广东省云浮市云安区2019届九年级上学期期末考试数学试题
云浮市九年级上学期期末数学试卷
云浮市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八下·庐江期末) 如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()A . 1B . ﹣4C . 1或﹣4D . ﹣1或32. (2分)(2019·南关模拟) 图①是由一个完全相同的小正方体组成的立体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()A . 主视图,俯视较和左视图都改变B . 左视图C . 俯视图D . 主视图3. (2分)袋子里有10个红球和若干个蓝球,小明从袋子里有放回地任意摸球,共摸100次,其中摸到红球次数是25次,则袋子里蓝球大约有()A . 20B . 30C . 40D . 504. (2分)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A . 3B . 6C . 9D . 125. (2分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m 的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量得杆底与坝脚的距离AB=3m,则石坝的坡度为()A .B . 3C .D . 46. (2分) (2018九上·惠阳期中) 将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A . y=3(x+2)2﹣1B . y=3(x﹣2)2+1C . y=3(x﹣2)2﹣1D . y=3(x+2)2+17. (2分) (2018九上·拱墅期末) 如图,直线l1∥l2∥l3 ,直线AC交l1、l2、l3于点A、B、C ,直线DF交l1、l2、l3于点D、E、F ,已知,若DE=3,则DF的长是()A .B . 4C .D . 78. (2分)下列命题错误的是()A . 垂直于弦的直径必平分于弦B . 在同圆或等圆中,等弧所对的弦相等C . 线段垂直平分上的点到线段的两端点的距离相等D . 梯形的中位线将梯形分成面积相等的两部分9. (2分)不论x为何值,函数y=ax2+bx+c(a≠0)的值恒大于0的条件是()A . a>0,△>0B . a>0, △<0C . a<0, △<0D . a<0, △>010. (2分)如图,过反比例函数y= (x>0)上一点A作AB⊥x轴于点B,AC⊥y轴于点C,则四边形OBAC 的面积是()A . 2B . 4C . 6D . 8二、填空题 (共5题;共5分)11. (1分)在综合实践课上,小明同学设计了如图测河塘宽AB的方案:在河塘外选一点O,连结AO,BO,测得AO=18m,BO=21m,延长AO,BO分别到D,C两点,使OC=6m,OD=7m,又测得CD=5m,则河塘宽AB=________m.12. (1分)如图,在△ABC中,AB=AC,点D在边BC上,连接AD,将线段AD绕点A逆时针旋转到AE,使得∠DAE=∠BAC,连接DE交AC于F,请写出图中一对相似的三角形:________(只要写出一对即可).13. (1分)(2011·茂名) 给出下列命题:命题1.点(1,1)是双曲线与抛物线y=x2的一个交点.命题2.点(1,2)是双曲线与抛物线y=2x2的一个交点.命题3.点(1,3)是双曲线与抛物线y=3x2的一个交点.…请你观察上面的命题,猜想出命题n(n是正整数):________.14. (1分)(2017·莒县模拟) 一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°= × + × =1.类似地,可以求得sin15°的值是________.15. (1分)如图,AB,BC是⊙O的两条弦,AB垂直平分半径OD,∠ABC=75°,BC= cm,则OC的长为________cm.三、解答题 (共15题;共126分)16. (15分) (2019八上·句容期末) 计算(1)(2)(3)在如图所示的的正方形网格中画出一个,使,,,并求出的面积.17. (14分)运动对学生的成长有着深远的影响,某中学为了解学生每天运动的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.组别时间/时频数/人数频率A0≤t≤0.580.16B0.5≤t≤1a0.3C1≤t≤1.5160.32D 1.5≤t≤27bE2≤t≤2.540.08合计1请根据图表中的信息,解答下列问题:(1)表中的a=________,b=________,中位数落在________组,并将频数分布直方图补全________;(2)估计该校3000名学生中,每天运动时间不足0.5小时的学生大约有多少名?(3)已知E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出2人向全校同学作运动心得报告,请用画树状图或列表法求抽取的2名学生刚好是1名男生和1名女生的概率.18. (10分)(2016·甘孜) 如图,在平面直角坐标系xOy中,一次函数y=﹣ax+b的图象与反比例函数y= 的图象相交于点A(﹣4,﹣2),B(m,4),与y轴相交于点C.(1)求反比例函数和一次函数的表达式;(2)求点C的坐标及△AOB的面积.19. (10分) (2016九上·通州期中) 若平面直角坐标系中的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.规定“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.(1)若动点P从坐标点M(1,1)出发,按照“平移量”{2,0}平移到N,再按照“平移量”{1,2}平移到G,形成△MNG,则点N的坐标为________,点G的坐标为________.(2)若动点P从坐标原点出发,先按照“平移量”m平移到B,再按照“平移量”n平移到C;最后按照“平移量”q平移回到点O.当△OBC∽△MNG(在(1)中的三角形).且相似比为2:1时,请你直接写出“平移量”m________,n________,q________.(3)在(1)、(2)的前提下,请你在平面直角坐标系中画出△OBC与△MNG.20. (10分) (2016八上·临安期末) 某校有3名教师准备带领部分学生(不少于3人)参观植物园,经洽谈,植物园的门票价格为:教师票每张25元,学生票每张15元,且有两种购票优惠方案,方案一:购买一张教师票赠送一张学生票;方案二:按全部师生门票总价的80%付款.假如学生人数为x(人),师生门票总金额为y(元).(1)分别写出两种优惠方案中y与x的函数表达式;(2)请通过计算回答,选择哪种购票方案师生门票总费用较少?21. (10分) (2018九上·连城期中) 阅读下面的例题:例:解方程x2﹣2|x|﹣3=0解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3;(2)当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.解答问题:(1)如果我们将原方程化为|x|2﹣2|x|﹣3=0求解可以吗?请你大胆试一下写出求解过程.(2)依照题目给出的例题解法,解方程x2+2|x﹣2|﹣4=022. (10分)如图,⊙O经过点B , D , E , BD是⊙O的直径,∠C=90°,BE平分∠ABC .(1)证明:直线AC是⊙O的切线.(2)当AE=4,AD=2时,求⊙O的半径.23. (1分)(2020·滨州) 若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为________.24. (1分)(2016·深圳模拟) 小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是________.25. (1分) (2019九上·上海月考) 已知∽ ,且相似比,的面积为8,那么的面积为________.26. (1分) (2018·黄梅模拟) 如图,四边形ABCd为边长是2的正方形,△BPC为等边三角形,连接PD、BD,则△BDP的面积是________.27. (1分) (2018九下·扬州模拟) 如图,已知矩形ABCD,AB=8,BC=6,以点A为圆心,5为半径作圆,点M为圆A上一动点,连接CM,DM,则 CM+MD的最小值为________.28. (15分) (2016八下·红安期中) 台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.今年首个超强台风“圣帕”第0709号超强台风于8月13日在北纬21.3度,东经123.3度的太平洋上生成,其中心气压925百帕,近中心最大风速55米/秒,生成时还是热带风暴的“圣帕”,在连跳两级后,15日晚8时已“变身”为超强台风.向台湾东部沿海逼近并登陆台湾岛,之后于19日上午将在福建中南部沿海福州一带再次登陆.在这之前,台风中心在我国台湾海峡的B处,在沿海城市福州A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?29. (12分) (2017八下·扬州期中) 如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系, 使A点坐标为(2,4),B点坐标为(4,2);(2)请在(1)中建立的平面直角坐标系的第一象限内的格点上确定点C, 使点C与线段AB组成一个以AB 为底的等腰三角形, 且腰长是无理数, 则C点坐标是________,△ABC的周长是________(结果保留根号);(3)以(2)中△ABC的点C为旋转中心、旋转180°后的△A′B′C, 连结AB′和A′B, 试说出四边形ABA′B′是何特殊四边形, 并说明理由.30. (15分)(2017·天等模拟) 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求抛物线的解析式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A、C、D为顶点的三角形面积最大时,求点D 的坐标及此时三角形的面积;(3)以AB为直径作⊙M,直线经过点E(﹣1,﹣5),并且与⊙M相切,求该直线的解析式.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共15题;共126分)16-1、16-2、16-3、17-1、17-2、17-3、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、24-1、25-1、26-1、27-1、28-1、28-2、28-3、29-1、29-2、29-3、30-1、30-2、。
广东省云浮市九年级上学期数学期末考试试卷
