过点M分别作抛物线C的准线l和直线3490x y++=的垂线,垂足分别为点B、A,由抛物线的定义得出1d MB MF==,可得出12d d MF MA+=+,利用FM与直线3490x y++=垂直时,12d d+取最小值,然后计算出点F到直线3490x y++=的距离,即为所求.【详解】如下图所示:过点M分别作抛物线C的准线l和直线3490x y++=的垂线,垂足分别为点B、A,由抛物线的定义可得1d MB MF==,则12d d MF MA+=+,当且仅当FM与直线3490x y++=垂直时,12d d+取最小值,点F到直线3490x y++=的距离为22130494234d⨯+⨯+==+,因此,12d d +的最小值为2. 故答案为:2. 【点睛】关键点点睛:本题求出抛物线上一点到准线和定直线的距离之和最小值问题,解题的关键就是利用F 、A 、M 三点共线取最小值,结合抛物线的定义转化求解.7.B解析:B 【分析】延长2F A 交1PF 于点Q ,可得1223QF OA b ==,结合双曲线的定义可得,a b 的关系,从而求得离心率. 【详解】延长2F A 交1PF 于点Q ,∵PA 是12F PF ∠的平分线,∴2AQ AF =,2PQ PF =, 又O 是12F F 中点,所以1//QF AO ,且1223QF OA b ==, 又11122QF PF PQ PF PF a =-=-=,∴223a b =,222233()a b c a ==-,∴233c e a ==. 故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的关系,解题方法是延长2F A 交1PF 于点Q ,利用等腰三角形的性质、平行线的性质得出123QF b =,然后由双曲线的定义得出关系式,从而求解.8.C解析:C 【分析】先判断出圆1C 与2C 内含,根据条件可得动圆M 与圆1C ,圆2C 均相切,从而得出121216MC MC a C C +=+>=,即动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,又设12MC C 的内切圆的半径为r ' ,由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯,从而得出答案. 【详解】由圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,可得圆1C 的圆心()13,0C -,半径为1r a =,圆2C 的圆心()23,0C ,半径为21r = 由121261C C a r r =<-=-所以圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切. 所以动圆M 与圆1C 内切,与圆2C 外切,设动圆M 的半径为R 则11MC r R a R =-=-,221MC r R R =+=+ 所以121216MC MC a C C +=+>=所以动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,设其方程为22221(0)x y m n m n +=>> 所以12a m +=,设22c m n =-,则3c = 由P 是12MC C 的内心,设12MC C 的内切圆的半径为r ' 由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯ 即1212318MC MC C C +==,又由椭圆的定义可得121MC MC a +=+ 所以118a +=,则17a = 故选:C 【点睛】本题考查圆与圆的位置关系,考查根据圆与圆的相切求动圆圆心的轨迹,考查椭圆的定义的应用,解答本题的关键的由条件得出圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切,进一步由条件得出121216MC MC a C C +=+>=,即得出动点M 的轨迹,属于中档题.9.B解析:B 【分析】分三个角为直角分别进行讨论,通过数形结合即得结果. 【详解】(1)若APB ∠为直角,如下图,即以AB 为直径的圆与抛物线的交点为P ,易见有O ,P 两个点符合题意;(2)若PAB ∠为直角,则过A 作直线垂直AB ,如下图,易见有P ,P '两个点符合题意;(3)若PBA ∠为直角,则过B 作直线垂直AB ,如上图,易见无交点,不存在点P 符合题意.综上,共有4个点符合题意. 故选:B. 【点睛】 关键点点睛:本题的解题关键在于对三个角为直角进行分类讨论,再结合数形结合思想即突破难点.10.C解析:C 【分析】先根据抛物线的定义将焦点弦长问题转化为中点到准线距离的两倍,进而用中点横坐标表示,设直线AB 的方程为:1x my =+(m 为常数),与抛物线方程联立消去x ,得到关于y 的一元二次方程,利用中点公式和韦达定理求得m 的值,进而得到中点的横坐标,从而求得线段AB 的长度. 【详解】抛物线24y x =的焦点坐标F (1,0),准线方程:1l x =-,设AB 的中点为M ,过A ,B ,M 作准线l 的垂线,垂足分别为C ,D ,N ,则MN 为梯形ABDC 的中位线,()02|21AB AF BF AC BD MN x ∴=+=+==+,∵直线AB 过抛物线的焦点F ,∴可设直线AB 的方程为:1x my =+(m 为常数), 代入抛物线的方程消去x 并整理得:2440y my --=,设A ,B 的纵坐标分别为12,y y ,线段AB 中点()00,M x y , 则120222y y y m +===,1m ∴=, ∴直线AB 的方程为1x y =+,001213x y ∴=+=+=,()2318AB ∴=+=,故选:C.【点睛】本题考查抛物线的焦点弦长问题,涉及抛物线的定义,方程,线段中点坐标公式,直线与抛物线的交点问题,属中档题,关键是灵活使用抛物线的定义,将焦点弦长问题转化为中点坐标问题,注意直线方程的设法:过点(a ,0),斜率不为零的直线方程可以设为x =my +a 的形式,不仅避免了讨论,而且方程组消元化简时更为简洁.11.C解析:C 【分析】根据方程2214x y a a +=-表示椭圆求出实数a 的取值范围,然后利用集合的包含关系可判断出“04a <<”是“方程2214x y a a+=-表示椭圆”的条件.【详解】若方程2214x y a a+=-表示椭圆,则0404a a a a >⎧⎪->⎨⎪≠-⎩,解得02a <<或24a <<, 记为{}02,24A a a a =<<<<或, 又记{}04B a a =<<,AB则“04a <<”是“方程2214x y a a+=-表示椭圆”的必要不充分条件.故选:C.关键点点睛:本题的关键是求出方程为椭圆的充分必要条件.12.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得3==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.【分析】设出根据点在椭圆上点的坐标满足椭圆方程得到利用两点间距离公式求得结合的范围求得其最大值【详解】由已知得到或由于对称性不妨设设是椭圆上的任一点所以所以又因为所以当时长度取得最大值且最大值为故答解析:2【分析】设出(,)Q x y ,根据点在椭圆上,点的坐标满足椭圆方程,得到223(1)x y =-,利用两点间距离公式求得PQ =y 的范围,求得其最大值.【详解】由已知得到(0,1)P 或(0,1)P -,由于对称性,不妨设(0,1)P , 设(,)Q x y 是椭圆上的任一点,所以223(1)x y =-,所以PQ ====又因为11y -≤≤,所以当12y时,PQ |∣2=,故答案为:322. 【点睛】思路点睛:该题考查的是有关椭圆上的点到短轴端点的距离的最值问题,解题思路如下: (1)根据题意,设出点(,)Q x y ,取好点P ;(2)利用两点间距离公式写出PQ |∣,配方,结合椭圆上点坐标的范围求得结果.15.3【分析】过作准线的垂线垂足分别为过作的垂线垂足为根据结合抛物线的定义可得据此求出再根据抛物线的定义可求出【详解】如图:过作准线的垂线垂足分别为过作的垂线垂足为因为所以因为所以所以所以在直角三角形中解析:3 【分析】过A 、B 作准线l 的垂线,垂足分别为,N M ,过F 作AN 的垂线,垂足为D ,根据2CB BF =结合抛物线的定义可得30DFA MCB ∠=∠=,据此求出||3AD =,再根据抛物线的定义可求出p . 【详解】如图:过A 、B 作准线l 的垂线,垂足分别为,N M ,过F 作AN 的垂线,垂足为D ,因为2CB BF =,所以||2||CB BF =, 因为||||BF BM =,所以||2||CB BM =, 所以30MCB ∠=,所以30DFA ∠=,在直角三角形ADF 中,因为||6AF =,所以||3AD =, 因为||||6AN AF ==,且||||3AN AD p p =+=+, 所以63p =+,所以3p =. 故答案为:3 【点睛】关键点点睛:利用抛物线的定义求解是解题关键.16.18【分析】设直线的方程为联立方程组分别求得和结合基本不等式即可求得的最小值得到答案【详解】由题抛物线的焦点准线方程为设直线的方程为联立方程组则设可得由抛物线的定义可得由可将上式中的换为可得则当且仅解析:18 【分析】设直线1l 的方程为12y kx =+,联立方程组,分别求得222AB k =+和22||2DE k=+,结合基本不等式,即可求得4AB DE +的最小值,得到答案. 【详解】由题,抛物线2:2C x y =的焦点10,2F ⎛⎫⎪⎝⎭,准线方程为12y 设直线1l 的方程为12y kx =+,0k ≠, 联立方程组2212x y y kx ⎧=⎪⎨=+⎪⎩,则2210x kx --=,设()11,A x y ,()22,B x y ,可得122x x k +=,()21212121112122y y kx kx k x x k +=+++=++=+由抛物线的定义可得212||122AB y y k =++=+, 由12l l ⊥,可将上式中的k 换为1k -,可得22||2DE k=+,则224102102184AB DE k k ⎛⎫+=++≥+⨯= ⎪⎝⎭,当且仅当k = 则4AB DE +的最小值为18 故答案为:18 【点睛】方法点睛:本题考查抛物线的焦点弦,考查基本不等式的应用,与抛物线的焦点有关问题的解题策略:1、与抛物线的焦点有关的问题,一般情况下都与抛物线的定义有关:“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径;2、特别提醒:主要灵活运用抛物线上一点(,)P x y 到焦点F 的距离:2PF px =+或2PF p y =+. 17.【分析】由题意可得的外接圆的圆心在线段上可得在中由勾股定理可得:即结合即可求解【详解】由题意可得:的外接圆的圆心在线段上设圆心为则在中由勾股定理可得:即所以即所以所以故答案为:【点睛】方法点睛:求椭 解析:12【分析】由题意可得12BF F △的外接圆的圆心在线段OB 上,1OF c =,123bMF BM ==,可得 13OM b =,在1OMF △中,由勾股定理可得:22211MF OM OF =+,即222233b b c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,结合222b ac =-即可求解. 【详解】由题意可得:12BF F △的外接圆的圆心在线段OB 上,1OF c =, 设圆心为M ,则2133OM OB BM b b b =-=-=, 在1OMF △中,由勾股定理可得:22211MF OM OF =+,即222233b b c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,所以223b c =,即2223a c c -=,所以2a c =,所以12c e a ==, 故答案为:12. 【点睛】方法点睛:求椭圆离心率的方法: (1)直接利用公式c e a=; (2)利用变形公式221b e a=-; (3)根据条件列出关于,a c 的齐次式,两边同时除以2a ,化为关于离心率的方程即可求解.18.【分析】根据焦半径公式可得:结合抛物线方程求解出的值【详解】由抛物线的焦半径公式可知:所以故答案为:【点睛】结论点睛:抛物线的焦半径公式如下:(为焦准距)(1)焦点在轴正半轴抛物线上任意一点则;(2 解析:1【分析】根据焦半径公式可得:00524x p x +=,结合抛物线方程求解出0x 的值. 【详解】由抛物线的焦半径公式可知:0015224AF x x =+=,所以01x =, 故答案为:1. 【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 19.【分析】可根据实轴为的中位线得出再根据对称性及为等边三角形表示出的坐标代入双曲线方程得到关系式求解离心率【详解】实轴长为则关于轴对称不妨设在双曲线左支则其横坐标为根据为等边三角形可得故将的坐标代入双【分析】可根据实轴为ABC 的中位线,得出BC ,再根据对称性及ABC 为等边三角形,表示出B 的坐标,代入双曲线方程,得到,a b 关系式求解离心率. 【详解】实轴长为2a ,则4BC a =,BC 关于y 轴对称不妨设B 在双曲线左支,则其横坐标为2a ,根据ABC 为等边三角形,60ABC ∠=可得B y =故()2,B a,()2,C a -,将B 的坐标代入双曲线方程有2222431a a a b-=,则a b =,则c =故e =【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).20.③④【分析】根据椭圆定义可对①进行判断;根据必要不充分条件定义可对②进行判断;根据复合命题的真假可对③进行判断;根据双曲线的离心率公式可对④进行判断【详解】①的两个顶点为周长为18则C 点轨迹方程为当解析:③④ 【分析】根据椭圆定义可对①进行判断;根据必要不充分条件定义可对②进行判断;根据复合命题的真假可对③进行判断;根据双曲线的离心率公式可对④进行判断. 【详解】①ABC 的两个顶点为(4,0)A -,(4,0)B ,周长为18,则C 点轨迹方程为221259x y +=(5)x ≠±,当5x =±时,构不成三角形,错误; ②当0.1x =时,1x <,所以||0x >不一定有1x >,错误;③已知命题:33p ≥是真命题,:34q >是假命题,根据复合命题的真假判断,p q ∨为真,p q ∧为假,p ⌝为假,正确;④双曲线221916x y -=-,2216,9a b ==,所以22225c a b =+=,54c e a ==,正确.其中正确的命题的序号是③④, 故答案为:③④. 【点睛】本题考查了椭圆定义、双曲线离心率、必要不充分条件及复合命题真假的判断,属于基础题.三、解答题21.(1)2212x y +=;(2)9;(3)存在102m <<,理由见解析.【分析】(1)设椭圆方程为22221(0)x y a b a b+=>>,根据题意得1b c ==,即可求出a ,从而求出椭圆方程;(2)根据题意得直线l 的方程为2(1)y x =-,设()11,P x y ,()22,Q x y ,联立直线与椭圆方程,消元、列出韦达定理,即可求出弦PQ ,再利用点到直线的距离公式求出高,即可取出面积;(3)假设在线段OF 上存在点(,0)(01)M m m <<,使得以MPQ 为等腰三角形,联立直线与椭圆,分别计算即可判断; 【详解】解:(1)设椭圆方程为22221(0)x y a b a b+=>>,根据题意得1b c ==,所以2222a b c =+=,所以椭圆的方程为2212x y +=.(2)根据题意得直线l 的方程为2(1)y x =-,即220x y --=,与2212x y +=联立,得:291660x x -+=设()11,P x y ,()22,Q x y ,则12169x x +=,1223x x ⋅=.所以12|9PQ x x =-=,点O 到l 的距离为d =,所以 1122 9ABC PQ d S ===⨯△. (3)存在,102m <<. 假设在线段OF 上存在点(,0)(01)M m m <<,使得以MPQ 为等腰三角形, 若直线l 与x 轴不垂直,直线l 的斜率存在,可设直线l 的方程为(1)(0)y k x k =-≠,设()11,P x y ,()22,Q x y ,则()11,MP x m y =-,()22,MQ x m y =-,由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩得2222)202142(-=+-+x k x k k ,所以2122421k x x k ,21222221k x x k -⋅=+. ①当||||MP MQ =时设PQ 的中点为N ,则2222,2121k k N k k ⎛⎫- ⎪++⎝⎭,又1MN k k ⋅=-, 所以22211212k m k k ==++,所以102m <<. ②|||PQ MP ≠,|||MQ PQ ≠∣.