纵联保护原理

合集下载

纵联保护原理

纵联保护原理

纵联保护原理线路的纵联保护是指反应线路两侧电量的保护,它可以实现全线路速动。

而普通的反应线路一侧电量的保护不能做到全线速动。

纵联差动是直接将对侧电流的相位信息传送到本侧,本侧的电流相位信息也传送到对侧,每侧保护对两侧电流相位就行比较,从而判断出区内外故障。

是属于直接比较两侧电量对纵联保护。

目前电力系统中运行对这类保护有:高频相差保护、导引线差动保护、光纤纵差保护、微波电流分相差动保护。

纵联方向保护:反应线路故障的测量元件为各种不同原理的方向元件,属于间接比较两侧电量的纵联保护。

包括高频距离保护、高频负序方向保护、高频零序方向保护、高频突变量方向保护。

先了解一下纵联差动保护:) `/ b$ {2 {6 E3 x+ t/ R+ f5 ~9 o: D8 a* l7 ~& ~, Y为实现线路全长范围内故障无时限切除所以必须采用纵联保护原理作为输电线保护。

输电线路的纵联差动保护(习惯简称纵差保护)就是用某种通信通道将输电线两端的保护装置纵向连接起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路外,从而决定是否切断被保护回路.* [8 N, q6 Q. A& Y- C* m( o) `" z& b3 q8 q5 N. M纵联差动保护的基本原理是基于比较被保护线路始端和末端电流的大小和相位原理构成的。

1 h( ^5 |6 |+ P+ e1 I. q7 F高频保护的工作原理:将线路两端的电流相位或功率方向转化为高频信号,然后,利用输电线路本身构成高频电流通道,将此信号送至对端,以比较两端电流的相位或功率方向的一总保护装置。

安工作原理的不同可分为两大类:方向高频保护和相差高频保护。

" o* E' b3 d$ n- s3 T0 o2 P% B+ `* ~( M( F- N2 j$ h5 P8 R, Z光纤保护也是高频保护的一总原理是一样的只是高频的通道不一样一个事利用输电线路的载波构成通道一个是利用光纤的高频电缆构成光纤通道。

纵联保护的原理及通道

纵联保护的原理及通道

Im In Icd
比例制动差动保护判据 Im In k Im In
|Im+In|
Icd:应躲过正常运行不平衡 电流
Icd
采样误差、同步误差、
输电线路对地电容电流等
|Im-In|
原理介绍----差动保护
M Im
F IF
N In
M Im
N In F
IF
线路内部流出电流只成为动作电流
穿越性的电流只成为制动电流
电流差动保护的原理
(1)差动元件直接比较两侧电气量判断故障 (2)通过通道交换两侧电流量的波形(采样点)和相量, 通道将两侧交流回路联系起来
纵联差动保护基本原理
M Im Im In 0 In
N
*
M Im
*
F
In N
*
*
F
Im In IF
原理介绍----差动保护
差动保护判据
差动保护基本判据
采用光纤通道按相传送两侧电流量,本身具有选相 能力,不受系统振荡影响,在非全相运行中有选择地 快速动作,不受TV断线影响。
由于带有制动特性,可防止区外故障误动,不受失 压影响,不反应负荷电流,抗过渡电阻能力强。在短 线路上使用,不需要电容电流补偿功能。在同杆并架 线路上应用广泛。
纵联保护
• 纵联距离保护
检查通道是否良好
• 三、测试光功率及自环试验 • 第五步:将远端保护装置的尾纤通过珐琅盘自环,
若复用则在远端接口设备的电接口处自环,将 “专用光纤”控制字置0、“通道自环试验”控制 字置1,经一段时间观察,保护不能报通道异常告 警信号,同时通道状态中的各个状态计数器可能 偶尔会增加。 • 第六步:恢复正常运行时的定值,同时将通道恢 复正常运行时的连接,投入差动压板,保护装置 应该通道异常灯不亮,无通道异常信号。通道状 态中的各个状态计数器可能偶尔会增加