广东省云浮市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共5题;共10分)1. (2分) (2016九上·新泰期中) 用配方法解一元二次方程2x2﹣x﹣l=0时,配方正确的是()A . (x﹣)2=B . (x+ )2=C . (x﹣)2=D . (x+ )2=2. (2分)(2018·百色) 把抛物线y=﹣ x2向右平移2个单位,则平移后所得抛物线的解析式为()A . y=﹣ x2+2B . y=﹣(x+2)2C . y=﹣ x2﹣2D . y=﹣(x﹣2)23. (2分)甲乙两人在相同的条件下各射靶10次,射击成绩的平均数都是8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8.下列说法中不一定正确的是()A . 甲、乙射击成绩的众数相同B . 甲射击成绩比乙稳定C . 乙射击成绩的波动比甲较大D . 甲、乙射中的总环数相同4. (2分)(2018·宜昌) 如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A . 30°B . 35°C . 40°D . 45°5. (2分)若二次函数,当取、时函数值相等,则当x取时,函数值为()A .B .C .D .二、填空题 (共12题;共12分)6. (1分) (2017九上·琼中期中) 已知x=3是方程x2﹣ax+12=0的一个根,则a=________.7. (1分)圆锥的底面直径是8,母线长是5,则这个圆锥的侧面积是________8. (1分) (2019九上·武昌期中) “武汉樱花节”观赏人数逐年增加,据有关部门统计,2014年约为30万人次,2016年约为40万人次,设观赏人数年平均增长率为,则根据题意可列方程________.9. (1分) (2017八下·东台开学考) 若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k 的取值范围是________10. (1分) (2017八下·南通期末) 在某校举办的队列比赛中,A班的单项成绩如下表:项目着装队形精神风貌成绩(分)909492若按着装占10%、队形占60%、精神风貌占30%计算参赛班级的综合成绩,则A班的最后得分是________分.11. (1分)如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.12. (1分) (2017九上·顺义月考) 已知y= 是关于x的二次函数,则a的值为________.13. (1分)已知抛物线y=-x2+2与x轴交于A、B两点,与y轴交于C点,则△ABC的面积=________.14. (1分)(2016·新化模拟) 如图,⊙O的半径为5,正五边形ABCDE内接于⊙O,则的长度为________.15. (1分)(2017·兴化模拟) 如图,抛物线y=x2﹣2x+k(k<0)与x轴相交于A(x1 , 0)、B(x2 , 0)两点,其中x1<0<x2 ,当x=x1+2时,y________0(填“>”“=”或“<”号).16. (1分)(2018·黔西南模拟) 二次函数y=ax2+bx+c(a<0)的图象与x轴的两个交点A、B的横坐标分别为﹣3、1,与y轴交于点C,下面四个结论:①16a+4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③c=﹣3a;④若△ABC是等腰三角形,则b=﹣或﹣.其中正确的有________.(请将正确结论的序号全部填在横线上)17. (1分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(20,0),(0,8),点D是OA的中点,点P在BC上运动,当△ODP是以10为腰长的等腰三角形时,点P的坐标为________.三、解答题 (共9题;共107分)18. (20分)解方程(1)(3x﹣4)2﹣x2=0(2) 2x2﹣7x+2=0.19. (11分)(2018·青岛模拟) 我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩(满分为100分)如图所示.平均数中位数众数初中部85高中部85100(1)根据图示填写表格;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.20. (15分) (2017九上·上杭期末) 将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P(奇数);(2)随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,求组成的两位数是4的倍数的概率.21. (5分) (2019八上·泰兴期中) 在平面直角坐标系xOy中,△ABC的位置如图所示.(1)分别写出△ABC各个顶点的坐标;(2)分别写出顶点A关于x轴对称的点A′的坐标、顶点B关于y轴对称的点B′的坐标及顶点C关于原点对称的点C′的坐标;(3)求线段BC的长.22. (10分)(2017·自贡) 【探究函数y=x+ 的图象与性质】(1)函数y=x+ 的自变量x的取值范围是________;(2)下列四个函数图象中函数y=x+ 的图象大致是________;(3)对于函数y=x+ ,求当x>0时,y的取值范围.请将下列的求解过程补充完整.解:∵x>0∴y=x+ =()2+()2=(﹣)2+________∵(﹣)2≥0∴y≥________.(4)若函数y= ,则y的取值范围________.23. (10分) (2018九上·耒阳期中) 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?24. (10分)(2019·涡阳模拟) 如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,∠ABC的平分线BF交AD于点F,交BC于点D.(1)求证:BE=EF;(2)若DE=4,DF=3,求AF的长.25. (15分)(2020·南通模拟) 我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,则△ABC和△ABD是“同族三角形”.(1)如图2,四边形ABCD内接于圆,点C是弧BD的中点,求证:△ABC和△ACD是同族三角形;(2)如图3,△ABC内接于⊙O,⊙O的半径为,AB=6,∠BAC=30°,求AC的长;(3)如图3,在(2)的条件下,若点D在⊙O上,△ADC与△ABC是非全等的同族三角形,AD>CD,求的值.26. (11分) (2016九上·沙坪坝期中) 如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH 周长的最大值;(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM重合部分的面积是▱APQM 面积的时,求▱APQM面积.参考答案一、单选题 (共5题;共10分)1-1、2-1、3-1、4-1、5-1、二、填空题 (共12题;共12分)6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共107分)18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
广东省云浮市九年级上学期期末数学试卷
广东省云浮市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2017·孝感模拟) 甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.则下列事件是必然事件的是()A . 乙抽到一件礼物B . 乙恰好抽到自己带来的礼物C . 乙没有抽到自己带来的礼物D . 只有乙抽到自己带来的礼物2. (2分)(2018·汕头模拟) 一元二次方程x2+2x﹣4=0的根的情况为()A . 没有实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 无法确定3. (2分)如图,已知▱ABCD,∠A=45°,AD=4,以AD为直径的半圆O与BC相切于点B,则图中阴影部分的面积为()A . 4B . π+2C . 4D . 24. (2分)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h<k;④若点P(x,y)在上,则点P′(﹣x,﹣y)也在图象.其中正确结论的个数是()A . 1B . 2C . 3D . 45. (2分) (2017九上·西城期中) 已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A . 相交B . 相切C . 相离D . 不能确定6. (2分) (2008七下·上饶竞赛) 已知点P在第三象限,且到x轴的距离为3,到y轴的距离为5,则点P的坐标为()A . (3,5)B . (-5,3)C . (3,-5)D . (-5,-3)二、填空题 (共6题;共9分)7. (1分) (2017七下·乌海期末) 如图,将△ABC沿着点B到点C的方向平移3cm得到△DEF,AB=6cm,BC=9cm,DH=2cm,那么图中阴影部分的面积为________cm2 .8. (1分)(2017·石家庄模拟) 如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿使竹竿,旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为________ m.9. (1分) (2012·北海) 如图,已知△ABC中BC=3cm,AC=4cm,AB=5cm,将△ABC绕AC旋转一周得到的几何体的侧面积为________.10. (1分) (2018九上·宁波期中) 如图,AB为⨀O的弦,⨀O的半径为5,OC⊥AB于点D,交⨀O于点C,且OD=4,则弦AB的长是________.11. (2分) (2016九上·武胜期中) 已知一元二次方程x2﹣6x﹣5=0两根为a、b,则①a+b=________②ab=________.12. (3分)若抛物线y=a(x﹣h)2+k上有点A(2,1),且当x=﹣2时,y有最大值3,则a=________,h=________,k=________.三、解答题 (共11题;共110分)13. (3分)已知:在直角坐标平面内,三个顶点的坐标分别为、、(正方形网格中每个小正方形的边长是一个单位长度).(1)向下平移个单位长度得到的,点的坐标是________;(2)以点为位似中心,在网格内画出,使与位似,且位似比为,点的坐标是________;(画出图形)(3)的面积是________平方单位.14. (5分)如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.15. (12分) (2017九上·德惠期末) 如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3 .(1)△ABC与△A1B1C1的位似比等于________;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为________.16. (20分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.17. (5分)已知:如图,.(1)求证:;(2)当时,求证:EC BC.18. (5分)(2016·庐江模拟) 如图,正方形ABCD中,点E是BC上一点,直线AE交BD于点M,交DC的延长线于点F,G是EF的中点,连结CG.求证:①△ABM≌△CBM;②CG⊥CM.19. (10分) (2020九下·武汉月考) 四边形 ABCD 中,E 为边 BC 上一点,F 为边 CD 上一点,且∠AEF=90°.(1)如图 1,若 ABCD 为正方形,E 为 BC 中点,求证: .(2)若ABCD 为平行四边形,∠AFE=∠ADC,①如图 2,若∠AFE=60°,求的值;20. (10分)(2018·寮步模拟) 雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?21. (10分)(2018·吉林模拟) 如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.22. (15分)(2018·宿迁) 如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)的图像与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.23. (15分) (2019九上·辽源期末) 两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出sinα的值.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共9分)7-1、8-1、9-1、10-1、11-1、12-1、三、解答题 (共11题;共110分)13-1、13-2、13-3、14-1、15-1、15-2、15-3、15-4、16-1、16-2、16-3、16-4、17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。