∵()1222224||221221k PQ a e x x k k =-+=⋅=++MP==>>∴不可能|||PQ MP=.同理,根据椭圆对称性,也不可能||||MQ PQ=.所以当12m<<时MPQ为等腰三角形;【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.22.(1)24x y=;(2)230x y-+=.【分析】(1)将将2py=代入抛物线C的方程可求得,M N坐标,得,,MN OM ON,由OMN的周长参数p,得抛物线方程;(2)设点211,4xA x⎛⎫⎪⎝⎭,222,4xB x⎛⎫⎪⎝⎭,由,A B坐标表示出直线斜率,结合中点坐标即得直线斜率,得直线方程.【详解】解:(1)由题意,焦点0,2pF⎛⎫⎪⎝⎭,将2py=代入抛物线C的方程可求得,2pM p⎛⎫-⎪⎝⎭,,2pN p⎛⎫⎪⎝⎭,∴2MN p=,OM ON p===,所以QMN的周长为24p+=+2p=,故抛物线方程为24x y=.(2)设点211,4xA x⎛⎫⎪⎝⎭,222,4xB x⎛⎫⎪⎝⎭,直线m的斜率为2212121244x xx xx x-+=-,由条件1212x x+=,故直线m的斜率为12,从而直线m的方程为230x y-+=.【点睛】关键点点睛:本题考查求抛物线方程,求中点弦所在直线方程.已知弦中点坐标,一般设弦两端点坐标为1122(,),(,)x y x y代入圆锥曲线方程相减即可得中点坐标与直线斜率关系.这称为“点差法”.23.(1)2;(2)答案见解析. 【分析】(1)利用椭圆定义122PF PF a +=和1290F PF ∠=︒求得2122PF PF b =,再根据12F PF △的面积为2c 求解;(2)椭圆方程2222x y a +=与直线1(2)2y x =-联立,由韦达定理得到2121244,36a y y y y -+=-=,再根据3MQ NQ =,分3MQ NQ =和3MQ NQ =-求解. 【详解】(1)由椭圆定义可得122PF PF a +=,① 又1290F PF ∠=,所以222124PF PF c +=,②①和②可得2122PF PF b ⋅=,所以12F PF △的面积为2b ,所以22b c =,即222a c =,所以椭圆C 的离心率为2; (2)椭圆方程可化为2222x y a +=,与1(2)2y x =-联立可得: 226840y y a ++-=,由()2642440a ∆=-->可得243a >,设()()1122,,,M x y N x y ,所以2121244,36a y y y y -+=-=,③又直线1(2)2y x =-过点Q ,且3MQ NQ =,()112,MQ x y =--,()222,NQ x y =--.(i )当3MQ NQ =时,即123y y =时,则122443y y y +==-,可得213y =-,则2212214336a y y y -===,可得2423a =>,所以椭圆C 的方程为2212x y +=;(ii )当3MQ NQ =-,即123y y =-时,则122423y y y +=-=-,则223y =,可得22212224433336a y y y -⎛⎫=-=-⨯=-= ⎪⎝⎭,解得24123a =>,所以椭圆C 的方程为221126x y +=.【点睛】方法点睛:求椭圆的标准方程有两种方法:①定义法:根据椭圆的定义,确定2a 、2b 的值,结合焦点位置可写出椭圆方程; ②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a 、b ;若焦点位置不明确,则需要分焦点在x 轴上和y 轴上两种情况讨论,也可设椭圆的方程为()2210,0,Ax By A B A B +=>>≠.24.(1)28(0)y x x =>;(2)证明见解析. 【分析】(1)设(,)N x y ,利用N 在圆上及弦MN 的中点在y 轴上可得点N 的轨迹方程,也可以利用垂径定理得到点N 的轨迹方程,注意范围.(2)设()11N x y ,,()22,B x y ,直线NB 的方程为2x my =+,点B 的处的切线方程为()22y y k x x -=-,联立切线方程和抛物线方程,利用判别式为0可求切线方程,从而得到D 的坐标,求出直线ON 的方程后可得A 的坐标,再联立直线NB 的方程与抛物线的方程,利用韦达定理化简可得1AD BD k k ⋅=-,从而得到要求证的垂直关系.我们也可以设()()000,0N x y x ≠,利用导数和韦达定理可求D 的坐标,同样可得1AD BD k k ⋅=-.【详解】(1)解法一:由题意知(2,0)C ,(2,0)M r -, 设(,)N x y 是222:(2)(2)C x y r r -+=>上的任意点,弦MN 的中点2,22r x y -+⎫⎛⎪⎝⎭恰好落在y 轴上, 202r x-+∴=,2r x ∴=+,222(2)(2)x y x ∴-+=+, 整理得28y x =,2r >,0x ∴>,∴点N 的轨迹方程为28(0)y x x =>.解法二:设(,)N x y ,弦MN 的中点为0,2y Q ⎫⎛ ⎪⎝⎭,(,0)M x -, 因为M 在x 轴的负半轴上,故0x >. ()2,,2,2y CQ MN x y ⎛⎫=-= ⎪⎝⎭,由垂径定理得CQ MN ⊥,故22220,8(0)2y x y x x -⨯+=∴=>.(2)证法一:设直线NB 的方程为2x my =+,则由282y x x my ⎧=⎨=+⎩,消去x ,整理得28160y my --=,264640m ∆=+>. 设()11N x y ,,()22,B x y ,则128y y m +=,1216y y =-,11ON y k x ∴=,∴直线ON 的方程为11y y x x =, ∴令2x =-,则112y y x -=,1122,y A x ⎫⎛-∴-⎪ ⎝⎭. 设点B 的处的切线方程为()22y y k x x -=-,与28y x =相切,由()2228y y k x x y x⎧-=-⎨=⎩,消去x ,整理得()222880ky y y kx -+-=,22220k x ky ∴∆=-+=,()22222220408y k ky y k -+=⇒-=,24BDk y ∴=, ∴直线()2224:BD y y x x y -=-,令0x =,则 222222244x x y y y y y --+=+=22222484x x x y y -+==,2240,x D y ⎫⎛∴⎪ ⎝⎭, 212122*********24AD x y x y y k y x y x y ⎫⎛∴=+=+=+⎪ ⎝⎭12113244y y y y +==, 121244161AD BD k k y y y y ∴⋅=⋅==-,AD BD ∴⊥. 证法二:设()()000,0N x y x >,则直线ON 的方程为00y y x x =,0022,y A x ⎫⎛∴--⎪ ⎝⎭, 设直线NB 的方程为2x my =+,则由282y x x my ⎧=⎨=+⎩,消去x ,整理得28160y my --=,264640m ∆=+>,设()11,B x y ,则101200016321616,y y y B y y y ⎫⎛=-⇒=-⇒-⎪ ⎝⎭, 由抛物线的对称性,不妨设B 在x 轴下方, 则由曲线28y x =,得y y '=-⇒=-=,切线的斜率为4y k ===-, 切线方程为020016324y y x y y ⎫⎛+=--⎪ ⎝⎭,则080,D y ⎫⎛⎪ ⎝⎭,020000283282,,y AD BD x y y y ⎫⎫⎛⎛⋅=-⋅-⎪⎪ ⎝⎝⎭⎭22000000641664641664088AD BD y x y x x x =-+-=-+-=⇒⊥. 【点睛】思路点睛:(1)求动点的轨迹方程,几何法、动点转移法、参数法等.(2)直线与抛物线的位置关系中的定值问题,一般联立直线方程和抛物线的方程,利用韦达定理化简目标代数式,涉及到切线范围,可借助导数来求切线的斜率.25.(1)22:142x y E +=;(2)0.【分析】(1)首先根据题意得到c =11MF r =,22MF r =,得到122r r a +=,再根据123F MF S =△和余弦定理即可得到24a =,22b =,从而得到椭圆的标准方程. (2)首先设直线x ky m =+,与椭圆联立得到222(2)240k y kmy m +++-=,从而得到1221224y y km y y m +=--,联立4x m x ky m⎧=⎪⎨⎪=+⎩,得到244m M m km ⎛⎫- ⎪⎝⎭,.再根据MA AP λ=,MB BP μ=,得到2141m kmy λ-=-和2241m kmy μ-=-,计算λμ+即可. 【详解】(1)由已知得2c =,即c =设11MF r =,22MF r =,得到122r r a +=. 在12F MF △中,121213sin 23F MF r r S π==△,解得1283r r =.(22212122cos3r r r r π=+-,化简得:()2121283r r r r =+-,288433a =-⨯,解得24a =.所以2242b =-=,椭圆22:142x y E +=.(2)由(1)知22:142x y E +=,()()002P m m <<,,设直线x ky m =+, 联立2224x ky m x y =+⎧⎨+=⎩得:222(2)240k y kmy m +++-=12222km y y k +=-+,212242m y y k-=+ 所以1221224y y km y y m +=-- 联立4x m x ky m⎧=⎪⎨⎪=+⎩,得244m M m km ⎛⎫- ⎪⎝⎭,.21144,m MA x y m km ⎛⎫-=-- ⎪⎝⎭,()11AP m x y =--,由MA AP λ=,得2114m y y km λ--=-,得2141m kmy λ-=-. 同理MB BP μ=得2241m kmy μ-=-. 222212212124444222204y y m m m m kmkmy kmy km y y km m λμ+-----+=+-=⋅-=⋅-=-.【点睛】关键点点睛:本题主要考查直线与椭圆的位置关系,属于中档题.本题中直线方程代入椭圆方程整理后得到1221224y y km y y m +=--和利用向量关系得到2141m kmy λ-=-和2241m kmy μ-=-为解决本题的关键,考查了学生的运算求解能力,逻辑推理能力.26.(1)22142x y +=;(2)存在,2k =±. 【分析】(1)根据题意可得c e a ==,222b a c =-,根据相切列出方程,解得,,c a b 进而可得椭圆的方程.(2)假设存在实数k 满足题意,直线l 的方程为y kx m =+,设()()1122,,,A x y B x y ,联立直线与椭圆的方程,可得关于x 的一元二次方程,由韦达定理可得1212,x x x x +,化简计算2OA OB k k k ⋅=,即可解得k 的值. 【详解】 (1)2c e a ==, a ∴=又222,b a c =-,b c ∴=。
2019—2020年新课标北师大版高中数学选修1-1《变化率与导数》章末综合测评及答案解析.docx
(新课标)2017-2018学年北师大版高中数学选修1-1 章末综合测评(三) 变化率与导数(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若y=5x,则y′=( )A.15x4B.155x4C.5x43D.15x x【解析】y=x 15,则y′=15x-45=155x4.【答案】 B2.某质点沿直线运动的位移方程为f(x)=-2x2+1,那么该质点从x=1到x=2的平均速度为( )A.-4 B.-5C.-6 D.-7【解析】v=f(2)-f(1)2-1=-2×22+1-(-2×12+1)2-1=-6.【答案】 C3.如果物体做S(t)=2(1-t)2的直线运动,则其在t =4 s 时的瞬时速度为( )A .12B .-12C .4D .-4【解析】 S(t)=2(1-t)2=2t 2-4t +2,则S ′(t)=4t -4,所以S ′(4)=4×4-4=12.【答案】 A4.曲线y =e x 在点A(0,1)处的切线斜率为( ) A .1 B .2 C .eD .1e【解析】 由题意知y ′=e x ,故所求切线斜率k =e x |x =0=e 0=1. 【答案】 A5.设曲线y =1+cos x sin x 在点⎝ ⎛⎭⎪⎪⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1B .12C .-2D .2【解析】 ∵y ′=-sin 2x -(1+cos x )cos x sin 2x =-1-cos xsin 2x ,又f ′⎝ ⎛⎭⎪⎪⎫π2=-1,∴1a =-1,∴a =-1,故选A. 【答案】 A6.(2016·淮北高二检测)若曲线y =f(x)=x 2+ax +b 在点(0,b)处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1【解析】 y ′=2x +a ,∴f ′(0)=a =1,∴y =x 2+x +b ,又点(0,b)在切线上,故-b +1=0, ∴b =1. 【答案】 A7.若函数f(x)=x 2+bx +c 的图像的顶点在第四象限,则函数f ′(x)的图像是( )【解析】 f ′(x)=2x +b ,因为f(x)顶点⎝ ⎛⎭⎪⎪⎫-b 2,4c -b 24在第四象限.所以b<0,则f ′(x)图像与y 轴交于负半轴.【答案】 A 8.点P 在曲线y =x 3-x +23上移动,设点P 处切线的倾斜角为α,则α的取值范围是( )A.⎣⎢⎢⎡⎭⎪⎪⎫0,π2B .⎣⎢⎢⎡⎭⎪⎪⎫0,π2∪⎣⎢⎢⎡⎭⎪⎪⎫3π4,πC.⎣⎢⎢⎡⎭⎪⎪⎫3π4,π D .⎝ ⎛⎦⎥⎥⎤π2,3π4【解析】 y ′=3x 2-1≥-1,则tan α≥-1. ∵α∈[0,π),∴α∈⎣⎢⎢⎡⎭⎪⎪⎫0,π2∪⎣⎢⎢⎡⎭⎪⎪⎫3π4,π.【答案】 B9.抛物线y =x 2+bx +c 在点(1,2)处的切线与其平行直线bx +y +c =0间的距离是( )A.24B .22C.322D . 2【解析】 ∵抛物线过点(1,2),∴b +c =1.又∵f ′(1)=2+b ,由题意得2+b =-b ,∴b =-1,c =2. ∴所求的切线方程为y -2=x -1,即x -y +1=0,∴两平行直线x -y +1=0和x -y -2=0间的距离d =|1+2|2=322.【答案】 C 10.设函数f(x)=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎢⎢⎡⎦⎥⎥⎤0,5π12,则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]【解析】 ∵f ′(x)=x 2sin θ+3xcos θ,∴f ′(1)=sin θ+3cos θ=2sin ⎝⎛⎭⎪⎪⎫θ+π3因为θ∈⎣⎢⎢⎡⎦⎥⎥⎤0,5π12,所以θ+π3∈⎣⎢⎢⎡⎦⎥⎥⎤π3,3π4,所以sin ⎝ ⎛⎭⎪⎪⎫θ+π3∈⎣⎢⎢⎡⎦⎥⎥⎤22,1,故f ′(1)∈[2,2].【答案】 D11.过点(-1,0)作抛物线y =x 2+x +1的切线,则其中一条切线为( ) A .2x +y +2=0 B .3x -y +3=0 C .x +y +1=0D .x -y +1=0【解析】 y ′=2x +1,设所求切线的切点为(x 0,x 20+x 0+1). 则x 20+x 0+1x 0+1=2x 0+1,∴x 0=0或x 0=-2.当x 0=0时,曲线y =x 2+x +1在点(0,1)处的切线斜率为1,方程为y -1=x ,即x -y +1=0.当x 0=-2时,切线方程为3x +y +3=0.【答案】 D12.点P 是曲线x 2-y -2ln x =0上任意一点,则点P 到直线4x +4y +1=0的最短距离是( )A.22(1-ln 2)B .22(1+ln 2)C.22⎝ ⎛⎭⎪⎪⎫12+ln 2 D .12(1+ln 2)【解析】 将直线4x +4y +1=0平移后得直线l :4x +4y +b =0,使直线l 与曲线切于点P(x 0,y 0),由x 2-y -2lnx =0得y ′=2x -1x,∴直线l 的斜率k =2x 0-1x 0=-1解得x 0=12或x 0=-1(舍去),∴P ⎝ ⎛⎭⎪⎪⎫12,14+ln 2, 所求的最短距离即为点P ⎝ ⎛⎭⎪⎪⎫12,14+ln 2到直线4x +4y +1=0的距离d =|2+(1+4ln 2)+1|42=22(1+ln 2). 