继电保护第四章-纵联保护

继电保护第四章-纵联保护

4. 输电线路纵联保护(Unit Protection)结构
继电保 护装置
通信设备
• 导引线 • 载波 • 光通信纤信道 • 微波
继电保 护装置
通信设备
继电保护装置
实现电气量采集并形成电气量特征,完成保护任务。
通信设备
将上述信息发送至对端的保护设备,同时接收对端保护发送的
信息并送至本端保护单元
通信信道
故障分量方向元件的特点
不受负荷状态的影响 不受故障点过渡电阻的影响 正、反方向短路时,方向性明确 无电压死区 不受系统振荡影响
(二) 闭锁式方向纵联保护
1. 工作原理
以高频通道经常无电流而在外部故障时发出闭
锁信号的方式构成。
闭锁信号
A1
B
2
3
闭锁信号
C
4
5
6D
F
对AB线路为外部故障,2处功率方向均为 负,发闭锁信号,1、2保护被闭锁。
导引线通信应用:
高压电网超短线路(几公里)。 用于变压器、发电机等电力设备和母线。
(二) 电力线载波通信
采用输电线路本身作为信息传输媒介,在传输电能的同时 完成两端信息的交换。 (一)通道的构成
1
2 76
3 45 89
3
2
4 5
67
98
1.传输线 2.阻波器 3.结合电容器 4.连接滤波器 5.高频电 缆 6.保护间隙 7.安全接地开关 8. 高频收发信机 9.保护 继电器
3. 电气元件故障时两端电气量的特征分析
所选电气量
区内故障 特征
区外或正常 运行时特征
保护原理
功率方向
均指向被保 护元件
一端指向被 保护元件反

纵联距离保护的原理及优缺点

纵联距离保护的原理及优缺点

纵联距离保护的原理及优缺点引言:纵联距离保护是电力系统中常用的一种保护方式,它通过测量电力线路两端电流和电压的差值,判断线路是否发生故障,从而实现对电力系统的保护。

本文将详细介绍纵联距离保护的原理、优点和缺点。

一、纵联距离保护的原理纵联距离保护是基于传输线特性的电流和电压相位关系建立的,其主要原理可概括为以下几点:1. 电力线路的电流和电压之间存在一定的相位差,而这个相位差与线路的长度和特性有关。