2019年广东九年级期末测试卷(一)人教数学及详细答案
2019年广东九年级期末测试卷(一)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)若关于x的方程(m﹣1)x2+mx﹣1=0是一元二次方程,则m的取值范围是()A.m≠1B.m=1C.m≥1D.m≠03.(3分)从,0,π,,6这五个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.4.(3分)抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)5.(3分)已知点M(﹣3,4)在双曲线y=上,则下列各点在该双曲线上的是()A.(3,4)B.(﹣4,﹣3 )C.(4,3 )D.(3,﹣4)6.(3分)下列四组线段中,不成比例线段的是()A.2cm,5cm,10cm,25cm B.4cm,7cm,4cm,7cmC.2cm,cm,cm,4cm D.cm,cm,2cm,5cm 7.(3分)下列成语中描述的事件必然发生的是()A.水中捞月B.瓮中捉鳖C.守株待兔D.拔苗助长8.(3分)已知一条圆弧的度数为60°,半径为6cm,则此圆弧长为()A.πcm B.2πcm C.4πcm D.6πcm9.(3分)在Rt△ABC中,∠C=90°,BC=4,AB=5,则sin A的值为()A.B.C.D.10.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50°,则∠AOD的度数()A.40°B.50°C.80°D.100°二.填空题(共6小题,满分24分,每小题4分)11.(4分)若关于x的一元二次方程ax2﹣bx﹣2018=0有一根为x=1,则a﹣b =.12.(4分)二次函数y=x2﹣2x+1与x轴有个交点.13.(4分)在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有个球.14.(4分)如图,点A在双曲线y=上,AB⊥x轴于B,且△AOB的面积S△AOB =1,则k=.15.(4分)圆内接正三边形的边长为12cm,则边心距是cm.16.(4分)如图,已知正方形ABCD的边长为2,E为CD边上一点,DE=1,以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于.三.解答题一(共3小题,每小题6分)17.(6分)解方程:x2+4x﹣7=0.18.(6分)已知二次函数y=x2﹣2mx+m2﹣4.(1)求证:该二次函数的图象与x轴有两个交点;(2)若把它的图象向上平移1个单位,再向左平移2个单位后图象经过原点,求m的值.19.(6分)在平面直角坐标系中,已知点A的坐标为(﹣2,0),点B在y轴的正半轴上,且OB=2OA,将线AB绕着A点顺时针旋转90°,点B落在点C 处.(Ⅰ)在图中描出点A,B,C,并写出点B,点C的坐标;(Ⅱ)在x轴上有一点D,使得△ACD的面积为3,求点D的坐标.四.解答题二(共3小题,每小题7分)20.(7分)如图,在⊙O中,弦AB的长为10,OD⊥AB,交AB于点D,交⊙O 于点C,OD=2CD,求CD的长.21.(7分)有三张分别标有数字2,5,9的卡片,它们的背面都相同.现将它们背面朝上,从中任意抽出一张卡片,不放回,再从剩余的两张卡片里任意抽出一张.(1)请用树状图或列表法表示出所有可能的结果.(2)求两张卡片的数字之和为偶数的概率.22.(7分)如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B.(1)求k的值;(2)点P是x轴上一动点,当△BCP的面积等于菱形OABC的面积时,求点P 的坐标.五.解答题三(共3小题,每小题9分)23.(9分)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.24.(9分)如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC =90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.25.(9分)如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)求△ABC的面积;(3)在抛物线上存在一点P使△ABP的面积为10,请求出点P的坐标.1.C.2.A.3.C.4.A.5.D.6.C.7.B.8.B.9.C.10.C.11.201812.113.2014.215.216.317.解:x2+4x﹣7=0,移项得,x2+4x=7,配方得,x2+4x+4=7+4,(x+2)2=11,解得x+2=±,即x1=﹣2+,x2=﹣2﹣18.解:(1)证明:令y=0,则x2﹣2mx+m2﹣4=0,△=(﹣2m)2﹣4(m2﹣4)=16>0∴x2﹣2mx+m2﹣4=0有两个不同的实数根,即该二次函数的图象与x轴有两个交点;(2)y=x2﹣2mx+m2﹣4=(x﹣m)2﹣4通过平移后得到y=(x﹣m+2)2﹣4+1=(x﹣m+2)2﹣3,将x=0,y=0代入以上函数解析式,得0=(﹣m+2)2﹣3,∴.19.解:(Ⅰ)如图点A,B,C即为所求,点B(0,4),点C的坐标(2,﹣2);(Ⅱ)设D(m,0).由题意;•|m+2|•2=3,解得m=1或﹣5,∴D(1,0)或(﹣5,0);20.解:设OD=2x,CD=x,则半径为3x,连接OB,∵OD⊥AB,OD过O,∴BD=AD=AB=×10=5,在Rt△OBD中,由勾股定理得:OB2=BD2+OD2,(3x)2=(2x)2+52,x=,CD=.21.解:(1)根据题意画图如下:共有6种等可能的结果数;(2)∵共有6种等可能的结果数,抽取的两张卡片的数字之和为偶数的有2种情况,∴两张卡片的数字之和为偶数的概率是:.22.解:(1)∵点A左边(﹣3,4),∴AB=OA=OC==5,∴点B坐标为(﹣8,4),∴k=﹣8×4=﹣32.(2)设点P坐标为(m,0),∴|m+5|•4=5×4,∴m=﹣15或5.23.1)解:连接DE,如图,∵∠BCD+∠DEB=180°,∴∠DEB=180°﹣120°=60°,∵BE为直径,∴∠BDE=90°,在Rt△BDE中,DE=BE=×2=,BD=DE=×=3;(2)证明:连接EA,如图,∵BE为直径,∵A为的中点,∴∠ABE=45°,∵BA=AP,而EA⊥BA,∴△BEP为等腰直角三角形,∴∠PEB=90°,∴PE⊥BE,∴直线PE是⊙O的切线.24.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵AC2=AB•AD,∴=,∴△ADC∽△ACB;(2)∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,∵点E为AB的中点,∴CE=AE=AB=,∴∠EAC=∠ECA,∴∠DAC=∠EAC,∴∠DAC=∠ECA,∴CE∥AD;∴=.25.解:(1)根据题意得:.解得:b=2,c=﹣3,∴y=x2+2x﹣3;(2)∵当y=0时,有x2+2x﹣3=0,解得:x1=﹣3,x2=1.∴B(﹣3,0),又A(1,0),C(0,﹣3),∴AB=4,OC=3.∴△ABC的面积为×4×3=6;(3)∵AB=4,△ABP的面积为10,∴AB边上的高为5,即点P的纵坐标为5或﹣5.∴x2+2x﹣3=5或x2+2x﹣3=﹣5,方程x2+2x﹣3=5的解为:x1=﹣4,x2=2,方程x2+2x﹣3=﹣5没有实数解.∴P点坐标为(﹣4,5),(2,5).。
2018-2019学年广东省云浮市云安区九年级(上)期末数学试卷
2018-2019学年广东省云浮市云安区九年级(上)期末数学试卷学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
一、选择题1、如图图形中,是中心对称图形的是()A. B.C. D.2、“抛一枚均匀硬币,落地后正面朝上”这一事件是()A. 随机事件B. 确定事件C. 必然事件D. 不可能事件3、在平面直角坐标系中,点P(-3,4)关于原点对称的点的坐标是()A. (3,4)B. (3,-4)C. (4,-3)D. (-3,4)4、抛物线y=(x-1)2+2的顶点坐标是()A. (1,2)B. (-1,2)C. (1,-2)D. (-1,-2)5、若正六边形外接圆的半径为4,则它的边长为()A. 2B.C. 4D.6、在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A. B.C. D. 17、若关于x的一元二次方程x2-2x+m=0没有实数根,则实数m的取值是()A. m<1B. m>-1C. m>1D. m<-18、有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A. x(x-1)=45B. x(x+1)=45C. x(x-1)=45D. x(x+1)=459、如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A. B. 2C. 6D. 810、当ab>0时,y=ax2与y=ax+b的图象大致是()A. B.C. D.二、填空题1、方程(x-1)(x+2)=0的解是______.2、如图,⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数为___ ___.3、将抛物线y=5x2向左平移2个单位得到新的抛物线,则新抛物线的解析式是______.4、从甲、乙、丙、丁4名学生中随机抽取2名学生担任数学小组长,则抽取到甲和乙概率为______.5、如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转4 0°后得到△ADE,则∠BAE=______.6、如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为______.三、解答题1、解一元二次方程:4x2=4x-1.______2、如图,在Rt△ABC中,∠ACB=90°,△DCE是△ABC绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.(1)旋转角的大小;(2)若AB=10,AC=8,求BE的长.______3、如图,在Rt△ABC中,∠C=90°,∠B=30°.(1)用直尺和圆规作⊙O,使圆心O在BC边,且⊙O经过A,B两点上(不写作法,保留作图痕迹);(2)连接AO,求证:AO平分∠CAB.______4、车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是______.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.______四、计算题1、有一个人患了流感,经过两轮传染后共有81人患了流感.(1)每轮传染中平均一个人传染了几个人?