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中的横线上)13.若y =-3cot x ,则y ′=________.【导学号:63470074】【解析】 y ′=-3(cot x)′=-3·-1sin 2x =3sin 2x .【答案】3sin 2x14.下列四个命题中,正确命题的序号为________. ①若f(x)=x ,则f ′(0)=0;②(log a x)′=xln a ;③加速度是质点的位移s对时间t 的导数;④曲线y =x 2在点(0,0)处有切线.【解析】 ①因为f ′(x)=12x,当x 趋近于0时平均变化率不存在极限,所以函数f(x)在x =0处不存在导数,故错误;②(log a x)′=1xln a ,故错误;③瞬时速度是位移s 对时间t 的导数,故错误;④曲线y =x 2在点(0,0)处的切线方程为y =0,故正确.【答案】 ④15.已知直线y =kx 是曲线y =x 3+2的一条切线,则k 的值为________. 【解析】 设切点为M(x 0,y 0),则y 0=x 30+2, ① y 0=kx 0,② ∵y ′=3x 2,∴k =3x 20, ③ 将③代入②得y 0=3x 30, ④将④代入①得x 0=1, ∴y 0=3,代入②得k =3. 【答案】 316.(2016·临沂高二检测)设函数f(x)的导数为f ′(x),且f(x)=f ′⎝ ⎛⎭⎪⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎪⎫π4=________.【解析】 因为f(x)=f ′⎝ ⎛⎭⎪⎪⎫π2sin x +cos x ,所以f ′(x)=f ′⎝ ⎛⎭⎪⎪⎫π2cos x -sin x ,所以f ′⎝ ⎛⎭⎪⎪⎫π2=f ′⎝ ⎛⎭⎪⎪⎫π2cos π2-sin π2.即f ′⎝ ⎛⎭⎪⎪⎫π2=-1,所以f(x)=-sin x +cos x ,故f ′⎝ ⎛⎭⎪⎪⎫π4=-cos π4-sin π4=-2.【答案】 -2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知某运动着的物体的运动方程为s(t)=t -1t 2+2t 2(路程单位:m ,时间单位:s),求s ′(3),并解释它的实际意义.【导学号:63470075】【解】 ∵s(t)=t -1t 2+2t 2=tt 2-1t 2+2t 2=1t -1t 2+2t 2, ∴s ′(t)=-1t 2+2·1t 3+4t , ∴s ′(3)=-19+227+12=32327,即物体在t =3 s 时的瞬时速度为32327m/s.18.(本小题满分12分)求过曲线y =cos x 上点P ⎝ ⎛⎭⎪⎪⎫π3,12且与过这点的切线垂直的直线方程.【解】 ∵y =cos x ,∴y ′=-sin x. 曲线在点P ⎝ ⎛⎭⎪⎪⎫π3,12处的切线斜率是y ′|x =π3=-sin π3=-32.∴过点P 且与切线垂直的直线的斜率为23.∴所求直线方程为y -12=23⎝ ⎛⎭⎪⎪⎫x -π3. 19.(本小题满分12分)求满足下列条件的函数f(x).(1)f(x)是三次函数,且f(0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0; (2)f(x)是二次函数,且x 2f ′(x)-(2x -1)f(x)=1. 【解】 (1)由题意设f(x)=ax 3+bx 2+cx +d(a ≠0), 则f ′(x)=3ax 2+2bx +c.由已知⎩⎪⎨⎪⎧f (0)=d =3,f ′(0)=c =0,f ′(1)=3a +2b +c =-3,f ′(2)=12a +4b +c =0,解得a =1,b =-3,c =0,d =3. 故f(x)=x 3-3x 2+3.(2)由题意设f(x)=ax 2+bx +c(a ≠0),则f ′(x)=2ax +b.所以x 2(2ax +b)-(2x -1)(ax 2+bx +c)=1, 化简得(a -b)x 2+(b -2c)x +c =1,此式对任意x 都成立,所以⎩⎪⎨⎪⎧a =b ,b =2c ,c =1,得a =2,b =2,c =1,即f(x)=2x 2+2x +1.20.(本小题满分12分)已知两曲线f(x)=x 3+ax 和g(x)=x 2+bx +c 都经过点P(1,2),且在点P 处有公切线,试求a ,b ,c 的值.【解】 ∵点P(1,2)在曲线f(x)=x 3+ax 上, ∴2=1+a ,∴a =1,函数f(x)=x 3+ax 和g(x)=x 2+bx +c 的导数分别为f ′(x)=3x 2+a 和g ′(x)=2x +b ,且在点P 处有公切线,∴3×12+a =2×1+b ,得b =2,又由点P(1,2)在曲线g(x)=x 2+bx +c 上可得2=12+2×1+c ,得c =-1. 综上,a =1,b =2,c =-1.21.(本小题满分12分)已知函数f(x)=x 在x =14处的切线为l ,直线g(x)=kx +94与l 平行,求f(x)的图像上的点到直线g(x)的最短距离.【解】 因为f(x)=x ,所以f ′(x)=12x.所以切线l 的斜率为k =f ′⎝ ⎛⎭⎪⎪⎫14=1, 切点为T ⎝ ⎛⎭⎪⎪⎫14,12. 所以切线l 的方程为x -y +14=0. 因为切线l 与直线g(x)=kx +94平行, 所以k =1,即g(x)=x +94. f(x)的图像上的点到直线g(x)=x +94的最短距离为切线l :x -y +14=0与直线x -y +94=0之间的距离, 所以所求最短距离为⎪⎪⎪⎪⎪⎪⎪⎪94-142= 2.22.(本小题满分12分)已知直线l 1为曲线f(x)=x 2+x -2在点P(1,0)处的切线,l 2为曲线的另一条切线,且l 2⊥l 1.(1)求直线l 2的方程;(2)求直线l 1,l 2与x 轴所围成的三角形的面积S.【解】 (1)设直线l 1,l 2的斜率分别为k 1,k 2,由题意可知k 1=f ′(1)=3,故直线l 1的方程为y =3x -3,由l 1⊥l 2,可知直线l 2的斜率为-13,设l 2与曲线相切于点Q(x 0,y 0),则k 2=f ′(x 0)=-13, 解得x 0=-23,代入曲线方程解得y 0=-209, 故直线l 2的方程为y +209=-13⎝⎛⎭⎪⎪⎫x +23,化简得到3x +9y +22=0. (2)直线l 1,l 2与x 轴交点坐标分别为(1,0),⎝ ⎛⎭⎪⎪⎫-223,0, 联立⎩⎪⎨⎪⎧ 3x -y -3=0,3x +9y +22=0解得两直线交点坐标为⎝ ⎛⎭⎪⎪⎫16,-52, 故所求三角形的面积S =12×⎪⎪⎪⎪⎪⎪⎪⎪-223-1×⎪⎪⎪⎪⎪⎪⎪⎪-52=12512.。
北师大版高中数学选修1-1模块综合测评
高中数学学习材料(灿若寒星精心整理制作)模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真【解析】否命题和逆命题是互为逆否命题,有着一致的真假性.【答案】 D2.设a,b∈R,则“(a-b)·a2<0”是“a<b”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】由(a-b)a2<0⇒a≠0且a<b,∴充分性成立;由a<b⇒a-b<0,当0=a<b时⇒/(a-b)·a2<0,必要性不成立.【答案】 A3.曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是()A.-9 B.-3C .9D .15【解析】 y ′=3x 2,故曲线在点P (1,12)处的切线斜率是3,故切线方程是y -12=3(x -1),令x =0得y =9.【答案】 C4.如果命题“﹁p 且﹁q ”是真命题,那么下列结论中正确的是( )【导学号:63470097】A .“p 或q ”是真命题B .“p 且q ”是真命题C .“﹁p ”为真命题D .以上都有可能【解析】 若“﹁p 且﹁q ”是真命题,则﹁p ,﹁q 均为真命题,即命题p 、命题q 都是假命题.【答案】 C5.下列命题的否定为假命题的是( ) A .对任意x ∈R ,都有-x 2+x -1<0成立 B .对任意x ∈R ,都有|x |>x 成立C .对任意x ,y ∈Z ,都有2x -5y ≠12成立D .存在x ∈R ,使sin 2 x +sin x +1=0成立【解析】 对于A 选项命题的否定为“存在x ∈R ,使-x 2+x -1≥0成立”,显然,这是一个假命题.【答案】 A6.抛物线y 2=12x 的准线与双曲线x 29-y 23=1的两条渐近线所围成的三角形面积等于( )A .3 3B .2 3C .2D. 3【解析】 抛物线y 2=12x 的准线为x =-3,双曲线的渐近线为y =±33x ,则准线与渐近线交点为(-3,-3)、(-3, 3).∴所围成三角形面积S =12×3×23=3 3. 【答案】 A7.过抛物线x 2=4y 的焦点F 作直线,交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|的值为( )A .5B .6C .8D .10【解析】 抛物线x 2=4y 的准线为y =-1,因为P 1(x 1,y 1),P 2(x 2,y 2)两点是过抛物线焦点的直线与抛物线的交点,所以P 1(x 1,y 1),P 2(x 2,y 2)两点到准线的距离分别是y 1+1,y 2+1,所以|P 1P 2|的值为y 1+y 2+2=8.【答案】 C8.已知F 1,F 2是椭圆x 216+y 23=1的两个焦点,P 为椭圆上一点,则|PF 1|·|PF 2|有( )【导学号:63470098】A .最大值16B .最小值16C .最大值4D .最小值4【解析】 由椭圆的定义知a =4,|PF 1|+|PF 2|=2a =2×4=8.由基本不等式知|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=⎝ ⎛⎭⎪⎫822=16,当且仅当|PF 1|=|PF 2|=4时等号成立,所以|PF 1|·|PF 2|有最大值16.【答案】 A9.如图1所示,四图都是在同一坐标系中某三次函数及其导函数的图像,其中一定不正确的序号是()图1A .①②B .③④C .①③D .②④【解析】因为三次函数的导函数为二次函数,其图像为抛物线,观察四图,由导函数与原函数的关系可知,当导函数大于0时,其函数为增函数;当导函数小于0时,其函数为减函数,由此规律可判定③④不正确.【答案】 B10.已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,若在双曲线的右支上存在一点P,使得|PF1|=3|PF2|,则双曲线的离心率e的取值范围为()A.[2,+∞) B.[2,+∞)C.(1,2] D.(1,2]【解析】由双曲线的定义知,|PF1|-|PF2|=2a,又|PF1|=3|PF2|,∴|PF2|=a.即双曲线的右支上存在点P使得|PF2|=a.设双曲线的右顶点为A,则|AF2|=c-a.由题意知c-a≤a,∴c≤2a.又c>a,∴e=ca≤2且e>1,即e∈(1,2].【答案】 C11.设f(x)是一个三次函数,f′(x)为其导函数,如图2所示的是y=x·f′(x)的图像的一部分,则f(x)的极大值与极小值分别是()图2A.f(1)与f(-1) B.f(-1)与f(1)C.f(-2)与f(2) D.f(2)与f(-2)【解析】由图像知,f′(2)=f′(-2)=0.∵x>2时,y=x·f′(x)>0,∴f′(x)>0,∴y=f(x)在(2,+∞)上单调递增;同理f(x)在(-∞,-2)上单调递增;在(-2,2)上单调递减.∴y =f (x )的极大值为f (-2),极小值为f (2),故选C. 【答案】 C12.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x【解析】a >0时,F ⎝ ⎛⎭⎪⎫a 4,0,直线l 方程为y =2⎝ ⎛⎭⎪⎫x -a 4,令x =0得y =-a2. ∴S △OAF =12·a 4·⎪⎪⎪⎪⎪⎪-a 2=4. 解得a =8.同理a <0时,得a =-8. ∴抛物线方程为y 2=±8x . 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中的横线上)13.若双曲线x 24-y 2b 2=1(b >0)的渐近线方程为y =±12x ,则右焦点坐标为________.【导学号:63470099】【解析】 由x 24-y 2b 2=1得渐近线方程为y =±b2x , ∴b 2=12,b =1, ∴c 2=a 2+b 2=4+1=5,∴右焦点坐标为(5,0). 【答案】 (5,0)14.函数f (x )=x 3-15x 2-33x +6的单调减区间为________. 【解析】 f ′(x )=3x 2-30x -33=3(x -11)(x +1), 当x <-1或x >11时,f ′(x )>0,f (x )增加; 当-1<x <11时,f ′(x )<0,f (x )减少. 【答案】 (-1,11)15.已知命题p :对任意x ∈[0,1],都有a ≥e x 成立,命题q :存在x ∈R ,使x 2+4x +a =0成立,若命题“p 且q ”是真命题,则实数a 的取值范围是____________.【导学号:63470100】【解析】 因为对任意x ∈[0,1],都有a ≥e x 成立,所以a ≥e.由存在x ∈R ,使x 2+4x +a =0成立,可得判别式Δ=16-4a ≥0,即a ≤4.若命题“p 且q ”是真命题,所以p 、q 同为真,所以e ≤a ≤4.【答案】 [e,4]16.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点与抛物线C 2:y 2=4x 的焦点F重合,椭圆C 1与抛物线C 2在第一象限的交点为P ,|PF |=53.则椭圆C 1的方程为________.【解析】 抛物线C 2的焦点F 的坐标为(1,0),准线为x =-1,设点P 的坐标为(x 0,y 0),依据抛物线的定义,由|PF |=53,得1+x 0=53,解得x 0=23.因为点P 在抛物线C 2上,且在第一象限,所以y 0=263.所以点P 的坐标为⎝ ⎛⎭⎪⎫23,263.因为点P 在椭圆C 1:x 2a 2+y 2b 2=1上,所以49a 2+83b 2=1.又c =1,所以a 2=b 2+1,联立解得a 2=4,b 2=3.所以椭圆C 1的方程为x 24+y 23=1.【答案】 x 24+y 23=1三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)求与⊙C 1:(x +1)2+y 2=1相外切,且与⊙C 2:(x -1)2+y 2=9相内切的动圆圆心P 的轨迹方程.【解】 设动圆圆心P 的坐标为(x ,y ),半径为r , 由题意得,|PC 1|=r +1,|PC 2|=3-r , ∴|PC 1|+|PC 2|=r +1+3-r =4>|C 1C 2|=2,由椭圆定义知,动圆圆心P 的轨迹是以C 1,C 2为焦点,长轴长为2a =4的椭圆,椭圆方程为x 24+y 23=1.18.(本小题满分12分)已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值.【解】 f ′(x )=2ax ,g ′(x )=3x 2+b .∵曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,∴⎩⎨⎧f ′(1)=g ′(1)f (1)=g (1), 即⎩⎨⎧ 2a =3+b a +1=1+b =c ,解得⎩⎨⎧a =3b =3. ∴a ,b 的值分别为3,3.19.(本小题满分12分)已知命题p :函数f (x )=x 3+ax +5在区间(-2,1)上不单调,若命题p 的否定是一个真命题,求a 的取值范围.【解】 考虑命题p 为真命题时a 的取值范围,因为f ′(x )=3x 2+a ,令f ′(x )=0,得到x 2=-a 3,当a ≥0时,f ′(x )≥0,函数f (x )在区间(-2,1)上是增加的,不合题意; 当a <0时,由x 2=-a3,得到x =±-a3,要使函数f (x )=x 3+ax +5在区间(-2,1)上不单调,则-a3<1或--a3>-2,即a >-12,综上可知-12<a <0,故命题p 的否定是一个真命题时,a 的取值范围是a ≤-12或a ≥0. 