《创新设计》理科高考数学二轮专题复习——解答题强化练第四周星期日高考

合集下载

2022《创新设计》全国通用高考数学理科二轮专题复习 四周训练 第一周 星期一 习题

2022《创新设计》全国通用高考数学理科二轮专题复习 四周训练 第一周 星期一 习题

大题规范每天练(第一周)星期一 (三角与数列) 2022年____月____日1.三角学问(命题意图:考查三角函数式的恒等变换,三角函数的图象变换以及三角函数在闭区间上的值域等.)已知向量m =(sin x ,1),n =⎝ ⎛⎭⎪⎫3A cos x ,A 2cos 2x (A >0),函数f (x )=m ·n 的最大值为6.(1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤0,5π24上的值域. 解 (1)f (x )=m ·n =3A sin x cos x +A2cos 2x=A ⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x=A sin ⎝ ⎛⎭⎪⎫2x +π6. 由于A >0,由题意知A =6.(2)由(1)得f (x )=6sin ⎝ ⎛⎭⎪⎫2x +π6.将函数y =f (x )的图象向左平移π12个单位后得到y =6sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π6=6sin ⎝ ⎛⎭⎪⎫2x +π3的图象;再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到y =6sin ⎝ ⎛⎭⎪⎫4x +π3的图象.因此g (x )=6sin ⎝ ⎛⎭⎪⎫4x +π3.由于x ∈⎣⎢⎡⎦⎥⎤0,5π24,所以4x +π3∈⎣⎢⎡⎦⎥⎤π3,7π6,故g (x )在⎣⎢⎡⎦⎥⎤0,5π24上的值域为[-3,6]. 2.数列学问(命题意图:考查数列基本量的求取,数列前n 项和的求取,以及利用放缩法解决数列不等式问题等.)已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S 2n2S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)证明:当n ≥2时,S 1+12S 2+13S 3+…+1n S n <32.证明 (1)当n ≥2时,S n -S n -1=2S 2n2S n -1,S n -1-S n =2S n S n -1,1S n -1S n -1=2,从而⎩⎨⎧⎭⎬⎫1S n 构成以1为首项,2为公差的等差数列.(2)由(1)可知,1S n =1S 1+(n -1)×2=2n -1,∴S n =12n -1,∴当n ≥2时,1n S n =1n (2n -1)<1n (2n -2)=12·1n (n -1)=12⎝ ⎛⎭⎪⎫1n -1-1n从而S 1+12S 2+13S 3+…+1n S n <1+12⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n <32-12n <32.。

创新设计(江苏专用)高考数学二轮复习 解答题 第四周 星期日 40分附加题部分 理

创新设计(江苏专用)高考数学二轮复习 解答题 第四周 星期日 40分附加题部分 理

星期日 (40分附加题部分)2017年____月____日选做部分请同学从下面给的四题中选定两题作答1.选修4-1:几何证明选讲如图,在直径是AB 的半圆上有两点M ,N ,设AN 与BM 的交点为点P .求证:AP ·AN +BP ·BM =AB 2.证明 如图所示,作PE ⊥AB 于点E ,因为AB 为直径,所以∠ANB =∠AMB =90°,所以P ,E ,B ,N 四点共圆,P ,E ,A ,M 四点共圆.所以⎩⎪⎨⎪⎧AE ·AB =AP ·AN ,①BE ·AB =BP ·BM ,② ①+②得AB (AE +BE )=AP ·AN +BP ·BM ,即AP ·AN +BP ·BM =AB 2.2.选修4-2:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤1 2c d (c ,d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤11,求矩阵A 的逆矩阵A -1. 解 由题意知⎣⎢⎡⎦⎥⎤1 2cd ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤ 42c +d =2⎣⎢⎡⎦⎥⎤21, ⎣⎢⎡⎦⎥⎤1 2c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤ 3c +d =3⎣⎢⎡⎦⎥⎤11, 所以⎩⎪⎨⎪⎧2c +d =2,c +d =3,解得⎩⎪⎨⎪⎧c =-1,d =4. 所以A =⎣⎢⎡⎦⎥⎤1 2-1 4, 所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤23 -1316 16. 3.选修4-4:坐标系与参数方程已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π3=3,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),设点P 是曲线C 上的任意一点,求P 到直线l 的距离的最大值.解 由ρsin ⎝ ⎛⎭⎪⎫θ-π3=3,可得ρ⎝ ⎛⎭⎪⎫12sin θ-32cos θ=3. 所以y -3x =6,即3x -y +6=0,由⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ得x 2+y 2=4,圆的半径为r =2, 所以圆心到直线l 的距离d =62=3, 所以P 到直线l 的距离的最大值为d +r =5.4.选修4-5:不等式选讲已知x ,y ,z ∈R ,且x +2y +3z +8=0.求证:(x -1)2+(y +2)2+(z -3)2≥14.证明 因为[(x -1)2+(y +2)2+(z -3)2](12+22+32)≥[(x -1)+2(y +2)+3(z -3)]2 =(x +2y +3z -6)2=142,当且仅当x -11=y +22=z -33,即x =z =0,y =-4时,取等号,所以(x -1)2+(y +2)2+(z -3)2≥14.必做部分1.如图,在直三棱柱ABC -A 1B 1C 1中,已知CA =CB =1,AA 1=2,∠BCA =90°.(1)求异面直线BA 1与CB 1夹角的余弦值;(2)求二面角B -AB 1-C 平面角的余弦值.解 如图,以{CA →,CB →,CC 1→}为正交基底,建立空间直角坐标系C -xyz ,则A (1,0,0),B (0,1,0),A 1(1,0,2),B 1(0,1,2),所以CB 1→=(0,1,2),AB →=(-1,1,0),AB 1→=(-1,1,2),BA 1→=(1,-1,2).(1)因为cos 〈CB 1→,BA 1→〉= CB 1→·BA 1→|CB 1→||BA 1→|=35×6=3010, 所以异面直线BA 1与CB 1夹角的余弦值为3010. (2)设平面CAB 1的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·AB 1→=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧-x +y +2z =0,y +2z =0, 取平面CAB 1的一个法向量为m =(0,2,-1);设平面BAB 1的法向量为n =(r ,s ,t ),则⎩⎪⎨⎪⎧n ·AB 1→=0,n ·AB →=0,即⎩⎪⎨⎪⎧-r +s +2t =0,-r +s =0, 取平面BAB 1的一个法向量为n =(1,1,0),则cos 〈m ,n 〉=m·n |m ||n |=25×2=105, 所以二面角B -AB 1-C 平面角的余弦值为105. 2.在数列{a n }中,已知a 1=20,a 2=30,a n +1=3a n -a n -1(n ∈N *,n ≥2).(1)当n =2,3时,分别求a 2n -a n -1a n +1的值,并判断a 2n -a n -1a n +1(n ≥2)是否为定值,然后给出证明;(2)求出所有的正整数n ,使得5a n +1a n +1为完全平方数.解 (1)由已知得a 3=70,a 4=180.所以当n =2时,a 2n -a n -1a n +1=-500;当n =3时,a 2n -a n -1a n +1=-500.猜想:a 2n -a n -1a n +1=-500(n ≥2).下面用数学归纳法证明:①当n =2时,结论成立.②假设当n =k (k ≥2,k ∈N *)时,结论成立,即a 2k -a k -1a k +1=-500.将a k +1=3a k -a k -1代入上式,可得a 2k -3a k a k +1+a 2k +1=-500.则当n =k +1时,a 2k +1-a k a k +2=a 2k +1-a k (3a k +1-a k )=a 2k +1-3a k a k +1+a 2k =-500. 故当n =k +1结论成立,根据①②可得a 2n -a n -1a n +1=-500(n ≥2)成立.(2)将a n -1=3a n -a n +1代入a 2n -a n -1a n +1=-500,得a 2n +1-3a n a n +1+a 2n =-500,则5a n +1a n =(a n +1+a n )2+500,5a n a n +1+1=(a n +1+a n )2+501, 设5a n +1a n +1=t 2(t ∈N *),则t 2-(a n +1+a n )2=501,即[t -(a n +1+a n )](t +a n +1+a n )=501,又a n +1+a n ∈N ,且501=1×501=3×167,故⎩⎪⎨⎪⎧a n +1+a n -t =-1,a n +1+a n +t =501或⎩⎪⎨⎪⎧a n +1+a n -t =-3,a n +1+a n +t =167, 所以⎩⎪⎨⎪⎧t =251,a n +1+a n =250或⎩⎪⎨⎪⎧t =85,a n +1+a n =82, 由a n +1+a n =250解得n =3; 由a n +1+a n =82得n 无整数解,所以当n =3时,满足条件.。

