高中物理动生电动势和感生电动势
动生电动势和感生电动势
§ 6-2 动生电动势和感生电动势动生电动势:回路或其一部分在磁场中的相对运动所产生的感应电动势。
感生电动势:仅由磁场的变化而产生的感应电动势。
动生电动势B图6-5动生电动势动生电动势的产生可以用洛伦兹力来解释。
长为I的导体棒与导轨构成矩形回路abed平放在纸面内,均匀磁场B垂直纸面向里。
当导体棒ab以速度v沿导轨向右滑动时,导体棒内自由电子也以速度v随之一起向右运动。
每个自由电子受到的洛伦兹力为F = (- e) v B ,方向从b指向a,在其作用下自由电子向下运动。
如果导轨是导体,在回路中将形成沿着abed逆时针方向的电流。
如果导轨是绝缘体,则洛伦兹力将使自由电子在a端累积,从而使a端带负电,b端带正电,在ab棒上产生自上而下的静电场。
当作用在自由电子上的静电力与洛伦兹力大小相等时达到平衡,ab间电压达到稳定值,b 端电势比a端高。
这一段运动导体相当于一个电源,它的非静电力就是洛伦兹力。
电动势定义为单位正电荷从负极通过电源内部移到正极的过程中,非静电力K所作的功,即F K v B .-e动生电动势为+ b名=J K d \ =f (v 汉B) d l . (6.4)- a ' '均匀磁场情况:若v — B,则有;=Bl v;若导体顺着磁场方向运动,v B,则有v B = 0,没有动生电动势产生。
因此,可以形象地说,只有当导线切割磁感应线而运动时,才产生动生电动势。
普遍情况:在任意的恒定磁场中,一个任意形状的导线线圈L(闭合的或不闭合的)在运动或发生形变时,各个线元dl 的速度v 的大小和方向都可能是不同的。
这时,在整 个线圈L 中产生的动生电动势为=(v B ) d l .(L)图6-6洛伦兹力不作功洛伦兹力对电荷不作功:洛伦兹力总是垂直于电荷的运动速度,即 F v_ v ,因此洛 伦兹力对电荷不作功。
然而,当导体棒与导轨构成回路时会有感应电流出现,这时感应 电动势却是要作功的。
动生电动势和感生电动势
§6-2 动生电动势和感生电动势动生电动势:回路或其一部分在磁场中的相对运动所产生的感应电动势。
感生电动势:仅由磁场的变化而产生的感应电动势。
一 动生电动势图6 - 5 动生电动势动生电动势的产生可以用洛伦兹力来解释。
长为l 的导体棒与导轨构成矩形回路abcd 平放在纸面内,均匀磁场B 垂直纸面向里。
当导体棒ab 以速度v 沿导轨向右滑动时,导体棒内自由电子也以速度v 随之一起向右运动。
每个自由电子受到的洛伦兹力为B v F ⨯-)(=e ,方向从b 指向a ,在其作用下自由电子向下运动。
如果导轨是导体,在回路中将形成沿着abcd 逆时针方向的电流。
如果导轨是绝缘体,则洛伦兹力将使自由电子在a 端累积,从而使a 端带负电,b 端带正电,在ab 棒上产生自上而下的静电场。
当作用在自由电子上的静电力与洛伦兹力大小相等时达到平衡,ab 间电压达到稳定值,b 端电势比a 端高。
这一段运动导体相当于一个电源,它的非静电力就是洛伦兹力。
电动势定义为单位正电荷从负极通过电源内部移到正极的过程中,非静电力K 所作的功,即B v F K ⨯=-=e.动生电动势为ε⎰⎰+-⋅⨯=⋅=l B v l K d )(d ba .(6.4)均匀磁场情况:若v ⊥ B , 则有ε = B l v ;若导体顺着磁场方向运动,v // B ,则有 v ⨯ B = 0,没有动生电动势产生。
因此,可以形象地说,只有当导线切割磁感应线而运动时,才产生动生电动势。
普遍情况:在任意的恒定磁场中,一个任意形状的导线线圈L (闭合的或不闭合的)在运动或发生形变时,各个线元d l 的速度v 的大小和方向都可能是不同的。
这时,在整个线圈L 中产生的动生电动势为ε l B v d )()(⋅⨯=⎰L .(6.5)图6 - 6 洛伦兹力不作功洛伦兹力对电荷不作功:洛伦兹力总是垂直于电荷的运动速度,即v ⊥F v ,因此洛伦兹力对电荷不作功。
感生电动势和动生电动势2
4.5 感生电动势和 动生电动势
一、感应电场与感生电动势
一个闭合电路静止于磁场 中,由于磁场强弱的变化,闭 合电路内产生了感应电动势. 这种情况下,哪一种作用扮 演了非静电力的角色?