2. 在正常运行状态下,电流和电压的相位差是稳定的,而当线路发生故障时,电流和电压的相位差会发生变化。

3. 根据电流和电压相位差的变化情况,可以判断出线路是否发生故障以及发生故障的位置。

二、纵联距离保护的优点纵联距离保护具有以下几个优点:1. 灵敏性高:纵联距离保护可以快速检测到线路的故障,减少对电力系统的损害。

2. 可靠性强:纵联距离保护采用了先进的电流和电压测量技术,能够准确地判断线路的故障位置,提高电力系统的可靠性。

3. 抗干扰能力强:纵联距离保护采用了差动测量原理,能够有效地抵抗电力系统中的干扰信号,提高保护装置的稳定性。

4. 适用范围广:纵联距离保护适用于各种电力线路,无论是高压输电线路还是低压配电线路都可以使用。

三、纵联距离保护的缺点纵联距离保护也存在一些缺点,主要包括:1. 定位误差:由于电力线路的特性和故障类型的不同,纵联距离保护在故障定位方面可能存在一定的误差。

2. 受电力系统结构的影响:纵联距离保护的工作性能受到电力系统结构的影响,当电力系统结构发生变化时,纵联距离保护需要进行相应的调整和优化。

3. 对电力系统的负荷变化敏感:纵联距离保护对电力系统的负荷变化比较敏感,当负荷变化较大时,保护装置可能会误判线路故障。

结论:纵联距离保护是一种常用的电力系统保护方式,它通过测量电流和电压的差值来判断线路是否发生故障。

纵联距离保护具有灵敏性高、可靠性强、抗干扰能力强和适用范围广的优点,但也存在定位误差、受电力系统结构影响和对负荷变化敏感的缺点。

纵联保护的基本原理

纵联保护的基本原理

纵联保护的基本原理纵联保护是指在电力系统中,通过合理的保护配置和设置原则,实现对各级电气设备的保护,以保证电力系统的安全稳定运行。

纵联保护的基本原理包括以下几个方面:1. 故障范围确定。

纵联保护首先需要确定故障范围,即在电力系统中发生故障时,需要确定受影响的设备范围,以便及时采取保护措施。

通过对系统进行合理的分区和设备的分类,可以确定故障范围,从而为后续的保护设置提供依据。

2. 保护动作速度。

纵联保护需要具备快速的动作速度,以便在发生故障时能够迅速切除故障点,保护系统的安全稳定运行。

保护装置的动作速度取决于设备的故障特性和系统的运行要求,需要根据实际情况进行合理设置。

3. 保护动作的协调性。

在纵联保护中,各级保护装置之间需要具备良好的协调性,以确保在故障发生时能够按照一定的优先级顺序进行动作,避免保护的重复动作或者保护盲区的出现。

通过合理的保护设置和装置的协调性设计,可以有效提高系统的可靠性和稳定性。

4. 保护动作的选择性。

纵联保护需要具备良好的选择性,即在发生故障时能够准确地切除故障点,而不影响系统中其他正常运行的设备。

通过合理的保护设置和装置的选择性设计,可以避免误动作和保护失效的情况,确保系统的安全可靠运行。

5. 保护动作的灵活性。

纵联保护需要具备一定的灵活性,即能够根据系统的运行状态和故障情况进行动作的调整和变化。

通过合理的保护设置和装置的灵活性设计,可以适应系统运行的不同工况和故障情况,保证系统的安全稳定运行。

综上所述,纵联保护的基本原理包括确定故障范围、保护动作速度、保护动作的协调性、保护动作的选择性和保护动作的灵活性。

通过合理的保护配置和设置原则,可以实现对电力系统的全面保护,确保系统的安全稳定运行。

线路保护讲稿--纵联保护原理及通道调试102页PPT文档

线路保护讲稿--纵联保护原理及通道调试102页PPT文档

专用光纤的连接形式
保护机房 RCS-931
光缆的一根纤芯 光缆
保护机房 RCS-931
复接PCM机的连接方式
保护 机房
RCS -931
通信 机房
通信 机房
MUX -64B
SDH网
PCM
PCM
交换机
交换机
MUX -64B
保护 机房
RCS -931
保护用光纤通道的构成
二、保护与通道的接口 专用通道:保护的尾纤与光缆的保护专用
➢ 传输命令
– 模拟方式:通过高频或载波方式传输模拟信号, – 数字方式:通过光纤或微波传输数字信号
➢ 逻辑判断
– 闭锁式:没有收到闭锁信号,本侧满足条件就跳闸 – 允许式:本侧满足条件后,还需要接收到对侧的允
许信号才能跳闸
纵联方向/距离保护
➢ 实现全线速动的条件
– 反方向元件不动作,正方向元件动作 – 对侧允许本侧跳闸的信号(收信或停信)
纵联方向/距离保护
➢ 允许式逻辑图
保护起动
收信
零序反方向元件
பைடு நூலகம்
投纵联零序保护 0 >=1
任一相跳闸
零序正方向元件 0 &
零序方向过流元件 0 M6
0 M4
投纵联零序保护 0 >=1
距离方向元件
0
&
0 M7
投纵联距离保护
振闭开放元件 任一相跳闸
0 M8
0 150
其他保护动作
三相TWJ均为1
– 纵联保护对通道的要求
纵联方向/距离保护 纵联差动保护
需要交换的量
方向判断结果 电流量、电压量
命令方式

纵联保护的原理及通道

纵联保护的原理及通道

Irm= |Im-In|= |△Im-△In+2Ifh|
当发生重负荷大过渡电阻接地故障时,故障电流受负荷电
流抵消而产生两端故障相电流反相的现象;Ifh >> IF Idm < kIrm 保护拒动.
稳态量相量差动: 1) 负荷电流受穿越性负荷电流影响较大; 2) 高阻故障、重负荷下故障、振荡中故障灵敏度低。
装置后端子有远跳开入接点,通过此接点传输至对侧跳闸。
+220V(G11)
开入


远跳(823)

光纤

开入 远跳(824)



2Mb/s 发
TA TB
A01
A02 跳闸
A03
TC
A04
单跳 三跳
A21
A22 三跳 A23 闭重
永跳
A24
WXH-803A 系列光纤纵
联保护
M
WXH-803A 系列光纤纵
Im In Icd
比例制动差动保护判据 Im In k Im In
|Im+In|
Icd:应躲过正常运行不平衡 电流
Icd
采样误差、同步误差、
输电线路对地电容电流等
|Im-In|
原理介绍----差动保护
M Im
F IF
N In
M Im
N In F
IF
线路内部流出电流只成为动作电流
穿越性的电流只成为制动电流
个)。
TX
光 端 机
RX

衰 耗 仪

需要注意的一些问题
• 1、通道状态的查看 • 2、如何检查通道是否良好 • 3、保护定值的整定与容抗的整定 • 4、接口设备的注意事项 • 5、运行中的注意事项

纵联距离保护的原理及优缺点

纵联距离保护的原理及优缺点

纵联距离保护的原理及优缺点纵联距离保护(Pilot Distance Protection)是一种常用的电力系统保护方案,它通过测量电力系统中的纵向信息,实现对电力线路的保护。