创新设计(江苏专用)高考数学二轮复习解答题第四周星期六解答题综合练文

创新设计(江苏专用)高考数学二轮复习解答题第四周星期六解答题综合练文

星期六 (解答题综合练)2017年____月____日1. 在△ABC 中,角A ,B 的对边分别为a ,b ,向量m =(cos A ,sin B ),n =(cos B ,sin A ).(1)若a cos A =b cos B ,求证:m∥n ; (2)若m⊥n ,a >b ,求tanA -B2的值.(1)证明 因为a cos A =b cos B ,所以sin A cos A =sin B cos B ,所以m∥n .(2)解 因为m⊥n ,所以cos A cos B +sin A sin B =0, 即cos(A -B )=0, 因为a >b ,所以A >B ,又A ,B ∈(0,π),所以A -B ∈(0,π), 则A -B =π2,所以tanA -B2=tan π4=1.2.如图,在三棱锥P -ABC 中,∠PAC =∠BAC =90°,PA =PB ,点D ,F 分别为BC ,AB 的中点.(1)求证:直线DF ∥平面PAC ; (2)求证:PF ⊥AD .证明 (1)因为点D ,F 分别为BC ,AB 的中点, 所以DF ∥AC ,又因为DF ⊄平面PAC ,AC ⊂平面PAC , 所以直线DF ∥平面PAC . (2)因为∠PAC =∠BAC =90°, 所以AC ⊥AB ,AC ⊥AP ,又因为AB ∩AP =A ,所以AC ⊥平面PAB , 因为PF ⊂平面PAB ,所以AC ⊥PF ,因为PA =PB ,F 为AB 的中点,所以PF ⊥AB , 因为AC ∩AB =A ,所以PF ⊥平面ABC , 因为AD ⊂平面ABC ,所以AD ⊥PF .3.某商场对A 品牌的商品进行了市场调查,预计2015年从1月起前x 个月顾客对A 品牌的商品的需求总量P (x )件与月份x 的近似关系是:P (x )=12x (x +1)(41-2x )(x ≤12且x ∈N *).(1)写出第x 月的需求量f (x )的表达式;(2)若第x 月的销售量g (x )=⎩⎪⎨⎪⎧f (x )-21x ,1≤x <7且x ∈N *,x 2e x ⎝ ⎛⎭⎪⎫13x 2-10x +96,7≤x ≤12且x ∈N * (单位:件),每件利润q (x )元与月份x 的近似关系为:q (x )=10exx,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e 6≈403) 解 (1)当x =1时,f (1)=P (1)=39. 当x ≥2时,f (x )=P (x )-P (x -1)=12x (x +1)(41-2x )-12(x -1)x (43-2x )=3x (14-x ).由于x =1适合上式,∴f (x )=-3x 2+42x (x ≤12,x ∈N *). (2)设月利润为h (x ),h (x )=q (x )·g (x )=⎩⎪⎨⎪⎧30e x (7-x ),1≤x ≤7,x ∈N *,103x 3-100x 2+960x ,7≤x ≤12,x ∈N *, h ′(x )=⎩⎪⎨⎪⎧30e x(6-x ),1≤x <7,x ∈N *,10(x -8)(x -12),7≤x ≤12,x ∈N *, ∵当1≤x ≤6时,h ′(x )≥0, 当6<x <7时,h ′(x )<0,∴当1≤x <7且x ∈N *时,h (x )max =30e 6≈12 090,∵当7≤x ≤8时,h ′(x )≥0,当8≤x ≤12时,h ′(x )≤0, ∴当7≤x ≤12且x ∈N *时,h (x )max =h (8)≈2 987.综上,预计该商场第6个月的月利润达到最大,最大月利润约为12 090元.4.如图,椭圆x 2a 2+y 2b2=1(a >b >0)的上,下两个顶点为A ,B ,直线l :y =-2,点P 是椭圆上异于点A ,B 的任意一点,连接AP 并延长交直线l 于点N ,连接PB 并延长交直线l 于点M ,设AP 所在的直线的斜率为k 1,BP 所在的直线的斜率为k 2.若椭圆的离心率为32,且过点A (0,1).(1)求k 1·k 2的值; (2)求MN 的最小值;(3)随着点P 的变化,以MN 为直径的圆是否恒过定点?若过定点,求出该定点;如不过定点,请说明理由.解 (1)因为e =c a =32,b =1,a 2=b 2+c 2,解得a =2,所以椭圆C 的标准方程为x 24+y2=1.设椭圆上点P (x 0,y 0),有x 204+y 20=1,所以k 1·k 2=y 0-1x 0·y 0+1x 0=y 20-1x 20=-14.(2)因为M ,N 在直线l :y =-2上,设M (x 1,-2),N (x 2,-2),由方程知x 24+y 2=1知,A (0,1),B (0,-1),所以k BM ·k AN =-2-(-1)x 1-0·-2-1x 2-0=3x 1x 2,又由(1)知k AN ·k BM =k 1·k 2=-14,所以x 1x 2=-12,不妨设x 1<0,则x 2>0,则MN =|x 1-x 2|=x 2-x 1=x 2+12x 2≥2x 2·12x 2=43,所以当且仅当x 2=-x 1=23时,MN 取得最小值4 3. (3)设M (x 1,-2),N (x 2,-2), 则以MN 为直径的圆的方程为 (x -x 1)(x -x 2)+(y +2)2=0,即x 2+(y +2)2-12-(x 1+x 2)x =0,若圆过定点, 则有x =0,x 2+(y +2)2-12=0,解得x =0,y =-2±23,所以,无论点P 如何变化,以MN 为直径的圆恒过定点(0,-2±23). 5.已知函数f (x )=-x 3+x 2,g (x )=a ln x ,a ∈R .(1)若对任意x ∈[1,e],都有g (x )≥-x 2+(a +2)x 恒成立,求a 的取值范围;(2)设F (x )=⎩⎪⎨⎪⎧f (x ),x <1,g (x ),x ≥1.若P 是曲线y =F (x )上异于原点O 的任意一点,在曲线y =F (x )上总存在另一点Q ,使得△POQ 中的∠POQ 为钝角,且PQ 的中点在y 轴上,求a 的取值范围.解 (1)由g (x )≥-x 2+(a +2)x ,得(x -ln x )a ≤x 2-2x .由于x ∈[1,e],ln x ≤1≤x ,且等号不能同时取得,所以ln x <x ,x -ln x >0.从而a ≤x 2-2x x -ln x 恒成立,a ≤⎝ ⎛⎭⎪⎫x 2-2x x -ln x min. 设t (x )=x 2-2x x -ln x ,x ∈[1,e].求导,得t ′(x )=(x -1)(x +2-2ln x )(x -ln x )2. x ∈[1,e],x -1≥0,ln x ≤1,x +2-2ln x >0,从而t ′(x )≥0,t (x )在[1,e]上为增函数.所以t (x )min =t (1)=-1,所以a 的取值范围是(-∞,-1].(2)F (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1.设P (t ,F (t ))为曲线y =F (x )上的任意一点.假设曲线y =F (x )上存在一点Q (-t ,F (-t )),使∠POQ 为钝角,则OP →·OQ →<0. ①若t ≤-1,P (t ,-t 3+t 2),Q (-t ,a ln(-t )),OP →·OQ →=-t 2+a ln(-t )·(-t 3+t 2). 由于OP →·OQ →<0恒成立,a (1-t )ln(-t )<1. 当t =-1时,a (1-t )ln(-t )<1恒成立. 当t <-1时,a <1(1-t )ln (-t )恒成立.由于1(1-t )ln (-t )>0,所以a ≤0.②若-1<t <1,且t ≠0,P (t ,-t 3+t 2),Q (-t ,t 3+t 2), 则OP →·OQ →=-t 2+(-t 3+t 2)·(t 3+t 2)<0, 即t 4-t 2+1>0对-1<t <1,且t ≠0恒成立. ③当t ≥1时,同①可得a ≤0. 综上所述,a 的取值范围是(-∞,0].6.已知数列{a n }的前三项分别为a 1=5,a 2=6,a 3=8,且数列{a n }的前n 项和S n 满足S n +m=12(S 2n +S 2m )-(n -m )2,其中m ,n 为任意正整数. (1)求数列{a n }的通项公式及前n 项和S n ; (2)求满足S 2n -32a n +33=k 2的所有正整数k ,n .解 (1)在等式S m +n =12(S 2n +S 2m )-(n -m )2中,分别令m =1,m =2,得S n +1=12(S 2n +S 2)-(n -1)2,① S n +2=12(S 2n +S 4)-(n -2)2,②②-①,得a n +2=2n -3+S 4-S 22.在等式S n +m =12(S 2n +S 2m )-(n -m 2)中,令n =1,m =2,得S 3=12(S 2+S 4)-1,由题设知,S 2=11,S 3=19,故S 4=29.所以a n +2=2n +6(n ∈N *),即a n =2n +2(n ≥3,n ∈N *).又a 2=6也适合上式,故a n =⎩⎪⎨⎪⎧5,n =1,2n +2,n ≥2.S n =⎩⎪⎨⎪⎧5, n =1,n 2+3n +1, n ≥2.即S n =n 2+3n +1,n ∈N *.(2)记S 2n -32a n +33=k 2(*).n =1时,无正整数k 满足等式(*).n ≥2时,等式(*)即为(n 2+3n +1)2-3(n -10)=k 2.①当n =10时,k =131.②当n >10时,则k <n 2+3n +1,又k 2-(n 2+3n )2=2n 2+3n +31>0,所以k >n 2+3n . 从而n 2+3n <k <n 2+3n +1.又因为n ,k ∈N *,所以k 不存在,从而无正整数k 满足等式(*). ③当n <10时,则k >n 2+3n +1,因为k ∈N *,所以k ≥n 2+3n +2. 从而(n 2+3n +1)2-3(n -10)≥(n 2+3n +2)2. 即2n 2+9n -27≤0.因为n ∈N *,所以n =1或2.n =1时,k 2=52,无正整数解; n =2时,k 2=145,无正整数解.综上所述,满足等式(*)的n ,k 分别为n =10,k =131.。

创新设计高考数学二轮复习浙江专用习题 大题规范练 星期四 第二周 含答案

创新设计高考数学二轮复习浙江专用习题 大题规范练 星期四 第二周 含答案

星期四 (函数与导数) 2017年____月____日函数与导数(命题意图:考查函数的单调性及不等式恒成立问题,考查等价转化思想)(本小题满分15分)已知函数f (x )=(3-a )x -2+a -2ln x (a ∈R ).(1)若函数y =f (x )在区间(1,3)上单调,求a 的取值范围;(2)若函数g (x )=f (x )-x 在⎝ ⎛⎭⎪⎫0,12上无零点,求a 的最小值. 解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=3-a -2x =(3-a )x -2x. 当a ≥3时,有f ′(x )<0,即函数f (x )在区间(1,3)上单调递减;当a <3时,令f ′(x )=0,得x =23-a,若函数y =f (x )在区间(1,3)上单调,则 23-a ≤1或23-a≥3,解得a ≤1或73≤a <3; 综上,a 的取值范围是(-∞,1]∪⎣⎢⎡⎭⎪⎫73,+∞. (2)因为当x →0时,g (x )→+∞,所以g (x )=(2-a )(x -1)-2ln x <0在区间⎝ ⎛⎭⎪⎫0,12上恒成立不可能,故要使函数g (x )在⎝ ⎛⎭⎪⎫0,12上无零点,只要对任意的x ∈⎝ ⎛⎭⎪⎫0,12,g (x )>0恒成立, 即对x ∈⎝ ⎛⎭⎪⎫0,12,a >2-2ln x x -1恒成立, 令l (x )=2-2ln x x -1,x ∈⎝ ⎛⎭⎪⎫0,12, 则l ′(x )=-2x (x -1)-2ln x (x -1)2=2ln x +2x -2(x -1)2, 再令m (x )=2ln x +2x -2,x ∈⎝ ⎛⎭⎪⎫0,12, 则m ′(x )=-2x 2+2x =-2(1-x )x 2<0, 故m (x )在⎝ ⎛⎭⎪⎫0,12上为减函数,于是m (x )>m ⎝ ⎛⎭⎪⎫12=2-2ln 2>0, 从而l ′(x )>0,于是l (x )在⎝ ⎛⎭⎪⎫0,12上为增函数, 所以l (x )<l ⎝ ⎛⎭⎪⎫12=2-4ln 2, 故要使a >2-2ln x x -1恒成立,只要a ∈[2-4ln 2,+∞),综上,若函数g (x )在⎝ ⎛⎭⎪⎫0,12上无零点,则a 的最小值为2-4ln 2.。

