Unsupervised image segmentation based on a new fuzzy HMC model

合集下载

多尺度特征融合的脊柱X线图像分割方法

多尺度特征融合的脊柱X线图像分割方法

脊柱侧凸是一种脊柱三维结构的畸形疾病,全球有1%~4%的青少年受到此疾病的影响[1]。

该疾病的诊断主要参考患者的脊柱侧凸角度,目前X线成像方式是诊断脊柱侧凸的首选,在X线图像中分割脊柱是后续测量、配准以及三维重建的基础。

近期出现了不少脊柱X线图像分割方法。

Anitha等人[2-3]提出了使用自定义的滤波器自动提取椎体终板以及自动获取轮廓的形态学算子的方法,但这些方法存在一定的观察者间的误差。

Sardjono等人[4]提出基于带电粒子模型的物理方法来提取脊柱轮廓,实现过程复杂且实用性不高。

叶伟等人[5]提出了一种基于模糊C均值聚类分割算法,该方法过程繁琐且实用性欠佳。

以上方法都只对椎体进行了分割,却无法实现对脊柱的整体轮廓分割。

深度学习在图像分割的领域有很多应用。

Long等人提出了全卷积网络[6](Full Convolutional Network,FCN),将卷积神经网络的最后一层全连接层替换为卷积层,得到特征图后再经过反卷积来获得像素级的分类结果。

通过对FCN结构改进,Ronneberger等人提出了一种编码-解码的网络结构U-Net[7]解决图像分割问题。

Wu等人提出了BoostNet[8]来对脊柱X线图像进行目标检测以及一个基于多视角的相关网络[9]来完成对脊柱框架的定位。

上述方法并未直接对脊柱图像进行分割,仅提取了关键点的特征并由定位的特征来获取脊柱的整体轮廓。

Fang等人[10]采用FCN对脊柱的CT切片图像进行分割并进行三维重建,但分割精度相对较低。

Horng等人[11]将脊柱X线图像进行切割后使用残差U-Net 来对单个椎骨进行分割,再合成完整的脊柱图像,从而导致分割过程过于繁琐。

Tan等人[12]和Grigorieva等人[13]采用U-Net来对脊柱X线图像进行分割并实现对Cobb角的测量或三维重建,但存在分割精度不高的问题。

以上研究方法虽然在一定程度上完成脊柱分割,但仍存在两个问题:(1)只涉及椎体的定位和计算脊柱侧凸角度,却没有对图像进行完整的脊柱分割。

声纳海底管道图像去噪方法研究

声纳海底管道图像去噪方法研究

声纳海底管道图像去噪方法研究张晓娟;刘颉;杨逍;吕九红【摘要】在海底输送管道泄露检测中,声纳图像极易受到噪声污染.如果以管道的直线特征作为检测策略,即能观察到明显的管道直线边缘等特征以进行管道泄露分析.利用小波变换的改进方法——超小波脊波变换,针对噪声淹没中海底管道图像的直线特征实现去噪,增强管道部分图像.利用自适应“维纳滤波”进行图像去噪和去“卷绕”.仿真实验表明,脊波去噪技术相对于其它方法对管道图像去噪方法具有明显边缘等直线特征保持作用.文中研究结果为海底管道泄露图像处理技术提供数据预处理方法.【期刊名称】《海洋技术》【年(卷),期】2017(036)006【总页数】4页(P82-85)【关键词】脊波去噪;海底管道图像处理;维纳滤波【作者】张晓娟;刘颉;杨逍;吕九红【作者单位】国家海洋技术中心,天津300112;国家海洋技术中心,天津300112;国家海洋技术中心,天津300112;国家海洋技术中心,天津300112【正文语种】中文【中图分类】TN911.73声纳图像是水声信道中接收声回波能量的二维平面分布,受噪声影响严重,对比度较低。

受声基阵性能的限制,声纳图像的分辨率往往不高[1]。

主要考虑的噪声源有海洋环境噪声和舰船自噪声[2]。

海洋环境噪声常常遵循高斯分布[3],而文献[1]声纳信号的噪声考虑高斯模型。

维纳滤波、小波对于高斯噪声处理比较有效。

海底管道声纳图像具有直线边缘特征,线奇异性表现较为突出,为了克服小波变换不能达到最优逼近的问题,Candes等人提出了新的多尺度变换—Ridgelet变换,它能够有效地处理二维图像的线奇异性,较好地对此类信号进行“逼近”。

对于海底管道泄露检测利用基于小波理论的脊波进行直线特征加强,提高边缘的完整性,提高有用信号所占的信号比例。

增强处理后有用图像部分信噪比及直线特征边缘。

图1 Blueview前视2D声纳管道图像处理流程图基于“海底管道探测技术集成及风险评估技术研究与示范应用”子课题“海底管道ROV精细化探测系统集成——前视声纳系统”。

航天遥感专业英语(中英文对照)

航天遥感专业英语(中英文对照)

航天遥感专业英语(中英文对照)遥感remote sensing资源与环境遥感remote sensing of natural resources and environment 主动式遥感active remote sensing被动式遥感passive remote sensing多谱段遥感multispectral remote sensing多时相遥感multitemporal remote sensing红外遥感infrared remote sensing微波遥感microwave remote sensing太阳辐射波谱solar radiation spectrum大气窗atmospheric window大气透过率atmospheric transmissivity大气噪声atmospheric noise大气传输特性characteristic of atmospheric transmission波谱特征曲线spectrum character curve波谱响应曲线spectrum response curve波谱特征空间spectrum feature space波谱集群spectrum cluster红外波谱infrared spectrum反射波谱reflectance spectrum电磁波谱electro-magnetic spectrum功率谱power spectrum地物波谱特性object spectrum characteristic热辐射thermal radiation微波辐射microwave radiation数据获取data acquisition数据传输data transmission数据处理data processing地面接收站ground receiving station数字磁带digital tape模拟磁带analog tape计算机兼容磁带computer compatible tape,CCT高密度数字磁带high density digital tape,HDDT图象复原image restoration模糊影象fuzzy image卫星像片图satellite photo map红外图象infrared imagery热红外图象thermal infrared imagery,thermal IR imagery微波图象microwave imagery成象雷达imaging radar熵编码entropy coding冗余码redundant code冗余信息redundant information信息量contents of information信息提取information extraction月球轨道飞行器lunar orbiter空间实验室Spacelab航天飞机space shuttle陆地卫星Landsat海洋卫星Seasat测图卫星Mapsat立体卫星Stereosat礼炮号航天站Salyut space station联盟号宇宙飞船Soyuz spacecraftSPOT卫星SPOT satellite,systeme pro batoire d’observation de la terse(法)地球资源卫星earth resources technology satellite,ERTS环境探测卫星environmental survey satellite地球同步卫星geo-synchronous satellite太阳同步卫星sun-synchronous satellite卫星姿态satellite attitude遥感平台remote sensing platform主动式传感器active sensor被动式传感器passive sensor推扫式传感器push-broom sensor静态传感器static sensor动态传感器dynamic sensor光学传感器optical sensor微波传感器microwave remote sensor光电传感器photoelectric sensor辐射传感器radiation sensor星载传感器satellite-borne sensor机载传感器airborne sensor姿态测量传感器attitude-measuring sensor 探测器detector摄谱仪spectrograph航空摄谱仪aerial spectrograph波谱测定仪spectrometer地面摄谱仪terrestrial spectrograPh测距雷达range-only radar微波辐射计microwave radiometer红外辐射计infrared radiometer侧视雷达side-looking radar, SLR真实孔径雷达real-aperture radar合成孔径雷达synthetic aperture radar,SAR 专题测图传感器thematic mapper,TM 红外扫描仪infrared scanner多谱段扫描仪multispectral scanner.MSS 数字图象处理digital image processing光学图象处理optical image processing实时处理real-time processing地面实况ground truth几何校正geometric correction辐射校正radiometric correction数字滤波digital filtering图象几何配准geometric registration of imagery图象几何纠正geometric rectification of imagery 图象镶嵌image mosaic图象数字化image digitisation彩色合成仪additive colir viewer假彩色合成false color composite直接法纠正direct scheme of digital rectification间接法纠正indirect scheme of digital rectification 图象识别image recognition图象编码image coding彩色编码color coding多时相分析multitemporal analysis彩色坐标系color coordinate system图象分割image segmentation图象复合image overlaying图象描述image description二值图象binary image直方图均衡histogram equalization直方图规格化histogram specification图象变换image transformation彩色变换color transformation伪彩色pseudo-color假彩色false color主分量变换principal component transformation 阿达马变换Hadamard transformation沃尔什变换Walsh transformation比值变换ratio transformation生物量指标变换biomass index transformation 穗帽变换tesseled cap transformation参照数据reference data图象增强image enhancement边缘增强edge enhancement边缘检测edge detection反差增强contrast enhancement纹理增强texture enhancement比例增强ratio enhancement纹理分析texture analysis彩色增强color enhancement模式识别pattern recognition特征feature特征提取feature extraction特征选择feature selection特征编码feature coding距离判决函数distance decision function概率判决函数probability decision function模式分析pattern analysis分类器classifier监督分类supervised classification非监督分类unsupervised classification盒式分类法box classifier method模糊分类法fuzzy classifier method最大似然分类maximum likelihood classification 最小距离分类minimum distance classification 贝叶斯分类Bayesian classification机助分类computer-assisted classification 图象分析image analysis。