纵联距离保护的原理是根据故障点到保护装置的距离来判断故障位置,并通过比较测量值和设定值之间的差异来实现保护动作。

本文将详细介绍纵联距离保护的原理及其优缺点。

一、原理纵联距离保护的原理基于以下两个假设:1. 电力线路上的故障点与保护装置之间的电压、电流及功率的关系是稳定的。

2. 电力线路上的故障点与保护装置之间的阻抗是稳定的。

根据这两个假设,纵联距离保护装置通过测量电力线路上的电压和电流,并计算出故障点到保护装置的阻抗值。

然后,将该阻抗值与设定值进行比较,如果二者之间的差异超过一定的阈值,就会发出保护信号,触发保护动作。

二、优点1. 灵敏度高:纵联距离保护可以根据电力线路上的电压和电流的变化情况,准确地判断故障点的位置。

它具有较高的灵敏度,能够快速准确地检测故障,并采取相应的保护措施,有效地保护电力系统的安全运行。

2. 速度快:纵联距离保护的动作速度非常快,可以在故障发生后的瞬间就做出反应。

这对于保护电力系统的设备和人员来说,非常重要,可以避免故障扩大和损害的发生,保护电力系统的可靠性和稳定性。

3. 抗干扰能力强:纵联距离保护对外界的干扰具有一定的抵抗能力。

它可以通过滤波和抗干扰算法来抑制电力系统中的干扰信号,确保保护装置的测量结果准确可靠。

4. 适应性强:纵联距离保护具有较强的适应性,可以适应不同类型的故障和电力系统结构。

它可以通过调整设定值和参数来适应不同的工况和系统变化,提高保护的准确性和可靠性。

三、缺点1. 距离测量误差:纵联距离保护的测量结果受到电力线路参数的影响,如电阻、电抗等。

这些参数可能会随着电力系统的运行状态和负载变化而发生变化,导致测量结果的误差增大,从而影响保护的准确性。

2. 故障位置误判:纵联距离保护只能判断故障点与保护装置之间的距离,不能准确判断故障的位置。

第4章 输电线路纵联保护

第4章 输电线路纵联保护

当区外故障时,被保护线路近短路点一侧为功率方向 为负,2和5发出闭锁信号,两侧收信机收到闭锁信号后将 各自保护闭锁。 当区内故障时,线路两端的短路功率方向均为正, 发信机均不向线路发送闭锁信号,保护的起动元件不被 闭锁,瞬时跳开两侧断路器。
4.3.2电流启动方式的高频闭锁方向保护
线路每一侧的半套保护中装有两个高低灵敏度的电流启动元件 KA1和KA2,灵敏度较高KA1(整定值小)用来启动高频发信机发送 闭锁信号,而灵敏度低的KA2(整定值大)则用来启动保护的跳闸 回路。 方向元件S用来判别短路功率的方向,只有测得正方向故障时才 动作。
保护装置 光 CH TX 光纤 纤 光纤 接 A RX 口 复 用 接 口 E1 ... 复 E1 用 接 口 光纤 光纤 保护装置 RX CH 光 纤 TX A 接 口
SDH.E
SDH.E
SDH 2Mbit/s复用方式结构
2) 通信性能影响因素
(1) 时钟方式 (2) 光功率及通道裕度 (3) 抗干扰屏蔽要求 (4) 匹配问题
4.5.4光纤保护的发展趋势及应用前景
目前,在电力网络通信领域广泛使用的是以电复用为基本工作原 理的SDH/SONET同步数字体系,它具有强大的保护恢复能力和固 定的时延性能。由于采用电复用来提高传输容量具有一定的局限性, 尤其是在高速扩容及复杂拓扑结构的电力网络中渐渐难以满足组网 的要求,因此,从目前的电复用方式转向光复用方式将是电力光纤 网络的必然发展方向。
输电线路的纵联保护通过比较流过两端电流的幅值、两 端电流相位和流过两端功率的方向等,利用信息通道将一 端的电气量或其用于被比较的特征传送到对端,比较两端 不同电气量的差别构成不同原理的纵联保护。
如图:
M N
继电保护装置 高频信号 通信设备 通信通道

新员工培训纵联保护原理

新员工培训纵联保护原理

跳 闸
跳 闸
继电 部分
收信机 发信机
光电 转换
通道(光纤)
光电 转换
收信机 发信机
继电 部分
通信部分
4.3 方向比较式纵联保护
一、工频故障分量的方向元件 保护安装处工频故障分量电压电流关系: Z 背侧母线上等效电源的阻抗 正方向短路时 △U △I Z Z 线路阻抗和对侧母线上等效电源阻抗之和 反方向短路时 △U △I Z 方向元件比较故障分量电压和故障分量电流在模拟阻抗Zr 上产生的电压之间的相位关系 Z △U arg arg 正向故障时 Z 180
I I