(2)按照这样的速度传染,第三轮将又有多少人被传染?______2、如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?______3、4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?______4、如图,AB是⊙O的直径,点C、D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F,G为AB的下半圆弧的中点,DG交AB于H,连接DB、GB.(1)证明EF是⊙O的切线;(2)求证:∠DGB=∠BDF;(3)已知圆的半径R=5,BH=3,求GH的长.______5、如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.______2018-2019学年广东省云浮市云安区九年级(上)期末数学试卷参考答案一、选择题第1题参考答案: D解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确.故选:D.根据中心对称图形的概念求解.此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: A解:“抛一枚均匀硬币,落地后正面朝上”这一事件是随机事件,故选:A.根据事件发生的可能性大小判断相应事件的类型即可.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: B解:点P(-3,4)关于原点对称的点的坐标是:(3,-4).故选:B.直接利用关于原点对称点的性质得出答案.此题主要考查了关于原点对称点的性质,正确把握横纵坐标的关系是解题关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: A解:∵y=(x-1)2+2,∴抛物线顶点坐标为(1,2),故选:A.由抛物线解析式即可求得答案.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k 中,顶点坐标为(h,k),对称轴为x=h.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: C解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的外接圆半径等于4,则正六边形的边长是4.故选:C.根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.此题主要考查了正多边形和圆,利用正六边形的外接圆半径和正六边形的边长将组成一个等边三角形得出是解题关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: C解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=.故选:C.统计出红球的个数,根据概率公式计算其概率即可得出结果.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: C解:由题意知,△=4-4m<0,∴m>1故选:C.方程没有实数根,则△<0,建立关于m的不等式,求出m的取值范围.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第8题参考答案: A解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x-1),∴共比赛了45场,∴x(x-1)=45,故选:A.先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x-1)场,再根据题意列出方程为x(x-1)=45.此题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第9题参考答案: B解:连接OC,由题意,得OE=OA-AE=4-1=3,CE=ED==,CD=2CE=2,故选:B.根据垂径定理,可得答案.本题考查了垂径定理,利用勾股定理,垂径定理是解题关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第10题参考答案: D解:根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选:D.根据题意,ab>0,即a、b同号,分a>0与a<0两种情况讨论,分析选项可得答案.本题考查二次函数与一次函数的图象的性质,要求学生理解系数与图象的关系.二、填空题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: x1=1、x2=-2解:∵(x-1)(x+2)=0∴x-1=0或x+2=0∴x1=1,x2=-2,故答案为x1=1、x2=-2.由题已知的方程已经因式分解,将原式化为两式相乘的形式,再根据两式相乘值为0,这两式中至少有一式值为0,求出方程的解.本题主要考查了因式分解法解一元二次方程的知识,因式分解法解一元二次方程时,应使方程的左边为两个一次因式相乘,右边为0,再分别使各一次因式等于0即可求解.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 50°解:∵⊙O是△ABC的外接圆,∠BOC=100°,∴∠A=∠BOC=×100°=50°.故答案为:50°.由⊙O是△ABC的外接圆,∠BOC=100°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠A的度数.此题考查了圆周角定理.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: y=5(x+2)2解:抛物线y=5x2的顶点坐标为(0,0),向左平移2个单位后的抛物线的顶点坐标为(-2,0),所以,平移后的抛物线的解析式为y=5(x+2)2.故答案为:y=5(x+2)2先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案:解:画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.故答案为:.根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: 100°解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,∴∠CAE=40°,∵∠BAC=60°,∴∠BAE=∠BAC+∠CAE=60°+40°=100°.故答案为:100°.首先根据旋转角可得∠CAE=40°,然后根据∠BAE=∠BAC+∠CAE代入数据进行计算即可得解.本题考查了旋转的性质,是基础题,确定出∠CAE=40°是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: 4-π解:如图,连接AD.∵⊙A与BC相切于点D,∴AD⊥BC.∵∠EPF=45°,∴∠BAC=2∠EPF=90°.∴S阴影=S△ABC-S扇形AEF=BC•AD-=×4×2-=4-π.故答案是:4-π.图中阴影部分的面积=S△ABC-S扇形AEF.由圆周角定理推知∠BAC=90°.本题考查了切线的性质与扇形面积的计算.求阴影部分的面积时,采用了“分割法”.三、解答题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 解:原方程可化为:4x2-4x+1=0∴(2x-1)2=0,解得:x1=x2=.方程化成一般式后,左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;此题考查了解一元二次方程-因式分解法,熟练掌握解方程的方法是解本题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 解:(1)∵△DCE是△ABC绕着点C顺时针方向旋转得到的,此时点B、C、E 在同一直线上,∴∠ACE=90°,即旋转角为90°,(2)在Rt△ABC中,∵AB=10,AC=8,∴BC==6,∵△ABC绕着点C旋转得到△DCE,∴CE=CA=8,∴BE=BC+CE=6+8=14(1)根据题意∠ACE即为旋转角,只需求出∠ACE的度数即可.(2)根据勾股定理可求出BC,由旋转的性质可知CE=CA=8,从而可求出BE的长度.本题考查旋转的性质,解题的关键是熟练运用旋转的性质,本题属于基础题型.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: (1)解:如图,⊙O为所作;(2)证明:∵OA=OB,∴∠OAB=∠B=30°,而∠CAB=90°-∠B=60°,∴∠CAO=∠BAO=30°,∴OC平分∠CAB.(1)如图,作AB的垂直平分线交BC于O,然后以O点为圆心,OB为半径作圆即可;(2)通过计算∠CAO=∠BAO=30°进行证明.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案:解:(1)选择A通道通过的概率=,故答案为:;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.四、计算题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 解:(1)设每轮传染中平均一个人传染了x个人,依题意有x+1+(x+1)x=81,解得x1=8,x2=-10(不符合题意舍去).答:每轮传染中平均一个人传染了8个人.(2)8×81=648(人).答:第三轮将又有648人被传染人.(1)设每轮传染中平均一个人传染了x个人,根据有一个人患了流感,经过两轮传染后共有81人患了流感,列方程求解.(2)根据(1)中所求数据,进而表示出第三轮将又被传染的人数.本题考查了一元二次方程的应用,关键是看到两轮传染,从而可列方程求解.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 解:(1)连结OA,由题意得:AD=AB=30,OD=(r-18)在Rt△ADO中,由勾股定理得:r2=302+(r-18)2,解得,r=34;(2)连结OA′,∵OE=OP-PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2-OE2,即:A′E2=342-302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.(1)连结OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连结OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: 解:(1)∵4件同型号的产品中,有1件不合格品,∴P(不合格品)=;(2)令不合格产品为甲,合格产品为乙、丙、丁,则随机抽2件的情况只有甲乙,甲丙,甲丁,乙丙,乙丁,丙丁,6种情况.合格的有3种情形P(抽到的都是合格品)==;(3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴=0.95,解得:x=16.(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)令不合格产品为甲,合格产品为乙、丙、丁,则随机抽2件的情况只有甲乙,甲丙,甲丁,乙丙,乙丁,丙丁,6种情况,合格的有3种情形,再根据概率公式计算即可;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值;本题考查了概率的公式、列表法与树状图法及用频率估计概率的知识,解题的关键是了解大量重复试验中事件发生的频率可以估计概率.