磁场变强
1、变化的的磁场能在周围空间激发电 场,这种电场叫感应电场
2、由感生电场产生的感应电动势称为 感生电动势. 3、感生电动势在电路中的作用就是电 源,其电路就是内电路,当它与外电路 连接后就会对外电路供电.
由于导体运动而产生的感应电动 势称为动生电动势。
小结
1、感应电场:由变化的磁场激发的电场 2、感应电动势:由感应电场产生的感应
电动势称为感生电动势.
3、动生电动43886712 ;
丝毫拒绝:"三天内只要你呀还能动,就必须配合俺玩,并且你呀必须时候都要笑着,要很开心の笑着!" "成交!把他们全部传送出去吧." 白重炙松了一口气,当然脸上却是笑容不断,传音完后,没有再理女子,而是转头过来看着夜妖娆,温柔の说道:"回去等俺!" "轻寒…"夜妖娆当然知道白 重炙一直在和那个女子传音,只是她很清楚白重炙の脾气,没敢多说话,只是轻声の喊了一句. 话还没说完,夜妖娆の身影却是化成一条白光,消失在大厅内.并且地上の几人也同时被传送出去,空旷の大厅只是剩下两人,以及一只慵懒の趴在靠椅上似乎睡着了の灵宠. "呼…" 白重炙长长呼住 一口气,心情完全放松,脸上の笑容无比の诚挚,肆无忌惮の望着女子雍容华贵の脸,以及雪白坎肩内の那条勾魂の深沟,嘴角微微上翘,笑道:"好了,美人,就剩下俺们了,要怎么玩?皮鞭蜡
12.2 动生电动势和感生电动势
此时电荷积累停止, 两端形成稳定的电势差 两端形成稳定的电势差。 此时电荷积累停止,ab两端形成稳定的电势差。 洛仑兹力是产生动生电动势的根本原因 洛仑兹力是产生动生电动势的根本原因. 是产生动生电动势的根本原因
动生电动势的公式
非静电力
f = −e(v × B)
f 定义 Ek为非静电场强 Ek = = v ×B −e
S
A B ××× ×
ω ××v × ×
非均匀磁场
例 一直导线CD在一无限长直电流磁场中作 一直导线 在一无限长直电流磁场中作 切割磁力线运动。 切割磁力线运动。求:动生电动势。 动生电动势。 解:方法一
dε = ( v × B )⋅ dl I l dl µ0I 0 0 D sin90 dl cos180 =v C 2πl b a µ0vI dl =− 方向 D→C → 2πl µ0vI a+b dl µ0vI a + b ε =− ∫a l = − 2π ln a 2π
×××× ⊗ o ×××× B ×××× h
C
∂B ∂t
××
L
D
解:
ε i = ∫ E涡 • dl
L
r dB E涡 = 2 dt
dε = E涡 • dl r dB dl cosθ = 2 dt
h dB dl = 2 dt
⊗o
B
⊗
θ
∂B ∂t
E涡
r h
l dl
L
θ
C
D
h dB 1 dB εCD = ∫L dl = 2hL dt 2 dt
O
解:方法一 取微元
dε = ( v × B )⋅ dl
= Bvdl = Blωdl
εi = ∫ dεi = ∫0 Blωdl
动生电动势与感生电动势
【解】由于金属棒处在通电导线的非均匀磁场中,因此必
须将金属棒分成很多长度元dx,规定其方向由A指向B。这样 在每一dx处的磁场可以看作是均匀的,其磁感应强度的大小为
B 0I
2x
根据动生电动势的公式可知,dx小段上的动生电动势为
d动
(v
B)
dl
Bv
cos
dx
0I
2x
vdx
由于所有长度元上产生的动生电动势的方向都相同,所以金
d
dt
d dt
S
B
dS
又根据电动势的定义可得
L EK dl
式中,EK为感生电场的电场强度。感生电场的电场强度是 非静电性场强。
则有
L EK
dl
d dt
B dS B dS
s
s t
dB
s
S t
若闭合回路是静止的,即所包围面积S不随时间变化,即
S 0 ,则上式可写成
t
B L EK dl s t dS
性场强为
Ek
fL (e)
vB
根据电动势的定义可得,动生电动势为
a
动
L Ek
dl
(v B) dl
b
上式是动生电动势的一般表达式。由上式可知,动生电动势
的方向是非静电性场强 Ek v B 在运动导线上投影的指向。
【例9-2】如下图所示,长直导线 中通有电流I=10A,有一长l=0.1m的 金属棒AB,以v=4m·s-2的速度平行于 长直导线作匀速运动,棒离导线较近的 一端到导线的距离a=0.1m,求金属棒 中的动生电动势。
1861年,英国物理学家麦克斯韦提出感生电场的假设,认为 由于磁场变化而产生一种电场,是这个电场使导体中自由电子作 定向运动而形成电流。麦克斯韦还认为,即使没有导体,这种电 场同样存在。这种由变化磁场激发的电场称为感生电场。
感生电动势和动生电动势
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
ቤተ መጻሕፍቲ ባይዱ
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
在这种电场力的作用下定向移动,产生感应 电流,或者说产生感应电动势.变化的的磁
场能在周围空间激发电场,这种电场叫感应 电场,由感生电场产生的感应电动势称为感 生电动势.