M
IN 0

线路内部故障时, 两端功率方向相同,为母线流向线路; 两侧电流同相位; 两侧距离Ⅱ段同时启动。
I I


M
I N Ik1


保护范围为:两个CT之间
纵联保护基本原理

1、纵联电流差动保护
I M I N Iset


2、方向比较式纵联保护 闭锁式方向纵联保护 允许式方向纵联保护 3、电流相位比较式纵联保护 将对侧送来的电流相位信号与本侧的电流相位进 行比较,区外故障时两侧电流相位差近似180 ° 4、距离纵联保护 以方向阻抗元件替代功率方向元件
纵联电流差动保护原理

1、正常运行或外部短路时,两侧电流大小相等,方 向相反,流入差动继电器电流为
I I 0 I r M N
பைடு நூலகம் 纵联电流差动保护原理

2、线路内部短路故障时,两侧故障电流均为正方向 ,流入差动继电器电流为故障点短路电流
I I I I r M N k

纵联保护技术原理

纵联保护技术原理

增加电压(零序)开放条件目的:解决超 长线路出口处高阻接地,一旦对侧保护装 置无法启动时保护的灵敏度问题。
满足差动方程
差动压板投入 CT断线 TWJ
I0qd dIqd
发送差动允许标志
Up<65%Un PTDX Ir>4IL
纵联保护30技ms 术原理
零序差动特点
❖ 由于采用了以下技术,因此具有极高的灵 敏度:
纵联保护技术原理
变化量差动特点
同稳态Ⅰ段相比,在重负荷情况下具有较 高的灵敏度。
纵联保护技术原理
5. 零序差动
零序差动>0.75零序制动 零序差动>零序启动电流
分相差动>K0*分相制动
作为选相元件
分相差动>1.5Ic或0.6Ic
零序差动投入标志
零序差动 100ms/0
纵联保护技术原理
分相零差继电器
❖ 输电线纵联保护
❖ 将线路一侧的电气量的信息传送到另一 侧去,即线路两侧之间发生纵向的联系。 这种保护称输电线路的纵联保护。
❖ 实现全线速动需同时获取线路首端和末 端的电气量。
D3
D1
D2
纵联保护技术原理
❖ 纵联分类 按通道的不同类型分为: ❖ (1)导引线纵联保护; ❖ (2)电力载波纵联保护(高频保护) ❖ (3)微波纵联保护 ❖ (4)光纤纵联保护
IM IN 0
影响满足基尔霍夫定律的因素
IM
IN
❖ 正常运行时的不平衡电流、包括线路电容电 流
❖ 线路区外故障时,TA饱和引起两侧采样电 流的不一致
❖ TA断线
纵联保护技术原理
稳态相差动继电器
Ⅰ段动作方程:
ICD 0.75 I R
I

纵联保护的工作原理

纵联保护的工作原理

纵联保护的工作原理纵联保护是一种电力系统故障保护方式,通过在电力系统的不同位置之间建立起纵向保护通路,可以实现对系统故障的快速检测和隔离,以保证电力系统的安全运行。

纵联保护的工作原理是基于电力系统的特性和信号传输原理。

当电力系统发生故障时,例如短路故障,故障点附近的电流和电压会发生异常变化。

纵联保护装置通过在电力系统中布置传感器和测量设备,可以实时监测电流和电压的变化情况。

在纵联保护装置中,通常会设置多个保护点,每个保护点都与电力系统的不同位置相连。

当故障发生时,保护装置会接收到与故障相关的信号,并进行处理。

首先,保护装置会对接收到的信号进行分析,以确定故障的位置和类型。

然后,保护装置会发送信号到相应的断路器或隔离开关,将故障隔离,以防止故障向其他部分传播,从而保护电力系统的安全运行。

纵联保护的工作原理可以通过以下步骤来描述:1. 信号采集:纵联保护装置通过传感器和测量设备采集电力系统中的电流和电压信号。

2. 信号处理:保护装置对采集到的信号进行处理和分析,以确定故障的位置和类型。

这一步通常涉及信号滤波、特征提取和故障定位等算法。

3. 故障判断:根据处理后的信号,保护装置判断是否发生了故障。

如果发现故障,保护装置会进一步确定故障的类型,例如短路故障、接地故障等。

4. 故障隔离:保护装置会发送信号到相应的断路器或隔离开关,将故障隔离,以防止故障向其他部分传播。

同时,保护装置会发送报警信号,通知运维人员进行故障处理。

纵联保护的工作原理有效地提高了电力系统的可靠性和安全性。

通过及时检测和隔离故障,纵联保护可以防止故障扩大,减少系统停电时间,保护电力设备免受损坏,从而提高电力系统的可用性和稳定性。

纵联保护是一种重要的电力系统保护方式,它通过建立纵向保护通路,实现对电力系统故障的快速检测和隔离。

纵联保护的工作原理是基于电力系统的特性和信号传输原理,通过信号采集、处理、故障判断和故障隔离等步骤,保护电力系统的安全运行。

继电保护 第6章线路的纵联保护讲解

继电保护 第6章线路的纵联保护讲解

第六章 线路的纵联保护第一节 纵联保护的基本原理根据电流、电压和阻抗原理构成的系统保护,都是从线路靠近电源的一侧测量各种状态下的电气量,由于测量误差等原因,它们不能准确判断发生在本线路末端和下一线路出口的故障,为了保证选择性,只能缩小保护范围,在此范围内,保护可以瞬时动作,如电流和距离Ⅰ段。