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: 解:(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA又∵AD平分∠BAC,∴∠OAD=∠CAD∴∠ODA=∠CAD,∴OD∥AE,又∵EF⊥AE,∴OD⊥EF,∴EF是⊙O的切线(2)∵AB是⊙O的直径,∴∠ADB=90°∴∠DAB+∠OBD=90°由(1)得,EF是⊙O的切线,∴∠ODF=90°∴∠BDF+∠ODB=90°∵OD=OB,∴∠ODB=∠OBD∴∠DAB=∠BDF又∠DAB=∠DGB∴∠DGB=∠BDF(3)连接OG,∵G是半圆弧中点,∴∠BOG=90°在Rt△OGH中,OG=5,OH=OB-BH=5-3=2.∴GH==(1)由题意可证OD∥AE,且EF⊥AE,可得EF⊥OD,即EF是⊙O的切线;(2)由同弧所对的圆周角相等,可得∠DAB=∠DGB,由余角的性质可得∠DGB=∠BDF;(3)由题意可得∠BOG=90°,根据勾股定理可求GH的长.本题考查了切线的判定和性质,角平分线的性质,勾股定理,圆周角定理等知识,熟练运用切线的判定和性质解决问题是本题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: 解:(1)∵点A(-1,0)在抛物线y=x2+bx-2上,∴×(-1 )2+b×(-1)-2=0,解得:b=-,∴抛物线的解析式为y=x2-x-2.y=(x-)2-,∴顶点D的坐标为:(,-);(2)当x=0时y=-2,∴C(0,-2),OC=2.当y=0时,x2-x-2=0,解得:x1=-1,x2=4,∴B(4,0),∴OA=1,OB=4,AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2.∴△ABC是直角三角形.(3)如图所示:连接AM,点A关于对称轴的对称点B,BC交对称轴于点M,根据轴对称性及两点之间线段最短可知,MC+MA的值最小,即△ACM周长最小,设直线BC解析式为:y=kx+d,则,解得:,故直线BC的解析式为:y=x-2,当x=时,y=-,∴M(,-),△ACM最小周长是:AC+AM+MC=AC+BC=+2=3.(1)直接将(-1,0),代入解析式进而得出答案,再利用配方法求出函数顶点坐标;(2)分别得出AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,进而利用勾股定理的逆定理得出即可;(3)利用轴对称最短路线求法得出M点位置,再求△ACM周长最小值.此题主要考查了二次函数综合以及利用轴对称求最短路线和勾股定理的逆定理等知识,得出M点位置是解题关键.。
广东省云浮市九年级上册数学期末考试试卷
广东省云浮市九年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)已知x:y=1:2,那么(x+y):y等于()A . 2:2B . 3:1C . 3:2D . 2:32. (2分)(2016·龙华模拟) 如图所示的物体是一个几何体,其主视图是()A .B .C .D .3. (2分)如图,矩形ABCD中,E是BC的中点,且∠AED=90°.当AD=10cm时,AB等于().A . 10cmB . 5cmC . cmD . cm4. (2分)用配方法解关于x的方程x2+px+q=0时,此方程可变形为A .B .C .D .5. (2分)设有反比例函数y=,(x1 , y1)、(x2 , y2)为其图象上的两点,若x1<0<x2时y1>y2 ,则k的取值范围是()A . k>0B . k<0C . k>-1D . k<-16. (2分) (2017八下·常山月考) 方程 =5﹣x的解是()A . x=3B . x=8C . x1=3,x2=8D . x1=3,x2=﹣87. (2分)如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF是直角三角形时,t(s)的值为()A .B . 1C . 或1D . 或1 或8. (2分) (2017九上·东台月考) 方程x 2﹣5x=0的解是()A . x1=0,x2=﹣5B . x=5C . x1=0,x2=5D . x=09. (2分)双曲线y=的图像经过第二、四象限,则k的取值范围是()A . k>B . k<C . k=D . 不存在10. (2分)如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是()A . 四边形ABCD与四边形AEFG是相似图形B . AD与AE的比是2:3C . 四边形ABCD与四边形AEFG的周长比是2:3D . 四边形ABCD与四边形AEFG的面积比是4:9二、填空题 (共6题;共8分)11. (1分)已知m,n是方程x2﹣x﹣2016=0的两个实数根,则m2+n的值为________.12. (1分)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是________ .13. (1分)如图,已知l3∥l4∥l5 ,它们依次交直线l1、l2于点E、A、C和点D、A、B,如果AD=2,AE=3,AB=4,那么CE=________ .14. (2分)两个三角形相似,其中一个三角形的两个内角是40°、60°.那么另一个三角形的最大角是________度,最小角是________度.15. (1分)某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是________ .16. (2分)某中学要在校园内划出一块面积为100m2的三角形土地做花圃,设这个三角形的一边长为xm,这条边上的高为ym,那么y关于x的函数解析式是________,它是一个________函数.三、解答题 (共7题;共76分)17. (10分) (2016九上·苏州期末) 计算题(1)计算:;(2)解方程:.18. (15分)泰州金鹰十周年庆,某服装品牌购进A、B两种型号的服装,A种每件进价80元,售价120元;B种每件进价60元,售价90元.设购进A种型号的服装x件,购进两种型号服装的总费用为y1元,总利润为y2元,计划购进两种服装共100件,其中A种服装不少于65件.(1)写出y1与x之间的函数关系式.(2)若购进这100件服装的费用不得超过7600元,则A种服装最多购进多少件?(3)在(2)条件下计算此时的最大利润.19. (10分)小明和小亮用如图所示的两个转盘做“配紫色”游戏,游戏规则是:分别转动两个转盘,若其中一个转盘转出红色,另一个转出蓝色,则可以配成紫色,此时小明得1分,否则小亮得1分.(1)用画树状图或列表的方法求出小明获胜的概率;(2)这个游戏对双方公平吗?请说明理由.若不公平,如何修改规则才能使游戏对双方公平?20. (11分)(2017·玄武模拟) 如图,在Rt△ABC中,∠A=90°,点D、E分别在AC、BC上,且CD•BC=AC•CE,以E为圆心,DE长为半径作圆,⊙E经过点B,与AB、BC分别交于点F、G.(1)求证:AC是⊙E的切线.(2)若AF=4,CG=5,求⊙E的半径;(3)若Rt△ABC的内切圆圆心为I,则IE=________.21. (5分)(2017·武汉模拟) 如图,点A是反比例函数y=﹣在第二象限内图象上一点,点B是反比例函数y= 在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,求△AOB的面积.22. (10分)如图,在平面直角坐标系xOy中,一次函数y=ax+b(a,b是常数,且a≠0)的图象与反比例函数(k是常数,且k≠0)的图象交于一、三象限内的A,B两点,与x轴交于点C,点A的坐标为(2,m),点B的坐标为(n,﹣2),tan∠BOC= .(1)求点B的坐标及反比例函数和一次函数的表达式;(2)将直线AB沿y轴向下平移6个单位长度后,分别与双曲线交于E,F两点,连结OE,OF,求△EOF的面积.23. (15分)(2019·锡山模拟) 如图,过、作x轴的垂线,分别交直线于C、D 两点抛物线经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若沿CD方向平移点C在线段CD上,且不与点D重合,在平移的过程中与重叠部分的面积记为S,试求S的最大值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共76分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、23-3、。
云浮市九年级上学期期末数学试卷
云浮市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2017九上·巫溪期末) 下列图形中,是中心对称图形的是()A .B .C .D .2. (2分)对于方程(x﹣1)(x﹣2)=x﹣2,下面给出的说法不正确的是()A . 与方程x2+4=4x的解相同B . 两边都除以x﹣2,得x﹣1=1,可以解得x=2C . 方程有两个相等的实数根D . 移项分解因式(x﹣2)2=0,可以解得x1=x2=2.3. (2分) (2019九上·泉州期中) 用配方法解方程时,配方结果正确的是()A .B .C .D .4. (2分)如图,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是()A . cmB . cmC . cmD . cm5. (2分)要得到二次函数y=﹣x2+2x﹣2的图象,需将y=﹣x2的图象()A . 向左平移2个单位,再向下平移2个单位B . 向右平移2个单位,再向上平移2个单位C . 向左平移1个单位,再向上平移1个单位D . 向右平移1个单位,再向下平移1个单位6. (2分)(2018·昆明) 下列判断正确的是()A . 甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B . 为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C . 在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数是9.7D . 有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件7. (2分) (2018九上·富顺期中) 如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0,其中正确的命题是()A . ①②③B . ①③C . ①④D . ①③④8. (2分) (2017九上·鄞州月考) 如图,正方形ABCD的边长AB=4,分别以点A、B为圆心,AB长为半径画弧,两弧交于点E,则的长是()A .B .C .D .二、填空题 (共8题;共8分)9. (1分)方程(2x﹣1)2=9的根是________10. (1分)已知关于x的一元二次方程(m﹣1)x2+x+1=0有实数根,则m的取值范围是________ .11. (1分)(2013·连云港) 如图,△ABC内接于⊙O,∠ACB=35°,则∠OAB=________.12. (1分)下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A发生m次,则事件A发生的概率一定等于;③频率是不能脱离具体的n次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确的是________(填序号).13. (1分) (2016九上·仙游期末) 已知直线与⊙O相切,若圆心O到直线的距离是5,则⊙O的半径是________.14. (1分)如图,在平面直角坐标系中,已知△ABC,点P(1,2),作△PQR,使△PQR与△ABC相似,以Q、R点必须要格点上________ .