《创新设计》2022高考数学(浙江专用理科)二轮专题精练:专题四 立体几何4-2 Word版含解析

《创新设计》2022高考数学(浙江专用理科)二轮专题精练:专题四 立体几何4-2 Word版含解析

第2讲空间中的平行与垂直(建议用时:60分钟)一、选择题1.在下列命题中,不是公理的是().A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.假如一条直线上的两点在一个平面内,那么这条直线上全部的点都在此平面内D.假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线解析选项A是面面平行的性质定理.答案 A2.(2022·辽宁卷)已知m,n表示两条不同直线,α表示平面.下列说法正确的是().A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α解析法一若m∥α,n∥α,则m,n可能平行、相交或异面,A错;若m⊥α,n⊂α,则m⊥n,由于直线与平面垂直时,它垂直于平面内任始终线,B正确;若m⊥α,m⊥n,则n∥α或n⊂α,C错;若m∥α,m⊥n,则n与α可能相交,可能平行,也可能n⊂α,D错;法二如图,在正方体ABCD-A′B′C′D′中,用平面ABCD表示α.A项中,若m为A′B′,n为B′C′,满足m∥α,n∥α,但m与n是相交直线,故A错.B项中,m⊥α,n⊂α,∴m⊥n,这是线面垂直的性质,故B正确.C项中,若m为AA′,n为AB,满足m⊥α,m⊥n,但n⊂α,故C错.D项中,若m为A′B′,n为B′C′,满足m∥α,m⊥n,但n∥α,故D错.答案 B3.(2021·丽水模拟)已知两条直线a,b与两个平面α,β,b⊥α,则下列命题中正确的是().①若a∥α,则a⊥b;②若a⊥b,则a∥α;③若b⊥β,则α∥β;④若α⊥β,则b∥β.A.①③B.②④C.①④D.②③解析过直线a作平面γ使α∩γ=c,则a∥c,再依据b⊥α可得b⊥c,从而b⊥a,命题①是真命题;下面考虑命题③,由b⊥α,b⊥β,可得α∥β,命题③为真命题.故正确选项为A.答案 A4.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中确定能推出m⊥β的是().A.α⊥β,且m⊂αB.m∥n,且n⊥βC.α⊥β,且m∥αD.m⊥n,且n∥β解析依据定理、性质、结论逐个推断.由于α⊥β,m⊂α⇒可能平行、相交、m在β面内,故A错误;由线面垂直的性质定理可知B正确;若α⊥β,m∥α,则m,β的位置关系也不确定,故C错误;若m⊥n,n∥β,则m,β的位置关系也不确定,故D错误.答案 B5.已知两条不同的直线m,n和两个不同的平面α,β,给出下列四个命题:①若m∥α,n∥β,且α∥β,则m∥n;②若m∥α,n⊥β,且α⊥β,则m∥n;③若m⊥α,n∥β,且α∥β,则m⊥n;④若m⊥α,n⊥β,且α⊥β,则m⊥n.其中正确的个数有().A.1 B.2 C.3 D.4解析①中m,n可能异面或相交,故不正确;②由于m∥α,n⊥β且α⊥β成立时,m,n 两直线的关系可能是相交、平行、异面,故不正确;③由于m⊥α,α∥β可得出m⊥β,再由n∥β可得出m⊥n,故正确;④分别垂直于两个垂直平面的两条直线确定垂直,正确.故选B.答案 B6.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则().A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l解析假设α∥β,由m⊥平面α,n⊥平面β,则m∥n,这与已知m,n为异面直线冲突,那么α与β相交,设交线为l1,则l1⊥m,l1⊥n,在直线m上任取一点作n1平行于n,那么l1和l都垂直于直线m与n1所确定的平面,所以l1∥l.答案 D7.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在面ABC上的射影H 必在().A.直线AB上B.直线BC上C.直线AC上D.△ABC的内部解析∵AC⊥AB,AC⊥BC1,AB∩BC1=B,∴AC⊥平面ABC1.又AC⊂平面ABC,∴平面ABC1⊥平面ABC,∴C1在面ABC上的射影H必在两平面交线AB上,故选A.答案 A二、填空题8.设α和β为两个不重合的平面,给出下列四个命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l与α内的一条直线平行,则l和α平行;③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;④直线l与α垂直的充分必要条件是l与α内的两条直线垂直.其中为真命题的是________(写出全部真命题的序号).解析由①知α内两条相交直线分别平行于平面β,则两条相交直线确定的平面α平行于平面β,故①为真命题;由线面平行的判定定理知,②为真命题;对于③,如图,α∩β=l,a ⊂α,a⊥l,但不愿定有α⊥β,故③为假命题;对于④,直线l与平面α垂直的充分必要条件是l与α内的两条相交直线垂直,故④为假命题.综上所述,真命题的序号为①②.答案①②9.(2021·金华调研)下列四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出直线AB∥平面MNP的图形的序号是________(写出全部符合要求的图形序号).。