智能 ai 相关英文单词

智能 ai 相关英文单词

智能 AI 相关英文单词1. 介绍在当代科技的发展中,人工智能(Artificial Intelligence,简称AI)已经成为一个热门的话题。

随着智能技术的不断进步和应用,越来越多的人开始关注AI相关的英文单词。

本文将深入探讨与智能AI相关的英文单词,包括其定义、分类、应用等方面的内容。

2. 定义智能AI(Artificial Intelligence)是一种模拟人类智能的技术与系统。

它可以通过学习、推理和自适应来执行各种任务。

智能AI可以处理大量的数据和信息,并基于此做出决策。

它可以通过模式识别和机器学习来提高自身的性能。

3. 分类下面是一些与智能AI相关的英文单词分类:3.1 机器学习(Machine Learning)•监督学习(Supervised Learning)•无监督学习(Unsupervised Learning)•半监督学习(Semi-supervised Learning)•强化学习(Reinforcement Learning)3.2 深度学习(Deep Learning)•神经网络(Neural Networks)•卷积神经网络(Convolutional Neural Networks)•递归神经网络(Recurrent Neural Networks)•自编码器(Autoencoders)3.3 自然语言处理(Natural Language Processing)•文本分类(Text Classification)•命名实体识别(Named Entity Recognition)•机器翻译(Machine Translation)•问答系统(Question Answering)3.4 计算机视觉(Computer Vision)•物体检测(Object Detection)•图像分割(Image Segmentation)•人脸识别(Face Recognition)•图像生成(Image Generation)4. 应用智能AI的应用范围非常广泛,下面是一些常见的应用领域:4.1 医疗健康•医学影像诊断(Medical Imaging Diagnosis)•基因组学研究(Genomic Research)•个性化医疗(Personalized Medicine)•药物研发(Drug Discovery)4.2 交通运输•自动驾驶汽车(Autonomous Vehicles)•交通监控与管理(Traffic Monitoring and Management)•路线规划(Route Planning)•物流管理(Logistics Management)4.3 金融服务•欺诈检测(Fraud Detection)•个性化推荐(Personalized Recommendations)•风险管理(Risk Management)•量化交易(Quantitative Trading)4.4 教育与娱乐•自适应学习(Adaptive Learning)•智能辅导(Intelligent Tutoring)•游戏开发(Game Development)•虚拟现实(Virtual Reality)5. 总结本文对智能AI相关的英文单词进行了全面、详细、完整、深入的探讨。

基于深度学习的图像分割技术分析

基于深度学习的图像分割技术分析

算注语言信IB与电厢China Computer&Communication2020年第23期基于深度学习的图像分割技术分析张影(苏州科技大学电子与信息工程学院,江苏苏州215009)摘要:近年来,深度学习已广泛应用在计算机视觉中,涵盖了图像分割、特征提取以及目标识别等方面,其中图像分割问题一直是一个经典难题。

本文主要对基于深度学习的图像分割技术的方法和研究现状进行了归纳总结,并就深度学习的图像处理技术进行详细讨论,主要从4个角度讨论处理图像分割的方法,最后对图像分割领域的技术发展做了总结。

关键词:深度学习;图像分割;深度网络中图分类号:TP391.4文献标识码:A文章编号:4003-9767(2020)23-068-02Research Review on Image Segmentation Based on Deep LearningZHANG Ying(College of Electronics and Information Engineering,Suzhou University of Science and Technology,Suzhou Jiangsu215009,China) Abstract:In recent years,deep learning has been widely used in computer vision,covering image segmentation,feature extraction and target recognition,among which image segmentation has always been a classic problem.In this paper,the methods and research status of image segmentation technology based on deep learning are summarized,and the image processing technology of deep learning is discussed in detail.The methods of image segmentation are mainly discussed from four aspects.Finally,the development of image segmentation technology is summarized.Keywords:deep learning;image segmentation;deep network0引言在计算机视觉中,图像处理、模式识别和图像识别都是近几年的研究热点,基于深度学习类型的分割有分类定位、目标检测、语义分割等。

基于深度学习的单目图像深度估计

基于深度学习的单目图像深度估计

摘要图像深度估计是计算机视觉领域中一项重要的研究课题。

深度信息是理解一个场景三维结构关系的重要组成部分,准确的深度信息能够帮助我们更好地进行场景理解。

在真三维显示、语义分割、自动驾驶及三维重建等多个领域都有着广泛的应用。

传统方法多是利用双目或多目图像进行深度估计,最常用的方法是立体匹配技术,利用三角测量法从图像中估计场景深度信息,但容易受到场景多样性的影响,而且计算量很大。

单目图像的获取对设备数量和环境条件要求较低,通过单目图像进行深度估计更贴近实际情况,应用场景更广泛。

深度学习的迅猛发展,使得基于卷积神经网络的方法在单目图像深度估计领域取得了一定的成果,成为图像深度估计领域的研究热点。

但是单目深度估计仍面临着许多挑战:复杂场景中的复杂纹理和复杂几何结构会导致大量深度误差,容易造成局部细节信息丢失、物体边界扭曲及模糊重建等问题,直接影响图像的恢复精度。

针对上述问题,本文主要研究基于深度学习的单目图像深度估计方法。

主要工作包括以下两个方面:(1)针对室内场景中复杂纹理和复杂几何结构造成的物体边界扭曲、局部细节信息丢失等问题,提出一种基于多尺度残差金字塔注意力网络模型。

首先,提出了一个多尺度注意力上下文聚合模块,该模块由两部分组成:空间注意力模型和全局注意力模型,通过从空间和全局分别考虑像素的位置相关性和尺度相关性,捕获特征的空间上下文信息和尺度上下文信息。

该模块通过聚合特征的空间和尺度上下文信息,自适应地学习像素之间的相似性,从而获取图像更多的全局上下文信息,解决场景中复杂结构导致的问题。

然后,针对场景理解中物体的局部细节容易被忽略的问题,提出了一个增强的残差细化模块,在获取多尺度特征的同时,获取更深层次的语义信息和更多的细节信息,进一步细化场景结构。

在NYU Depth V2数据集上的实验结果表明,该方法在物体边界和局部细节具有较好的性能。

(2)针对已有非监督深度估计方法中细节信息预测不够准确、模糊重建等问题,结合Non-local能够提取每个像素的长期空间依赖关系,获取更多空间上下文的原理,本文通过引入Non-local提出了一种新的非监督学习深度估计模型。