感生电动势在电路中的作用就是 电源,其电路就是内电路,当它与 外电路连接后就会对外电路供电.
感应电场是产生感应电流或感应电动势 的原因,感应电场的方向同样可由楞次定 律判断.
X X CX
伦兹力为F洛=QVB,F洛方向向上,正 X X XF洛 电荷向上运动,使导体下端出现负电 X XL X V 荷,结果上端C的电势高于下端D的 X X XF电 电势,出现由C指向D的静电场,此时 X X DX 电场对正电荷的作用力是向下,与洛 伦兹力方向相反,当二力互相平衡时, CD两端随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服QQ:800049878
路漫部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
服务特 权
共享文档下载特权
动生电动势-感生电动势
• ••• ••••••
• • • • • • • • • •
• ••• ••••••
• • •
• • •
• • •
• •o •
•••
• R• •
••
• b•
••
• • •
• • •
R • • • • • • • • • •
• ••• ••••••
a • • • • • • • • • • B • • • • • • • • • •
i
dm
dt
B
dS
S t
i oa ab bo ab
ab
(b) Ei
(a)
dl
S
B
dS
t
a
其中 S 为 oabo 围成的面积。
P. 26 / 34 .
0
dl
Blv sin
若棒右移 ,则 i 指向:a
b;
a B
若棒左移,则 i 指向: b a。
Chapter 8. 电磁感应 §8. 2 动生作电者动:势杨感茂生田电动势
P. 9 / 34 .
例 如图,∞载流 I 直导线与导体棒相互垂直,棒以 v 沿
垂直于棒方向运动,已知:a、b。求导体棒的电动势。
(a) l
b v B
v
(vB sin 90o ) dl cos(90o )
0
dl a B
若 i > 0,则 i 指向与 dl 同向;否则,反向。
或
vB
在导体上的分量方向即为
i
指向。
Chapter 8. 电磁感应 §8. 2 动生作电者动:势杨感茂生田电动势
• ••• ••• •••
1 2
3.2 动生电动势与感生电动势
用动生电动势求解
取ABCDA回路为正 ABCDA回路为正
ε AB
µ0 I = ∫ (v × B ) ⋅ dl = vB( x)b = bv A 2πx
B
ε CD = ∫ (v × B ) ⋅ dl = −vB( x + a)b = −
C
D
2π ( x + a )
µ0 I
bv
µ0 NI 1 1 µ 0 NIbav ε = N (ε AB + ε CD ) = ( − )bv = 2π x x + a 2πx( x + a)
电动势: 电动势:
把单位正电荷从负极通过电源内部移到 正极时,非静电力所做的功 正极时,非静电力所做的功
ε = ∫ K ⋅ dl
−
+
与外电路是否接通无关, 与外电路是否接通无关, 对于闭合回路,定义为 对于闭合回路,
ε = ∫ K ⋅ dl
动生电动势
导体棒在磁场中运动 电动势是反映电源性能的, 电动势是反映电源性能的,是 衡量电源内部非静电力大小的 物理量。 物理量。
计算
eR d ( mv ) = dB 2
初始条件: ,B=0 初始条件:v=0,B=0 对上式求积分得 ,B=
eR mv = B 与 eRB R = mv 比较 2
1 BR = B 2