《创新设计》理科高考数学二轮专题复习——考前增分指导指导二全面掌握解答题的个模板,规范答题拿高分高考

《创新设计》理科高考数学二轮专题复习——考前增分指导指导二全面掌握解答题的个模板,规范答题拿高分高考

规范——解答题的6个解题模板题型概述解答题是高考试卷中的一类重要题型,通常是高考的把关题和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单纯的知识综合型转化为知识、方法和能力的综合型解答题.要求考生具有一定的创新意识和创新能力等特点.解答题综合考查运算能力、逻辑思维能力、空间想象能力和分析问题、解决问题的能力.针对不少同学答题格式不规范,出现“会而不对,对而不全”的问题,规范每种题型的万能答题模板,按照规范的解题程序和答题格式分步解答,实现答题步骤的最优化.模板1三角问题【例1】(满分14分)△ABC的内角A,B,C的对边分别为a,b,c.已知a=b cos C+c sin B.(1)求B;(2)若b=2,求△ABC面积的最大值.[规范解答]解(1)由已知及正弦定理,得sin A=sin B cos C+sin C sin B,①2′又A=π-(B+C),所以sin A=sin(B+C)=sin B cos C+cos B sin C.②4′由①②得,sin C sin B=cos B sin C,∵C∈(0,π),∴sin C≠0,∴sin B=cos B.又B∈(0,π),所以B=π4.6′(2)△ABC 的面积S =12ac sin B =24ac ,8′ 由已知及余弦定理得4=a 2+c 2-2ac cos π4=a 2+c 2-2ac ,10′ 又a 2+c 2≥2ac , 故ac ≤42-2=2()2+2, 当且仅当a =c 时,取等号. 所以△ABC 面积的最大值为2+1.14′[解题模板] 第一步 利用正弦定理或余弦定理将已知条件转化为边之间的关系或角之间的关系第二步 求待求角的某一三角函数值; 第三步 指明角的范围,并求角;第四步 利用面积公式表示所求三角形的面积或利用余弦定理表示边角关系; 第五步 反思回顾,查看关键点、易错点,规范解题步骤.【训练1】 △ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠Bsin ∠C; (2)若AD =1,DC =22,求BD 和AC 的长. 解 (1)S △ABD =12AB ·AD sin ∠BAD , S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理可得sin ∠B sin ∠C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2.在△ABD 和△ADC 中,由余弦定理知AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC .故AB2+2AC2=3AD2+BD2+2DC2=6,由(1)知AB=2AC,所以AC=1.模板2立体几何问题【例2】(满分14分)如图,四棱锥P-ABCD的底面为矩形,且AB=2,BC=1,E,F分别为AB,PC中点.(1)求证:EF∥平面P AD;(2)若平面P AC⊥平面ABCD,求证:平面P AC⊥平面PDE.[规范解答](1)证明法一取线段PD的中点M,连接FM,AM.因为F为PC的中点,所以FM∥CD,且FM=12CD.因为四边形ABCD为矩形,E为AB的中点,所以EA∥CD,且EA=12CD.所以FM∥EA,且FM=EA.所以四边形AEFM为平行四边形.所以EF∥AM.5′又AM⊂平面P AD,EF⊄平面P AD,所以EF∥平面P AD.7′法二连接CE并延长交DA的延长线于N,连接PN.因为四边形ABCD为矩形,所以AD∥BC,所以∠BCE=∠ANE,∠CBE=∠NAE.又AE=EB,所以△CEB≌△NEA,所以CE=NE.又F为PC的中点,所以EF∥NP.5′又NP⊂平面P AD,EF⊄平面P AD,所以EF∥平面P AD.7′法三取CD的中点Q,连接FQ,EQ.在矩形ABCD中,E为AB的中点,所以AE=DQ,且AE∥DQ.所以四边形AEQD为平行四边形,所以EQ∥AD.又AD⊂平面P AD,EQ⊄平面P AD,所以EQ∥平面P AD.2′因为Q,F分别为CD,CP的中点,所以FQ∥PD.又PD⊂平面P AD,FQ⊄平面P AD,所以FQ∥平面P AD.又FQ,EQ⊂平面EQF,FQ∩EQ=Q,所以平面EQF∥平面P AD.5′因为EF⊂平面EQF,所以EF∥平面P AD.7′(2)证明设AC,DE相交于G.在矩形ABCD中,因为AB=2BC,E为AB的中点.所以DAAE=CDDA= 2.又∠DAE=∠CDA,所以△DAE∽△CDA,所以∠ADE=∠DCA.又∠ADE+∠CDE=∠ADC=90°,所以∠DCA+∠CDE=90°.由△DGC的内角和为180°,得∠DGC=90°.即DE⊥AC.9′因为平面P AC⊥平面ABCD且平面P AC∩平面ABCD=AC,因为DE⊂平面ABCD,所以DE⊥平面P AC,12′又DE⊂平面PDE,所以平面P AC⊥平面PDE.14′[解题模板]1.画出必要的辅助线,根据条件合理转化;2.写出推证平行或垂直所需条件,注意条件要充分;3.明确写出所证结论.【训练2】如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.证明(1)如图,取CE的中点G,连接FG,BG.∵F为CD的中点,∴GF∥DE且GF=12DE.∵AB⊥平面ACD,DE⊥平面ACD,∴AB∥DE,∴GF∥AB.又AB=12DE,∴GF=AB.∴四边形GF AB为平行四边形,则AF∥BG.∵AF⊄平面BCE,BG⊂平面BCE,∴AF∥平面BCE.(2)∵△ACD为等边三角形,F为CD的中点,∴AF⊥CD.∵DE⊥平面ACD,AF⊂平面ACD,∴DE⊥AF.又CD∩DE=D,∴AF⊥平面CDE.∵BG∥AF,∴BG⊥平面CDE.∵BG⊂平面BCE,∴平面BCE⊥平面CDE.模板3实际应用问题【例3】(满分14分)如图所示:一吊灯的下圆环直径为4 m,圆心为O,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离(即OB)为2 m,在圆环上设置三个等分点A1,A2,A3.点C为OB上一点(不包含端点O、B),同时点C 与点A1,A2,A3,B均用细绳相连接,且细绳CA1,CA2,CA3的长度相等.设细绳的总长为y.(1)设∠CA 1O =θ(rad),将y 表示成θ的函数关系式;(2)请你设计θ,当角θ正弦值的大小是多少时,细绳总长y 最小,并指明此时BC 应为多长.[规范解答] 解 (1)在Rt △COA 1中,CA 1=2cos θ,CO =2tan θ,2′ y =3CA 1+CB =3·2cos θ+2-2tan θ=2(3-sin θ)cos θ+2⎝ ⎛⎭⎪⎫0<θ<π4.6′(2)y ′=2-cos 2θ-(3-sin θ)(-sin θ)cos 2θ=23sin θ-1cos 2θ,令y ′=0,则sin θ=13,10′ 当sin θ>13时,y ′>0; sin θ<13时,y ′<0,∵y =sin θ在⎣⎢⎡⎦⎥⎤0,π4上是增函数,∴当角θ满足sin θ=13时,y 最小,最小为42+2;此时BC =⎝ ⎛⎭⎪⎫2-22 m .14′[解题模板]解决实际问题的一般步骤: (1)阅读题目,理解题意; (2)设置变量,建立函数关系; (3)应用函数知识或数学方法解决问题; (4)检验,作答.【训练3】 如图,在C 城周边已有两条公路l 1,l 2在点O 处交汇.已知OC =(2+6)km ,∠AOB =75°,∠AOC =45°,现规划在公路l 1,l 2上分别选择A ,B 两处为交汇点(异于点O )直接修建一条公路通过C 城.设OA =x km ,OB =y km.(1)求y 关于x 的函数关系式并指出它的定义域; (2)试确定点A ,B 的位置,使△OAB 的面积最小.解 (1)因为△AOC 的面积与△BOC 的面积之和等于△AOB 的面积,所以12x (2+6)sin 45°+12y (2+6)·sin 30°=12xy sin 75 °, 即22x (2+6)+12y (2+6)=6+24xy , 所以y =22xx -2(x >2). (2)△AOB 的面积S =12xy sin 75°=6+28xy =3+12×x 2x -2=3+12(x -2+4x -2+4)≥3+12×8=4(3+1).当且仅当x =4时取等号,此时y =4 2.故OA =4 km ,OB =4 2 km 时,△OAB 面积的最小值为4(3+1) km 2. 模板4 解析几何问题【例4】 (满分16分)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,点P 为上顶点,圆O :x 2+y 2=b 2将椭圆C 的长轴三等分,直线l :y =mx -45(m ≠0)与椭圆C 交于A ,B 两点,P A ,PB 与圆O 交于M ,N 两点.(1)求椭圆C 的方程; (2)求证△APB 为直角三角形;(3)设直线MN 的斜率为n ,求证mn 为定值. [规范解答](1)解 由已知⎩⎨⎧2b =2,2a =6b ,解得⎩⎨⎧a =3,b =1,所求椭圆方程为x 29+y 2=1.Ⅰ 5′(2)证明 将y =mx -45代入椭圆方程整理得 (9m 2+1)x 2-725mx -8125=0.设A (x 1,y 1),B (x 2,y 2),利用求根公式求解上述一元二次方程的根,则x 1+x 2=72m5(9m 2+1),x 1x 2=-8125(9m 2+1).又P (0,1),∴P A →·PB →=(x 1,y 1-1)·(x 2,y 2-1) =x 1x 2+(y 1-1)(y 2-1) =x 1x 2+(mx 1-95)(mx 2-95) =(m 2+1)x 1x 2-95m (x 1+x 2)+8125=-81(m 2+1)25(9m 2+1)-648m 225(9m 2+1)+8125=0,因此P A ⊥PB ,则△APB 为直角三角形.