20.(本小题满分12分)某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该厂制造电子元件过程中,次品率p 与日产量x 的函数关系是:p =3x4x +32(x ∈N +).(1)将该厂的日盈利额T (元)表示为日产量x (件)的函数; (2)为获最大盈利,该厂的日产量应定为多少件?【解】 (1)由题意可知次品率p =日产次品数/日产量,每天生产x 件,次品数为xp ,正品数为x (1-p ).因为次品率p =3x4x +32, 当每天生产x 件时,有x ·3x4x +32件次品,有x ⎝ ⎛⎭⎪⎫1-3x 4x +32件正品.所以T =200x ⎝ ⎛⎭⎪⎫1-3x 4x +32-100x ·3x 4x +32 =25·64x -x 2x +8(x ∈N +).(2)T ′=-25·(x +32)(x -16)(x +8)2,由T ′=0,得x =16或x =-32(舍去). 当0<x <16时,T ′>0; 当x >16时,T ′<0; 所以当x =16时,T 最大.即该厂的日产量定为16件,能获得最大盈利.21.(本小题满分12分)设函数f (x )=x 2-2tx +4t 3+t 2-3t +3,其中x ∈R ,t ∈R ,将f (x )的最小值记为g (t ).(1)求g (t )的表达式;(2)讨论g (t )在区间[-1,1]内的单调性;(3)若当t ∈[-1,1]时,|g (t )|≤k 恒成立,其中k 为正数,求k 的取值范围. 【解】 (1)f (x )=(x -t )2+4t 3-3t +3,当x =t 时,f (x )取得其最小值g (t ),即g (t )=4t 3-3t +3.(2)∵g ′(t )=12t 2-3=3(2t +1)(2t -1), 列表如下:t ⎝ ⎛⎭⎪⎫-1,-12 -12 ⎝⎛ -12,⎭⎪⎫12 12 ⎝ ⎛⎭⎪⎫12,1 g ′(t )+0 -0 +g (t )极大值g ⎝ ⎛⎭⎪⎫-12极小值g ⎝ ⎛⎭⎪⎫12由此可见,g (t )在区间⎝ ⎛⎭⎪⎫-1,-12和⎝ ⎛⎭⎪⎫12,1上单调递增,在区间⎝ ⎛⎭⎪⎫-12,12上单调递减.(3)∵g (1)=g ⎝ ⎛⎭⎪⎫-12=4,g (-1)=g ⎝ ⎛⎭⎪⎫12=2,∴g (t )最大值=4,g (t )最小值=2, 又∵|g (t )|≤k 恒成立,∴-k ≤g (t )≤k 恒成立,∴⎩⎨⎧k ≥4,-k ≤2,∴k ≥4.22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为23,右焦点F 与抛物线y 2=4x 的焦点重合,O 为坐标原点.(1)求椭圆C 的方程;(2)设A 、B 是椭圆C 上的不同两点,点D (-4,0),且满足DA →=λDB →,若λ∈⎣⎢⎡⎦⎥⎤38,12,求直线AB 的斜率的取值范围. 【解】 (1)由已知得b =3,c =1,a =2, 所以椭圆的方程为x 24+y 23=1.(2)∵DA →=λDB →,∴D ,A ,B 三点共线,而D (-4,0),且直线AB 的斜率一定存在,所以设AB 的方程为y =k (x +4),与椭圆的方程x 24+y 23=1联立得(3+4k 2)y 2-24ky +36k 2=0, 由Δ=144k 2(1-4k 2)>0,得k 2<14.设A (x 1,y 1),B (x 2,y 2),y 1+y 2=24k3+4k 2,y 1·y 2=36k 23+4k 2,①又由DA →=λDB →得:(x 1+4,y 1)=λ(x 2+4,y 2), ∴y 1=λy 2②将②式代入①式得:⎩⎪⎨⎪⎧(1+λ)y 2=24k3+4k 2,λy 22=36k 23+4k 2,消去y 2得:163+4k 2=(1+λ)2λ=1λ+λ+2. 当λ∈⎣⎢⎡⎦⎥⎤38,12时,h (λ)=1λ+λ+2是减函数, ∴92≤h (λ)≤12124,∴92≤163+4k 2≤12124,解得21484≤k 2≤536, 又因为k 2<14,所以21484≤k 2≤536, 即-56≤k ≤-2122或2122≤k ≤56. ∴直线AB 的斜率的取值范围是 ⎣⎢⎡⎦⎥⎤-56,-2122∪⎣⎢⎡⎦⎥⎤2122,56.。
北师大版数学高二-选修1-1 第2章 单元综合检测(2)
第二章 单元综合检测(二)(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知A (0,-5),B (0,5),|PA |-|PB |=2a ,当a =3和5时,点P 的轨迹为( ) A .双曲线和一条直线 B .双曲线和两条射线 C .双曲线的一支和一条直线 D .双曲线的一支和一条射线解析:当2a <|AB |时,表示双曲线的一支;当2a =|AB |时表示一条射线,故选D. 答案:D2.以双曲线x 24-y 212=1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 解析:双曲线焦点(±4,0),顶点(±2,0),故椭圆的焦点为(±2,0),顶点(±4,0),故选A. 答案:A3.已知椭圆与双曲线x 23-y 22=1有共同的焦点,且离心率为15,则椭圆的标准方程为( )A.x 220+y 225=1 B.x 225+y 220=1 C.x 225+y 25=1 D.x 25+y 225=1 解析:双曲线x 23-y 22=1中a 21=3,b 21=2,则c 1=a 21+b 21=5,故焦点坐标为(-5,0),(5,0),故所求椭圆x 2a 2+y 2b 2=1(a >b >0)的c =5,又椭圆的离心率e =c a =15,则a =5,a 2=25,b 2=a 2-c 2=20,故椭圆的标准方程为x 225+y 220=1. 答案:B4.若P (x 0,y 0)是抛物线y 2=-32x 上一点,点F 为抛物线的焦点,则|PF |=( ) A .x 0+8B .x 0-8C .8-x 0D .x 0+16解析:由题意可知抛物线开口向左,且p =322=16,因此抛物线的准线方程为x =8,因此|PF |=8-x 0.答案:C5.[2014·贵州遵义一模]椭圆x 216+y 29=1中,以点M (-1,2)为中点的弦所在的直线斜率为( )A. 916B. 932C. 964D. -932解析:设弦的两个端点为A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 2116+y 219=1, ①x 2216+y229=1,②①-②得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)9=0,又∵弦中点为M (-1,2), ∴x 1+x 2=-2,y 1+y 2=4, ∴-2(x 1-x 2)16+4(y 1-y 2)9=0,∴k =y 1-y 2x 1-x 2=932.答案:B6.椭圆y 249+x 224=1与双曲线y 2-x 224=1有公共点P ,则P 与双曲线两焦点连线构成三角形的面积为( )A. 48B. 24C. 24 3D. 12 3解析:由已知得椭圆与双曲线具有共同的焦点F 1(0,5)和F 2(0,-5),又由椭圆与双曲线的定义可得⎩⎪⎨⎪⎧|PF 1|+|PF 2|=14,||PF 1|-|PF 2||=2, 所以⎩⎪⎨⎪⎧ |PF 1|=8,|PF 2|=6,或⎩⎪⎨⎪⎧|PF 1|=6,|PF 2|=8.又|F 1F 2|=10,∴△PF 1F 2为直角三角形,∠F 1PF 2=90°.所以△PF 1F 2的面积S =12|PF 1||PF 2|=12×6×8=24.答案:B7.[2014·清华附中月考]如图,南北方向的公路L ,A 地在公路正东2 km 处,B 地在A 北偏东60°方向2 3 km 处,河流沿岸曲线PQ 上任意一点到公路L 和到A 地距离相等.现要在曲线PQ 上某处建一座码头,向A ,B 两地运货物,经测算,从M 到A ,B 修建公路的费用都为a 万元/km ,那么,修建这两条公路的总费用最低是( )A. (2+3)a 万元B. (23+1)a 万元C. 5a 万元D. 6a 万元解析:本题主要考查抛物线的实际应用.依题意知曲线PQ 是以A 为焦点、L 为准线的抛物线,根据抛物线的定义知:欲求从M 到A ,B 修建公路的费用最低,只需求出B 到直线L 的距离即可.∵B 地在A 地北偏东60°方向2 3 km 处,∴B 到点A 的水平距离为3 km ,∴B 到直线L 的距离为3+2=5(km),那么,修建这两条公路的总费用最低为5a 万元,故选C.答案:C8.[2014·湖北省黄冈中学月考]已知F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,E 是双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围为( )A. (1,2)B. (1,2)C. (1,3)D. (1,3)解析:本题考查双曲线离心率的求法和数形结合思想的应用.∵△ABE 为等腰三角形,可知只需∠AEF <45°即可,即|AF |<|EF |⇒b 2a<a +c ,化简得e 2-e -2<0,又e >1,∴1<e <2,∴该双曲线的离心率e 的取值范围为(1,2),故选A.答案:A9.[2014·山东省济南一中月考]线段CD 的两端点分别在射线OA ,OB 上,若OA ,OB 的方程分别为y =3x (x ≥0)和y =-3x (x ≥0)且|CD |=43,则CD 的中点P 的轨迹方程是( )A. 3x 2+y 23=12 B. 3x 2-y 23=12 C. 3x 2+y 23=12(3≤x ≤2) D. 3x 2-y 23=12(3≤x ≤2) 解析:本题主要考查由曲线求方程.设P (x ,y ),C (x -m ,y -n ),D (x +m ,y +n ),由C ,D 分别在OA ,OB 上,及|CD |=43,得⎩⎪⎨⎪⎧y -n =3(x -m )y +n =-3(x +m )2m 2+n 2=43⇒⎩⎪⎨⎪⎧n =-3xm =-13y m 2+n 2=12⇒3x 2+y 23=12且3≤x ≤2,故选C. 答案:C10.如右图所示,共顶点的椭圆①②与双曲线③④的离心率分别为e 1,e 2,e 3,e 4,其大小关系为( )A .e 1<e 2<e 3<e 4B .e 2<e 1<e 3<e 4C .e 1<e 2<e 4<e 3D .e 2<e 1<e 4<e 3解析:由椭圆、双曲线的离心率范围知0<e 1,e 2<1<e 3,e 4.由椭圆①②的圆扁情况知e 1<e 2;由双曲线③④的开口大小情况知e 4<e 3.故选C.答案:C11.抛物线y =2x 2上两点A (x 1,y 1)、B (x 2,y 2)关于直线y =x +m 对称,且x 1·x 2=-12,则m 等于( )A.32 B .2 C.52D .3解析:依题意k AB =y 2-y 1x 2-x 1=-1,而y 2-y 1=2(x 22-x 21),得x 2+x 1=-12,且⎝ ⎛⎭⎪⎫x 2+x 12,y 2+y 12 在直线y =x +m 上,即y 2+y 12=x 2+x 12+m ,y 2+y 1=x 2+x 1+2m ,∴2(x 22+x 21)=x 2+x 1+2m ,2[(x 2+x 1)2-2x 2x 1]=x 2+x 1+2m , 2m =3,m =32.答案:A12.[2014·陕西省西安铁一中月考]已知P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)左支上的一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆C 的圆心的横坐标为( )A. -aB. -bC. -cD. a +b -c解析:本题考查双曲线中基本量之间的关系和三角形内切圆的性质.设△PF 1F 2的内切圆C 与三边PF 1,PF 2,F 1F 2分别切于点A ,B ,D ,由双曲线定义有|PF 2|-|PF 1|=2a ,即|PB |+|BF 2|-(|PA |+|AF 1|)=2a ,由圆的切线性质知|PA |=|PB |,|AF 1|=|DF 1|,|BF 2|=|DF 2|,所以|DF 2|-|DF 1|=2a ,又|DF 2|+|DF 1|=2c ,故|DF 2|=a +c ,圆心C 的横坐标为x 0=-a ,故选A.答案:A二、填空题(本大题共4小题,每小题5分,共20分)13.直线x +2y -2=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点和一个顶点,则该椭圆的离心率等于__________.解析:由题意知椭圆的焦点在x 轴上,又直线x +2y -2=0与x 轴、y 轴的交点分别为(2,0)、(0,1),它们分别是椭圆的焦点与顶点,所以b =1,c =2,从而a =5,e =c a =255.答案:25514.已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p =__________. 解析:抛物线y 2=2px (p >0)的焦点坐标是(p2,0),由两点间距离公式,得(p2+2)2+(-3)2=5.解得p =4. 答案:415.[2014·福建省厦门一中期末考试]已知双曲线x 216-y 225=1的左焦点为F ,点P 为双曲线右支上一点,且PF 与圆x 2+y 2=16相切于点N ,M 为线段PF 的中点,O 为坐标原点,则|MN |-|MO |=________.解析:本题综合考查直线、双曲线与圆.设F ′是双曲线的右焦点,连接PF ′(图略),因为M ,O 分别是FP ,FF ′的中点,所以|MO |=12|PF ′|,所以|FN |=|OF |2-|ON |2=5,由双曲线的定义知|PF |-|PF ′|=8,故|MN |-|MO |=-12|PF ′|+|MF |-|FN |=12(|PF |-|PF ′|)-|FN |=12×8-5=-1.答案:-116.[2014·辽宁高考]已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.解析:设MN 交椭圆于点P ,连接F 1P 和F 2P (其中F 1、F 2是椭圆C 的左、右焦点),利用中位线定理可得|AN |+|BN |=2|F 1P |+2|F 2P |=2×2a =4a =12.答案:12三、解答题(本大题共6小题,共70分)17.(10分)[2014·厦门高二检测]求与椭圆x 2144+y 2169=1有共同焦点,且过点(0,2)的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.解:椭圆x 2144+y 2169=1的焦点是(0,-5)、(0,5),焦点在y 轴上,于是设双曲线方程是y 2a 2-x 2b2=1(a >0,b >0), 又双曲线过点(0,2),∴c =5,a =2,∴b 2=c 2-a 2=25-4=21,∴双曲线的标准方程是y 24-x 221=1,实轴长为4,焦距为10,离心率e =c a =52,渐近线方程是y =±22121x .18.(12分)已知直线x -y +m =0与双曲线C :x 2-y 22=1交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=5上,求m 的值.解:设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧x 2-y 22=1,x -y +m =0得x 2-2mx -m 2-2=0(判别式Δ>0), ∴x 0=x 1+x 22=m ,y 0=x 0+m =2m ,∵点M (x 0,y 0)在圆x 2+y 2=5上, ∴m 2+(2m )2=5, ∴m =±1.19.(12分)[2014·陕西省西工大附中月考]已知F (1,0),直线l :x =-1,P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP →·QF →=FP →·FQ →.(1)求动点P 的轨迹C 的方程;(2)设动直线y =kx +m 与曲线C 相切于点M ,且与直线x =-1相交于点N ,试问:在x 轴上是否存在一个定点E ,使得以MN 为直径的圆恒过此定点E ?若存在,求出定点E 的坐标;若不存在,说明理由.解:(1)设点P (x ,y ),则Q (-1,y ),由QP →·QF →=FP →·FQ →,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得轨迹C :y 2=4x .