电子感应加速器原则上不受相对论效 应影响, 应影响,但因电子被加速时会辐射能量 而限制其能量进一步提高
§3 磁矢势与磁场中带电粒子的动量
L
不闭合
r r ∫ E旋 ⋅ dl ≠ 0
L
闭合
保守场 有源、 有源、无旋场
非保守场 无源、 无源、有旋场
动生电动势与感生电动势
Science &Technology Vision 科技视界1动生电动势如图1,一根金属棒在匀强磁场中沿与棒和磁场垂直的方向以速度V0向右运动。
自由电荷(电子)随棒运动。
必然受到洛仑磁力作用,而发生运动。
电子沿棒运动的速度为U。
这样自由电子具有随金属棒运动的速度V0同时还有沿棒运动的速度U,故自由电子相对磁场的合速度为V0。
金属棒ab 两端因正负电荷分别积累,而形成电动势,Uab>0。
图1由左手定则可知,由于自由电子相对磁场以速度V 运动,一定会受到洛仑磁力F 洛。
当F 洛的分力F1与F 外平衡,F 洛的另一分力F2与电场力FE 平衡时,金属棒两端建立了稳定的动生电动势。
F 洛=eBV 其分力F1=eBVcosα=eBu,F2=eBVsinα=eBV0金属棒ab 两端电动势U=BLV0,自由电子受到的电场力FE=eE=eBLV0/L=eBV0FE 与F2等大反向。
F 外与F1等大反向(图2)。
图2F E 与F 外的合力F'=eB V 02+U 2√=eBVH 合和F 洛等大反向。
此时自由电子受到的三个力F 洛、F 外、F E 作用达到平衡。
金属棒匀速垂直切割磁感线运动建立了稳定的电动势。
E=BLV 0从能量转化的观点来看:外力克服洛仑磁力的分力F1做功,机械能转化的电能。
在此过程中洛仑磁力起到中转能量的作用。
使机械能和电能之间发生转化。
那么洛仑磁力是否做功呢:F 洛的分力F 1与V 0反向做负功W1,另一分力F2与电子沿棒移动方向U 一致做正功W2,则有:W1=-F 1V 0t=-eBIV 0t W2=F 2Ut=eBV 0Ut W=W1+W1=0其实洛仑磁力F H 合与电子合速度V 垂直,其做功为零是肯定的。
我们可以看到动生电动势有以下几个特点:a.在能量转化上是机械能转化为电能。
b.洛仑磁力参与其全过程并传递能量,实现两种形式的能量转化。
c.因为洛仑磁力与自由电荷合速度方向垂直,洛仑磁力不做功。
高中物理 4.5感生电动势和动生电动势课件
链接——生活中的素材 北京市教委透露,2016 年高考改革要点中,语文从 150 分上调到 180 分。 高考语文分数增加 30 分,这不仅是一种简单的分值调整,意味着高考指挥棒的 价值导向终于进行了调整和偏转:语文学科在基础教育中的重要性得到了强化。 这会让孩子们学习语文、学习国语的积极性、自觉性和趣味性,得到空前推进 和提升,正如歌曲《中国话》所唱到的,“最爱说的话永远是中国话,字正腔圆 落地有声说话最算话;最爱写的字是先生教的方块字,横平竖直堂堂正正做人 要像它”。高考语文分数增加,可以让祖国语言文字自豪感、民族文化自豪感、 民族文化自信力,得到现代化的继承和发扬光大。
感生电场的方向类 似感应电流方向的 判定----安培定则
实际应用
电子感应加速器
竖直向上
逆 穿过真空室内磁场的方向 时 针 由图知电子沿什么方向运动
要使电子沿此方向加速, 感生电场的方向如何 顺 时 由感生电场引起的磁场方 针 向如何 向下
原磁场在增强,即电流在 增大。
二、理论探究动生电动势的产生
[话题·互动] 话题:有人认为《汉字王国中的“人”》是一篇专业论文,也有人认为这 是一篇文化散文,其中包含许多小故事。对此你有何看法?