为了切除全线范围内的故障,必须另外增设保护,如电流和距离Ⅱ段,同样由于误差的原因,保护范围必然延伸到下一线路,与下一线路保护的保护范围交叉重叠,为了保证选择性,只有延时保护动作,使切除全线路范围内故障的时间延长。

对于电力系统的重要线路和大容量高电压以及超高压线路,为了保证系统并列运行的稳定性和减小故障的损害程度,对保护的速动性提出了更高的要求,必须瞬时切除全线路范围内的故障。

线路的纵联保护可以满足要求。

纵联保护是同时比较线路两侧电气量的变化而进行工作的。

因此,在被保护范围内任何地点发生短路时,纵联保护都能瞬时动作。

根据两侧电气量传输方式的不同,纵联保护主要分为导引线纵联保护(简称导引线保护)、电力线载波保护(简称高频保护)、微波纵联保护(简称微波保护)、光纤纵联保护(简称光纤保护)。

第二节 线路的导引线保护一、 导引线保护的基本原理导引线保护是通过比较被保护线路始端和末端电流幅值、相位进行工作的。

为此,应在线路两侧装设变比、特性完全相同的差动保护专用电流互感器TA ,将两侧电流互感器二次绕组的同极性端子用辅助导引线纵向相连构成导引线保护的电流回路,差动继电器KD 并接在电流互感器的二次端子上,使正常运行时电流互感器二次侧电流在该回路中环流,根据基尔霍夫电流定律,流入差动继电器KD 的电流KDI 等于零,如图6-1(a )所示。

通常称此连接方法为环流法,将环流法接线构成的保护称为导引线保护。

根据以上接线原理,对图6-1所示导引线保护原理进行分析。

当线路正常运行或外部k 点短路时,通过差动继电器KD 的电流为022=-=-=TATA ..KD n I n I I I I ⅠⅠⅠⅠ (6-1)k.Ⅰk.Ⅱ(b)图6-1 导引线保护原理说明(a )正常运行、外部短路时;(b )内部短路时当线路内部任意一点k 短路时,分以下两种情况分析。

纵联保护原理

纵联保护原理

纵联保护原理我们先来看一下反映一侧电气量变化的保护有什么不足?对于反映单侧电气量变化的M侧保护来说,它无法区分是本侧线路末端故障还是下级线路始端故障。

所以在保护整定上要将它瞬时段的保护范围限制在全线的70%~80%左右,也即反映单侧电气量变化的保护不能瞬时切除本线路全长内的故障。

因此,引入了纵联保护,纵联保护是综合反映线路两侧电气量变化的保护,对本线路全长范围内的故障均能瞬时切除。

为了使保护能够做到全线速动,有效的办法是让线路两端的保护都能够测量到对端保护的动作信号,再与本侧带方向的保护动作信号比较、判定,以确定是否为区内故障,若为区内故障,则瞬时跳闸。

这样无论在线路的任何一处发生故障,线路两侧的保护都能瞬时动作跳闸。

快速性、选择性都得到了保证。

在构成保护上,是将对侧对故障的判断量传送到本侧,本侧保护经过综合判断,来决定保护是否应该动作。

有将对侧电气量转化为数字信号通过微波通道或光纤传送到本侧进行直接计算(如纵联差动保护),有将对侧对故障是否在本线路正方向的判断量通过高频(载波、微波)通道传送到本侧,本侧保护进行综合判别(如纵联方向保护、纵联距离保护等等)一、实现纵联保护的方式:1、闭锁式:也就是说收不到高频信号是保护动作和跳闸的必要条件。