(2)由⎩⎪⎨⎪⎧y =kx +m ,y 2=4x 得k 2x 2+(2km -4)x +m 2=0,由Δ=0,得km =1,从而有M (m 2,2m ),N (-1,-1m+m ),设点E (x,0),使得ME ⊥NE ,则ME →·NE →=0,即(x -m 2)(x +1)+(-2m )(1m -m )=0,即(1-x )m 2+x 2+x -2=0,得x =1,所以存在一个定点E (1,0)符合题意.20.(12分)[2014·安徽师大附中月考]已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0).(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA →·OB →>2,其中O 为原点,求k 的取值范围.解:(1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由已知得a =3,c =2.又因为a 2+b 2=c 2,所以b 2=1, 故双曲线C 的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1得(1-3k 2)x 2-62kx -9=0,由直线l 与双曲线交于不同的两点得⎩⎨⎧1-3k 2≠0Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0, 即k 2≠13且k 2<1. ①设A (x A ,y A ),B (x B ,y B ),则 x A +x B =62k 1-3k 2,x A x B=-91-3k 2,由OA →·OB →>2得x A x B +y A y B >2, 而x A x B +y A y B =x A x B +(kx A +2)(kx B +2) =(k 2+1)x A x B +2k (x A +x B )+2 =(k 2+1)×-91-3k 2+2k ×62k1-3k 2+2=3k 2+73k 2-1, 于是3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解此不等式得13<k 2<3. ②由①、②得13<k 2<1.故k 的取值范围为(-1,-33)∪(33,1). 21.(12分)[2014·江苏高考]如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为(43,13),且BF 2=2,求椭圆的方程;(2)若F 1C ⊥AB ,求椭圆离心率e 的值.解:设椭圆的焦距为2c ,则F 1(-c ,0),F 2(c,0). (1)因为B (0,b ),所以BF 2=b 2+c 2=a .又BF 2=2,故a = 2.因为点C (43,13)在椭圆上,所以169a 2+19b 2=1.解得b 2=1.故所求椭圆的方程为x 22+y 2=1.(2)因为B (0,b ),F 2(c,0)在直线AB 上, 所以直线AB 的方程为x c +yb=1.解方程组⎩⎨⎧x c +yb=1,x 2a 2+y2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c 2,⎩⎪⎨⎪⎧x 2=0,y 2=b . 所以点A 的坐标为(2a 2c a 2+c 2,b (c 2-a 2)a 2+c2).又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为(2a 2c a 2+c 2,b (a 2-c 2)a 2+c 2).因为直线F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c3,直线AB 的斜率为-bc ,且F 1C ⊥AB , 所以b (a 2-c 2)3a 2c +c3·(-b c )=-1. 又b 2=a 2-c 2,整理得a 2=5c 2.故e 2=15.因此e =55. 22.(12分)[2014·大纲全国卷]已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线l ′与C 相交于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程.解:(1)设Q (x 0,4),代入y 2=2px 得x 0=8p .所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2.所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x 得y 2-4my -4=0.设A (x 1,y 1)、B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4.故AB 的中点为D (2m 2+1,2m ),|AB |=m 2+1|y 1-y 2|=4(m 2+1). 又l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4my -4(2m 2+3)=0.设M (x 3,y 3)、N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故MN 的中点为E (2m 2+2m 2+3,-2m ),|MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于MN 垂直平分AB ,故A 、M 、B 、N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即4(m 2+1)2+(2m +2m )2+(2m2+2)2 =4(m 2+1)2(2m 2+1)m 4.化简得m 2-1=0,解得m =1或m =-1. 所求直线l 的方程为x -y -1=0或x +y -1=0.。
北师大版高中数学选修1-1章末综合测评(二) 圆锥曲线与方程.docx
高中数学学习材料马鸣风萧萧*整理制作章末综合测评(二) 圆锥曲线与方程(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线2x2-y2=8的实轴长是()A.2B.2 2C.4 D.4 2【解析】双曲线方程可化为x24-y28=1,所以a2=4,a=2,2a=4.【答案】 C2.(2016·临沂高二检测)若抛物线的准线方程为x=-7,则此抛物线的标准方程为()A.x2=-28y B.y2=28xC.y2=-28x D.x2=28y【解析】抛物线准线方程x=-p2=-7,∴p=14,焦点在x轴上,标准方程为y2=28x.【答案】 B3.已知双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线方程为y=43x,则双曲线的离心率为()A.53B.213C.54 D .72【解析】 由题意双曲线焦点在x 轴上,故b a =43, ∴e =c a =1+b 2a 2=1+169=53.【答案】 A4.若椭圆x 23m +y 22m +1=1的焦点在y 轴上,则m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,1 B .(0,1) C.⎝ ⎛⎭⎪⎫0,12 D .⎝ ⎛⎭⎪⎫-12,12【解析】 由题意得3m >0,2m +1>0且2m +1>3m ,解得0<m <1. 【答案】 B5.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点,若点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|=( )A.10 B .210 C. 5D .2 5【解析】 设点P (x ,y ),由PF 1→·PF 2→=0,得点P 满足在以F 1F 2为直径的圆上,即x 2+y 2=10.又PF 1→+PF 2→=2PO →=(-2x ,-2y ),∴|PF 1→+PF 2→|=210. 【答案】 B6.以双曲线x 216-y 29=1的右顶点为焦点的抛物线的标准方程为( )【导学号:63470051】A .y 2=16xB .y 2=-16xC .y 2=8xD .y 2=-8x【解析】 因为双曲线x 216-y 29=1的右顶点为(4,0),即抛物线的焦点坐标为(4,0),所以抛物线的标准方程为y 2=16x .【答案】 A7.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是( ) A .(-∞,0) B .(-12,0) C .(-3,0)D .(-60,-12)【解析】 由题意知k <0,∴a 2=4,b 2=-k .∴e 2=a 2+b 2a 2=4-k 4=1-k 4.又e ∈(1,2),∴1<1-k4<4.∴-12<k <0. 【答案】 B8.若椭圆的两焦点为(-2,0),(2,0),且该椭圆过点⎝ ⎛⎭⎪⎫52,-32,则该椭圆的方程是( )A.y 28+x 24=1 B .y 210+x 26=1 C.y 24+x 28=1D .y 26+x 210=1【解析】 ∵椭圆的两个焦点为(-2,0),(2,0), ∴c =2.又椭圆过点⎝ ⎛⎭⎪⎫52,-32,∴2a =⎝ ⎛⎭⎪⎫52+22+⎝ ⎛⎭⎪⎫-32-02+ ⎝ ⎛⎭⎪⎫52-22+⎝ ⎛⎭⎪⎫-32-02=210. ∴a =10. ∴b 2=a 2-c 2=6.∴椭圆的方程为x 210+y 26=1. 【答案】 D9.一动圆P 与圆O :x 2+y 2=1外切,而与圆C :x 2+y 2-6x +8=0内切,那么动圆的圆心P 的轨迹是( )A.双曲线的一支B.椭圆C.抛物线D.圆【解析】圆C的方程即(x-3)2+y2=1,圆C与圆O相离,设动圆P的半径为R.∵圆P与圆O外切而与圆C内切,∴R>1,且|PO|=R+1,|PC|=R-1,又|OC|=3,∴|PO|-|PC|=2<|OC|,即点P在以O,C为焦点的双曲线的右支上.【答案】 A10.如图1,过抛物线y2=3x的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则|AB|=()图1A.4 B.6C.8 D.10【解析】如图,分别过点A,B作AA1,BB1垂直于准线l,垂足分别为A1,B1,由抛物线的定义得|BF|=|BB1|,∵|BC|=2|BF|,∴|BC|=2|BB1|,∴∠BCB1=30°,又|AA1|=|AF|=3,∴|AC|=2|AA1|=6,∴|CF|=|AC|-|AF|=6-3=3,∴|BF|=1,|AB|=4.【答案】 A11.设F 1、F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,若双曲线右支上存在一点P 满足|PF 2|=|F 1F 2|,且cos ∠PF 1F 2=45,则双曲线的渐近线方程为( )A .3x ±4y =0B .3x ±5y =0C .4x ±3y =0D .5x ±4y =0【解析】 ∵|PF 1|-|PF 2|=2a , ∴|PF 1|=|PF 2|+2a =2a +2c .由余弦定理得45=(2a +2c )2+4c 2-4c 22×2c ×(2a +2c ),∴c a =53.∴ba =c 2-a 2a 2=43.∴渐近线方程为y =±43x , 即4x ±3y =0. 【答案】 C12.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,焦点为F ,且|AF |,4,|BF |成等差数列,则k =( )A .2或-1B .-1C .2D .1±5【解析】 设A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧y =kx -2,y 2=8x ,消去y 得k 2x 2-4(k +2)x+4=0,故Δ=[-4(k +2)]2-4k 2×4=64(1+k )>0,解得k >-1,且x 1+x 2=4(k +2)k 2.由|AF |=x 1+p 2=x 1+2,|BF |=x 2+p2=x 2+2,且|AF |,4,|BF |成等差数列,得x 1+2+x 2+2=8,得x 1+x 2=4,所以4(k +2)k 2=4,解得k =-1或k =2,又k >-1,故k =2.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中的横线上)13.若抛物线y 2=mx 与椭圆x 29+y 25=1有一个共同的焦点,则m =________.【解析】 椭圆的焦点为(±2,0).由m4=±2得m =±8. 【答案】 ±814.已知双曲线的左、右焦点分别为F 1,F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是________.【解析】 由双曲线的定义|AF 2|-|AF 1|=2a ,|BF 2|-|BF 1|=2a , ∴|AF 2|+|BF 2|-|AB |=4a ,∴△ABF 2的周长为4a +2|AB |=26. 【答案】 2615.(2015·全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.【导学号:63470052】【解析】 由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎨⎧m 2+4=r 2,(4-m )2=r 2,解得⎩⎪⎨⎪⎧m =32,r 2=254.所以圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.【答案】 ⎝ ⎛⎭⎪⎫x -322+y 2=25416.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1)、B (x 2,y 2)两点,则y 21+y 22的最小值是________.【解析】 若k 不存在,则y 21+y 22=32.若k 存在,设直线AB 的斜率为k ,当k =0时,直线AB 的方程为y =0,不合题意,故k ≠0.由题意设直线AB 的方程为y =k (x -4)(k ≠0), 由⎩⎨⎧y =k (x -4),y 2=4x 得ky 2-4y -16k =0, ∴y 1+y 2=4k ,y 1y 2=-16.∴y 21+y 22=(y 1+y 2)2-2y 1y 2=⎝ ⎛⎭⎪⎫4k 2+32>32.∴y 21+y 22的最小值为32.【答案】 32三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知双曲线的渐近线方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,求双曲线方程.【解】 ∵双曲线的渐近线方程为y =±43x , ∴设双曲线方程为x 232-y 242=λ(λ≠0). 又焦点在圆x 2+y 2=100上,∴c 2=100. 则(3|λ|)2+(4|λ|)2=100,解得λ=±4. ∴所求双曲线方程为x 29-y 216=±4, 即x 236-y 264=±1.18.(本小题满分12分)已知F 1、F 2是椭圆的两个焦点,点P 在椭圆上,∠F 1PF 2=60°,求椭圆离心率的取值范围.【解】 ∵|PF 1|+|PF 2|=2a ,|F 1F 2|=2c , ∴|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=a 2. 在△F 1PF 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2,即|F 1F 2|2=|PF 1|2+|PF 2|2-|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-3|PF 1||PF 2|≥(|PF 1|+|PF 2|)2-3⎝⎛⎭⎪⎫|PF 1|+|PF 2|22, ∴(2c )2≥(2a )2-3a 2,∴a 2≤4c 2. ∴c a ≥12,∴e ∈⎣⎢⎡⎭⎪⎫12,1.19.(本小题满分12分)已知点P (6,8)是椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2为椭圆的两焦点,若PF 1→·PF 2→=0.试求:(1)椭圆的方程; (2)求sin ∠PF 1F 2的值.