ENVI主菜单中英文对照

ENVI主菜单中英文对照
Texture纹理分析
Occurrence measures概率统计
Co-occurrence measures二阶概率统计
Adaptive自适应滤波
LeeEnhancedlee增强lee滤波
FrostEnhanced frost增强forst滤波
Grmma、Kuan、Local sigma、Bit errors
HSV to RGB
Decorrelation stretch去相关拉伸
Photographic stretch摄影拉伸
Saturation stretch饱和度拉伸
Synthetic color image合成彩色影像
NDVI
Tasseled cap缨帽变换
5.Filter过滤器
Convolutions and morphology卷积滤波
Thermal atm correction热红外大气校正
TIMS radiance热红外多波段扫描仪定标
Calculate emissivity发射率计算
General purpose utilities通用工具
Replace bad lines坏行修补
Dark substract黑暗像元法
Apply gain and offset应用增益和偏移校正
Destripe多带噪声去除
Cross-tarck Illumination correction轨道光照修正
Convert complex data complex转换
Convert vax to IEEE vax转换为IEEE
Data-specific utilities特定数据处理工具
3.Classification分类

ENVI主菜单中英文对照

ENVI主菜单中英文对照

文件Open image file 打开图像文件Open vector file 打开矢量文件Open remote file 打开远程文件Open exteral file 打开特定文件Open previous file 最近使用文件Launch ENVI zoom 启动ENVI zoomEdit ENVI header 编辑头文件Generate test data 生成测试数据Data view 数据浏览Save file as 另存为Import from IDL variable 导入IDL变量Export to IDL variable 导出为IDL变量Compile IDL module 编译IDL程序IDL CPU parameters IDL CPU参数设置Tape utilties:磁带工具Read known tape formats 磁带格式读取各种传感器Read/write ENVI tapes ENVI磁带读写Read ENVI tape 磁带读取Write ENVI files to tape 写入磁带Scan tape and customize dump 浏览磁带并保存Dump tape 转储磁带Scan directory list 扫描目录Change output directory 更改扫描目录Save session to script 作业保存Execute startup script 脚本执行Restore display group 显示恢复ENVI queue manager ENVI队列管理ENVI log manager ENVI日志管理Close all files 关闭所有文件Preferences 参数设置 Exit 退出tools 基本工具Resize data(spatial/spectral) 数据重采样(空间子集/光谱子集)Subset data via ROIs 通过感兴趣区裁剪数据(选取子集)Rotate/flip data 旋转/翻转数据Layer stacking 图层堆栈Convert data(BSQ ,BIL ,BIP ) 数据格式转换Stretch data 数据拉伸Statistics 统计Compute statistcs 统计计算View statistics 查看统计文件Sum data bands 数据波段求和Generate random sample 生成随机样本Using ground truth classification 基于地表真实分类影像Using ground truth ROIs 基于地表真实感兴趣区Spactial statistics 空间统计Compute global spatial statistics 全局统计Compute local spatial statistics 局部统计Change detection 变化检测Measurement tool 量测工具Band math 波段运算Spectral math 光谱运算Segmentation image 图像分割Region of interest 感兴趣区Rool tool 感兴趣区Restore saved ROI file 打开感兴趣区文件Save ROIs to file 保存为感兴趣区文件Delete ROIs 删除感兴趣区Export ROIs to EVF 将感兴趣区导出为EVFExport ROIs to n-D visualizer 将感兴趣区导出进行n维散度分析Export ROIs to training data 将感兴趣区导出为矢量训练样本Output ROIs to ASCII 将感兴趣区导出为ASCII码文件Reconcile ROIs 调整感兴趣区Reconcile ROIs via map 利用地图调整感兴趣区Band threshold to ROI 利用波段阈值定义感兴趣区Creat class image from ROIs 利用感兴趣区生成分类图像Creat buffer zone from ROIs 利用感兴趣区生成缓冲区Compute ROI separability 计算感兴趣区分离度Mosaicking 图像镶嵌Pixel based 基于像素镶嵌Georeferenced 基于地理坐标镶嵌Tiled quickbird product 产品镶嵌Tiled worldview product 产品镶嵌Masking 掩膜Build mask 建立掩膜Apply mask 应用掩膜Preprocessing 预处理Calibration utilities 定标工具AVHRR Landsat calibration landsat 定标Quickbird radianceWorldview radianceFLAASH 大气纠正Quick atmospheric correction 快速大气校正Flat filed 平面场定标Log residuale 对数残差定标IAR reflectance IAR 反射率定标Empirical line 经验线性定标Thermal atm correction 热红外大气校正TIMS radiance 热红外多波段扫描仪定标Calculate emissivity 发射率计算General purpose utilities 通用工具Replace bad lines 坏行修补Dark substract 黑暗像元法Apply gain and offset 应用增益和偏移校正Destripe 多带噪声去除Cross-tarck Illumination correction 轨道光照修正Convert complex data complex转换Convert vax to IEEE vax转换为IEEEData-specific utilities 特定数据处理工具分类Supervised 监督分类Parallelepiped 平行六面体Minimum distance 最小距离法Mahalanobis distance 马氏距离法Maximum distance 最大似然法Spectral angle mapper 波谱角制图Spectral information divergence 光谱信息散度Binary encoding 二进制编码Netural net 神经网络Support vector machine 支持向量机Unsupervised 非监督分类IsodataK-MeansDecision tree 决策树分类Build new decision tree 新建决策树Edit existing decision tree 编辑决策树Execute existing decision tree 执行决策树Endmember collection 端元收集器Create class image from ROIs 利用感兴趣区生成分类图像Post classification 分类后处理Assign class colors 分类颜色设置Rule classifier 规则分类器Class statistics 分类结果统计Change detection statistics 变化监测统计Confusion matrix 混淆矩阵分析Using ground truth image 基于地表真实影像Using ground truth ROIs 基于地表真实感兴趣区ROC curves ROC曲线Using ground truth image 基于地表真实影像Using ground truth ROIs 基于地表真实感兴趣区Generate random sample 生成随机样本Using ground truth image 基于地表真实影像Using ground truth ROIs 基于地表真是感兴趣区Majority/minority analysis 主要/次要分析Clump classes 分类集群Sieve classes 分类筛选Combine classes 分类合并Overlay classes 分类叠加Buffer zone image 缓冲区分析Segmentation image 图像分割Classification to vector 分类结果转换为矢量变换Image sharpening 图像融合HSV融合Color normalized(Brovey) Brovey融合Gram-schmidt spectral shapening Gram-schmidt融合PC spectial sharpening 主成分分析CN spectial sharpening CN波谱融合Band ratios 波段比Principal components 主成分分析Forward PC rotation 正向主成分分析Compute new statistics and rotate 计算统计值分析PC rotation from existing stats 现有统计值分析Inverse PC rotation 反向主成分分析变换Independent components独立主成分分析Forward IC rotation 独立主成分分析Compute new stats and rotate 计算统计值分析IC rotation from existing stats 现有统计值分析IC rotation from existing transform Inverse IC rotation 反向独立主成分分析变换MNF rotation MNF变换(最小噪声分离)Forward MNF 正向MNF变换Estimate noise statistics from data 估算噪声分析Previous noise statistics 历史噪声统计Noise statistics from dark data 黑区图像估计噪声Inverse MNF transform 反向MNF变换Apply forward MNF to spectra 波谱应用正向MNF变换Apply inverse MNF to spectra 波谱应用反向MNF变换Color transforms 颜色空间变换RGB to HSVHSV to RGBHLS to RGBHSV to RGBDecorrelation stretch 去相关拉伸Photographic stretch 摄影拉伸Saturation stretch 饱和度拉伸Synthetic color image 合成彩色影像NDVITasseled cap 缨帽变换过滤器Convolutions and morphology 卷积滤波Texture 纹理分析Occurrence measures 概率统计Co-occurrence measures 二阶概率统计Adaptive 自适应滤波Lee Enhanced lee增强 lee 滤波Frost Enhanced frost 增强 forst 滤波Grmma、Kuan、Local sigma、Bit errorsFFT filtering 傅立叶变换滤波Forward EET 正向傅立叶变换Filter definition 滤波器自定义Inverse FFT 反向傅立叶变换波谱工具SPEAR tools SPEAR工具THOR workflows 流程化高光谱工具Target detection wizard 目标检测向导Spectial libraries 波谱库Spectial slices 波谱切割MNF rotation MNF变换(最小噪声分离)Pixel purity index 纯净像元指数PPIn-Dimensional visualizer n维数据可视化Mapping methods 制图方法Vegetation analysis 植被分析Vegetation suppression 植被抑制SAM target finder with bandmax 基于bandMax的SAM目标查找提取RX anomaly detection RX异常检测Spectral hourglass wizard 波谱沙漏向导Automated spectial hourglass 自动波谱沙漏向导Spectral analyst 波谱分析Multi range SFF 多谱段SFFSMACC endmember extraction SMACC端元提取Spectial math 波谱运算Spectral resampling 波普重采样Gram-schmidt spectial sharpening Gram-schmidt 波谱融合PC spectial sharpening PC波段融合CN spectial sharpening CN波段融合EFFORT polishing EFFORT 波谱打磨FLAASH FLAASH大气校正Quick atmospheric correction 快速大气校正Build 3D cube 建立3D立方体Preprocessing 预处理Calibration utilitiesAVHRRLandsat calibrationQUickbird radianceWorldview radianceFLAASHQuick atmospheric correctionFlat filedLog residualeIAR reflectanceEmpirical lineThermal atm correctionTIMS radianceCalculate emissivityGeneral purpose utilitiesReplace bad linesDark substractApply gain and offsetDestripeCross-tarck illumination correctionConvert complex dataConvert vax to IEEEData-specific utilities(配准与镶嵌)Registration 几何校正Rigorous orthorectification 严格模型正射校正Orthorectification 正射校正Mosaicking 图像镶嵌Georeference from input geometry 输入几何文件进行几何校正 Georeference SPOT SPOT几何校正Georeference SeaWiFS SeaWiFS几何校正Georeference ASTER ASTER几何校正Georefencece AVHRR AVHRR几何校正Georeference ENVISAT ENVISAT几何校正Georeference MODIS MODIS几何校正Georeference COSMO-SkyMed(DGM) DGM几何校正Georeference RADARSAT RADARSAT几何校正Build RPCs 构建RPCsCustomize map projections 自定义地图投影Convert map projection 地图投影转换Layer stacking 波段组合Map coordinate converter 地图坐标转换ASCII coordinate conversion ASCII坐标转换Merge old “” file 合并原有文件GPS-Link GPS连接矢量工具Open vector image 打开矢量文件Create new vector layer 新建矢量层Using existing vector layer 基于现有矢量层Using raster image file 基于栅格图像文件Using user defined parameters 基于用户自定义参数Create world boundaries 创建世界边界Available vectors list 当前矢量列表Intelligent digitizer 智能数字化工具Raster to vector 栅格转矢量Classification to vector 分类结果矢量化Rasterize point data 离散点栅格化Convert contours to DEM 等高线转为DEM地形工具Open topographic file 打开地形文件Topographic modeling 地形模型Topographic features 地貌特征分析DEM extraction DEM提取DEM提取向导;提取向导;使用现有文件;选择立体控制点对;选择立体匹配点;构建核面图像;提取DEM;编辑DEM;立体3D测量;3D核面指针Create hill shade image 山体阴影图生成Replace bad values 坏值替换Rasterize point data 离散点栅格化Convert contours to DEM 等高线转为DEM3D SurfaceView 3D曲面浏览Outil bathym rie雷达工具Open/prepare radar file 打开/预处理雷达数据文件Calibration 定标Beta noughtSigma noughtAntenna pattern correction 天线阵列校正Slant-to-ground range 斜地校正Incidence angle image 入射角图像Adaptive filters 自适应滤波Texture filters 纹理滤波Synthetic color image 彩色图像合成Polarimetric tools 极化分析工具Synthesize AIRSAR Data AIRSAR数据合成Synthesize SIR-C data SIR-C数据合成Extract polarization sigbatures 极化信号提取Multilook compressed data 数据压缩多视Phase image 相位图像Pedestal height image 图像消隐脉冲高度AIRSAR scattering classification AIRSAR散射机理分析TOPSAR tools TOPSAR工具Open TOPSAR file 打开TOPSAR文件Convert TOPSAR data 打开TOPSAR数据DEM replace bad value DEM坏值替换窗口Window finder 查找窗口Start new display window 新建显示窗口Start new vector window 新建矢量窗口Start new plot window 新建绘图窗口Start 3D liDAR viewer LiDAR三维浏览器Available files list 当前文件列表Available bands list 当前波段列表Available vectors list 当前矢量列表Remote connection manager 远程连接管理Mouse button descriptions 鼠标按键说明Display information 显示信息Cursor location/value 光标定位/数值信息Point collection 点收集Maximize open displays 显示窗口最大化Link diaplays 关联显示Close all display windows 关闭所有显示窗口Close all plot windows 关闭所有绘图窗口。