Ⅱ 12′ (3)证明 由(2)知直线MN 方程为y =nx , 代入x 2+y 2=1,得(n 2+1)x 2-1=0.设M (x 3,y 3),N (x 4,y 4),则⎩⎨⎧x 3+x 4=0,x 3x 4=-1n 2+1,y 1-1x 1=y 3-1x 3,① y 2-1x 2=y 4-1x 4.② 两式相加整理得2m -95·x 1+x 2x 1x 2=2n ,可求得m n =15.Ⅲ 16′[解题模板] Ⅰ求椭圆方程; Ⅱ证明垂直①将直线方程和椭圆方程联立,得到一元二次方程;②设出直线与椭圆的交点坐标,利用求根公式求一元二次方程的根,并求两根和与积;③利用两根和与两根积的关系证明垂直; Ⅲ可利用第(2)问结论,证明mn 为定值.【训练4】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,直线l 经过椭圆C 的右焦点F 交椭圆于A 、B 两点. (1)求椭圆C 的方程;(2)若直线l 交y 轴于点M ,且MA→=λAF →,MB →=μBF →,当直线l 的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值;否则,请说明理由. 解 (1)依题意得b =3,e =c a =12,a 2=b 2+c 2,∴a =2,c =1,∴椭圆C 的方程为x 24+y 23=1.(2)因直线l 与y 轴相交于点M ,故斜率存在,又F 坐标为(1,0),设直线l 方程为y =k (x -1),求得l 与y 轴交于M (0,-k ), 设l 交椭圆A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0,∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,又由MA →=λAF →, ∴(x 1,y 1+k )=λ(1-x 1,-y 1), ∴λ=x 11-x 1,同理μ=x 21-x 2,∴λ+μ=x 11-x 1+x 21-x 2=x 1+x 2-2x 1x 21-(x 1+x 2)+x 1x 2=8k 23+4k 2-2(4k 2-12)3+4k 21-8k 23+4k 2+4k 2-123+4k 2=-83.所以当直线l 的倾斜角变化时,λ+μ的值为定值-83. 模板5 函数与导数问题【例5】 (满分16分)设函数f (x )=ax -2-ln x (a ∈R ). (1)若f (x )在点(e ,f (e))处的切线为x -e y -2e =0,求a 的值; (2)求f (x )的单调区间;(3)当x >0时,求证: f (x )-ax +e x >0. [规范解答](1)解 ∵f (x )=ax -2-ln x (x >0), ∴f ′(x )=a -1x ,由已知f ′(e)=1e , 即a -1e =1e ,则a =2e .Ⅰ 6′(2)解 由(1)知,f ′(x )=a -1x =ax -1x (x >0). 当a ≤0时,f ′(x )<0在(0,+∞)上恒成立, ∴f (x )在(0,+∞)上递减; 当a >0时,令f ′(x )=0得x =1a ;当x 变化时,f ′(x ),f (x )随x 的变化情况如下表:由表可知:f (x )在⎝ ⎛⎭⎪⎫0,1a 上是单调减函数,在⎝ ⎛⎭⎪⎫1a ,+∞上是单调增函数, 综上所述:当a ≤0时,f (x )的单调减区间为(0,+∞);当a >0时,f (x )的单调减区间为⎝ ⎛⎭⎪⎫0,1a ,单调增区间为⎝ ⎛⎭⎪⎫1a ,+∞.Ⅱ 10′(3)证明 当x >0时,要证f (x )-ax +e x >0,即证e x -ln x -2>0,设g (x )=e x -ln x -2(x >0).只需证g (x )>0,∵g ′(x )=e x -1x ,由指数函数及幂函数的性质知:g ′(x )=e x -1x 在(0,+∞)上是增函数,又g ′(1)=e -1>0,g ′⎝ ⎛⎭⎪⎫13=e 13-3<0, ∴g ′(1)·g ′⎝ ⎛⎭⎪⎫13<0, ∴g ′(x )在⎝ ⎛⎭⎪⎫13,1内存在唯一的零点, 则g ′(x )在(0,+∞)上有唯一的零点,设g ′(x )的零点为t ,则g ′(t )=e t -1t =0,即e t =1t ⎝ ⎛⎭⎪⎫13<t <1, 由g ′(x )的单调性知:当x ∈(0,t )时,g ′(x )<g ′(t )=0;当x ∈(t ,+∞)时,g ′(x )>g ′(t )=0,∴g (x )在(0,t )上为减函数,在(t ,+∞)上为增函数,∴当x >0时,g (x )≥g (t )=e t -ln t -2=1t -ln 1e t -2=1t +t -2≥2-2=0,又13<t <1,等号不成立,∴g (x )>0,故当x >0时,f (x )-ax +e x >0.Ⅲ 16′[解题模板]Ⅰ求参数值,利用导数的几何意义求a ;Ⅱ判断单调性:①求定义域,②求导,③讨论,并求单调区间;Ⅲ利用最值证不等式:①构造函数;②求导;③判断最值点x =x 0,并用x 0表示最值;④证不等式.【训练5】 设f (x )=(x +a )ln x x +1,曲线y =f (x )在点(1,f (1))处的切线与直线2x +y +1=0垂直.(1)求a 的值;(2)若对∀x ∈[1,+∞),f (x )≤m (x -1)恒成立,求m 的范围.解 (1)f ′(x )=⎝ ⎛⎭⎪⎫ln x +x +a x (x +1)-(x +a )ln x (x +1)2由f ′(1)=12,即2(1+a )4=12,解得a =0. (2)由(1)知f (x )=x ln x x +1, 当x ≥1时,f (x )≤m (x -1),即x ln x x +1≤m (x -1), 可化为ln x -mx +m x ≤0,设g (x )=ln x -mx +m x ,g ′(x )=1x -m -m x 2=-mx 2+x -m x 2. 设φ(x )=-mx 2+x -m ,①当m ≤0时,g ′(x )>0,g (x )≥g (1)=0,不合题意.②当m >0时,1°.Δ≤0时,即m ≥12,g ′(x )≤0,g (x )≤g (1)=0,符合题意.2°.Δ>0时,0<m <12,φ(1)=1-2m >0,不合题意.综上,m 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 模板6 数列问题【例6】 (满分16分)已知数列{b n }满足S n +b n =n +132,其中S n 为数列{b n }的前n 项和.(1)求证{b n -12}是等比数例,并求数列{b n }的通项公式;(2)如果对任意n ∈N *,不等式12k 12+n -2S n≥2n -7恒成立,求实数k 的取值范围. [规范解答](1)证明 当n =1时,2b 1=7,b 1=72.Ⅰ 2′ 当n ≥2时, S n +b n =n +132, ①S n -1+b n -1=(n -1)+132, ②①-②得2b n -b n -1=12,所以⎝ ⎛⎭⎪⎫b n -12=12⎝ ⎛⎭⎪⎫b n -1-12,所以数列⎩⎨⎧⎭⎬⎫b n -12是首项为b 1-12=3,公比为12的等比数列,Ⅱ 6′所以b n -12=⎝ ⎛⎭⎪⎫b 1-12·112n -⎛⎫ ⎪⎝⎭=3·112n -⎛⎫ ⎪⎝⎭,即b n =3·112n -⎛⎫⎪⎝⎭+12.Ⅲ 7′(2)解 由题意及(1)得S n =n +132-b n =n +132-3112n -⎛⎫ ⎪⎝⎭-12=n +122-3112n -⎛⎫⎪⎝⎭.Ⅳ10′不等式12k12+n -2S n ≥2n -7,化简得k ≥2n -72n ,对任意n ∈N *恒成立.设c n =2n -72n ,则c n +1-c n =2n -52n +1-2n -72n =-2n +92n +1. 当n ≥5时,c n +1≤c n ,c n 为单调递减数列, 当1≤n <5时,c n +1>c n ,c n 为单调递增数列, 116=c 4<c 5=332,所以n =5时,c n 取得最大值332,所以,要使k ≥2n -72n 对任意n ∈N *恒成立,k ≥332.Ⅴ 16′[解题模板]Ⅰ求首项令n =1,即可求出b 1;Ⅱ转化为等比数列将⎩⎪⎨⎪⎧b 1=72,b n =12b n -1+14类型的问题转化为等比数列求解; Ⅲ求通项公式根据等比数列通项公式求b n -12,进而求b n ;Ⅳ求前n 项和由已知可用b n 表示S n ,即S n =n +132-b n ;Ⅴ转化并证明分离字母,并判断数列{c n }的增减性求数列{c n }中的最大项.【训练6】 设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列.(1)证明:a 2=4a 1+5;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12. (1)证明 因为a n >0,令n =1,有4S 1=a 22-4-1,即4a 1=a 22-5,所以a 2=4a 1+5. (2)解 4S n =a 2n +1-4n -1,当n ≥2时,4S n -1=a 2n -4(n -1)-1,两式相减得4a n =a 2n +1-a 2n -4,整理得a 2n +1=(a n +2)2,即a n +1=a n +2.所以{a n }从第2项起,是公差为2的等差数列. 所以a 5=a 2+3×2=a 2+6,a 14=a 2+12×2=a 2+24, 又a 2,a 5,a 14构成等比数列,有a 25=a 2·a 14, 则(a 2+6)2=a 2(a 2+24),解得a 2=3.由(1)知a 1=1,又a n +1=a n +2(n ≥2),所以数列{a n }是首项为1,公差为2的等差数列,即a n =1+(n -1)×2=2n -1.(3)证明由(2)得1a1a2+1a2a3+…+1a n a n+1=11×3+13×5+…+1(2n-1)(2n+1)=12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1-13+⎝⎛⎭⎪⎫13-15+…+⎝⎛⎭⎪⎫12n-1-12n+1=12⎝⎛⎭⎪⎫1-12n+1<12.。