【解】 (1)因为PF 1→·PF 2→=0,所以-(c +6)(c -6)+64=0,所以c =10, 所以F 1(-10,0),F 2(10,0), 所以2a =|PF 1|+|PF 2|=(6+10)2+82+(6-10)2+82 =125,所以a =65,b 2=80. 所以椭圆方程为x 2180+y 280=1. (2)因为PF 1⊥PF 2, 所以S△PF 1F 2=12|PF 1|·|PF 2|=12|F 1F 2|·y P =80,所以|PF 1|·|PF 2|=160, 又|PF 1|+|PF 2|=125, 所以|PF 2|=45,所以sin ∠PF 1F 2=|PF 2||F 1F 2|=4520=55.20.(本小题满分12分)如图2所示,已知抛物线y 2=4x 的焦点为F ,顶点为O ,点P 在抛物线上移动,Q 是OP 的中点,M 是FQ 的中点,求点M 的轨迹方程.图2【解】 设M (x ,y ),P (x 1,y 1),Q (x 2,y 2),易求y 2=4x 的焦点F 的坐标为(1,0).∵M 是FQ 的中点,∴⎩⎪⎨⎪⎧x =1+x 22,y =y 22,即⎩⎨⎧x 2=2x -1,y 2=2y . 又∵Q 是OP 的中点, ∴⎩⎪⎨⎪⎧x 2=x 12,y 2=y 12,即⎩⎨⎧x 1=2x 2=4x -2,y 1=2y 2=4y ,∵P 在抛物线y 2=4x 上, ∴(4y )2=4(4x -2), 整理得,y 2=x -12.故M 点的轨迹方程为y 2=x -12.21.(本小题满分12分)(2015·全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.【导学号:63470053】【解】 (1)由题意有a 2-b 2a =22,4a 2+2b 2=1, 解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1.(2)设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1), B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入x 28+y 24=1,得(2k 2+1)x 2+4kbx +2b 2-8=0. 故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.22.(本小题满分12分)已知抛物线C 1的焦点与椭圆C 2:x 26+y 25=1的右焦点重合,抛物线C 1的顶点在坐标原点,过点M (4,0)的直线l 与抛物线C 1交于A ,B 两点.(1)写出抛物线C 1的标准方程; (2)求△ABO 面积的最小值.【解】 (1)椭圆C 2:x 26+y 25=1的右焦点为(1,0),即为抛物线C 1的焦点,又抛物线C 1的顶点在坐标原点,所以抛物线的标准方程为y 2=4x .(2)当直线AB 的斜率不存在时,直线方程为x =4,此时|AB |=8,△ABO 的面积S =12×8×4=16.当直线AB 的斜率存在时, 设AB 的方程为y =k (x -4)(k ≠0), 联立⎩⎨⎧y =k (x -4),y 2=4x消去x ,得ky 2-4y -16k =0,Δ=16+64k 2>0, 设A (x 1,y 1),B (x 2,y 2),由根与系数之间的关系得 y 1+y 2=4k ,y 1·y 2=-16,∴S △AOB =S △AOM +S △BOM =12|OM ||y 1-y 2|=216k 2+64>16,综上所述,△ABO面积的最小值为16.。
2019—2020年新课标北师大版高中数学选修1-1全册模块综合练习及答案答案解析.docx
(新课标)2017-2018学年北师大版高中数学选修1-1模块同步练测建议用时实际用时满分实际得分45分钟一、选择题(每小题5分)1.下列命题:①面积相等的三角形是全等三角形;②“若xy=0,则|x|+|y|=0”的逆命题;③“若a>b,则a+c>b+c”的否命题;④“矩形的对角线互相垂直”的逆否命题.其中真命题共有( )A.1个B.2个C.3个D.4个2.下列判断正确的是( )A.设x是实数,则“x>1”是“|x|>1”的充分不必要条件B.p:“x∈R,≤0”则有p:不存在x∈R,>0C.命题“若=1,则x=1”的否命题为:“若=1,则x≠1”D.x∈(0,+∞),>为真命题3.若集合A={1,},B={3,4},则“m=2”是“A∩B={4}”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.过点(2,4)作直线与抛物线=8x只有一个公共点,这样的直线有( )A.一条B.两条C.三条D.四条5.已知对任意的k∈R,直线y-kx-1=0与椭圆+=1恒有公共点,则实数m的取值范围是( )A.(0,1)B.(0,5)C.[1,5)∪(5,+∞)D.[1,5)6.已知抛物线y=-+3上存在关于直线x+y=0对称的相异两点A,B,则AB等于( )A.3B.4C.3D.47.已知抛物线=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为( )A.x=1B.x=-1C.x=2D.x=-28.若原点到直线bx+ay=ab的距离等于+1,则双曲线-=1(a>0,b>0)的半焦距的最小值为( )A.2B.3C.5D.69.已知函数f(x)的导数为f′(x)=4-4x,且f(x)的图象过点(0,-5),当函数f(x)取得极大值-5时,x的值应为( )A.-1 B.0 C.1 D.±110.若函数f(x)=a-3x在(-1,1)上单调递减,则实数a的取值范围是( )A.a<1 B.a≤1C.0<a<1 D.0<a≤1二、填空题(每小题5分)11.已知命题p:x∈R,a+2x+3≥0,如果命题p为真命题,则实数a的取值范围是.12.函数f(x)=-+3+9x+a在区间[-2,2]上的最大值是20,则它在该区间上的最小值是.13.下列四个结论中,正确的有(填序号).①若A是B的必要不充分条件,则非B也是非A的必要不充分条件;②“是“一元二次不等式a+bx+c≥0的解集为R”的充要条件;③“x≠1”是“≠1”的充分不必要条件;④“x≠0”是“x+|x|>0”的必要不充分条件.三、解答题14.(10分)设动点P(x,y)(y≥0)到定点F(0,1)的距离和它到直线y=-1的距离相等,记点P的轨迹为曲线C.(1)求曲线C的方程.(2)设圆M过A(0,2),且圆心M在曲线C上,EG是圆M在x轴上截得的弦,试探究当M运动时,|EG|是否为定值?为什么?15.(12分)设p:实数x满足-4ax+3<0,其中a>0;q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.16.(12分)已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=(1)写出年利润W(x)(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获利润最大?(注:年利润=年销售收入-年总成本)17.(14分)在平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,2),点C满足=α+β,其中α,β∈R,且+=1.(1)求点C的轨迹方程;(2)过点D(2,0)的直线l和点C的轨迹交于不同的两点M,N,且M在D,N之间,=λ,求λ的取值范围1.B 解析:①是假命题,②是真命题,③是真命题,④是假命题.2.A 解析:A中x>1|x|>1,|x|>1x>1或x<-1,所以正确;B中p:x∈R,>0;C中否命题为:“若≠1,则x≠1”;D中x=时是错误的.3.A 解析:若m=2,A={1,4},则A∩B={4};反之,若A∩B={4},则需=4,即m=±2.故“m=2”是“A∩B={4}”的充分不必要条件.4.B 解析:因为点(2,4)在抛物线上,则过点(2,4)的抛物线的切线只有一条.当斜率为0时,直线和对称轴平行,这时也只有一个公共点,则符合题意的直线有两条.5.C 解析:直线恒过定点(0,1),若直线与椭圆恒有公共点,只需点(0,1)在椭圆上或在椭圆内部,∴≤1.又m>0且m≠5,∴m≥1且m≠5.6.C 解析:设A(,3-),B(,3-),由于A,B关于直线x+y=0对称,所以解得或设直线AB的斜率为k,则k=1,所以AB=|-|=3,故选C.7.B 解析:设A(,),B(,),则有=2p,=2p,两式相减得(-)(+)=2p(-).又因为直线的斜率为1,所以=1,所以有+=2p.又线段AB的中点的纵坐标为2,即+=4,所以p=2,所以抛物线的准线方程为x=-=-1.8.D 解析:双曲线的半焦距c=(c>0),由题意得=+1,∴ab=+c.∵+≥2ab,∴ab≤,∴≥+c.又∵c>0,∴c≥6.故选D.9.B 解析:可以设f(x)=-2+c,其中c为常数.由于f(x)过(0,-5),所以c=-5.由f′(x)=0,得极值点为x=0或x=±1.当x=0时,f(x)=-5,故x的值为0.10.B 解析:f′(x)=3a-3,由题意知f′(x)≤0在(-1,1)上恒成立.若a≤0,显然有f′(x)<0;若a>0,由f′(x)≤0,得-≤x≤,于是≥1,∴0<a≤1.综上知a≤1.11.a<解析:∵p为真命题,∴p为假命题.又当p为真命题时,需a+2x+3≥0恒成立,显然a=0时不正确,则需∴a≥,∴当p为假命题时,a<.12.-7 解析:f′(x)=-3+6x+9.令f′(x)=0,得x=-1或x=3.∴f(x)在[-1,2]上单调递增.又由于f(x)在[-2,-1]上单调递减,f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,∴f(2)>f(-2).∴f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值.于是有22+a=20,解得a=-2.∴f(x)=-+3+9x-2.∴f(-1)=1+3-9-2=-7,即函数f(x)在区间[-2,2]上的最小值为-7.13.①②④解析:∵原命题与其逆否命题等价,∴若A是B的必要不充分条件,则非B也是非A的必要不充分条件.x≠1≠1,反例:x=-1=1,∴“x≠1”是“≠1”的不充分条件.x≠0x+|x|>0,反例:x=-2x+|x|=0.但x+|x|>0x>0x≠0,∴“x≠0”是“x+|x|>0”的必要不充分条件.14.解:(1)如图,依题意知,动点P到定点F(0,1)的距离等于点P到直线y=-1的距离,故曲线C是以原点为顶点,F(0,1)为焦点的抛物线.∵=1,∴p=2.∴曲线C的方程是=4y.(2)设圆M的圆心为M(a,b),∵圆M过A(0,2),∴圆的方程为+=+.令y=0得-2ax+4b-4=0.设圆与x轴的两交点分别为(,0),(,0).方法一:不妨设>,由求根公式得=,=.∴-=.又∵点M(a,b)在抛物线=4y上,∴=4b.∴-==4,即|EG|=4.∴当M运动时,弦长|EG|为定值4.方法二:∵+=2a,·=4b-4,∴=-4·=-4(4b-4)=4-16b+16.又∵点M(a,b)在抛物线=4y上,∴=4b,∴=16,|-|=4,∴当M运动时,弦长|EG|为定值4.15.解:由-4ax+3<0,得(x-3a)(x-a)<0.又a>0,所以a<x<3a.(1)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真q真,所以实数x的取值范围是2<x<3.(2)若p是q的充分不必要条件,即q,且p.设A={x|p},B={x|q},则A B,又A={x|p}={x|x≤a或x≥3a},B={x|q}={x|x≤2或x>3},则有0<a≤2且3a>3,所以实数a的取值范围是1<a≤2.16. 解:(1)当0<x≤10时,W(x)=xR(x)-(10+2.7x)=8.1x--10;当x>10时,W(x)=xR(x)-(10+2.7x)=98--2.7x.∴W(x)=(2)①当0<x≤10时,由W′(x)=8.1-=0,得x=9,且当x∈(0,9)时,W′(x)>0;当x∈(9,10]时,W′(x)<0,∴当x=9时,W(x)取最大值,且=8.1×9-×-10=38.6.②当x>10时,W(x)=98-(+2.7x)≤98-2=38,当且仅当=2.7x,即x=时,W()=38,故当x=时,W(x)取最大值38.综合①②知当x=9时,W(x)取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.17.解:(1)设点C(x,y),∵=α+β,∴(x,y)=α(1,0)+β(0,2),∴即代入+=1,得点C的轨迹方程为+=1.(2)由已知得0<λ<1,设M(,),N(,),则由=λ,可得(-2,)=λ(-2,),∴即∵M,N在椭圆上,∴消去,得+(1-)=1,即-=1-.利用平方差公式整理得=(λ≠1).∵||≤1,∴||≤1,解得≤λ≤3,且λ≠1. 又0<λ<1,∴λ的取值范围是[,1).。
北师大版高中数学选修2-1综合学习与测试(二)
综合学习与测试(二)说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分) 1、已知命题p :“一次函数的图象是一条直线”,命题q :“函数y =ax 2+bx +c (a 、b 、c 为常数)的图象是一条抛物线”.则下列四种形式的复合命题中真命题是 ( )①非p ②非q ③p 或q ④p 且qA.①②B.①③C.②③D.③④ 2、下列命题是假命题的是 ( ) A ,命题“若220,x y +=则,x y 全为0”的逆命题; B ,命题“全等三角形是相似三角形”的否命题;C ,命题“若0,m >则20x x m +-=有实数根”的逆否命题;D ,命题“ABC ∆中,如果090C ∠=,那么222c a b =+” 的逆否命题; 3、下列命题是真命题的是 ( )A ,“a b >”是“22a b >”的充分条件;B ,“a b >”是“22a b >”的必要条件;C ,“a b >”是“22ac bc >” 的充分条件;D ,“a b >”是“a c b c +>+”的充要条件。
4、已知条件p :x +y ≠-2,条件q :x ≠-1且y ≠-1,则p 是q 的 ( ) A.充要条件B.既不充分也不必要条件C.充分不必要条件D.必要不充分条件5、如果不等式|x -a |<1成立的充分不必要条件是21<x <23,则实数a 的取值范围是( )A. 21<a <23 B. 21≤a ≤23 C.a >23或a <21 D.a ≥23或a ≤21。
最新北师大版高中数学选修1-1全册模块综合练习及答案解析.docx