(不写作法)15. (1分)如图,等边△ABC在直角坐标系xOy中,已知A(2,0),B(-2,0),点C绕点A顺时针方向旋转120°得到点C1 ,点C1绕点B顺时针方向旋转120°得到C2 ,点C2绕点C顺时针方向旋转150°得到点C3 ,则点C3的坐标是________16. (1分)如图,在平面直角坐标系中直线y=x-2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).将直线y=x-2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式是________ .三、计算题 (共1题;共20分)17. (20分)解方程(1)(2x+3)2﹣25=0(2) x2﹣7x﹣18=0(3) x2﹣2x﹣5=0(配方法)(4)(x﹣2)(x﹣3)=2.四、解答题 (共9题;共50分)18. (10分)如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为2的等边三角形.(1)写出△OAB各顶点的坐标;(2)以点O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,写出A′,B′的坐标.19. (5分)对于某一个函数,自变量x在规定的范围内,若任意取两个值x1和x2 ,它们的对应函数值分别为y1和y2 .若x2>x1时,有y2>y1 ,则称该函数单调递增;若x2>x1时,有y2<y1 ,则称该函数单调递减.例如二次函数y=x2 ,在x≥0时,该函数单调递增;在x≤0时,该函数单调递减.(1)二次函数:y=(x+1)2+2自变量x在哪个范围内,该函数单调递减?(2)证明:函数:y=x﹣在x>1的函数范围内,该函数单调递增.(3)若存在两个关于x的一次函数,分别记为:g=k1x+b1和h=k2x+b2 ,且函数g在实数范围内单调递增,函数h在实数范围内单调递减.记第三个一次函数y=g+h,则比例系数k1和k2满足何种条件时,函数y在实数范围内单调递增?20. (5分)某公司有甲、乙两种品牌的打印机,其中甲品牌有A、B两种型号,乙品牌有C、D、E三种型号.某中学计划从甲、乙两种品牌中各选购一种型号的打印机.(1)利用树状图或列表法写出所有的选购方案;(2)如果各种型号的打印机被选购的可能性相同,那么C型号打印机被选购的概率是多少?21. (5分)(2019·三明模拟) 已知二次函数y1=mx2﹣nx﹣m+n(m>0).(Ⅰ)求证:该函数图象与x轴必有交点;(Ⅱ)若m﹣n=3,(ⅰ)当﹣m≤x<1时,二次函数的最大值小于0,求m的取值范围;(ⅱ)点A(p , q)为函数y2=|mx2﹣nx﹣m+n|图象上的动点,当﹣4<p<﹣1时,点A在直线y=﹣x+4的上方,求m的取值范围.22. (5分) (2019九上·房山期中) 如图,平行四边形ABCD中,过点C作CE交BD于点M,交AD于点F,交BA的延长线于点E,若FM =2,EF =6,求CM的长.23. (5分)如图,⊙O与△ABC中AB、AC的延长线及BC边相切,且∠ACB=90°,∠A,∠B,∠C所对的边长依次为3,4,5,求⊙O的半径.24. (5分)如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.25. (5分)(2018·福建) 求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.26. (5分)如图,抛物线与x轴交于点A(﹣, 0),点B(2,0),与y轴交于点C(0,1),连接BC.(1)求抛物线的解析式;(2)N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(﹣),求△ABN的面积s与t的函数解析式;(3)若0<t<2且t≠0时,△OPN∽△COB,求点N的坐标.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、计算题 (共1题;共20分)17-1、17-2、17-3、17-4、四、解答题 (共9题;共50分) 18-1、18-2、19-1、20-1、22-1、23-1、24-1、25-1、26-1、。
2019-2020学年广东省云浮市九年级上期末数学模拟试卷及答案解析
2019-2020学年广东省云浮市九年级上期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.12.下列事件中,是必然事件的是()A.掷一枚质地均匀的硬币,一定正面向上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.将花生油滴在水中,油会浮在水面上3.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)4.二次函数y=x2的对称轴是()A.直线y=1B.直线x=1C.y轴D.x轴5.边长为2的正方形内接于⊙M,则⊙M的半径是()A.1B.2C.D.6.袋中有3个红球,4个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出1个球,则摸出白球的概率是()A.B.C.D.7.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0B.x2﹣36x+36=0C.4x2+4x+1=0D.x2﹣2x﹣1=08.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=2109.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6B.C.8D.10.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.(4分)一元二次方程x(x﹣2)=x﹣2的根是.12.(4分)如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为.13.(4分)抛物线y=2x2+4向左平移2个单位长度,得到新抛物线的表达式为.14.(4分)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,一人从中随机摸出一球记下标号后放回,再从中随机摸出一个小球记下标号,则两次摸出的小球的标号之和大于4的概率是.15.(4分)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为.。
广东省云浮市九年级上学期期末数学试卷
广东省云浮市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017九上·杭州月考) 下列说法正确的是()A . “明天的降水概率为80%”,意味着明天有 80%的时间降雨B . 掷一枚质地均匀的骰子,“点数为奇数”与“点数为偶数”的可能性相等C . “某彩票中奖概率是1%”,表示买 100 张这种彩票一定会中奖D . 小明上次的体育测试成绩是“优秀”,这次测试成绩一定也是“优秀”2. (2分) (2016九上·滨州期中) 我省2014年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2016年的快递业务量达到4.5亿件.设2015年与2016年这两年的平均增长率为x,则下列方程正确的是()A . 1.4(1+x)=4.5B . 1.4(1+2x)=4.5C . 1.4(1+x)2=4.5D . 1.4(1+x)+1.4(1+x)2=4.53. (2分)(2016·西安模拟) 抛物线y=(x﹣1)2+2的顶点坐标是()A . (﹣1,2)B . (﹣1,﹣2)C . (1,﹣2)D . (1,2)4. (2分)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A . 65°B . 130°C . 50°D . 100°5. (2分)已知⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与⊙O的位置关系是()A . 相交B . 相切C . 相离D . 不确定6. (2分)函数y=kx+b与函数y=在同一平面直角坐标系中的大致图象正确的是()A .B .C .D .7. (2分) (2019八下·商水期末) 如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若,,则图中阴影部分的面积为()A . 8B . 6C . 4D . 38. (2分)某年爆发世界金融危机,某商品原价为200元,连续两次降价a%后,售价为148元,则下面所列方程正确的是()A . 200(1+a%)2=148B . 200(1﹣a%)2=148C . 200(1﹣2a%)2=148D . 200(1﹣a%)=1489. (2分)(2017·吴中模拟) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0;②当﹣1≤x≤3时,y<0;③若(x1 , y1)、(x2 , y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A . ①②④B . ①②③C . ①④D . ③④10. (2分)如图,点O是圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使和都经过圆心O,则阴影部分的面积是⊙O面积的()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)(2019·上海) 如果关于x的方程x2-x+m=0没有实数根,那么实数m的取值范围是________.12. (1分)若函数y=(m+2)是二次函数,则m=________ .13. (1分)(2017·盘锦模拟) 一个圆锥的侧面积是底面积的3倍,则该圆锥的侧面展开图的扇形圆心角等于________.14. (1分)如图,已知P是正方形ABCD外一点,且PA=3,PB=4 ,则PC的最大值是________;15. (1分)(2011·福州) 以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是________.三、解答题 (共7题;共76分)16. (10分) (2017九上·定州期末) 解方程(1) 7x(5x+2)=6(5x+2)(2) 4x2﹣8x+1=0.17. (10分)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.18. (6分) (2019八下·枣庄期中) 如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为:A(1,-4),B(5,-4),C(4,-1).(1)将△ABC经过平移得到△A1B1C1 ,若点C的对应点C1的坐标为(2,5),则点A,B的对应点A1 , B1的坐标分别为________;(2)在如图的坐标系中画出△A1B1C1 ,并画出与△A1B1C1关于原点O成中心对称的△A2B2C2.19. (7分)(2020·郑州模拟) 如图,AB为⊙O的直径,DB⊥AB于B,点C是弧AB上的任一点,过点C作⊙O 的切线交BD于点E.连接OE交⊙O于F.(1)求证:CE=ED;(2)填空:①当∠D=________时,四边形OCEB是正方形;②当∠D=________时,四边形OACF是菱形.20. (8分) (2020八上·蜀山月考) 甲、乙两地相距一列快车和一列慢车都从甲地驶往乙地,慢车先行驶1小时后,快车才开始行驶.已知快车的速度是以快车开始行驶计时,设时间为,两车之间的距离为,图中的折线是与的函数关系的部分图象,根据图象解决以下问题:(1)慢车的速度是________ ,点的坐标是________;(2)线段所表示的与之间的函数关系式是________;(3)试在图中补全点以后的图象.21. (15分)(2016·襄阳) 襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.22. (20分)已知抛物线y=ax2经过点A(﹣2,﹣8).(1)求此抛物线的函数解析式;(2)说出这个二次函数图象的顶点,对称轴和开口方向;(3)判断点B(﹣1,﹣4)是否在此抛物线上;(4)求此抛物线上纵坐标为﹣18的点的坐标.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共5分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共7题;共76分)答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:。