一般应用于超范围式纵联保护(所谓超范围即两侧保护的正方向保护范围均超出本线路全长);高频信号采用收发同频,即单频制。

2、允许式:也就是说收到高频信号是保护动作和跳闸的必要条件。

一般应用于超范围式纵联保护(所谓欠范围即两侧保护的正方向保护范围均超过本线路全长的50%以上,但没有超出本线路全长);高频信号采用收发不同频率,即双频制。

3、直跳式:也就是说收到高频信号是保护跳闸的充分必要条件。

一般应用于欠范围式纵联保护。

4、差动式:也就是说将对侧电气量转化为数字信号传送到本侧进行直接计算二、故障时允许式信号、闭锁式信号的特点闭锁式信号主要在非故障线路上传输允许式信号主要在故障线路上传输所以说,对于闭锁信号可以利用电力线路相-地通道构成闭锁式保护;而允许信号由于主要在故障线路上传输,则只能采用相-相通道或者是复用载波、复用微波、专用光纤通道。

继电保护(纵联保护)

继电保护(纵联保护)
继电保护纵联保护
目录
CONTENTS
• 继电保护概述 • 纵联保护基本原理 • 纵联保护主要类型及其特点 • 纵联保护在电力系统中的应用 • 纵联保护性能评估与改进方向 • 总结与展望
01 继电保护概述
CHAPTER
定义与原理
定义
继电保护是一种在电力系统中,当电气设备发生故障或异常运行时,能够自动、 迅速、有选择地将故障设备从系统中切除或发出警报信号的保护措施。
原理
继电保护的原理主要基于电流、电压、功率等电气量的变化,通过测量、比较、 逻辑判断等环节,实现对故障或异常情况的识别和处理。
发展历程及现状
20世纪初
熔断器时代,简单过流保护。
20世纪30年代
电磁型继电器广泛应用于保护系统。
20世纪50年代
晶体管保护开始研究,60年代得到实际应用。
20世纪70年代
保障系统安全稳定运行
当电气设备发生故障时,继电保护能够迅速切除故障设备 ,防止故障扩大,保障系统的安全稳定运行。
提高供电可靠性
通过合理的配置和整定,继电保护能够最大限度地减小故 障对系统的影响,提高供电可靠性。
提供故障信息
继电保护装置能够记录故障发生时的电气量信息,为故障 分析和处理提供重要依据。
促进自动化水平提升
选择性
灵敏性
通过比较线路两端的电气量信息,能够准 护对故障的反应灵敏,能够迅速感 知并切除故障。
纵联保护实现方式
导引线方式
利用专用导引线传输线路两端的 电气量信息,实现纵联保护。这 种方式简单可靠,但导引线的建
设和维护成本较高。
载波通信方式
利用电力线载波或微波等通信方 式传输线路两端的电气量信息, 实现纵联保护。这种方式无需专 用导引线,但通信质量受电力线

纵联保护工作原理及故障处理

纵联保护工作原理及故障处理

二、高频通道的组成与作用
图一 纵联保护载波通道的构成
1、高频通道的组成:
1)线路耦合电容器 输电线路耦合方式 相地耦合: A相:高闭、载波; B相:方向高频(相差高频); C相:远切、载波。 相相耦合: A相与B相:高闭 C相:远切、载波。 2)线路阻波器 防止高频信号向母线方向分流的设备。L-C组成并联谐振回路(单 频、宽频等)。高频信号呈很大的阻抗,使高频信号被限制在所保护 的输电线路之内传输。工频电流呈很小的阻抗,不影响工频电力的传 输,线路阻波器由主线圈,调谐元件和避雷器组成。阻波器故障较多 的是避雷器和调谐电路故障引起的。
• 重合闸 单相重合闸、三相重合闸、综合重合闸、重合闸停用
(2)光纤N
N
• 以母线流向被保护线路方向为正 方向 • 动作电流(差动电流)为
I CD I M I N
I C D
• 制动电流为
I R IM I N
0 .7 5
I cdqd
动作电流与制动电流对应的工作 点位于比率制动特性曲线上方, 继电器动作。
TV断线
充电 通道异常 跳A 跳B 跳C 重合闸
不亮
黄色 不亮 不亮 不亮 不亮 不亮
红色
不亮 黄色 红色 红色 红色 红色
装置判断母线TV断线时亮
线路重合闸装置完成充电时亮 光纤通道异常时亮 开关A相跳闸时亮 开关B相跳闸时亮 开关C相跳闸时亮 重合闸动作时亮
(3) RCS-931、RCS-902保护装置指示灯异常处理步骤: • “运行”灯不亮的处理步骤:
3)耦合电容器 工频电流呈很大的阻抗,防止其侵入高频收发信机;高频信号呈 很小的阻抗。与结合滤波器共同组成带通或高通滤波器,只允许此通 带频率之内的高频信号通过。当高频通道衰耗偏大时,如检查阻波器 与结合滤波器没有问题,应检查电容式电压互感器的接线盒中的放电 间隙是否短路 4)结合滤波器 结合滤波器电路一般由排流线圈和耦合电容器以及电感、电容组 成高通或带通电路。与耦合电容器组成带通或高通滤波器;起阻抗匹 配作用,减小高频信号的衰耗(电力架空线的特性阻抗为400Ω、 300Ω(分裂导线);高频电缆的特性阻抗为75Ω或100Ω)。使电力 线载波机或高频收发信机与高压线路隔离。结合滤波器主要故障:绝 缘水平下降:避雷器损坏: 5)接地刀闸 在调整或检修电力线载波机收发信机和结合滤波器时,将它接地, 耦合电容器下端绝对不能悬空,否则,高压电将危及人身安全。