(新课标)2017-2018学年北师大版高中数学选修1-1模块同步练测建议用时实际用时满分实际得分45分钟一、选择题(每小题5分)1.下列命题:①面积相等的三角形是全等三角形;②“若xy=0,则|x|+|y|=0”的逆命题;③“若a>b,则a+c>b+c”的否命题;④“矩形的对角线互相垂直”的逆否命题.其中真命题共有( )A.1个B.2个C.3个D.4个2.下列判断正确的是( )A.设x是实数,则“x>1”是“|x|>1”的充分不必要条件B.p:“x∈R,≤0”则有p:不存在x∈R,>0C.命题“若=1,则x=1”的否命题为:“若=1,则x≠1”D.x∈(0,+∞),>为真命题3.若集合A={1,},B={3,4},则“m=2”是“A∩B={4}”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.过点(2,4)作直线与抛物线=8x只有一个公共点,这样的直线有( )A.一条B.两条C.三条D.四条5.已知对任意的k∈R,直线y-kx-1=0与椭圆+=1恒有公共点,则实数m的取值范围是( )A.(0,1)B.(0,5)C.[1,5)∪(5,+∞)D.[1,5)6.已知抛物线y=-+3上存在关于直线x+y=0对称的相异两点A,B,则AB等于( )A.3B.4C.3D.47.已知抛物线=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为( )A.x=1B.x=-1C.x=2D.x=-28.若原点到直线bx+ay=ab的距离等于+1,则双曲线-=1(a>0,b>0)的半焦距的最小值为( )A.2B.3C.5D.69.已知函数f(x)的导数为f′(x)=4-4x,且f(x)的图象过点(0,-5),当函数f(x)取得极大值-5时,x的值应为( )A.-1 B.0 C.1 D.±110.若函数f(x)=a-3x在(-1,1)上单调递减,则实数a的取值范围是( )A.a<1 B.a≤1C.0<a<1 D.0<a≤1二、填空题(每小题5分)11.已知命题p:x∈R,a+2x+3≥0,如果命题p为真命题,则实数a的取值范围是.12.函数f(x)=-+3+9x+a在区间[-2,2]上的最大值是20,则它在该区间上的最小值是.13.下列四个结论中,正确的有(填序号).①若A是B的必要不充分条件,则非B也是非A的必要不充分条件;②“是“一元二次不等式a+bx+c≥0的解集为R”的充要条件;③“x≠1”是“≠1”的充分不必要条件;④“x≠0”是“x+|x|>0”的必要不充分条件.三、解答题14.(10分)设动点P(x,y)(y≥0)到定点F(0,1)的距离和它到直线y=-1的距离相等,记点P的轨迹为曲线C.(1)求曲线C的方程.(2)设圆M过A(0,2),且圆心M在曲线C上,EG是圆M在x轴上截得的弦,试探究当M运动时,|EG|是否为定值?为什么?15.(12分)设p:实数x满足-4ax+3<0,其中a>0;q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.16.(12分)已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=(1)写出年利润W(x)(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获利润最大?(注:年利润=年销售收入-年总成本)17.(14分)在平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,2),点C满足=α+β,其中α,β∈R,且+=1.(1)求点C的轨迹方程;(2)过点D(2,0)的直线l和点C的轨迹交于不同的两点M,N,且M在D,N之间,=λ,求λ的取值范围1.B 解析:①是假命题,②是真命题,③是真命题,④是假命题.2.A 解析:A中x>1|x|>1,|x|>1x>1或x<-1,所以正确;B中p:x∈R,>0;C中否命题为:“若≠1,则x≠1”;D中x=时是错误的.3.A 解析:若m=2,A={1,4},则A∩B={4};反之,若A∩B={4},则需=4,即m=±2.故“m=2”是“A∩B={4}”的充分不必要条件.4.B 解析:因为点(2,4)在抛物线上,则过点(2,4)的抛物线的切线只有一条.当斜率为0时,直线和对称轴平行,这时也只有一个公共点,则符合题意的直线有两条.5.C 解析:直线恒过定点(0,1),若直线与椭圆恒有公共点,只需点(0,1)在椭圆上或在椭圆内部,∴≤1.又m>0且m≠5,∴m≥1且m≠5.6.C 解析:设A(,3-),B(,3-),由于A,B关于直线x+y=0对称,所以解得或设直线AB的斜率为k,则k=1,所以AB=|-|=3,故选C.7.B 解析:设A(,),B(,),则有=2p,=2p,两式相减得(-)(+)=2p(-).又因为直线的斜率为1,所以=1,所以有+=2p.又线段AB的中点的纵坐标为2,即+=4,所以p=2,所以抛物线的准线方程为x=-=-1.8.D 解析:双曲线的半焦距c=(c>0),由题意得=+1,∴ab=+c.∵+≥2ab,∴ab≤,∴≥+c.又∵c>0,∴c≥6.故选D.9.B 解析:可以设f(x)=-2+c,其中c为常数.由于f(x)过(0,-5),所以c=-5.由f′(x)=0,得极值点为x=0或x=±1.当x=0时,f(x)=-5,故x的值为0.10.B 解析:f′(x)=3a-3,由题意知f′(x)≤0在(-1,1)上恒成立.若a≤0,显然有f′(x)<0;若a>0,由f′(x)≤0,得-≤x≤,于是≥1,∴0<a≤1.综上知a≤1.11.a<解析:∵p为真命题,∴p为假命题.又当p为真命题时,需a+2x+3≥0恒成立,显然a=0时不正确,则需∴a≥,∴当p为假命题时,a<.12.-7 解析:f′(x)=-3+6x+9.令f′(x)=0,得x=-1或x=3.∴f(x)在[-1,2]上单调递增.又由于f(x)在[-2,-1]上单调递减,f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,∴f(2)>f(-2).∴f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值.于是有22+a=20,解得a=-2.∴f(x)=-+3+9x-2.∴f(-1)=1+3-9-2=-7,即函数f(x)在区间[-2,2]上的最小值为-7.13.①②④解析:∵原命题与其逆否命题等价,∴若A是B的必要不充分条件,则非B也是非A的必要不充分条件.x≠1≠1,反例:x=-1=1,∴“x≠1”是“≠1”的不充分条件.x≠0x+|x|>0,反例:x=-2x+|x|=0.但x+|x|>0x>0x≠0,∴“x≠0”是“x+|x|>0”的必要不充分条件.14.解:(1)如图,依题意知,动点P到定点F(0,1)的距离等于点P到直线y=-1的距离,故曲线C是以原点为顶点,F(0,1)为焦点的抛物线.∵=1,∴p=2.∴曲线C的方程是=4y.(2)设圆M的圆心为M(a,b),∵圆M过A(0,2),∴圆的方程为+=+.令y=0得-2ax+4b-4=0.设圆与x轴的两交点分别为(,0),(,0).方法一:不妨设>,由求根公式得=,=.∴-=.又∵点M(a,b)在抛物线=4y上,∴=4b.∴-==4,即|EG|=4.∴当M运动时,弦长|EG|为定值4.方法二:∵+=2a,·=4b-4,∴=-4·=-4(4b-4)=4-16b+16.又∵点M(a,b)在抛物线=4y上,∴=4b,∴=16,|-|=4,∴当M运动时,弦长|EG|为定值4.15.解:由-4ax+3<0,得(x-3a)(x-a)<0.又a>0,所以a<x<3a.(1)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真q真,所以实数x的取值范围是2<x<3.(2)若p是q的充分不必要条件,即q,且p.设A={x|p},B={x|q},则A B,又A={x|p}={x|x≤a或x≥3a},B={x|q}={x|x≤2或x>3},则有0<a≤2且3a>3,所以实数a的取值范围是1<a≤2.16. 解:(1)当0<x≤10时,W(x)=xR(x)-(10+2.7x)=8.1x--10;当x>10时,W(x)=xR(x)-(10+2.7x)=98--2.7x.∴W(x)=(2)①当0<x≤10时,由W′(x)=8.1-=0,得x=9,且当x∈(0,9)时,W′(x)>0;当x∈(9,10]时,W′(x)<0,∴当x=9时,W(x)取最大值,且=8.1×9-×-10=38.6.②当x>10时,W(x)=98-(+2.7x)≤98-2=38,当且仅当=2.7x,即x=时,W()=38,故当x=时,W(x)取最大值38.综合①②知当x=9时,W(x)取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.17.解:(1)设点C(x,y),∵=α+β,∴(x,y)=α(1,0)+β(0,2),∴即代入+=1,得点C的轨迹方程为+=1.(2)由已知得0<λ<1,设M(,),N(,),则由=λ,可得(-2,)=λ(-2,),∴即∵M,N在椭圆上,∴消去,得+(1-)=1,即-=1-.利用平方差公式整理得=(λ≠1).∵||≤1,∴||≤1,解得≤λ≤3,且λ≠1. 又0<λ<1,∴λ的取值范围是[,1).。
北师大版高中数学选修1-1导数的概念及其几何意义导数的概念同步练习
高中数学学习材料金戈铁骑整理制作导数的概念及其几何意义 导数的概念 同步练习 一,选择题:1.已知函数f(x)=2x+5,当x 从2变化到4时,函数的平均变化率是( )A 、 2B 、 4C 、 2D 、 -22.一个物体的运动方程为21s t t =-+ 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A 、 7米/秒B 、6米/秒C 、 5米/秒D 、 8米/秒 4.32()32f x ax x =++,若(1)4f '-=,则a 的值等于( )A .319B .316C .313D .310 5.如果()f x 为偶函数,且导数()f x 存在,则()0f '的值为 ( )A .2B .1C .0D .-16、根据导数的定义,)(1'x f 等于( ) A. 01010)()(lim1x x x f x f x --→ B.x x f x f x ∆-→∆)()(lim 010 C.x x f x x f x ∆-∆+→∆)()(lim 110 D.x x f x x f x ∆-∆+→)()(lim 1101 7、 物体作直线运动的方程为)(t s s =,则10)4('=s 表示的意义是( )(A )经过4s 后物体向前走了10m (B )物体在前4s 内的平均速度为10m/s(C )物体在第4s 内向前走了10m (D )物体在第4s 时的瞬时速度为10m/s8、某人拉动一个物体前进,他所做的功W (J )是时间t (s )的函数t t t t W W 166)(23+-==,则他在时刻s t 2=时的功率为( )(A )4s J / (B )16s J / (C )5s J / (D )8s J /9、一辆汽车从停止时开始加速行驶,并且在5秒内速度)/(s m v 与时间t (s )的关系近似表示为t t t f v 10)(2+-==,则汽车在时刻1=t 秒时的加速度为( )(A )9s m / (B )92/s m (C )82/s m (D )72/s m10、 若函数x x x f +-=2)(的图像上一点)2,1(--及邻近一点)2,1(y x ∆+-∆+-,则=∆∆xy ( ) (A )3 (B )2)(3x x ∆-∆ (C )2)(3x ∆- (D )x ∆-311、若函数)(x f 对于任意x ,有3'4)(x x f =,1)1(-=f ,则此函数为( )(A )1)(4+=x x f (B )2)(4-=x x f(C )1)(4-=x x f (D )2)(4+=x x f12、已知函数63)(23-+=x ax x f ,若4)1('=-f ,则实数a 的值为( )(A )319 (B )316 (C )313 (D )310 二,填空题: 13、一质点运动方程为2t s =,则质点在4=t 时的瞬时速度为 。
高中数学(北师大版)选修1-1教案:第2章 知识点拨:椭圆与双曲线的经典性质及法则
椭圆与双曲线的对偶性质--(必背的经典结论)椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM ABb k k a⋅=-,即0202y a x b K AB-=。
12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+. 双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=. 7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K ABOM =⋅,即0202y a x b K AB =。
2020学年高中数学综合检测北师大版选修1-1(2021-2022学年)
综合检测(时间90分钟 满分100分) 第Ⅰ卷(选择题,共40分)一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“已知a ,b ∈R,若a2+b 2=0,即a=b =0”的否定是( ) A.已知a,b∈R,若a 2+b 2≠0,则a≠0且b ≠0 B.已知a,b ∈R,若a 2+b2=0,则a ≠0且b ≠0 C .已知a,b ∈R ,若a 2+b 2=0,则a ≠0或b ≠0 D.已知a ,b ∈R,若a 2+b 2≠0,则a ≠0或b ≠0解析:命题“已知a ,b ∈R,若a 2+b2=0,则a =b =0”即命题“已知a ,b ∈R ,若a 2+b 2=0,则a =0且b =0”,故其否定是“已知a,b∈R,若a 2+b 2=0,则a≠0或b ≠0”.答案:C2.已知双曲线错误!+错误!=1的离心率e ∈(1,2),则k 的取值范围是( ) A.(-∞,0) B .(-12,0) C.(-3,0)D.(-60,-12)解析:∵a 2=4,b2=-k , ∴c 2=4-k 。
∵e∈(1,2),∴\f(c 2,a 2)=错误!未定义书签。
∈(1,4),k∈(-12,0). 答案:B3.设曲线f (x )=错误!未定义书签。
在点(3,2)处的切线与直线ax +y+1=0垂直,则a 等于( )A.2 ﻩB.12C.-错误!未定义书签。
ﻩD .-2解析:∵f′(x)=错误!未定义书签。
=-错误!未定义书签。
, ∴f ′(3)=-错误!未定义书签。
. 又∵(-a )×错误!=-1, ∴a=-2。
答案:D4.下列说法中正确的是()A.命题“若am2〈bm2,则a<b"的逆命题是真命题B.命题“存在x∈R,x2-x〉0”的否定是“对任意x∈R,x2-x≤0"C.命题“p或q”为真命题,则命题“p”和命题“q"均为真命题D.已知x∈R,则“x〉1”是“x〉2"的充分不必要条件解析:命题“若am2〈bm2,则a〈b”的逆命题为“若a<b,则am2〈bm2”,当m=0时,是假命题,故A不正确;命题“p或q”为真命题,则命题“p”和“q”中至少有一个为真命题,故C不正确;x>2⇒x〉1,而x〉1⇒/x>2,则“x〉1”是“x>2"的必要不充分条件,故D不正确.答案:B5.函数f(x)=x3-3x2+7的极大值是( )A.-7 ﻩB.7C.3ﻩ D.-3解析:f′(x)=3x2-6x,令f′(x)=0,即3x2-6x=0,解得x1=0,x2=2。
北师大版高中数学选修1-1本章高效整合.docx
高中数学学习材料马鸣风萧萧*整理制作第4章(本栏目内容,在学生用书中以活页形式分册装订)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,在(0,+∞)内为增函数的是()A.y=sin2x B.y=x e2C.y=x3-x D.y=-x+ln(1+x)解析:对于B项,y′=(x e x)′=e x+x e x,当x>0时,y′>0恒成立.答案: B2.如果函数y=f(x)的图象如右图,那么导函数y=f′(x)的图象可能是下图中的()解析:由f(x)的图象可知,函数f(x)从左至右有四个单调区间,依次为递增、递减、递增、递减,故f′(x)的图象从左至右应有四个部分,其函数值依次为正、负、正、负,故选A.答案: A3.设f(x)=x a-ax(0<a<1),则f(x)在[0,+∞)内的极大值点为x0等于()A.0 B.aC.1 D.1-a解析:令f′(x)=ax a-1-a=0(0<a<1),得x a-1=1,所以x=1.答案: C4.函数f (x )=x 3+ax 2+3x -9,已知f (x )在点x =-3处取得极值,则a 等于( ) A .2 B .3 C .4D .5解析: f ′(x )=3x 2+2ax +3,又f (x )在点x =-3处取得极值,所以f ′(-3)=3×(-3)2-6a +3=0,所以a =5.答案: D5.已知函数f (x )=x ln x ,若f (x )在x 0处的函数值与导数值之和等于1,则x 0的值等于( ) A .1 B .-1 C .±1D .不存在解析: 因为f (x )=x ln x ,所以f ′(x )=ln x +1,于是有x 0ln x 0+ln x 0+1=1,解得x 0=1或x 0=-1(舍去),故选A.答案: A6.函数f (x )=x 2-2ln x 的单调递减区间是( ) A .(0,1]B .[1,+∞)C .(-∞,-1],(0,1)D .[-1,0),(0,1]解析: f ′(x )=2x -2x =2(x 2-1)x≤0.考虑到定义域x >0,故x 2-1≤0. 答案: A7.某产品的销售收入y 1(万元)是产量x (千台)的函数:y 1=17x 2,生产成本y 2(万元)是产量x (千台)的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产( )A .6千台B .7千台C .8千台D .9千台解析: 设利润为y ,则y =y 1-y 2=17x 2-(2x 3-x 2)=-2x 3+18x 2(x >0),∴y ′=-6x 2+36x =-6x (x -6),令y ′=0,解得x =0或x =6,经检验知x =6既是函数的极大值又是函数的最大值点.答案: A8.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个解析: 函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如上图所示,函数f (x )在开区间(a ,b )内有极小值的点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个.