学生甲:这是一篇专业论文。林西莉对汉字研究是下了苦功的。她是在教 学和研究的基础上写就这篇文章的。其间,这位“汉字迷”跋山涉水,足迹遍 布世界各地,心里时时记挂着汉字,发现他人所未见,思考他人所未想。搜集 了大量资料、图片、实物,提出了许多新颖而又专业的见解。文章以图文并茂 的形式讲述中国文字“人”以及与“人”相关汉字的起源和特点,其中选取十 多个与人类及人体不同部位有关的汉字进行细致的讲解,同时分析和描述中国 人的生活方式和风俗习惯,从而使人加深对文字的理解。每一页都图文并茂, 有甲骨文、金文、现代文字的演变过程,也有各个朝代(包括现代)的各种图片。
动生和感生电动势
目录
• 动生电动势 • 感生电动势 • 比较动生和感生电动势 • 实例分析 • 问题与讨论
01
CATALOGUE
动生电动势
定义与原理
定义
动生电动势是指由导体在磁场中运动而产生的感应电动势。
原理
根据法拉第电磁感应定律,当导体在磁场中运动时,导体中 的电子会受到洛伦兹力的作用,从而在导体两端产生电动势 。
感生电动势的大小取决于磁场的变化率。如果磁场变化很快,那么产生的电动势就很大。
应用比较
动生电动势在电力生产和传输中起着关键作用。例如,发电机是通过动生电动势将机械能转化为电能 。
感生电动势在电子设备和磁性材料中有着广泛的应用。例如,变压器和电感器是通过感生电动势来改 变信号和传输能量。
04
CATALOGUE
电磁制动
在某些机械设备中,利用 动生电动势可以实现电磁 制动,达到减速或停止的 目的。
电磁感应现象
动生电动势是电磁感应现 象的一种表现形式,可以 用来解释和利用电磁感应 现象。
02
CATALOGUE
感生电动势
定义与原理
定义
感生电动势是指磁场变化时在导体中产生的电动势。
原理
根据法拉第电磁感应定律,当一个导体处于变化的磁场中时,导体中的自由电子 会受到洛伦兹力的作用,从而在导体两端产生电动势。
电子感应加速器
利用感生电动势加速带电粒子。
03
CATALOGUE
比较动生和感生电动势
产生方式比较
动生电动势
是由磁场和导线的相对运动引起的。当 导线切割磁力线时,导线两端会感应出 电动势。
VS
感生电动势
是由磁场的变化引起的。当磁场发生变化 时,附近的导体中会产生感应电流和电动 势。
动生电动势和感生电动势
动生电动势和感生电动势
d d 感应电动势 N dt dt 引起磁通量变化的原因 ?
磁场恒定,导体运动
导体不动,磁场变化
P.1
1、电动势定义
I
Ek
+
-
Ek : 非静电电场强度.
Ek dl
P.2
2、感应电动势的分类: (1)动生电动势 稳恒磁场中的导体运动 , 或者回路面积 变化、取向变化等。 (2)感生电动势: 导体不动,磁场变化。
OP
P.5
动生
OP
(v B) dl
混合积:(a b ) c
× × P ×
(vB sin ) cosdl
OP
×
× × ×
×
(v × B) ×
× ×
×
特例 B均匀,杆 l水平运动:
l×
×
× v×
× B
× O ×
OP
l
l (vB sin 900 )cos00 dl (v B) dl 0
vBl
vBdl vBl
0
P.6
2、计算方法
d动生 (v B) dl
动生
×
×
× P× B × dl
× ×
OP
(v B) dl
1 2 d BL 2 dt 1 2 BL 2
×
×
× P × × × ×
× ×
B ×
×
×
×
o
×
×
×
×
×
×
×
动生电动势和感生电动势
m1
三、电子感应加速器
原理:在电磁铁的两磁极间放一个真空室,电磁铁是由
交流电来激磁的。
当磁场发生变化时,两极间任意闭合回路的磁通发生变化, 激起感生电场,电子在感生电场的作用下被加速,电子在 Lorentz力作用下将在环形室内沿圆周轨道运动。
轨道环内的磁场 等于它围绕面积 内磁场平均值的 一半。
解:法拉第电机可视为无数铜棒一 端在圆心,另一端在圆周上,即为 并联,因此其电动势类似于一根铜 棒绕其一端旋转产生的电动势。
w
B
o a
R
U0 Ua o Bwl dl
U0
Ua
1 2
BR2w
二、感生电动势
1、感生电动势
由于磁场的变化而在回路中产生的感应电 动势称为感生电动势.