电力系统继电保护—纵联(4)

电力系统继电保护—纵联(4)
考虑电势角度 差、延时等
00
区内故障 称为:相差保护
31/91
4.2 输电线路纵联保护两侧信息的交换
输电线路保护常用的通信方式:
1、导引线通信。
2、电力线载波。 3、微波通信。 4、光纤通信。
32/91
一、导引线通信:利用敷设在输电线路两端变电所之 间的二次电缆传递被保护线路各侧信息的通信方式。 保护装置的性能受导引线参数和使用长度影响,导引 线愈长,分布电容愈大,保护装置的安全可靠性愈低。 故仅应用于就近的TA连接方式,比如发电机、母线、 变器、电抗器等保护中。
N I 'M I 'N 0 从负荷(或外部短路)电流的特征看:I
——即电流差=0 ——>若有电流差,就动作。
M I
按继电保护规定的正方向(或计算原理) ,应当 j 0 I M I N 0 是:电流和保护。即: I 但是,习惯成俗,仍然称为:差动保护。
10/91
1 I 4;流出:I 2 I 3 I 5 流入:I
基尔霍夫电流定律: 1 I 4 I 2 I 3 I 5 I
1 I 4 I 2 I 3 I 5 0 改写为:I
此式表明:流入节点的电流之和等于0。
按照继电保护规定的正方向,得:
3/91
在设备的“纵向”之间,进行信号交 换 横向关系
TA TV 继电保护装置
通信通道
TA TV 继电保护装置
通信设备
通信设备
输电线路纵联保护结构框图
4/91
纵联保护有多种分类方法,可以按照通道类型或 动作原理进行分类。 1)通道类型: 导引线 电力线载波 微波 光纤
2)动作原理: 比较方向 比较相位 基尔霍夫电流定律 (差电流)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纵联保护原理
线路的纵联保护是指反应线路两侧电量的保护,它可以实现全线路速动。

而普通的反应线路一侧电量的保护不能做到全线速动。

纵联差动是直接将对侧电流的相位信息传送到本侧,本侧的电流相位信息也传送到对侧,每侧保护对两侧电流相位就行比较,从而判断出区内外故障。

是属于直接比较两侧电量对纵联保护。

目前电力系统中运行对这类保护有:高频相差保护、导引线差动保护、光纤纵差保护、微波电流分相差动保护。

纵联方向保护:反应线路故障的测量元件为各种不同原理的方向元件,属于间接比较两侧电量的纵联保护。

包括高频距离保护、高频负序方向保护、高频零序方向保护、高频突变量方向保护。

先了解一下纵联差动保护:
为实现线路全长范围内故障无时限切除所以必须采用纵联保护原理作为输电线保护。

输电线路的纵联差动保护(习惯简称纵差保护)就是用某种通信通道将输电线两端的保护装置纵向连
接起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路外,从而决定是否切断被保护回路.
纵联差动保护的基本原理是基于比较被保护线路始端和末端电流的大小和相位原理构成的。

高频保护的工作原理:将线路两端的电流相位或功率方向转化为高频信号,然后,利用输电线路本身构成高频电流通道,将此信号送至对端,以比较两端电流的相位或功率方向的一总保护装置。

安工作原理的不同可分为两大类:方向高频保护和相差高频保护。

光纤保护也是高频保护的一总原理是一样的只是高频的通道不一样一个事利用输电线路的载波构成通道一个是利用光纤的高频电缆构成光纤通道。

光纤通信广泛采用PCM调制方式。

这总保护发展很快现在一般的变电站全是光纤的了经济又安全。

距离保护:距离保护是通过测量被保护线路始端电压和线路电流比值而动作的一总保护,这个比值被称为测量阻抗Zm,用来完成这一测量任务的元件称为阻抗继电器KI。

因为在短路时的测量阻抗反应了短路点到保护安装点之间距离的长短,所以这总原理的保护为距离保护,有时也称之为阻抗保护。

阻抗保护=距离保护。

相关文档
最新文档