Unsupervised image segmentation based on high-order hidden

Unsupervised image segmentation based on high-order hidden

UNSUPERVISED IMAGE SEGMENTATIONBASED ON HIGH-ORDER HIDDEN MARKOV CHAINSS.Derrode,C.Carincotte and S.BourennaneMultidimensional Signal Processing Group,Institut Fresnel(CNRS-UMR6133) Domaine universitaire de Saint J´e rˆo me,13013Marseille Cedex20-FRANCEcyril.carincotte@fresnel.frABSTRACTFirst order hidden Markov models have been used for a long time in image processing,especially in image segmenta-tion.In this paper,we propose a technique for the unsu-pervised segmentation of images,based on high-order hid-den Markov chains.We also show that it is possible to re-lax the classical hypothesis regarding the state observation probability density,which allows to take into account some particular correlated noise.Model parameter estimation is performed from an extension of the general Iterative Condi-tional Estimation(ICE)method that takes into account the order of the chain.A comparative study conducted on a simulated image is carried out according to the order of the chain.Experimental results on Synthetic Aperture Radar (SAR)images show that the new approach can provide a more homogeneous segmentation than the classical one,im-plying higher complexity algorithm and computation time.1.INTRODUCTIONThe aim of this paper is to compare the high-order Hidden Markov Chain model(denoted by HMC-R,with R the or-der of the Markov chain or the memory length)with the classical HMC-1model for the unsupervised segmentation of images.The HMC-1model has been used successfully in im-age segmentation[1],thanks to the use of a Hilbert-Peano scan that converts the2D lattice into a1D sequence[2]. The success of HMC models is due to the fact that when the unobservable signal process X can be modelled by a finite Markov chain and when the noise is not too com-plex,then X can be recovered from the observed process Y using different Bayesian classification techniques like Maximum A Posteriori(MAP)or Maximal Posterior Mode (MPM).Recently,it has been shown that the HMC-1model can compete with Hidden Markov Random Field(HMRF) based methods in terms of classification accuracy,while be-ing much faster,even though the latter provides afiner and more intuitive modelling of spatial relationships[3].High-order Markov chains,especially HMC-2,have been used in a number of applications,including speech and hand-written recognition[4,5],genomic[6]and robotic[7]. However,to our knowledge,HMC-R model has not been tested in unsupervised image segmentation.This model can be of interest since increasing the memory of the Markov process allows to model more complex spatial relationships between pixels and so more complex noise structures.The paper is organized as follows:high-order Markov chain structure is presented in Section2.We specify in Sec-tion3the straightforward extension of the HMC-1,inspired by[5]and applied for image segmentation.The unknown HMC-R parameters estimation,achieved with an extension of the general ICE method[1,3],which can be seen as an al-ternative to well-known Estimation-Maximization(EM)al-gorithm,is then briefly presented.We also present in this Section a new approach which consists in taking into ac-count the order of the chain for the estimation of the condi-tional observation probability parative results on simulated and SAR images are presented in Section4, whereas conclusions are drawn in Section5.2.HIGH-ORDER MARKOV CHAINSTo simplify notations,X1→n will denote the sequence of random variables{X1,...,X n}and x will denote a real-ization of process X.X={X n}n∈{1,...,N}is a R-order Markov chain,with length N,and with each X n taking its value in the set of classesΩ={1,...,K}if and only if:P(X n=x n|X1→n−1=x1→n−1)=P(X n=x n|X n−R→n−1=x n−R→n−1).(1) Actually,it means that each component only depends on the R immediately previous ones.Such a Markov chain is said homogeneous if Eq.(1)does not depend on the position n in the sequence.This leads to the set of state transition probabilities of high-order of the form:t xn−R→n=P(X n=x n|X n−R→n−1=x n−R→n−1),∀n∈{R+1,...,N},with the state transition coefficients having the properties:t xn−R→n ≥0,Kx n=1t xn−R→n=1.All these probabilities are contained in a(R+1)-dimensions transition probabilities matrix T= t x n−R→n .It is important to note that R-order Markov chains are also defined by R−1matrices characterizing the Rfirst transitions in the sequence:•n=R:T R−1= t R−1x1→R ,∀x1→R∈ΩR,•...,•n=3:T2= t2x1→3 ,∀x1→3∈Ω3,•n=2:T1= t1x1→2 ,∀x1→2∈Ω2.Finally,for n=1,we get the initial state probabilitiesπx1=P(X1=x1),∀x1∈Ω.3.HIGH-ORDER HIDDEN MARKOV CHAINSHMC-based image segmentation methods assume that each component of the observation vector y={y1,...,y N}can be modelled as states of an underlying Markov chain X.In this section,we investigate models in which the un-derlying states sequence is an homogeneous R-order Markov chain.Similarly to the HMC-1context,wefirst consider the usual two following assumptions:•H1:the random variables Y1,...,Y N are independent conditionally on X.•H2:the distribution of each Y n conditionally on X is equal to its distribution conditionally on X n.Fig.1illustrates assumption H2for a HMC-2model. The continuous lines of the process X represent the orderof the HMC:X n+1is attached to X n and X n−1.The con-tinuous lines connecting Y with X symbolize H2:each Y nis linked with the corresponding X n.This assumption will be relaxed in Section3.3.3.1.HMC-R modelAs specified above,let X=X1→N be an homogeneousR-order Markov chain,corresponding to the unknown class image.We get:P(X=x)=πx1R−1r=1t r x1→r+1Nn=R+1t xn−R→n.Each state of the state space is associated with a distri-bution,characterizing the repartition of observations:f xn (y n)=P(Y n=y n|X n=x n).(2)YFig.1.Independence assumptions assumed in a HMC-2model.The dotted lines represent the new relation intro-duced by the more general assumption(H R2),see text inSection3.3.Given an observed sequence y=y1→N,we can com-pute the joint state-observation probability density by:P(X=x,Y=y)=πx1f x1(y1)R−1r=1t r x1→r+1f xr+1(y r+1)Nn=R+1t xn−R→nf xn(y n).(3)In the case of unsupervised classification,the distribu-tion P(X=x,Y=y)is unknown and must be estimatedin order to apply a Bayesian classification criterion.There-fore we have to estimate the following sets of parameters:•The setΓcharacterizing the homogeneous R-orderMarkov chain,i.e.the initial probability vectorπ=(πx1)∀x1∈Ω,the R−1intermediate transition matrices T1,...,T R−1and the R-order transition matrix T.•The set∆characterizing the conditional observationsdensity presented in Eq.(2),i.e.the parameters of the Kdistributions f k.In the Gaussian case,∆is composed ofthe means and the variances.3.2.Parameters estimationThe estimation of all the parameters inΘ={Γ,∆}canbe achieved using the general ICE algorithm[1,3].The ICEprocedure is based on the conditional expectation of someestimators from the complete data(x,y).It is an itera-tive method which produces a sequence of estimationsθqof parameterθas follows:(1)initializeθ0,(2)computeθq+1=E q[ˆθ(X,Y)Y=y],whereˆθ(X,Y)is an es-timator ofθ.In practice,we stop the algorithm at iterationQ ifθQ−1≈θQ.This procedure leads to two differentsituations:•For parameters in∆,θq+1is not tractable.However,it can be estimated by computing the empirical mean of sev-eral estimates according toθq+1=1 L l=1ˆθ(x l,y),wherex l is an a posteriori realization of X conditionally on Y.Itcan be shown that X|Y is a non homogeneous MarkovFig.2.Original image and noisy simulated one.chain whose parameters can be computed with the high-order normalized Baum-Welch algorithm.