2、感生电场
变化的磁场在其周围空间激发的一种能够产生感生电动势 的电场,这种电场叫做感生电场,或涡旋电场。
是以轴为圆心的一系列同心圆,同一同心圆
上任一点的感生电场的Ek大小相等,并且方
向必然与回路相切。于是沿L取Ek的线积分,
有:
L Ek dl Ek 2 r
EkΒιβλιοθήκη 2rr 2dB dt
若r<R,则 Br 2
L
Ek
dl
- d dt
r 2
dB dt
r dB Ek 2 dt
若r≥R,则
BR2
2、涡流的热效应
电阻小,电流大,能 够产生大量的热量。
3、应用
高频感应炉 真空无按触加热
加热
4、涡流的阻尼作用
当铝片摆动时,穿过运动铝片的磁通量 是变化的,铝片内将产生涡流。根据楞 次定律感应电流的效果总是反抗引起感 应电流的原因。因此铝片的摆动会受到 阻滞而停止,这就是电磁阻尼。
动生电动势 感生电动势
bv
a
I
例10-6 由导线弯成的宽为a
高为b的矩形线圈,以不变速 率v平行于其宽度方向从无磁 场空间垂直于边界进入一宽为
3a
3a的均匀磁场中,线圈平面与 磁场方向垂直(如图),然后
又从磁场中出来,继续在无磁
场空间运动。设线圈右边刚进
入磁场时为t=0时刻,试在附
图中画出感应电流I与时间t的
ab中的感生电动势,并确定哪端电势高?解:Fra bibliotekl Er
dl
dm
dt
螺线管外感生电场的分布具有轴对 称性,取半径为r(r>R)的圆形环
R
o 0
Er b
rP
路与ab交于P点,Er沿P点的逆时针 切线方向。则
a
l
E r
dl
E r
2r
m B S 0nI R2 29
dm
dt
0n
dI dt
R2
,设t = 0 时线圈平面的法线方向n0
与B的夹角为 = 0,若线圈角速度为
,则 t时刻穿过该线圈的磁通为
m B s Bscos Bscos t
由法拉第电磁感应定律
0 b
c
no
B
a
d 0/
i
d dt
d dt
(NBscos t)
NBs sint m sin t m NBs
电动势的实质依然是动生电动势,上述为交流发电机的工作原理 14
uB v v B u
所以总的洛仑兹力的功率为零,即总的洛仑兹力仍然不做功。
但为维持导体棒以速度v作匀速运动,必须施加外力以克服
洛仑兹力的一个分力fmu=qu×B。
由前述可知
qu B v qv B u
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动生电动势和感生电动势法拉第电磁感应定律:只要穿过回路的磁通量发生了变化,在回路中就会有感应电动势产生。
而实际上,引起磁通量变化的原因不外乎两条:其一是回路相对于磁场有运动;其二是回路在磁场中虽无相对运动,但是磁场在空间的分布是随时间变化的,我们将前一原因产生的感应电动势称为动生电动势,而后一原因产生的感应电动势称为感生电动势。
注意:动生电动势和感生电动势的名称也是一个相对的概念,因为在不同的惯性系中,对同一个电磁感应过程的理解不同: (1)设观察者甲随磁铁一起向左运动:线圈中的自由电子相对磁铁运动,受洛仑兹力作用,作为线圈中产生感应电流和感应电动势的原因。
-动生电动势。
(2)设观察者乙相对线圈静止:线圈中的自由电子静止不动,不受磁场力作用。
产生感应电流和感应电动势的原因是运动磁铁(变化磁场)在空间产生一个感应(涡旋)电场,电场力驱动使线圈中电荷定向运动形成电流。
-感生电动势 一、动生电动势导体或导体回路在磁场中运动而产生的电动势称为动生电动势。
动生电动势的来源:如图,运动导体内每个电子受到方向向上的洛仑兹力为:;正负电荷积累在导体内建立电场;当时达到动态平衡,不再有宏观定向运动,则导体 ab 相当一个电源,a 为负极(低电势),b 为正极(高电势),洛仑兹力就是非静电力。
可以使用法拉第定律计算动生电动势:对于整体或局部在恒定磁场中运动的闭合回路,先求出该回路的磁通F 与t 的关系,再将对t 求导,即可求出动生电动势的大小。
(2)动生电动势的方向可由楞次定律确定。
二、感生电动势处在磁场中的静止导体回路,仅仅由磁场随时间变化而产生的感应电动势,称为感生电动势。
感生电场:变化的磁场在其周围空间激发一种电场,称之为感生电场。
而产生感生电动势的非静电场正是感生电场。