《创新设计》理科高考数学二轮专题复习——解答题强化练第一周星期六高考

《创新设计》理科高考数学二轮专题复习——解答题强化练第一周星期六高考

星期六(解答题综合练)2016年____月____日1.在△ABC中,角A,B,C的对边分别为a,b,c,且c=2,C=60°.(1)求a+bsin A+sin B的值;(2)若a+b=ab,求△ABC的面积.解(1)由正弦定理可设asin A=bsin B=csin C=2sin 60°=232=433,所以a=433 sin A,b=433sin B,所以a+bsin A+sin B=433(sin A+sin B)sin A+sin B=433.(2)由余弦定理得c2=a2+b2-2ab cos C,即4=a2+b2-ab=(a+b)2-3ab,又a+b=ab,所以(ab)2-3ab-4=0.解得ab=4或ab=-1(舍去).所以S△ABC=12ab sin C=12×4×32= 3.2.如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=2EF.(1)求证:BF∥平面ACE;(2)求证:BF⊥BD.证明(1)设AC与BD交于O点,连接EO.正方形ABCD 中,2BO =AB ,又因为AB =2EF , ∴BO =EF ,又因为EF ∥BD , ∴EFBO 是平行四边形,∴BF ∥EO ,又∵BF ⊄平面ACE ,EO ⊂平面ACE , ∴BF ∥平面ACE .(2)正方形ABCD 中,AC ⊥BD ,又因为正方形ABCD 和三角形ACE 所在的平面互相垂直,BD ⊂平面ABCD ,平面ABCD ∩平面ACE =AC ,∴BD ⊥平面ACE ,∵EO ⊂平面ACE ,∴BD ⊥EO ,∵EO ∥BF ,∴BF ⊥BD .3.某运输装置如图所示,其中钢结构ABD 是一个AB =BD =l ,∠B =π3的固定装置,AB 上可滑动的点C 使CD 垂直于底面(C 不与A ,B 重合),且CD 可伸缩(当CD 伸缩时,装置ABD 随之绕D 在同一平面内旋转),利用该运输装置可以将货物从地面D 处沿D →C →A 运送至A 处,货物从D 处至C 处运行速度为v ,从C 处至A 处运行速度为3v ,为了使运送货物的时间t 最短,需在运送前调整运输装置中∠DCB =θ的大小.(1)当θ变化时,试将货物运行的时间t 表示成θ的函数(用含有v 和l 的式子); (2)当t 最小时,C 点应设计在AB 的什么位置?解 (1)在△BCD 中,∵∠BCD =θ,∠B =π3,BD =l ,∴BC =l sin ⎝ ⎛⎭⎪⎫2π3-θsin θ,CD =3l2sin θ,∴AC =AB -BC =l -l sin ⎝ ⎛⎭⎪⎫2π3-θsin θ, 则t =AC 3v +CD v =l 3v -l sin ⎝ ⎛⎭⎪⎫2π3-θ3v sin θ+3l2v sin θ⎝ ⎛⎭⎪⎫π3<θ<2π3.(2)t =l 6v ⎝ ⎛⎭⎪⎫1-3cos θsin θ+3l 2v sin θ=l 6v +3l 6v ·3-cos θsin θ.令m (θ)=3-cos θsin θ,则m ′(θ)=1-3cos θsin 2θ,令m ′(θ)=0得cos θ=13.设cos θ0=13,θ0∈⎝ ⎛⎭⎪⎫π3,2π3,则θ∈⎝ ⎛⎭⎪⎫π3,θ0时,m ′(θ)<0;θ∈⎝ ⎛⎭⎪⎫θ0,2π3时,m ′(θ)>0,∴当cos θ=13时,m (θ)有最小值22,此时BC =6+48l .答:当BC =6+48l 时货物运行时间最短.4.如图,已知椭圆C :x 24+y 2=1,A 、B 是四条直线x =±2,y =±1所围成矩形的两个顶点.(1)设P 是椭圆C 上任意一点,若OP →=mOA →+nOB →,求证:动点Q (m ,n )在定圆上运动,并求出定圆的方程;(2)若M 、N 是椭圆C 上两个动点,且直线OM 、ON 的斜率之积等于直线OA 、OB 的斜率之积,试探求△OMN 的面积是否为定值,说明理由. (1)证明 易求A (2,1),B (-2,1).设P (x 0,y 0),则x 204+y 20=1.由OP →=mOA →+nOB →,得⎩⎨⎧x 0=2(m -n ),y 0=m +n ,所以4(m -n )24+(m +n )2=1,即m 2+n 2=12.故点Q (m ,n )在定圆x 2+y 2=12上. (2)解 设M (x 1,y 1),N (x 2,y 2),则y 1y 2x 1x 2=k OA ·k OB =-14.平方得x 21x 22=16y 21y 22=(4-x 21)(4-x 22),即x 21+x 22=4.因为直线MN 的方程为(x 2-x 1)y -(y 2-y 1)x +x 1y 2-x 2y 1=0,所以O 到直线MN 的距离为d =|x 1y 2-x 2y 1|(x 2-x 1)2+[y 2-y 1]2=|x 1y 2-x 2y 1|(x 2-x 1)2+(y 2-y 1)2, 所以△OMN 的面积S =12MN ·d =12|x 1y 2-x 2y 1| =12 x 21y 22+x 22y 21-2x 1x 2y 1y 2 =12x 21⎝ ⎛⎭⎪⎫1-x 224+x 22⎝ ⎛⎭⎪⎫1-x 214+12x 21x 22=12x 21+x 22=1.故△OMN 的面积为定值1.5.已知函数f (x )=x 2+2ax +1(a ∈R ),f ′(x )是f (x )的导函数. (1)若x ∈[-2,-1],不等式f (x )≤f ′(x )恒成立,求a 的取值范围; (2)解关于x 的方程f (x )=|f ′(x )|;(3)设函数g (x )=⎩⎨⎧f ′(x ),f (x )≥f ′(x )f (x ),f (x )<f ′(x ),求g (x )在x ∈[2,4]时的最小值.解 (1)因为f (x )≤f ′(x ),所以x 2-2x +1≤2a (1-x ), 又因为-2≤x ≤-1,所以a ≥⎣⎢⎡⎦⎥⎤x 2-2x +12(1-x )max 在x ∈[-2,-1]时恒成立,因为x 2-2x +12(1-x )=1-x 2≤32,所以a ≥32. (2)因为f (x )=|f ′(x )|,所以x 2+2ax +1=2|x +a |,所以(x +a )2-2|x +a |+1-a 2=0,则|x +a |=1+a 或|x +a |=1-a . ①当a <-1时,|x +a |=1-a ,所以x =-1或x =1-2a ; ②当-1≤a ≤1时,|x +a |=1-a 或|x +a |=1+a , 所以x =±1或x =1-2a 或x =-(1+2a );③当a >1时,|x +a |=1+a ,所以x =1或x =-(1+2a ).(3)因为f (x )-f ′(x )=(x -1)[x -(1-2a )],g (x )=⎩⎨⎧f ′(x ),f (x )≥f ′(x ),f (x ),f (x )<f ′(x ),①若a ≥-12,则x ∈[2,4]时,f (x )≥f ′(x ),所以g (x )=f ′(x )=2x +2a ,从而g (x )的最小值为g (2)=2a +4; ②若a <-32,则x ∈[2,4]时,f (x )<f ′(x ),所以g (x )=f (x )=x 2+2ax +1,当-2≤a <-32时,g (x )的最小值为g (2)=4a +5, 当-4<a <-2时,g (x )的最小值为g (-a )=1-a 2, 当a ≤-4时,g (x )的最小值为g (4)=8a +17. ③若-32≤a <-12,则x ∈[2,4]时, g (x )=⎩⎨⎧x 2+2ax +1,x ∈[2,1-2a )2x +2a ,x ∈[1-2a ,4]当x ∈[2,1-2a )时,g (x )最小值为g (2)=4a +5; 当x ∈[1-2a ,4]时,g (x )最小值为g (1-2a )=2-2a . 因为-32≤a <-12,(4a +5)-(2-2a )=6a +3<0,所以g (x )最小值为4a +5,综上所述,[g (x )]min=⎩⎪⎨⎪⎧8a +17,a ≤-4,1-a 2,-4<a <-2,4a +5,-2≤a <-12,2a +4,a ≥-12.6.已知a ,b 是不相等的正数,在a ,b 之间分别插入m 个正数a 1,a 2,…,a m和m 个正数b 1,b 2,…,b m ,使a ,a 1,a 2,…,a m ,b 是等差数列,a ,b 1,b 2,…,b m ,b 是等比数列. (1)若m =5,a 3b 3=54,求ba 的值;(2)若b =λa (λ∈N *,λ≥2),如果存在n (n ∈N *,6≤n ≤m )使得a n -5=b n ,求λ的最小值及此时m 的值;(3)求证:a n >b n (n ∈N *,n ≤m ).(1)解 设等差数列的公差为d ,等比数列的公比为q ,则d =b -a6,q =6b a .a 3=a +3d =a +b2,b 3=aq 3=ab .因为a 3b 3=54,所以2a -5ab +2b =0,解得b a =4或14.(2)解 因为λa =a +(m +1)d ,所以d =λ-1m +1a ,从而得a n =a +λ-1m +1a ×n .因为λa =a ×qm +1,所以q =λ1m +1,从而得b n =a ×λnm +1.因为a n -5=b n ,所以a +(λ-1)(n -5)m +1×a =a ×λnm +1.因为a >0,所以1+(λ-1)(n -5)m +1=λnm +1(*).因为λ,m ,n ∈N *,所以1+(λ-1)(n -5)m +1为有理数.要使(*)成立,则λnm +1必须为有理数. 因为n ≤m ,所以n <m +1. 若λ=2,则λnm +1为无理数,不满足条件. 同理,λ=3不满足条件.当λ=4时,4n m +1=22n m +1. 要使22n m +1为有理数,则2nm +1必须为整数. 又因为n ≤m ,所以仅有2n =m +1满足条件. 所以1+3(n -5)m +1=2,从而解得n =15,m =29.综上,λ的最小值为4,此时m 为29.(3)证明 法一 设等比数列a ,b 1,b 2,…,b m ,b 设为{c n },且c n >0,S n 为数列{c n }的前n 项的和.先证:若{c n }为递增数列,则⎩⎨⎧⎭⎬⎫S n n 为递增数列.证明:当n ∈N *时,S n n <nc n +1n =c n +1.因为S n +1=S n +c n +1>S n +S n n =n +1n S n ,所以S n n <S n +1n +1,即数列⎩⎨⎧⎭⎬⎫S n n 为递增数列.同理可证,若{c n }为递减数列,则⎩⎨⎧⎭⎬⎫S n n 为递减数列.①当b >a 时,q >1.当n ∈N *,n ≤m 时,S m +1m +1>S nn. 即aq (q m +1-1)q -1m +1>aq (q n -1)q -1n ,即aq m +1-a m +1>aq n -an .因为b =aq m +1,b n =aq n ,d =b -am +1, 所以d >b n -an ,即a +nd >b n ,即a n >b n .②当b <a 时,0<q <1.当n ∈N *,n ≤m 时,S m +1m +1<S nn.即aq (q m +1-1)q -1m +1<aq (q n -1)q -1n .因为0<q <1,所以aq m +1-a m +1>aq n -an .以下同①.综上,a n >b n (n ∈N *,n ≤m ).法二 设等差数列a ,a 1,a 2,…,a m ,b 的公差为d ,等比数列a ,b 1,b 2,…,b m ,b 的公比为q ,b =λa (λ>0,λ≠1).由题意得d =λ-1m +1a ,q =aλ1m +1, 所以a n =a +nd =a +λ-1m +1an ,b n =aλnm +1.要证a n >b n (n ∈N *,n ≤m ),只要证1+λ-1m +1n -λnm +1>0(λ>0,λ≠1,n ∈N *,n ≤m ).构造函数f (x )=1+λ-1m +1x -λxm +1(λ>0,λ≠1,0<x <m +1),则f ′(x )=λ-1m +1-1 m+1λxm+1ln λ.令f′(x)=0,解得x0=(m+1)logλλ-1 ln λ.以下证明0<log λλ-1ln λ<1.不妨设λ>1,即证明1<λ-1ln λ<λ,即证明ln λ-λ+1<0,λln λ-λ+1>0.设g(λ)=ln λ-λ+1,h(λ)=λln λ-λ+1(λ>1),则g′(λ)=1λ-1<0,h′(λ)=ln λ>0,所以函数g(λ)=ln λ-λ+1(λ>1)为减函数,函数h(λ)=λln λ-λ+1(λ>1)为增函数.所以g(λ)<g(1)=0,h(λ)>h(1)=0.所以1<λ-1ln λ<λ,从而0<logλλ-1ln λ<1,所以0<x0<m+1.因为在(0,x0)上f′(x)>0,函数f(x)在(0,x0)上是增函数;因为在(x0,m+1)上f′(x)<0,函数f(x)在(x0,m+1)上是减函数;所以f(x)>min{f(0),f(m+1)}=0.所以a n>b n(n∈N*,n≤m).同理,当0<λ<1时,a n>b n(n∈N*,n≤m).。