•For parameters in Γ,the expectation can be computed analytically,similarly to the HMC-1case,by using the high-order normalized Baum-Welch algorithm.3.3.Relaxing hypothesis H 2It can be easily shown that assumption H 2is not strictly necessary and can be relaxed to some extend:•H R 2:the distribution of each Y n conditionally on X is equal to its distribution conditionally on (X n ,X n −1,...,X n −R +1)for X being a R -order Markov chain,This assumption is less limitative and is sufficient in the relations involved in the extended Baum-Welch algorithm.Fig.1illustrates these two assumptions for a HMC-2model.Continuous and dotted lines connecting Y with Xnow symbolize H R2:each Y n is linked with the correspond-ing X n (continuous)and the previous one X n −1(dotted).For a R -order Markov chain,the expression of the con-ditional probability of the observation (Eq.(2))becomes:f x n −R +1→n (y n )=P (Y n =y n |X n −R +1→n =x n −R +1→n ).(4)This kind of model will be denoted HMC-R 1(R 2).For example,HMC-R 1(1)is the “classical”R 1-order case,and HMC-R 1(R 2)denote a segmentation with a HMC-R 1and a state observation probabilities of order R 2(R 2≤R 1).4.EXPERIMENTAL RESULTSClassical HMC-1and HMC-R have been comparatively as-sessed on two different images.Actually,in both cases,pa-rameters initialization was done with a fuzzy C-means clas-sifier.The ICE algorithm was stopped after fifty iterations,assuming it has converged,and the image classification was performed thanks to the Bayesian MPM criterion for the simulated image and with the MAP criterion for the SAR one.Experimentally,we observed that the standard devia-tions (std)associated with non-homogeneous classes (e.g.classes “101”,“001”,...for a HMC-3(3))were generally under-estimated.So we decided to artificially increasetheseHMC-1:14.5%HMC-2(1):14.6%HMC-3(1):14.5%HMC-2(2):11.4%HMC-3(2):11.2%HMC-3(3):8.1%Fig.3.Segmentation results obtained with ICE estimation and MPM classification for different memory lengthes.std,which allows to go through this question.However,this issue needs a deeper study.4.1.Noisy Simulated imageThe first image is a simulated one (256×256),which rep-resents a Gibbs field,in which the state densities are two Gaussians of near means (µ1=120,µ2=125)and stan-dard deviation (σ1=60,σ2=85).Furthermore,the noises are correlated with the application of a smoothing fil-ter.Original image of class and correlated noise image are presented in Fig.2.Results of segmentation are presented in Fig.3.The percentages give the error rates of misclassi-fication according to the original image in Fig.2.The resulting class images confirm the interest of a HMC-R ,associated with high-order conditional observation prob-abilities.Indeed,we can notice that a HMC-2(1)or a HMC-3(1)segmentation,based on classical state-observation prob-abilities densities (H 2),are equivalent with a HMC-1;whereasa HMC-2(2)and a HMC-3(3)segmentation,based on H R2,proved to be much more accurate in term of homogeneity.These results confirm the well-known assumption that it is possible to transform any HMC-R ,based on H 2,to a mathematically equivalent first order version.Furthermore,it confirms the interest of HMC-R in image segmentation,which seems to enable a more accurate segmentation for this kind of correlated noise.Fig.4.ERS SAR observation of an oil slick in the Mediter-raneansea.HMC-1HMC-2(2)HMC-3(3)Fig.5.Segmentation results obtained with HMC and HMC-R models.4.2.SAR imageFig.4is an excerpt of an ERS-SAR image (512×512),ac-quired in October 3rd 1992,near the Egyptian coast,cESA.Fig.5shows the class images resulting from the segmenta-tion with the classical HMC-1,and with the new HMC-2and HMC-3models.The difficulty of this image is due to the fact that oil on the water reduces air-sea interaction and the main observable phenomenon is the dampening of the capillary (surface)waves,which causes the major part of the noise it contains [8].The segmentation was naturally perform with two classes:oil slick and free sea .HMC-1technique,which only takes into account the previous pixel to determine the pixel state,is unable to de-tect the noisy zone which constitute the damped waves.HMC-R take more in account,and reveals very performing in detecting noisy zone.In fact,the HMC-1model,which captures only closed interactions,has a limited ability to describe noisy large scale behavior.Hence,the HMC-R model,which incorporate more neighboring pixels,allows one to take into account more complex noise structures.5.CONCLUSIONIn this work,we described a new technique based on HMC-R models for unsupervised image segmentation.The exten-sion of the HMC model to HMC-R one is almost straight-forward.However,we developed an extended version of the ICE procedure and also introduced a new high-order condi-tional observation probability,which allows one to take into account more complex and correlated noise.Due to the high complexity of the HMC-R model,implying greater num-ber of parameters and computation time,it was important to verify the interest of the method.Experiments on simulated data and SAR images confirm this.HMC-R model,which is more general -and more complex -than the HMC-1one,re-veals very performing in image segmentation,especially in modelling more complex spatial relationship between pixels and so more complex noise structures.We now plan to study the likeness between HMC-2and the recent Pairwise Markov Chains (PMC)[9]model.A preliminary study shows that HMC-2and PMC could pro-duce,in particular situation,similar results.However,HMC-R seems to be globally more efficient in terms of quality.6.REFERENCES[1]N.Giordana and W.Pieczynski,“Estimation of gener-alized multisensor HMC and unsupervised image seg-mentation,”IEEE Trans.on PAMI ,vol.19,no.5,pp.465–475,1997.[2]W.Skarbek,“Generalized Hilbert scan in image print-ing,”in Theoretical Foundations of Computer Vision .Akademik Verlag,Berlin,1992.[3]R.Fjørtoft,Y .Delignon,W.Pieczynski,M.Sigelle,andF.Tupin,“Unsupervised segmentation of radar images using HMC and HMRF,”IEEE Trans.on GRS ,vol.41,no.3,pp.675–686,2003.[4]E.de Villiers and J.du Preez,“The advantage of usinghigher order HMM for segmenting acoustic files,”in 12th Symp.PRASA ,South Africa,2001.[5]J.F.Mari,J.P.Haton,and A.Kriouille,“Automaticword recognition based on second-order HMMs,”IEEE Trans.on Speech and Audio Processing ,vol.5,no.1,pp.22–25,January 1997.[6]R.J.Boys and D.A.Henderson,“A comparison of re-versible jump MCMC algorithms for DNA sequence segmentation using HMMs,”Comp.Sci.and Stat.,vol.33,pp.1–15,2002.[7]O.Aycard,J.F.Mari,and F.Washington,“Learningto automatically detect features for mobile robots using second-order HMMs,”in IEEE IJCAI Workshop ,2003.[8]F.Girard-Ardhuin,G.Mercier,and R.Garello,“Oilslick detection by SAR imagery:potential and limita-tion,”in Oceans 2003,San Diego,USA,september 2003,pp.22–26.[9]W.Pieczynski,“Pairwise Markov chains,”IEEE Trans.on PAMI ,vol.25,no.5,pp.634–639,2003.。