广东省云浮市九年级上学期数学期末考试试卷
广东省云浮市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择(每小题3分,共48分) (共16题;共48分)1. (3分)下列方程中,关于x的一元二次方程的是()A . ax2+bx+c=0B . 3(x+1)2=2(x+1)C . x2﹣x(x+7)=0D . + +2=02. (3分)若y=2是二次函数,则m等于()A . -2B . 2C . ±2D . 不能确定3. (3分)下列图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (3分)已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 有两个实数根5. (3分) (2020九上·景县期末) 如图,AB切⊙O于点B,OA=2 ,AB=3,弦BC∥OA,则劣弧BC的长度为()A .B .C . πD .6. (3分) (2020九上·景县期末) 如图,若用圆心角为120°,半径为9的扇形围成一个圆锥侧面(接缝忽略不计),则这个锥的底面直径是()A . 6B . 3C . 9D . 127. (3分)如图,在5×5正方形网格中,一条圆弧经过A , B , C三点,那么这条圆弧所在圆的圆心是A . 点PB . 点QC . 点RD . 点M8. (3分)已知反比例函数y=(k>0)经过点A(x1 , y1)、B(x2 , y2),如果y1<y2<0,那么()B . x1>x2>0C . x2<x1<0D . x1<x2<09. (3分)(2019·张掖模拟) 如图,在Rt△ABC中,∠BAC=90°,且AB=3,BC=5,⊙A与BC相切于点D,交AB于点E,交AC于点F,则图中阴影部分的面积为()A . 12﹣πB . 12﹣πC . 6﹣πD . 6﹣π10. (3分)下列说法正确的是()A . 矩形都是相似图形B . 各角对应相等的两个五边形相似C . 等边三角形都是相似三角形D . 各边对应成比例的两个六边形相似11. (3分)已知O为平行四边形ABCD对角线的交点,△AOB的面积为1,则平行四边形的面积为()A . 1B . 2C . 3D . 412. (3分)(2019·嘉善模拟) 如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB 绕点O顺时针旋转15°,此时点A对应点A′的坐标是()B . (,1)C .D . ( ,)13. (3分) (2019九上·义乌月考) 如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()A .B .C .D .14. (3分)(2015·衢州) 如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα= ,则“人字梯”的顶端离地面的高度AD是()A . 144cmB . 180cmC . 240cmD . 360cm15. (3分) (2019九上·阳东期末) 二次函数y=ax2+bx+c(a , b , c为常数,且a≠0)中的x与y的部分对应值如表:x﹣1013y﹣1353有下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小;③x=3是方程ax2+(b﹣1)x+c=0的一个根;④当﹣1<x<3时,ax2+(b﹣1)x+c>0.小明从中任意选取一个结论,则选中符合题意结论的概率为()A . 1B .C .D .16. (3分)(2017·重庆模拟) 如图,D,E分别是△ABC的边AB,AC上的点,DE∥BC, =2,那么△ADE 与四边形DBCE的面积的比是()A .B .C .D .二、填空(每空3分,共12分) (共3题;共12分)17. (3分) (2017八下·泰州期中) 反比例函数的图像经过,两点,其中,且,则的范围是________.18. (3分)若m是方程x2+x﹣1=0的一个根,则代数式m2+m+2014=________19. (6分) (2017九上·灌云期末) 已知⊙O的半径为5cm,当线段OA=5cm时,点A和⊙O的位置关系是________.三、解答 (共7题;共60分)20. (6分) (2016九下·临泽开学考) 计算。
广东省云浮市九年级上学期期末数学试卷
广东省云浮市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·玉林) sin45°的值是()A .B .C .D . 12. (2分)当k>0,x<0时,反比例函数y=的图象在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2017九上·慈溪期中) 如图,等边三角形内接于,点P在弧BC上,PA与BC相交于点D,若PB=3,PC=6,则PD=()A . 1.5B .C . 2D .4. (2分)“从布袋中取出一个红球的概率为0”,这句话的含义是()A . 布袋中红球很少B . 布袋中没有球C . 布袋中没有红球D . 布袋中的球全是红球5. (2分)将抛物线y=2x2的图象先向右平移4个单位,再向下平移3个单位所得的解析式为()A . y=2(x-3)2+4B . y=2(x+4)2-3C . y=2(x-4)2+3D . y=2(x-4)2-36. (2分) (2015七上·深圳期末) 下面平面图形经过折叠不能围成正方体的是()A .B .C .D .7. (2分)一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A . (2,2)B . (3,2)C . (3,3)D . (2,3)8. (2分)如图,下列说法中错误的是()A . OB方向是北偏西15ºB . OA方向是北偏东30ºC . OC方向是南偏西25ºD . OD方向是东南方向9. (2分)(2016·达州) 如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A .B . 2C .D .10. (2分)已知a是方程x2+x-1=0的一个根,则的值为()A .B .C . -1D . 1二、填空题 (共10题;共10分)11. (1分)(2020·大连) 我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步。
云浮市九年级上册数学期末考试试卷
云浮市九年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017九上·鞍山期末) 在平面直角坐标系中,将二次函数的图象向上平移2个单位,所得图象的表达式为()A .B .C .D .2. (2分)(2017·金华) 在直角三角形Rt ABC中,C=90°,AB=5,BC=3,则tanA的值是()A .B .C .D .3. (2分)小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A . 0.5mB . 0.55mC . 0.6mD . 2.2m4. (2分) (2018九上·娄底期中) A,B两城间的距离为15千米,一人行路的平均速度每小时不少于3千米,也不多于5千米,则表示此人由A到B的行路速度x(千米/小时)与所用时间y(小时)的关系y= 的函数图象是()A .B .C .D .5. (2分) (2017九上·铁岭期末) 如图,在平行四边形ABCD中,E为CD上一点,连接AE,BD,且AE,BD 相交于点F,DE:EC=2:3,则S△DEF:S△ABF等于()A . 4:25B . 4:9C . 9:25D . 2:36. (2分)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0),对于下列命题:①abc>0;②(a﹣b)c>0;③b﹣c>0;④4a+3b+2c>0;⑤b﹣2a=1;⑥a+b+c<0;⑦4a﹣2b+c<0.其中所有正确结论有()A . 1个B . 2个C . 3个D . 4个7. (2分)如图,一个梯子AB长2.5 米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A . 0.9米B . 1.3米C . 1.5米D . 2米8. (2分) (2017八上·潮阳月考) 如图,在△ABC中,AB=10,AC=8,则BC边上的中线AD的取值范围是()A . 2<AD<18B . 3<AD<6C . 4<AD<12D . 1<AD<99. (2分)已知等腰△ABC中,AD⊥BC于点D,且,则△ABC底角的度数为()A . 45°B . 75°C . 15°或45°或75°D . 60°10. (2分)(2018·奉贤模拟) 已知二次函数y=ax2+bx+c的图象上部分点的横坐标x与纵坐标y的对应值如下表:x…-1012…y…0343…那么关于它的图象,下列判断正确的是()A . 开口向上B . 与x轴的另一个交点是(3,0)C . 与y轴交于负半轴D . 在直线x=1的左侧部分是下降的二、填空题 (共8题;共9分)11. (1分)(2017·宝山模拟) 已知2a=3b,则 =________.12. (1分)(2018·嘉定模拟) 已知点在线段上,且 ,那么 ________.13. (2分)二次函数y=2x2﹣1,∵a=________,∴函数有最________值.14. (1分) (2016九上·宁波期末) 若sinα= ,α是锐角,则α=________度.15. (1分)如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为________.16. (1分)(2017·东海模拟) 如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x ﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是________.17. (1分) (2017九上·孝义期末) 如图,在△ABC中,点D是BC边上的动点(不与点B、C重合),点E 是AB边上的动点(不与点A、B重合),则当满足条件________时,△ABC与△DEB相似(写出一个即可).18. (1分)若点A(﹣3,y1)、B(0,y2)是二次函数y=﹣2(x﹣1)2+3图象上的两点,那么y1与y2的大小关系是________ (填y1>y2、y1=y2或y1<y2).