答案: A9.已知函数f (x )=x 2+2xf ′(1),则f (-1)与f (1)的大小关系是( ) A .f (-1)=f (1) B .f (-1)<f (1) C .f (-1)>f (1)D .无法确定解析: f ′(x )=2x +2f ′(1), ∴f ′(1)=2+2f ′(1),∴f ′(1)=-2. ∴f (x )=x 2-4x . ∴f (1)=-3,f (-1)=5. 答案: C10.已知函数f (x )=13x 3-3x ,则函数f (x )在区间[-2,2]上取得最大值的点是( )A .0B .-2C .2D .- 3 解析: ∵f ′(x )=x 2-3,令f ′(x )=0,则x =±3.又f (-2)=103,f (-3)=23,f (3)=-23,f (2)=-103.∴f (x )在区间[-2,2]上的最大值为23,其对应点为- 3. 答案: D11.设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( ) A .a >-3 B .a <-3 C .a >-13D .a <-13解析: f ′(x )=3+a e ax ,若函数在x ∈R 上有大于零的极值点,即f ′(x )=3+a e ax =0有正根.当f ′(x )=3+a e ax =0成立时, 显然有a <0,此时x =1a ln(-3a),由x >0,得0<-3a <1,所以参数a 的范围为a <-3.答案: B12.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A.⎣⎡⎭⎫0,π4 B.⎣⎡⎭⎫π4,π2C.⎝⎛⎦⎤π2,3π4D.⎣⎡⎭⎫3π4,π解析: y ′=-4e x (e x +1)2=-4e x+1e x +2又e x +1ex ≥2∴-1≤y ′<0,即-1≤k <0 ∴34π≤α<π 答案: D二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.函数f (x )=12x 2-1x (x <0)的最小值是________.答案: 3214.函数f (x )=x ln x (x >0)的单调递增区间是________. 解析: ∵f (x )=x ln x , ∴f ′(x )=ln x +1.由f ′(x )≥0,即ln x +1≥0,∴x ≥1e .∴单调递增区间为⎣⎡⎭⎫1e ,+∞. 答案: ⎣⎡⎭⎫1e ,+∞ 15.已知函数f (x )=103x 3+3x 2+2,若f ′(a )=4且a ∈{a |a 2-2a >0},则a =________.解析: 因为f ′(x )=10x 2+6x ,所以f ′(a )=10a 2+6a =4,所以a =-1或a =25,又因为a 2-2a >0,所以a <0或a >2,所以a =-1.答案: -116.如果函数f (x )=-x 3+bx (b 为常数),且y =f (x )在区间(0,1)上单调递增,并且方程f (x )=0的根在区间[-2,2]内,则b 的取值范围是________.解析: ∵f ′(x )=-3x 2+b >0(0<x <1),b >3x 2(0<x <1),故b ≥3,又f (x )=0的根在区间[-2,2],故有±b ∈[-2,2],∴b ≤2,b ≤4,∴3≤b ≤4.答案: [3,4]三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)求函数f (x )=13x 3-x 2-8x +1(-6≤x ≤6)的单调区间、极值.解析: ∵f (x )=13x 3-x 2-8x +1,∴f ′(x )=x 2-2x -8,令f ′(x )=0,得x =-2或x =4. 当x ∈(-6,-2)时,f ′(x )>0; 当x ∈(-2,4)时,f ′(x )<0; 当x ∈(4,6)时,f ′(x )>0.所以f (x )的单调增区间为[-6,-2],[4,6], 单调减区间为[-2,4].当x =-2时,f (x )取得极大值f (-2)=313;当x =4时,f (x )取得极小值f (4)=-773.18.(12分)将一段长为100 cm 的铁丝截成两段,一段弯成正方形,一段弯成圆,问如何截可使正方形与圆面积之和最小?解析: 设弯成圆的一段长为x ,另一段长为100-x ,记正方形与圆的面积之 和为S ,则S =π(x 22π)2+(100-x 4)2(0<x <100).S ′=x 2π-18(100-x ).令S ′=0,则x =100ππ+4(cm).由于在(0,100)内函数只有一个导数为零的点,问题中面积之和的最小值显然存在,故当x =100ππ+4cm 时,面积之和最小. 故当截得弯成圆的一段长为100ππ+4cm 时,两种图形面积之和最小. 19.(12分)已知函数f (x )=x 3-3ax 2+2bx 在点x =1处有极小值-1.试确定a 、b 的值,并求出f (x )的单调区间.解析: f (1)=1-3a +2b =-1,又f ′(x )=3x 2-6ax +2b , ∴f ′(1)=3-6a +2b =0,∴a =13,b =-12.∴f (x )=x 3-x 2-x ,∴f ′(x )=3x 2-2x -1=(3x +1)(x -1). 当x <-13或x >1时,f ′(x )>0;当-13<x <1时,f ′(x )<0.∴f (x )的单调增区间为(-∞,-13)和(1,+∞),单调减区间为(-13,1).20.(12分)已知某商品生产成本y 与产量x 的函数关系式为y =100+4x ,价格m 与产量x 的函数关系式为m =25-x8.求产量x 为何值时,利润L 最大?解析: 总的收入是mx =x ⎝⎛⎭⎫25-x 8=25x -18x 2, 所以L =⎝⎛⎭⎫25x -x 28-(100+4x )=-x28+21x -100(0<x <200),所以L ′=-14x +21,由L ′=0,即-14x +21=0,得x =84.当x <84时,L ′>0,当x >84时,L ′<0,所以函数在x =84处取得极大值,并且这个极大值就是L 的最大值,即产量为84时,利润最大.21.(12分)设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点. (1)试确定常数a 和b 的值;(2)试判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由. 解析: (1)f ′(x )=ax+2bx +1.由已知⎩⎪⎨⎪⎧f ′(1)=0,f ′(2)=0⇒⎩⎪⎨⎪⎧a +2b +1=0,12a +4b +1=0,解得⎩⎨⎧a =-23,b =-16.(2)x 变化时,f ′(x )、f (x )的变化情况如下:x (0,1) 1 (1,2) 2 (2,+∞)f ′(x ) -0 +0 -f (x )极小值极大值∴在x =1处,函数f (x )取得极小值56;在x =2处,函数f (x )取得极大值43-23ln2.22.(14分)已知f (x )=x +mx(m ∈R),(1)若m =2,求函数g (x )=f (x )-ln x 在区间⎣⎡⎦⎤1,32上的最大值; (2)若函数y =log 12[f (x )+2]在区间[1,+∞)上是减函数,求实数m 的取值范围.解析: (1)当m =2时,g (x )=x +2x-ln x (x >0),则g ′(x )=1-2x 2-1x =x 2-x -2x 2,由g ′(x )=x 2-x -2x2<0,得x 2-x -2<0. 又x >0,可解得0<x <2,即函数g (x )在(0,2)上单调递减,从而函数g (x )在区间⎣⎡⎦⎤1,32上单调递减,故g (x )的最大值为g (1)=3.(2)令h (x )=f (x )+2,则由条件得h (x )在区间[1+∞)上是增函数,且h (x )>0在区间[1,+∞)恒成立,而h ′(x )=f ′(x )=1-mx 2≥0,则m ≤x 2在区间[1,+∞)上恒成立,得m ≤1.又f (x )+2>0在区间[1,+∞)恒成立,得f (1)+2>0,即m>-3,所以实数m的取值范围是(-3,1].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合学习与测试(二)一.填空题(每小题5分,共60分) 1. f(x)=x 3, 0'()f x =6,则x 0= ( )±±12.若函数f(x)=2x 2+1,图象上P(1,3)及邻近上点Q(1+Δx,3+Δy), 则xy ∆∆=( ) A. 4 B .4Δx C .4+2Δx D. 2Δx 3、0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( ) A.充分不必要条件 B.必要不充分条件 C .充要条件 D.非充分非必要条件4.椭圆221259x y +=上有一点P 到左准线的距离是5,则点P 到右焦点的距离是( )A.4B.5C.6D.75.命题“方程x 2-1=0的解是x=±1”中使用逻辑联结词的情况是( ) A .没有使用逻辑联结词; B .使用了逻辑联结词“且”; C .使用了逻辑联结词“或”; D .使用了逻辑联结词“非”. 6.下列说法正确的是( )A .x ≥3是x >5的充分而不必要条件B .x ≠±1是|x|≠1的充要条件C .若,则p 是q 的充分条件D .一个四边形是矩形的充分条件是:它是平行四边形 7. 下列命题为特称命题的是( )A 偶函数的图象关于y 轴对称B 正四棱柱都是平行六面体C 不相交的两条直线是平行直线D 存在实数大于等于38.已知抛物线C 1:22y x x =+和C 2: 2y x a =-+,如果直线l 同时是C 1和C 2的切线,称l 是C 1和C 2的公切线,若C 1和C 2有且仅有一条公切线,则a 的值为( )A.1 B.-1 C.12D.12-9.设函数f(x)在定义域内可导,y=f(x)的图象如图1所示,则导函数y=f '(x)可能为()1|<h 且|b-1|<h,那么p是q的()A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件11. 下列命题是真命题的是()A.到两定点距离之和为常数的点的轨迹是椭圆B.到定直线cax2=和定点F(c,0)的距离之比为ac的点的轨迹是椭圆C.到定点F(-c,0)和定直线cax2-=的距离之比为ac(a>c>0)的点的轨迹是左半个椭圆D.到定直线cax2=和定点F(c,0)的距离之比为ca(a>c>0)的点的轨迹是椭圆12.1F、2F为椭圆的两个焦点,Q为椭圆上任一点,从任一焦点向12FQF∆的顶点Q的外角平分线引垂线,垂足为P, 则P点轨迹是( )A.圆 B.椭圆 C.双曲线 D .抛物线二.填空题(每小题5分,共30分)13.写出命题“至少有一个实数x,使013=+x”的否定。
14.离心率21=e,一个焦点是()3,0-F的椭圆标准方程为___________ .15.与椭圆 4 x 2 + 9 y 2 = 36 有相同的焦点,且过点(-3,2)的椭圆方程为_______________.16.已知椭圆12622=+yx,M为椭圆上的一点,21,FF为椭圆的左右两个焦点,且满足32||||21=-MFMF,则21cos MFF∠的值为 .A B C D17、曲线xy 12=在点(3,4)处的切线方程是_________________________________. 18、若曲线p x x y +-=422与直线1=y 相切,则p =____________________. 三.解答题(共5小题,满分70分)19. 关于x 的实系数一元二次方程ax 2+bx +c =0有两个异号实根的充要条件是什么?为什么? 20.(14分)已知双曲线与椭圆13622=+y x 有相同的焦点,且与椭圆相交,其四个交点恰好是一个正方形的四个顶点,求此双曲线的方程.21.(14分)已知命题p :1||23a -<,命题q :集合A =2{|(2)10}x xa x +++=,B={|0}x x >且A B φ= ,求实数a 的取值范围,使命题p ,q 中至少有一个为真命题. 22.(14分)已知:2()f x x px q =++,求证: (1)(1)(3)2(2)2f f f +-=;(2)(1),(2),(3)f f f 中至少有一个不小于12.23.(16分)已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<,(I )求m 与n 的关系式;(II )求()f x 的单调区间; (III )当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.参考答案一.选择题:1.C 2.C 3.B 4.C 5.C 6.B 7.D 8.D 9.D 10.B 11.D 12.A 二.填空题:13.R x ∈∀, 013≠+x ;14.1273622=+x y , 15.1101522=+y x ; 16.13;17. 02434=-+y x ; 18.3. 三.解答题19.解:关于x 的实系数的一元二次方程ax 2+bx +c=0有两个异号实根的充要条件是ac <0.证明:(1)充分性:∵ac <0,∴-4ac >0,∴Δ=b 2-4ac >0,∴设x 1,x 2为原方程的两个不等实根,又由韦达定理得:<,从而,异号.即:<是关于x x =a c =ac a 0x x ac 012212 x 的实系数一元二次方程ax 2+bx +c=0有两个异号实根的充分条件.(2)必要性;设x 1,x 2是关于x 的实系数一元二次方程ax 2+bx +c=0的两个异号实根,则<,∴<.即:<是关于的实系数一x x =ca0ac 0ac 0x 12 元二次方程ax 2+bx +c=0有两个异号实根的必要条件.综合(1)(2)可得原结论成立20) 由椭圆及双曲线的对称性可知,四个交点分别关于x 轴和y 轴对称,又是正方形的四个顶点,故可设其中一个交点为(m ,m )代入椭圆方程,可得m设双曲线方程为22221x y a b -=,有22223221a b ab+=⎧⎪⎨-=⎪⎩ ,解得21a=,22b =可求得双曲线方程为2212y x -=21.1||2573a a -<⇔-<<,则命题p :57a -<<由A B φ= 得:{|0}A x x ⊆≤,则:2(2)40a ∆=+-<或2(2)40(2)0a a ∆=+-≥⎧⎨-+≤⎩,解得:4a >-,即q :4a >-若p 真q 假,则54a -<≤;若p 假q 真,则7a ≥;若若p 真q 真,则47a -<<综上所述,实数a 的取值范围为(5,)-+∞ 22.(1)证明:∵q px x x f ++=2)(∴q p f ++=1)1( q p f ++=24)2( q p f ++=39)3(所以,(1)(3)2(2)f f f +-(1)(93)2(42)p q p q p q =+++++-++=2(2)假设)3(,)2(,)1(f f f 都小于21,则21)3(,21)2(,21)1(<<<f f f ,即有21)1(21<<-f 21)2(21<<-f 21)3(21<<-f ∴ 2)2(2)3()1(2<-+<-f f f由(1)可知2)2(2)3()1(=-+f f f ,与2)2(2)3()1(2<-+<-f f f 矛盾, ∴假设不成立,即原命题成立。
23.(I)2()36(1)f x mx m x n '=-++,因为1x =是函数()f x 的一个极值点,所以(1)0f '=,即36(1)0m m n -++=,所以36n m =+(II )由(I )知,2()36(1)36f x mx m x m '=-+++=23(1)1m x x m ⎡⎤⎛⎫--+ ⎪⎢⎥⎝⎭⎣⎦当0m <时,有211m >+,当x 变化时,()f x 与()f x '的变化如下表:0m <()f x 在2,1m ⎛⎫-∞+⎪⎝⎭单调递减,在2(1,1)m+单调递增,在(1,)+∞上单调递减. (III )由已知得()3f x m '>,即22(1)20mx m x -++>又0m <所以222(1)0x m x m m -++<即[]222(1)0,1,1x m x x m m -++<∈-①设212()2(1)g x x x m m=-++,其函数开口向上,由题意知①式恒成立, 所以22(1)0120(1)010g m m g ⎧-<+++<⎧⎪⇒⎨⎨<⎩⎪-<⎩解之得43m -<又0m <所以403m -<<即m 的取值范围为4,03⎛⎫- ⎪⎝⎭。