感生电动势: 回路中磁通量的变化仅由磁场变化引起,则电动势为感生电动势 .若闭合回路是静止的,它所围的面积S 也不随时间变化。
感生电场与变化磁场之间的关系:(1)变化的磁场将在其周围激发涡旋状的感生电场,电场线是一系列的闭合线。
(2)感生电场的性质不同于静电场。
静电场 感生电场 场源 正负电荷 变化的磁场力线 起源于正电荷,终止于负电荷不闭合曲线作用力法拉第电磁感应定律一、1、关于表达式tnE∆∆=φ【公式在应用时容易漏掉匝数n ,变化过程中磁场方向改变的情况容易出错,并且感应电动势E 与φ、φ∆、t∆∆φ的关系容易混淆不清。
】2、应用法拉第电磁感应定律的三种特殊情况:(1)E=Blv, (2)ω221Bl E =,(3)E=nBs ωsin θ(或E=nBs ωcos θ) 二、1、φ、φ∆、t∆∆φ同v 、△v 、tv∆∆一样都是容易混淆的物理量磁通量φ磁通量变化量φ∆磁通量变化率t∆∆φ物理 意义 磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多某段时间穿过某个面的末、初磁通量的差值表述磁场中穿过某个面的磁通量变化快慢的物理量计算⊥=BS φ,12φφφ-=∆,S B ∆=∆φ或B S ∆=∆φtSB t ∆∆=∆∆φ或tBSt ∆∆=∆∆φ 注 意若穿过某个面有方向相反的磁场,则不能直接用⊥=BS φ,应考虑相反方向的磁通量相互抵消以后所剩余的磁通量开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,△φ=2 BS ,而不是零既不表示磁通量的大小,也不表示变化的多少,在φ—t 图象中用图线的斜率表示2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算。
将有效分量代入公式E=Blv 求解。
此公式也可计算平均感应电动势,只要将v 代入平均速度即可。
⑵导体棒以端点为轴在垂直于磁感线的匀强磁场中匀速转动,各点的线速度不同,用平均速度(中点线速度)计算,ω221Bl E=。
⑶矩形线圈在匀强磁场中,绕垂直于磁场的任意轴匀速转动产生的感应电动势何时用E=nBs ωsin θ或E=nBs ωcos θ计算。
其实这两个公式的区别是计时起点不同。
当线圈转至中性面(即线圈平面与磁场垂直的位置)时E=0,当线圈转至垂直中性面的位置(即线圈平面与磁场平行)时E=nBs ω。
这样,线圈从中性面开始计时感应电动势按E=nBs ωsin θ规律变化,线圈从垂直中性面的位置开始计时感应电动势按E=nBs ωcos θ规律变化。
用这两个公式可以求某时刻线圈的磁通量变化率△φ/△t ,。
另外,tnE∆∆=φ求的是整个闭合回路的平均感应电动势,△t →0的极限值才等于瞬时感应电动势。
当△φ均匀变化时,平均感应电动势等于瞬时感应电动势。
但三种特殊情况中的公式通常用来求感应电动势的瞬时值。
【典例】例1: 关于感应电动势,下列说法正确的是( ) 【答】CD A .穿过回路的磁通量越大,回路中的感应电动势就越大B .穿过回路的磁通量变化量越大,回路中的感应电动势就越大 C .穿过回路的磁通量变化率大,回路中的感应电动势就大D .单位时间内穿过回路的磁通量变化量大,回路中感应电动势就大 【总结】感应电动势的有无由磁通量变化量φ∆决定,φ∆≠0是回路中存在感应电动势的前提,感应电动势的大小由磁通量变化率t∆∆φ决定,t∆∆φ越大,回路中的感应电动势越大,与φ、φ∆无关。
例2:一个面积S=4×10-2m 2,匝数N=100的线圈,放在匀强磁场中,磁场方向垂直线圈平面,磁场的磁感应强度B 随时间变化规律为△B /△t=2T/s ,则穿过线圈的磁通量变化率t∆∆φ为 Wb/s ,线圈中产生的感应电动势E= V 。
【审题】磁通量的变化率t∆∆φ与匝数N 无关。
而感应电动势除与t∆∆φ有关外还与匝数N 有关。
【解析】根据磁通量变化率的定义得t∆∆φ= S △B /△t=4×10-2×2 Wb/s=8×10-2Wb/s 由E=N △φ/△t 得E=100×8×10-2V=8V【总结】计算磁通量φ=BScos θ、磁通量变化量△φ=φ2-φ1、磁通量变化率△φ/△t 时不用考虑匝数N ,但在求感应电动势时必须考虑匝数N ,即E=N △φ/△t 。
求安培力时也要考虑匝数N ,即F=NBIL ,因为通电导线越多,它们在磁场中所受安培力就越大。