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II

人工智能的原理与应用案例

人工智能的原理与应用案例

人工智能的原理与应用案例一、人工智能的原理人工智能(Artificial Intelligence,缩写为AI)是一种模拟人类智能的技术。

它基于计算机科学和相关学科,通过模拟、延伸和拓展人类智能的特征和行为,使计算机能够像人一样思考、学习和决策。

人工智能的原理包括以下几个方面。

1. 机器学习(Machine Learning)机器学习是人工智能的一个重要分支。

它通过训练算法,使计算机能够从大量的数据中学习和理解规律,不断改进自己的性能。

机器学习的原理主要有以下几种:•监督学习(Supervised Learning):训练集中包含了输入和对应的标签,计算机通过学习输入与标签的关系,实现对未知数据的预测。

•无监督学习(Unsupervised Learning):训练集中只包含输入,计算机通过学习输入的分布和特征,实现对数据的聚类和降维。

•强化学习(Reinforcement Learning):计算机通过与环境交互,通过试错的方式学习最优策略,以获得给定任务的最大奖励。

•深度学习(Deep Learning):模拟人脑神经网络的结构和工作方式,通过多层神经网络进行特征提取和模式识别。

2. 自然语言处理(Natural Language Processing,NLP)自然语言处理是人工智能的一个重要应用领域,它研究如何使计算机能够理解和处理自然语言。

自然语言处理的原理包括以下几个方面:•分词(Tokenization):将文本切分成一个个有意义的词语。

•词性标注(Part-of-Speech Tagging):对分词结果进行词性标注,如名词、动词、形容词等。

•句法分析(Syntactic Parsing):分析句子的结构和语法关系,如主谓宾、定状补等。

•语义分析(Semantic Parsing):理解句子的语义含义和逻辑关系。

•机器翻译(Machine Translation):实现不同语言之间的自动翻译。

于慧敏,浙江大学,教授,博士生导师。主要研究方向为图像视频处理与

于慧敏,浙江大学,教授,博士生导师。主要研究方向为图像视频处理与

于慧敏,浙江大学,教授,博士生导师。

主要研究方向为图像/视频处理与分析。

2003年获科学技术三等奖一项,授权发明专利近20项,多篇论文发表在模式识别和计算机视觉领域顶尖学报和会议上。

近年来,在 (3D/2D)视频/图象处理与分析、视频监控、3D视频获取和医学图像处理等方面,主持了多项国家自然科学基金、973子课题、国家国防计划项目、国家863课题、浙江省重大/重点项目的研究和开发。

一、近年主持的科研项目(1)国家自然基金,61471321、目标协同分割与识别技术的研究、2015-2018。

(2) 973子课题,2012CB316406-1、面向公共安全的跨媒体呈现与验证和示范平、2012-2016。

(3)国家自然基金,60872069、基于3D 视频的运动分割与3D 运动估计、2009-2011。

(4) 863项目,2007AA01Z331、基于异构结构的3D实时获取技术与系统、2007-2009。

(5)浙江省科技计划项目,2013C310035 、多国纸币序列号和特殊污染字符识别技、2013-2015。

(6)浙江省科技计划重点项目, 2006C21035 、集成化多模医学影像信息计算和处理平台的研发、2006-2008。

(7)航天基金,***三维动目标的获取与重建、2008-2010。

(8)中国电信,3D视频监控系统、2010。

(9)中兴通讯,跨摄像机的目标匹配与跟踪技术研究、2014.05-2015.05。

(10)浙江大力科技,激光雷达导航与图像读表系统、2015-。

(11)横向,纸币序列号的实时识别技术、2011-2012。

(12)横向,清分机视频处理技术、2010-2012。

(参与)(13)横向,基于多摄像机的目标跟踪、事件检测与行为分析、2010。

(14)横向,红外视频雷达、2010-2012。

(15)横向,客运车辆行车安全视频分析系统、2010-2011。

二、近五年发表的论文期刊论文:1)Fei Chen, Huimin Yu#, and Roland Hu. Shape Sparse Representation for JointObject Classification and Segmentation [J]. IEEE Transactions on Image Processing 22(3): 992-1004 ,2013.2)Xie Y, Yu H#, Gong X, et al. Learning Visual-Spatial Saliency for Multiple-ShotPerson Re-Identification[J].Signal Processing Letters IEEE, 2015, 22:1854-1858.3)Yang, Bai, Huimin Yu#, and Roland Hu. Unsupervised regions basedsegmentation using object discovery, Journal of Visual Communication and Image Representation, 2015,31: 125-137.4)Fei Chen, Roland Hu, Huimin Yu#, Shiyan Wang: Reduced set density estimatorfor object segmentation based on shape probabilistic representation. J. Visual Communication and Image Representation,2012, 23(7): 1085-1094.5)Fei Chen, Huimin Yu#, Jincao Yao , Roland Hu ,Robust sparse kernel densityestimation by inducing randomness[J],Pattern Analysis and Applications: Volume 18, Issue 2 (2015), Page 367-375.6)赵璐,于慧敏#,基于先验形状信息和水平集方法的车辆检测,浙江大学学报(工学版),pp.124-129,2010.1。