《创新设计》2022高考数学(浙江专用理科)二轮专题精练:专题四 立体几何4-3 Word版含解析

《创新设计》2022高考数学(浙江专用理科)二轮专题精练:专题四 立体几何4-3 Word版含解析

第3讲 立体几何中的向量方法(建议用时:60分钟) 一、选择题1.已知平面ABC ,点M 是空间任意一点,点M 满足条件OM→=34OA →+18OB →+18OC →,则直线AM( ).A .与平面ABC 平行B .是平面ABC 的斜线 C .是平面ABC 的垂线D .在平面ABC 内解析 由已知得M ,A ,B ,C 四点共面,所以AM 在平面ABC 内,选D. 答案 D2.如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是 ( ).A .相交B .平行C .垂直D .不能确定解析 MN →=MB →+BC →+CN →=23A 1B →+BC →+23CA → =23(A 1B 1→+B 1B →)+BC →+23(CD →+DA →) =23B 1B →+BC →+23DA →, 又CD →是平面BB 1C 1C 的一个法向量,且MN →·CD →=23B 1B →+BC →+23DA →·CD →=0,∴MN →⊥CD →,又MN ⊄面BB 1C 1C ,∴MN ∥平面BB 1C 1C . 答案 B3.如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是 ( ).A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角解析 选项A 正确,由于SD 垂直于底面ABCD ,而AC ⊂平面ABCD ,所以AC ⊥SD ;再由四边形ABCD 为正方形,所以AC ⊥BD ;而BD 与SD 相交,所以,AC ⊥平面SBD ,AC ⊥SB . 选项B 正确,由于AB ∥CD ,而CD ⊂平面SCD ,AB ⊄平面SCD ,所以AB ∥平面SCD . 选项C 正确,设AC 与BD 的交点为O ,易知SA 与平面SBD 所成的角就是∠ASO ,SC 与平面SBD 所成的角就是∠CSO ,易知这两个角相等.选项D 错误,AB 与SC 所成的角等于∠SCD ,而DC 与SA 所成的角是∠SAB ,这两个角不相等. 答案 D4.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦等于 ( ).A.64B.104C.22D.32解析 如图所示建立空间直角坐标系,设正三棱柱的棱长为2,O (0,0,0),B (3,0,0),A (0,-1,0),B 1(3,0,2),则AB 1→=(3,1,2),则BO →=(-3,0,0)为侧面ACC 1A 1的法向量,由sin θ=|AB 1→·BO →||AB1→||BO →|=64.答案 A5.(2022·新课标全国Ⅱ卷)直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为 ( ). A.110 B.25 C.3010D.22解析 法一 由于∠BCA =90°,三棱柱为直三棱柱,且BC =CA =CC 1,可将三棱柱补成正方体.建立如图(1)所示空间直角坐标系.设正方体棱长为2,则可得A (0,0,0),B (2,2,0),M (1,1,2),N (0,1,2),∴BM→=(1,1,2)-(2,2,0)=(-1,-1,2),AN →=(0,1,2).∴cos 〈BM →,AN →〉=BM →·AN →|BM →||AN →|=-1+4(-1)2+(-1)2+22×02+12+22=36×5=3010. 法二 如图(2),取BC 的中点D ,连接MN ,ND ,AD ,由于MN 綉12B 1C 1綉BD ,因此有ND 綉BM ,则ND 与NA 所成角即为异面直线BM 与AN 所成角.设BC =2,则BM =ND =6,AN =5,AD =5,因此cos ∠AND =ND 2+NA 2-AD 22ND ·NA =3010.答案 C6.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB→的值为( ).A .0B .1C .0或1D .任意实数 解析 AP→可为下列7个向量:AB →,AC →,AD →,AA 1→,AB 1→,AC 1→,AD 1→. 其中一个与AB →重合,AP →·AB →=|AB →|2=1; AD →,AD 1→,AA 1→与AB →垂直, 这时AP →·AB→=0; AC →,AB 1→与AB →的夹角为45°, 这时AP →·AB→=2×1×cos π4=1, 最终AC 1→·AB →=3×1×cos ∠BAC 1=3×13=1,故选C. 答案 C7.(2021·浙江卷)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A ′CD ,。

【创新设计】(江西专用)高考数学二轮复习 专题训练 突破练4 理

【创新设计】(江西专用)高考数学二轮复习 专题训练 突破练4 理

突破练四1.已知函数f (x )=2cos 2x +3sin 2x ,x ∈R .(1)求函数f (x )的单调递增区间;(2)将函数f (x )图象上所有点的横坐标伸长为原来的2倍,纵坐标不变得到函数h (x )的图象,再将h (x )的图象向右平移π3个单位得到g (x )的图象,求函数g (x )的解析式,并求g (x )在[0,π]上的值域.解 (1)∵f (x )=2cos 2x +3sin 2x =1+cos 2x +3sin 2x , ∴f (x )=2sin (2x +π6)+1.由2k π-π2≤2x +π6≤2k π+π2,k ∈Z .得k π-π3≤x ≤k π+π6,k ∈Z∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z .(2)∵f (x )=2sin (2x +π6)+1――→横坐标伸长为原来的2倍纵坐标不变h (x )=2sin ⎝ ⎛⎭⎪⎫x +π6+1,∵x ∈[0,π],∴x -π6∈[-π6,5π6].∴sin (x -π6)∈[-12,1].∴g (x )在[0,π]上的值域为[0,3].2.某超市计划在春节当天从有抽奖资格的顾客中设一项抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码构成等差数列的为二等奖,奖金60元;三球号码分别为1,6,8为一等奖,奖金240元;其余情况无奖金. (1)求顾客甲抽奖一次所得奖金ξ的分布列与期望;(2)若顾客乙幸运地先后获得四次抽奖机会,求他得奖次数η的方差是多少? 解 (1)奖金ξ的所有可能取值为0,30,60,240. 顾客抽奖一次,基本事件总数为C 310=120,P (ξ=30)=7×2+6×7120=56120=715,P (ξ=60)=8+6+4+2120=20120=16,P (ξ=240)=1120, P (ξ=0)=1-56120-20120-1120=43120. ∴ξ的分布列为∴E (ξ)=0×43120+30×15+60×6+240×120=26.(2)顾客乙一次抽奖中奖的概率P =1-43120=77120.四次抽奖相互独立,所以得奖次数η~B ⎝ ⎛⎭⎪⎫4,77120, ∴D (η)=4×77120×43120=3 3113 600.3.如图所示,平面ABCD ⊥平面BCEF ,且四边形ABCD 为矩形,四边形BCEF 为直角梯形,BF ∥CE ,BC ⊥CE ,DC =CE =4,BC =BF =2.(1)求证:AF ∥平面CDE ;(2)求平面ADE 与平面BCEF 所成锐二面角的余弦值; (3)求直线EF 与平面ADE 所成角的余弦值. (1)证明 法一 取CE 的中点为G ,连接DG ,FG .∵BF∥CG且BF=CG,∴四边形BFGC为平行四边形,则BC∥FG,且BC=FG.∵四边形ABCD为矩形,∴BC∥AD且BC=AD,∴FG∥AD且FG=AD,∴四边形AFGD为平行四边形,则AF∥DG.∵DG⊂平面CDE,AF⊄平面CDE,∴AF∥平面CDE.法二在矩形ABCD中有AB∥CD,∵CD⊂平面CDE,AB⊄平面CDE,∴AB∥平面CDE.在梯形BCEF中有BF∥CE.∵CE⊂平面CDE,BF⊄平面CDE,∴BF∥平面CDE.又∵AB∩BF=B,且AB⊂平面ABF,BF⊂平面ABF,∴平面ABF∥平面CDE.又∵AF⊂平面ABF,∴AF∥平面CDE.(2)解∵四边形ABCD为矩形,∴BC⊥CD,又∵平面ABCD⊥平面BCEF,且平面ABCD∩平面BCEF=BC,BC⊥CE,∴DC⊥平面BCEF.以C为原点,CB所在直线为x轴,CE所在直线为y轴,CD所在直线为z轴建立如图所示的空间直角坐标系,根据题意我们可得以下点的坐标:A (2,0,4),B (2,0,0),C (0,0,0),D (0,0,4),E (0,4,0),F (2,2,0),则AD →=(-2,0,0),DE →=(0,4,-4).设平面ADE 的一个法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧AD →·n 1=0,DE →·n 1=0,∴⎩⎪⎨⎪⎧-2x =0,4y 1-4z 1=0,取z 1=1,得n 1=(0,1,1). ∵DC ⊥平面BCEF .∴平面BCEF 的一个法向量为CD →=(0,0,4). 设平面ADE 与平面BCEF 所成锐二面角的大小为α,则cos α=⎪⎪⎪⎪⎪⎪⎪⎪CD →·n 1|CD →|·|n 1|=44×2=22, 因此,平面ADE 与平面BCEF 所成锐二面角的余弦值为22. (3)解 根据(2)知平面ADE 的一个法向量为n 1=(0,1,1),∵EF →=(2,-2,0),∴cos 〈EF →,n 1〉=EF →·n 1|EF →|·|n 1|=-222×2=-12,设直线EF 与平面ADE 所成的角为θ, 则cos θ=|sin 〈EF →,n 1〉|=32,因此,直线EF 与平面ADE 所成角的余弦值为32.4.已知数列{a n }的前n 项和S n =a n +n 2-1,数列{b n }满足3n·b n +1=(n +1)a n +1-na n ,且b 1=3.(1)求a n ,b n ;(2)设T n 为数列{b n }的前n 项和,求T n .解 (1)当n ≥2时,S n =a n +n 2-1,S n -1=a n -1+(n -1)2-1, 两式相减,得a n =a n -a n -1+2n -1,∴a n -1=2n -1, ∴a n =2n +1,∴3n·b n +1=(n +1)(2n +3)-n (2n +1)=4n +3, ∴b n +1=4n +33n .∴当n ≥2时,b n =4n -13n -1,又b 1=3适合上式,∴b n =4n -13n -1.(2)由(1)知,b n =4n -13n -1,∴T n =31+73+1132+…+4n -53n -2+4n -13n -1, ①13T n =33+732+1133+…+4n -53n -1+4n -13n , ② ①-②,得23T n =3+43+43+…+43-4n -13=3+4×13-13n -11-13-4n -13n =5-4n +53n ,∴T n =152-4n +52×3n -1.5.已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的短轴长为单位圆C 2:x 2+y 2=1的直径,且椭圆的离心率为63.(1)求椭圆的方程;(2)过椭圆短轴的上顶点B 1作直线分别与单位圆C 2和椭圆C 1交于A ,B 两点(A ,B 两点均在y 轴的右侧),设B 2为椭圆的短轴的下顶点,求∠AB 2B 的最大值.解 (1)由题知b =1,又e =c a =a 2-1a =63,得a 2=3,∴椭圆的方程为x 23+y 2=1.(2)由(1)得B 1(0,1),B 2(0,-1),设过椭圆的短轴的上顶点B 1的直线的方程为y =kx +1,由于B 1B 2为圆的直径,所以直线B 2A 的斜率k 1=-1k.把y =kx +1代入C 1得B (-6k 1+3k 2,1-3k21+3k2),由题意易知k <0,且直线B 2B 的斜率为k 2=1-3k21+3k 2+1-6k 1+3k 2=-13k,所以k 1,k 2>0,且k 1=3k 2,又△B 2AB 是直角三角形,所以∠AB 2B 必为锐角,因为B 2A →与B 2B →的方向向量分别为(1,k 1),(1,k 2),所以B 2A →·B 2B →=(1,k 1)·(1,k 2)=1+3k 22,又B 2A →·B 2B →=1+k 21·1+k 22cos ∠AB 2B , 从而cos ∠AB 2B =1+3k 221+9k 22·1+k 22=1-4k 221+10k 22+9k 42=1-41k 22+9k 22+10≥32,当且仅当k 2=33时,cos ∠AB 2B 取得最小值32,由∠AB 2B 为锐角得∠AB 2B 的最大值为π6. 6.已知函数f (x )=[ax 2+(a -1)2x -a 2+3a -1]e x(a ∈R ).(1)若函数f (x )在(2,3)上单调递增,求实数a 的取值范围; (2)若a =0,设g (x )=f xex+ln x -x ,斜率为k 的直线与曲线y =g (x )交于A (x 1,y 1),B (x 2,y 2)(其中x 1<x 2)两点,证明:(x 1+x 2)k >2.(1)解 f ′(x )=[]ax 2+a 2+x +a e x ,当a ≥0时,∵x ∈(2,3),∴f (x )在(2,3)上单调递增;当a <0,∵f (x )在(2,3)上单调递增,f ′(x )=a (x +a )(x +1a)·e x≥0,ⅰ)当-1<a <0时,得-a ≤x ≤-1a ,依题意知(2,3)⊆⎣⎢⎡⎦⎥⎤-a ,-1a ,得-13≤a <0; ⅱ)当a =-1时,f ′(x )=-(x -1)2·e x≤0,不合题意,舍去;ⅲ)当a <-1时,得-1a≤x ≤-a 依题意知(2,3)⊆⎣⎢⎡⎦⎥⎤-1a ,-a ,得a ≤-3.综上得:a ∈(-∞,-3]∪⎣⎢⎡⎭⎪⎫-13,+∞.(2)证明 当a =0时,g (x )=f xex+ln x -x =ln x -1,k =ln x 2-ln x 1x 2-x 1,要证(x 1+x 2)k >2,即证(x 1+x 2)·ln x 2-ln x 1x 2-x 1>2,∵x 2-x 1>0,即证ln x 2x 1>x 2x 1-x 2x 1+1(x 2x 1>1).令h (x )=ln x -x -x +1(x >1),则h ′(x )=1x-4x +2=x -2x x +2>0,∴h (x )在(1,+∞)单调递增,h (x )>h (1)=0.∴ln x 2x 1>x 2x 1-x 2x 1+1.即(x 1+x 2)k >2成立.。