例3:如图7-1所示,两条平行且足够长的金属导轨置于磁感应强度为B 的匀强磁场中,B 的方向垂直导轨平面。
两导轨间距为L ,左端接一电阻R ,其余电阻不计。
长为2L 的导体棒ab 如图所示放置, 开始时ab 棒与导轨垂直,在ab 棒绕a 点紧贴导轨滑倒的过程中,通过电阻R 的电荷量是 。
【解析】tBL t L L L B t S B t E ∆=∆-•=∆∆=∆∆=23421222φ,tR2BL 3R E I 2∆==∴RBL t I q 232=∆=答案:RBL 232【总结】用E=N △φ/△t 求的是平均感应电动势,由平均感应电动势求闭合回路的平均电流。
而电路中通过的电荷量等于平均电流与时间的乘积,即RNt tR Nt I qφφ∆=∆∆∆=∆=,注意这个式子在不同情况下的应用。
例4:如图7-2所示,在竖直向下的匀强磁场中,将一水平放置的金属棒以水平速度V 0抛出,设整个过程中,棒的取向不变,不计空气阻力,则金属棒运动过程中产生的感应电动势的大小变化情况应是( )A .越来越大B .越来越小C .保持不变D .无法判断【解】导体切割磁感线产生的感应电动势E=Blv ,金属棒运动过程中B 、l 和v 的有效分量均不变,所以感应电动势E 不变,选C 。
例5:如图7-3所示,长为L 的金属棒ab ,绕b 端在垂直于匀强磁场的平面内以角速度ω匀速转动,磁感应强度为B ,求ab 两端的电势差。
【审题】用棒的中点的速率作为平均切割速率代入公式E=Blv 。
也可以设△t 时间ab 棒扫过的扇形面积为△S ,根据E=n △φ/△t 。
【解析】解法一:E=Blv=BL ωL/2=BL 2ω/2,解法二:E=n △φ/△t= B △S/△t=t t L B ∆∆•/212ω= BL 2ω/2 ∴22ωBL E U ab==【总结】若用E=Blv 求E ,则必须先求出平均切割速率;若用E=n △φ/△t 求E ,则必须先求出金属棒ab 在△t 时间扫过的扇形面积,从而求出磁通量的变化率。
例6:如图7-4所示,矩形线圈abcd 共有n 匝,总电阻为R ,部分置于有理想边界的匀强磁场中,线圈平面与磁场垂直,磁感应强度大小为B 。
让线圈从图示位置开始以ab 边为轴匀速转动,角速度为ω。
若线圈ab 边长为L 1,ad 边长为L 2,在磁场外部分为2L 52,则⑴线圈从图示位置转过530时的感应电动势的大小为 。
⑵线圈从图示位置转过1800的过程中,线圈中的平均感应电流为 。
⑶若磁场没有边界,线圈从图示位置转过450时的感应电动势的大小为 ,磁通量的变化率为 。
【审题】磁场有边界时,线圈abcd 从图示位置转过530的过程中,穿过线圈的磁通量始终没有变化,所以此过程感应电动势始终为零;在线圈abcd 从图示位置转过1800的过程中,初末状态磁通量大小不变,但方向改变,所以2121L BL 56L 53BL 2=•=φ∆。
磁场没有边界时,线圈abcd 从图示位置转动产生的感应电动势按E=nBs ωsin θ规律变化。
【解析】⑴线圈从图示位置转过530时的感应电动势的大小为零。
⑵线圈从图示位置转过1800的过程中,图图图图πωωπφ56562121L nBL L BL n t n E ==∆∆=∴RL nBL R E I πω5621==⑶若磁场没有边界,线圈从图示位置转过450时的感应电动势E=nBL 1L 2ωsin ωt=ω21L nBL 22,此时磁通量的变化率2221ωφL BL n Et ==∆∆【总结】磁通量的变化量的求法,开始和转过1800时平面都与磁场垂直,△φ=2 BS ,而不是零。
例7:一个圆形闭合线圈固定在垂直纸面的匀强磁场中,线圈平面与磁场方向垂直,如图7-5甲所示。
设垂直纸面向里的磁感应强度方向为正,垂直纸面向外的磁感应强度方向为负。
线圈中顺时针方向的感应电流为正,逆时针方向的感应电流为负。
已知圆形线圈中感应电流i 随时间变化的图象如图7-5乙所示,则线圈所在处的磁场的磁感应强度随时间变化的图象可能是( )【总结】若给出的是φ—t 图象,情况是一样的。
答案:CD 例8:如图7-6所示,金属导轨间距为d ,左端接一电阻R ,匀强磁场的磁感应强度为B ,方向垂直于平行金属导轨所在的平面,一根长金属棒与导轨成θ角放置,金属棒与导轨电阻不计。