CVPR2013总结

CVPR2013总结

CVPR2013总结前不久的结果出来了,⾸先恭喜我⼀个已经毕业⼯作的师弟中了⼀篇。

完整的⽂章列表已经在CVPR的主页上公布了(),今天把其中⼀些感兴趣的整理⼀下,虽然论⽂下载的链接⼤部分还都没出来,不过可以follow最新动态。

等下载链接出来的时候⼀⼀补上。

由于没有下载链接,所以只能通过题⽬和作者估计⼀下论⽂的内容。

难免有偏差,等看了论⽂以后再修正。

显著性Saliency Aggregation: A Data-driven Approach Long Mai, Yuzhen Niu, Feng Liu 现在还没有搜到相关的资料,应该是多线索的⾃适应融合来进⾏显著性检测的PISA: Pixelwise Image Saliency by Aggregating Complementary Appearance Contrast Measures with Spatial Priors Keyang Shi, Keze Wang, Jiangbo Lu, Liang Lin 这⾥的两个线索看起来都不新,应该是集成框架⽐较好。

⽽且像素级的,估计能达到分割或者matting的效果Looking Beyond the Image: Unsupervised Learning for Object Saliency and Detection Parthipan Siva, Chris Russell, Tao Xiang, 基于学习的的显著性检测Learning video saliency from human gaze using candidate selection , Dan Goldman, Eli Shechtman, Lihi Zelnik-Manor这是⼀个做视频显著性的,估计是选择显著的视频⽬标Hierarchical Saliency Detection Qiong Yan, Li Xu, Jianping Shi, Jiaya Jia的学⽣也开始做显著性了,多尺度的⽅法Saliency Detection via Graph-Based Manifold Ranking Chuan Yang, Lihe Zhang, Huchuan Lu, Ming-Hsuan Yang, Xiang Ruan这个应该是扩展了那个经典的 graph based saliency,应该是⽤到了显著性传播的技巧Salient object detection: a discriminative regional feature integration approach , Jingdong Wang, Zejian Yuan, , Nanning Zheng⼀个多特征⾃适应融合的显著性检测⽅法Submodular Salient Region Detection , Larry Davis⼜是⼤⽜下⾯的⽂章,提法也很新颖,⽤了submodular。

《现代全身ct诊断学(第4版)》出版

《现代全身ct诊断学(第4版)》出版

国际医学放射学杂志IntJMedRadiol2020Jan 鸦43穴1雪Diagn,2016,36:1225-1232.[14]Khalili N,Lessmann N,Turk E,et al.Automatic brain tissue seg 鄄mentation in fetal MRI using convolutionalneural networks[J].Magn Reson Imaging,2019,DOI:10.1016/j.mri.2019.05.020.[15]Andescavage NN,du Plessis A,McCarter R,et plex Trajec 鄄tories of brain development in the healthy human fetus[J].Cereb Cor 鄄tex,2017,27:5274-5283.[16]Andescavage N,duPlessis A,Metzler M,et al.In vivo assessment ofplacental and brain volumes in growth -restricted fetuses with and without fetal Doppler changes using quantitative 3D MRI[J].J Peri 鄄natol,2017,37:1278-1284.[17]Ortinau CM,Mangin-Heimos K,Moen J,et al.Prenatal to postnataltrajectory of brain growth in complex congenital heart disease [J].Neuroimage Clin,2018,20:913-922.[18]Habas PA,Kim K,Rousseau F,et al.Atlas-based segmentation ofdeveloping tissues in the human brain with quantitative validation in young fetuses[J].Hum Brain Mapp,2010,31:1348-1358.[19]Dahdouh S,Limperopoulos C.Unsupervised fetal cortical surfaceparcellation[J].Proc SPIE Int Soc Opt Eng,2016,9784.pii:97840J.[20]Ortinau CM,Rollins CK,Gholipour A,et al.Early-emerging sulcalpatterns are atypical in fetuses with congenital heart disease [J].Cereb Cortex,2018,DOI:10.1093/cercor/bhy235.[21]Depping MS,Thomann PA,Wolf ND,et mon and distinctpatterns of abnormal cortical gyrificationin major depression and borderline personality disorder[J].Eur Neuro psychopharmacol,2018,28:1115-1125.[22]Barkhof F,Haller S,Rombouts SA.Resting -state functional MRimaging:a new window to the brain[J].Radiology,2014,272:29-49.[23]Marami B,Mohseni Salehi SS,Afacan O,et al.Temporal slice regis 鄄tration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis[J].Neuroimage,2017,156:475-488.[24]刘海东,许相丰.扩散加权成像在胎儿脑发育中的应用进展[J].国际医学放射学杂志,2016,39:378-381.[25]Song L,Mishra V,Ouyang M,et al.Human fetal brain connectome:structural network development from middle fetal stage to birth [J].Front Neurosci,2017,11:561.[26]Song JW,Gruber GM,Patsch JM,et al.How accurate are prenataltractography results?A postnatal in vivo follow-up study using diffu 鄄sion tensor imaging[J].Pediatr Radiol,2018,48:486-498.[27]van den Heuvel MI,Thomason ME.Functional connectivity of thehuman brain in utero[J].Trends Cogn Sci,2016,20:931-939.[28]Hoinkiss DC,Erhard P,Breutigam NJ,et al.Prospective motion cor 鄄rection in fynctional MRI using simultaneous multislice imaging and multislice-to-volume image registration[J].NeuroImage,2019,200:159-173.[29]van den Heuvel MI,Turk E,Manning JH,et al.Hubs in the humanfetal brain network[J].Dev Cogn Neurosci,2018,30:108-115.[30]Wu W,Mcanulty G,Hamoda HM,et al.De tecting microstructuralwhite matter abnormalities of frontal pathways in children with AD 鄄HD using advanced diffusion models[J].Brain Imaging Behav,2019,DOI:10.1007/s11682-019-00108-5.[31]Jakab A,Schwartz E,Kasprian G,et al.Fetal functional imagingportrays heteroge neous development of emerging human brain net 鄄works[J].Front Hum Neurosci,2014,8:852.[32]Batalle D,Mu 觡oz-Moreno E,Tornador C,et al.Altered resting-statewhole -bra in functional networks of neonates with intrauterine growth restriction[J].Cortex,2016,77:119-131.[33]Wheelock MD,Hect JL,Hernandez -Andrade E,et al.Sex differ 鄄ences in functional connectivity during fetal brain development [J].Dev Cogn Neurosci,2019,36:100632.(收稿2019-04-25)唐光健、秦乃姗教授主编的《现代全身CT 诊断学(第4版)》已由中国医药科技出版社出版。

Unsupervised Image Segmentation Using Dempster- Shafer Fusion in a Markov Fields Context

Unsupervised Image Segmentation Using Dempster- Shafer Fusion in a Markov Fields Context
First International Conference on Multisource-Multisensor Information Fusion, July 6 - 9, 1998, Las Vegas, Nevada, USA, pp. 595-600.
Unsupervised Image Segmentation Using DempsterShafer Fusion in a Markov Fields Context
attached to each sensor via a "fuzzy" measure, which gives, in a particular case, a classical probability measure. Then the fusion is performed by the so-called Dempster-Shafer combination rule. We notethat when at least one sensor provides a classical probabilistic measure, the fusion result is a classical probabilistic measure. Thus, in the image segmentation context of interest, when at least one sensor gives a classical probability measure we can use, after fusion, classical Bayesian decision rules to perform segmentation. In some situations, and in particular when the knowledge of the probability distribution of some sensors is not precise enough, replacing these probability distributions with fuzzy measures can improve the final segmentation, based on the fusioned