创新设计(全国通用)高考数学二轮复习大题规范天天练第四周星期五选考系列文

创新设计(全国通用)高考数学二轮复习大题规范天天练第四周星期五选考系列文

星期五 (选考系列)2017年____月____日一、(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换⎩⎪⎨⎪⎧x ′=13x ,y ′=14y得到曲线C ′. (1)求曲线C ′的普通方程;(2)若点A 在曲线C ′上,点D (1,3).当点A 在曲线C ′上运动时,求AD 中点P 的轨迹方程.解 (1)将⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ代入⎩⎪⎨⎪⎧x ′=13x ,y ′=14y .得C ′的参数方程为⎩⎪⎨⎪⎧x ′=2cos θ,y ′=sin θ. ∴曲线C ′的普通方程为x 24+y 2=1. (2)设P (x ,y ),A (x 0,y 0),又D (1,3),且AD 中点为P ,所以有:⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y -3. 又点A 在曲线C ′上,∴代入C ′的普通方程x 24+y 2=1得(2x -1)2+4(2y -3)2=4. ∴动点P 的轨迹方程为(2x -1)2+4(2y -3)2=4.二、(本小题满分10分)选修4-5:不等式选讲设函数f (x )=|2x -1|-|x +4|.(1)解不等式:f (x )>0;(2)若f (x )+3|x +4|≥|a -1|对一切实数x 均成立,求a 的取值范围.解 (1)原不等式即为|2x -1|-|x +4|>0,当x ≤-4时,不等式化为1-2x +x +4>0,解得x <5,即不等式组⎩⎪⎨⎪⎧x ≤-4,|2x -1|-|x +4|>0的解集是{x |x ≤-4}. 当-4<x <12时,不等式化为1-2x -x -4>0,解得x >-1, 即不等式组⎩⎪⎨⎪⎧-4<x <12,|2x -1|-|x +4|>0的解集是{x |-4<x <-1}.当x ≥12时,不等式化为2x -1-x -4>0,解得x >5, 即不等式组⎩⎪⎨⎪⎧x ≥12,|2x -1|-|x +4|>0的解集是{x |x >5},综上,原不等式的解集为{x |x <-1,或x >5}.(2)∵f (x )+3|x +4|=|2x -1|+2|x +4|=|1-2x |+|2x +8|≥|(1-2x )+(2x +8)|=9,∴由题意可知|a -1|≤9,解得-8≤a ≤10,故所求a 的取值范围是{a |-8≤a ≤10}.。

创新设计高考数学二轮复习浙江专用习题 大题规范天天练 星期一 第四周 含答案

创新设计高考数学二轮复习浙江专用习题 大题规范天天练 星期一 第四周 含答案

星期一 (三角与数列) 2017年____月____日1.三角(命题意图:考查三角恒等变换、余弦定理及面积公式的综合运用) (本小题满分14分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边, 且2cos A cos C (tan A tan C -1)=1.(1)求B 的大小;(2)若a +c =332,b =3,求△ABC 的面积.解 (1)由2cos A cos C (tan A tan C -1)=1,得2cos A cos C ⎝ ⎛⎭⎪⎫sin A sin C cos A cos C -1=1, ∴2(sin A sin C -cos A cos C )=1,∴cos(A +C )=-12, ∴cos B =12,又0<B <π,∴B =π3. (2)由余弦定理,得cos B =a 2+c 2-b 22ac =12,∴(a +c )2-2ac -b 22ac=12, 又a +c =332,b =3,∴274-2ac -3=ac ,ac =54,∴S △ABC =12ac sin B =12×54×32=5316.2.数列(命题意图:考查等比数列的基本运算及错位相减法求和) (本小题满分15分)已知递增的等比数列{a n }的前n 项和为S n ,a 6=64,且a 4,a 5的等差中项为3a3.(1)求数列{a n }的通项公式;(2)设b n =na 2n -1,求数列{b n }的前n 项和T n . 解 (1)设等比数列{a n }的公比为q (q >0),由题意得⎩⎨⎧a 1q 5=64,a 1q 3+a 1q 4=6a 1q 2,解得⎩⎨⎧a 1=2,q =2. 所以a n =2n .(2)因为b n =n a 2n -1=n 22n -1, 所以T n =12+223+325+427+…+n 22n -1, 14T n =123+225+327+…+n -122n -1+n 22n +1, 所以34T n =12+123+125+127+…+122n -1-n 22n +1 =12⎝ ⎛⎭⎪⎫1-14n 1-14-n 22n +1=23-4+3n 3·22n +1, 故T n =89-16+12n 9·22n +1=89-4+3n 9·22n -1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

星期日 (40分附加题部分) 2016年____月____日
选做部分
请同学从下面所给的四题中选定两题作答
1.选修4-1:几何证明选讲
如图,等腰梯形ABCD 内接于⊙O ,AB ∥CD .过点A 作⊙O 的切线交CD 的延
长线于点E .求证:∠DAE =∠BAC .
证明 ∵AE 为⊙O 的切线,∴∠ACD =∠DAE ,又∵AB ∥CD ,∴∠BAC =
∠ACD ,∴∠BAC =∠DAE .
2.选修4-2矩阵与变换
已知直线l :ax -y =0在矩阵A =⎣⎢⎡⎦⎥⎤0 11
2对应的变换作用下得到直线l ′,若直线l ′过点(1,1),求实数a 的值.
解 设P (x ,y )为直线l 上任意一点,在矩阵A 对应的变换下变为直线l ′上点
P ′(x ′,y ′),则⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤0 11
2⎣⎢⎡⎦⎥⎤x y ,化简得⎩⎨⎧x =-2x ′+y ′,y =x ′.
代入ax -y =0,整理得-(2a +1)x ′+ay ′=0. 将点(1,1)代入上述方程,解得a =-1.
3.选修4-4:坐标系与参数方程
在极坐标系中,已知点P ⎝ ⎛⎭⎪⎫23,π6,直线l :ρcos ⎝ ⎛⎭
⎪⎫θ+π4=22,求点P 到直线l 的距离.
解 点P 的直角坐标为(3,3),直线l 的普通方程为x -y -4=0, 从而点P 到直线l 的距离为|3-3-4|2
=2+62. 4.选修4-5:不等式选讲
已知x ≥1,y ≥1,求证:x 2y +xy 2+1≤x 2y 2+x +y .
证明∵x2y+xy2+1-x2y2-x-y
=xy(x+y)-(x+y)+1-x2y2
=(x+y)(xy-1)+(1+xy)(1-xy)
=(xy-1)(x+y-1-xy)
=(xy-1)[x(1-y)+y-1]
=(xy-1)(1-y)(x-1),
又∵x≥1,y≥1,∴xy≥1,
∴(xy-1)(1-y)(x-1)≤0,
∴x2y+xy2+1≤x2y2+x+y.
必做部分
1.有编号为1,2,3,…,n的n个学生,入坐编号为1,2,3,…,n的n个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为ξ.已知ξ=2时,共有6种坐法.
(1)求n的值;
(2)求随机变量ξ的数学期望.
解(1)∵当ξ=2时,有C2n种坐法,∴C2n=6,即n(n-1)
2=6,∴n
2-n-12
=0,解得n=4或n=-3(舍去).(2)∵ξ的可能取值是0,2,3,4.
∴P(ξ=0)=
1
A44=
1
24,P(ξ=2)=
C24×1
A44=
6
24=
1
4,
P(ξ=3)=C34×2
A44=
8
24=
1
3,P(ξ=4)=
9
24=
3
8,
∴ξ的概率分布列为:
则E(ξ)=0×1
24+2×
1
4+3×
1
3+4×
3
8=3.
2.设集合A,B是非空集合M的两个不同子集,满足:A不是B的子集,且B也
不是A 的子集.
(1)若M ={a 1,a 2,a 3,a 4},直接写出所有不同的有序集合对(A ,B )的个数;
(2)若M ={a 1,a 2,a 3,…,a n },求所有不同的有序集合对(A ,B )的个数.
解 (1)110.
(2)集合M 有2n 个子集,不同的有序集合对(A ,B )有2n (2n -1)个. 当A B ,并设B 中含有k (1≤k ≤n ,k ∈N *)个元素,则满足A B 的有序集合
对(A ,B )有1C n k
n k =∑(2k -1)=0C n k n k =∑2k -0
C n
k
n k =∑=3n -2n 个.
同理,满足B A 的有序集合对(A ,B )有3n -2n 个. 故满足条件的有序集合对(A ,B )的个数为2n (2n -1)-2(3n -2n )=4n +2n -2×3n .。

相关文档
最新文档