三、解答题 (共6题;共47分)19. (5分)如图,在平面直角坐标系中,抛物线的顶点A的坐标为(3,15),且过点(-2,10),对称轴AB交x轴于点B,点E是线段AB上一动点,以EB为边在对称轴右侧作矩形EBCD,使得点D恰好落在抛物线上,点D′是点D关于直线EC的轴对称点.(1)求抛物线的解析式;(2)若点D′恰好落在轴上的点(0,6)时,求此时D点的坐标;(3)直线CD′交对称轴AB于点F,①当点D′在对称轴AB的左侧时,且△ED′F∽△CDE,求出DE:DC的值;②连结B D′,是否存在点E,使△E D′B为等腰三角形?若存在,请直接写出BE:BC的值,若不存在请说明理由.20. (10分) (2019八下·雁江期中) 已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).21. (10分)(2017·临沂模拟) 在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)计算.22. (5分)如图,在电线杆上的C处引拉线CE,CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B 处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长.(结果保留根号)23. (10分)(2018·广安) 某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元,1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?24. (7分) (2018九上·南召期末) 如图1,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)请直接写出PM与PN的数量关系及位置关系________;(2)现将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H.请直接写出PM与PN的数量关系及位置关系________;(3)若图2中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图3,写出PM与PN的数量关系,并加以证明.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共47分)19-1、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、。
广东省云浮市九年级上学期数学期末考试试卷
广东省云浮市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·兰山模拟) 如图,组合体的俯视图是()A .B .C .D .2. (2分) (2017九上·孝义期末) 已知反比例函数y= ,如果在这个函数图象所在的每一个象限内,y 的值都随x的增大而增大,那么k的取值可能是()A . 0B . 2C . 3D . 43. (2分) (2018九上·邓州期中) 如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A . 4.5B . 8C . 10.5D . 144. (2分)(2017·潍坊模拟) 如图,矩形ABCD中,AB= ,BC= ,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于F,则等于()A .B .C .D .5. (2分)根据下表判断方程x2+x﹣3=0的一个根的近似值(精确到0.1)是()x 1.2 1.3 1.4 1.5x2+x﹣3﹣0.36﹣0.010.360.75A . 1.3B . 1.2C . 1.5D . 1.46. (2分)下列说法中错误的是()A . 一组对边平行且一组对角相等的四边形是平行四边形B . 每组邻边都相等的四边形是菱形C . 四个角相等的四边形是矩形D . 对角线互相垂直的平行四边形是正方形7. (2分)(2019·抚顺模拟) 小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是()A . 从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率B . 掷一枚质地均匀的硬币,正面朝上的概率C . 从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率D . 任意买一张电影票,座位号是2的倍数的概率8. (2分)如图,在△ABC中,∠B=70°,AB=4,BC=6,将△ABC沿图示中的虚线DE剪开,剪下的三角形与原三角形相似的有()A . 1个B . 2个C . 3个D . 4个9. (2分)解方程(2x﹣1)2﹣(x+9)2=0最简便的方法是()A . 直接开平方法B . 因式分解法C . 配方法D . 公式法10. (2分) (2019九上·宝安期末) 如图,矩形ABCD,,,点M,N分别为边AD和边BC 上的两点,且,点E是点A关于MN所在的直线的对称点,取CD的中点F,连接EF,NF,分别将沿着EF所在的直线折叠,将沿着NF所在的直线折叠,点D和点C恰好重合于EN上的点以下结论中:;;∽ ;四边形MNCD是正方形;其中正确的结论是A .B .C .D .11. (2分) (2018九上·天河期末) 一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式()A . 16(1+2x)=25B . 25(1-2x)=16C . 25(1-x)²=16D . 16(1+x)²=2512. (2分)(2018·莱芜) 如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG•FC④EG•AE=BG•AB其中正确的个数是()A . 1B . 2C . 3D . 4二、填空题 (共4题;共4分)13. (1分)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG..若AB=8,BC=16,则△AEG 的面积为________.14. (1分) (2019九上·钦州港期末) 已知反比例函数y=,x>0时,y________0,这部分图象在第________象限,y随着x值的增大而________.15. (1分)(2018·邯郸模拟) 如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=________;(2)当△ABC的边与坐标轴平行时,t=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省云浮市云安区2019届九年级上学期
期末考试数学试题
一、选择题
1.如图图形中,是中心对称图形的是( )
A. B. C. D.
2. “抛一枚均匀硬币,落地后正面朝上”这一事件是【 】
A. 必然事件
B. 随机事件
C. 确定事件
D. 不可能事件 3.平面直角坐标系内一点(-3,4)关于原点对称点的坐标是( )
A. (3,4)
B. (-3,-4 )
C. (3,-4)
D. (4,-3) 4.抛物线2(1)2y x =-+的顶点坐标是( )
A. ((1(2(
B. ((1((2(
C. (1((2(
D. (1(2(
5. 若正六边形的半径长为4,则它的边长等于( )
A. 4
B. 2
C.
D. 6.在一个不透明的袋子中(装有红球、黄球、篮球、白球各1个(这些球除颜色外无其他差别(从袋中随机取出一个球(取出红球的概率为( ) A. 12 B. 13 C.
14 D. 1 7.若关于x 的一元二次方程x 2﹣2x +m =0没有实数根,则实数m 的取值是( )
A. m <1
B. m >﹣1
C. m >1
D. m <﹣1
8.有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )
A. ()1x x 1452-=
B. ()1x x 1452
+= C. ()x x 145-= D. ()x x 145+=
9.如图,AB 是⊙O 的直径,弦CD⊥AB 于点E ,若AB=8,AE=1,则弦CD 的长是( )
A. B. C. 6 D. 8
10.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )
A. B. C. D.
二、填空题
11.方程(x ﹣1)(x+2)=0的解是______.
12.如图,已知⊙O 是△ABC 的外接圆,若∠BOC=100°,则∠BAC=______(
13.将抛物线2
y 5x =向左平移2个单位得到新的抛物线,则新抛物线的解析式是______.
14.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手(则抽取的2名学生是甲和乙的概率为 ________(
15.如图,△ABC 中,∠BAC =60°,将△ABC 绕着点A 顺时针旋转40°后得到△ADE ,则∠BAE =_____.
16.如图,在ABC V
中,BC 4=,以点A 为圆心,2为半径的A e 与BC 相切于点D ,交AB 于点E ,交
AC 于点F ,点P 是A e 上的一点,且EPF 45∠=o ,则图中阴影部分的面积为______.
三、解答题
17.有一个人患了流感,经过两轮传染后共有81人患了流感.
()1每轮传染中平均一个人传染了几个人?
()2按照这样速度传染,第三轮将又有多少人被传染?
18.解一元二次方程:24x 4x 1=-.
19.如图,在Rt ABC V
中,ACB 90∠=o ,DCE V 是ABC V 绕着点C 顺时针方向旋转得到的,此时B 、C 、E 在同一直线上.
()1求旋转角的大小;
()2若AB 10=,AC 8=,求BE 的长.
20.如图,在Rt ABC V
中,C 90∠=o ,B 30∠=o . ()1用直尺和圆规作O e ,使圆心O 在BC 边,且O e 经过A ,B 两点上(不写作法,保留作图痕迹); ()2连接AO ,求证:AO 平分CAB ∠.
21.车辆经过润扬大桥收费站时,4个收费通道 A(B 、C 、D 中,可随机选择其中的一个通过.
的
(1)一辆车经过此收费站时,选择 A 通道通过的概率是 ;
(2)求两辆车经过此收费站时,选择不同通道通过
概率. 22.如图,有一座拱桥是圆弧形,它跨度AB=60米,拱高PD=18米.
(1)求圆弧所在的圆的半径r 的长;
(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,否要采
取紧急措施?
23.4件同型号的产品中,有1件不合格品和3件合格品.
(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率(
(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;
(3)在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少? 24.如图,AB 是O e 的直径,点C 、D 在O e 上,且AD 平分CAB ∠,过点D 作AC 的垂线,与AC 的延长线相交于E ,与AB 的延长线相交于点F ,G 为AB 的下半圆弧的中点,DG 交AB 于H ,连接DB 、GB . ()1证明EF 是O e 的切线;
()2求证:DGB BDF ∠∠=; ()3已知圆的半径R 5=,BH 3=,求GH 的长.
25.如图,抛物线y (12
x 2+bx (2与x 轴交于A (B 两点,与y 轴交于C 点,且A ((1(0(( (1)求抛物线的解析式及顶点D 的坐标;
的的
是
(2)判断△ABC的形状,证明你的结论;
(3)点M是抛物线对称轴上的一个动点,当MC+MA的值最小时,求点M的坐标.。