遥感专业英语词汇

遥感专业英语词汇

1.remote sensing used in forestry 林业遥感2.restoration of natural resources 自然资源的恢复3.above ground biomass(AGB)地上生物量4. biogeochemical cycle 生物地球化学循环5.carbon cycle 碳循环6.stand structure 林分结构7.high deforestation rates 森林砍伐率8.carbon emissions 碳排放9.environmental degradation 环境恶化10.biomass estimation 生物量估测11.field data 样地数据12.remotely sensed data 遥感数据13.statistical relationships 统计相关性14.biomass estimation model 生物量估测模型15.stem diameter 径阶16.stem height 枝下高17.Tree height 树高18.Primary Forest 原始森林19.Successional Forest 次生林20.Endmember 端元21.canopy shadow 冠层阴影22.canopy closure 冠层郁闭度23.sampling strategy 抽样方案24.stratified random 分层随机25.endmembers 端元26.intrinsic dimensionality 固有维数27.phenological changes 物候变化28.Chlorophyll 叶绿素29.Absorption 吸收30.Amplitude 振幅31.spatial frequency 空间频率32.Fourier transformation 傅立叶变化33.Decomposition 分解34.grain gradient 纹理梯度35.allometric model 异速生长模型36.fresh weight 鲜重37.Dry weight 干重38.Multicollinearity 多重共线性39.Overfitting 过度拟合40.successional vegetation classification 次生林分类41.classifier 分类器42.supervised classification监督分类43.unsupervised classification 非监督分类44.fuzzy classifier method 迷糊分类法45. maximum likelihood classification 最大似然法分类46. minimum distance classification 最小距离法分类47. Bayesian classification 贝叶斯分类48. Image analysis 图像分析49. feature extraction 特征提取50. feature analysis 特征分析51. pattern recognition 模式识别52. texture analysis 纹理分析53. ratio enhancement 比例增强54. edge detection 边缘检测55. image enhancement 影像增强56. reference data 参考数据57. auxiliary data 辅助数据58. principal component transformation 主成分变化59. histogram equalization 直方图均衡化60. image segmentation 图像分割61. geometric correction 几何校正62. geometric registration of imagery 几何配准63. radiometric correction 辐射校正64. atmospheric correction 大气校正65. synthetic aperture radar SAR 合成孔径雷达66. digital surface model, DSM 数字高程模型67. neighborhood method 邻近法68. least squares correlation 最小二乘相关69. illuminance of ground 地面照度70. geometric distortion 几何畸变71. mosaic 镶嵌72. pixel 像元73. quackgrass meadow 冰草草甸74. quagmire 沼泽地75. quantitative analysis 定量分析76. quantitative interpretation 定量判读77. radar echo 雷达回波78. radar image 雷达图像79. radar image texture 雷达图像纹理80. radiation 辐射81. rain intensity 降雨强度82. random distribution 随机分布83. random error 随机误差84. random sampling 随机抽样85. random variable 随机变量86. rare species 稀有种87. ratio method 比值法88. reafforestation 再造林89. reconnaissance survey 普查90. age structure 年龄结构91. recreation 休养92. afforestation 造林;植林93. recovery 再生94. abandoned land 弃耕地95. absorption 吸收〔作用〕96. climatic factor 气候因子97. reflected image 反射影像98. reforestation 森林更新99. regeneration cutting 更新伐100. regional remote sensing 区域遥感101. relative error 相对误差102. reliability 可靠性103. reversible process 可逆过程104. savanna forest 稀瘦原林105. heterogeneity 土壤差异性106. spectral resolution 光谱分辨率107. areal differentiation 地域分异108. substantial or systematic reproduction 实质性的或系统的繁殖109. initiated 开始110. converted 转变111. successional stages 演替系列112. uncertainties 不确定性113. soil fertility 土壤肥力114. land-use history 土地利用历史115. vegetation age 植被年龄116. spatial distribution 空间分布117. field measurements 样地测量118. characteristics 特征119. Saplings 树苗120. primary data 原始数据121. land cover 土地覆盖122. training sample 训练样本123. spectral signature 光谱特征124. spatial information 空间信息125. texture metrics 纹理度量126. texture measure 纹理测量127. data fusion 数据融合128. sensor 传感器129. multispectral data 多光谱数据130. panchromatic data 全色数据131. radar data 雷达数据132. classification algorithms 分类算法133. parametric 参数134. classification tree analysis 分类树135. K-nearest neighbor K近邻法136. Artifice alneural network (ANN) 神经网络137. per-pixel-based 基于像元的138. environmental features 环境要素139. preprocessing 预处理140. polarization 极化141. resampled 重采样142. image-to-image registration 影像到影像配准143. vegetation types 植被类型144. intensity-hue-saturation 亮度色度饱和度145. Brovey transform Brovey 变换146. Evaluated 评价147. error matrix 混淆矩阵148. Land use/cover classifation 土地利用/覆盖分类149. Misclassification 误分150. Classification accuracy 分类精度151. producer’s accuracy 生产者精度152. user’s accuracy 用户精度153. Optical multispectral image 光学多光谱影像154. optical sensor 光学传感器155. fusion techniques 融合技术156. uncertainty analysis 不确定性分析157. data saturation 数据饱和158. Parametric vs nonparametric algorithms 参数非参数算法159. global change 全球变化160. process model–based 基于模型的过程161. empirical model–based 基于经验的模型162. biomass expansion/conversion factor 生物量扩展/转换因子163. hyperspectral sensor 多光谱传感器164. radar data 雷达数据165. belowground biomass 地下生物量166. aboveground biomass 地上生物量167. GIS-based 基于GIS的168. ecosystem models 生态模型169. photosynthesis 光合作用170. anthropogenic effects 人为影响171. homogeneous stands 均一的立地条件172. empirical regression models 经验回归模型173. variables 变量174. subcompartment 小斑175. DBH 胸径176. Spectral features 光谱特征177. Spatial features 空间特征178. Subpixel features 亚像元特征179. Active sensor 主动传感器180. Lidar data 雷达数据181. vegetation indices 植被指数182. biophysical conditions 生物物理条件183. soil fertilities 土壤特征184. near-infrared 近红外185. extracting textures 纹理提取186. mean 均值187. variance 方差188. homogeneity 同质性189. contrast 对比度190. entropy 信息熵191. mature forest 成熟林192. secondary forest 次生林193. nonphotosynthetic vegetation 非光合作用植被194. shade fraction 阴影分量195. soil fraction 土壤分量196. biomass density 生物量密度197. vegetation characteristics 植被特征198. species composition 树种组成199. growth phase 生长期200. spectral signatures 光谱信息201. moist tropical 热带雨林202. primary data 原始数据203. unstable 不稳定204. soil moisture 土壤水分205. horizontal vegetation structures 水平植被结构206. canopy cover 灌层覆盖度207. canopy height 灌层高度208. regression technique 回归技术209. interferometry technique 干涉技术210. terrain properties 地形要素211. backscattering coefficient 后向散射系数212. canopy elements 灌层要素213. backscattering values 散射值214. coherence of data 数据一致性215. the total coherence of a forest 森林的一致性216. forest transmissivity 森林透射率217. large scale biomass 大区域生物量218. Polarization Coherence Tomography 极化相干断层扫描219. filtering methods 滤波方法220. outliers 异常值221. stereo viewing 立体视觉222. laser return signal 激光反馈信号223. characterizing horizontal 水平特征224. characterizing vertical 垂直特征225. canopy structure 灌层结构226. biomass prediction 生物量预测227. height information 树高信息228. hypothetical example 假设样本229. mean height 平均树高230. univariate model 单变量模型231. metric 度量标准232. biomass accumulation 累计生物量233. categorical variables 绝对变量234. different source data 不同源数据235. DEM data DEM数据236. optimal variables 最佳变量237. expert knowledge 专家知识238. strong correlations 强相关239. weak correlations 弱相关240. stepwise regression analysis 逐步回归分析241. independent variables 独立变量242. Parametric algorithms 参数算法243. nonparametric algorithms 非参数算法244. linear regression models 线性回归模型245. nonlinearly related 非线性相关246. power models 指数模型247. nonlinear models 非线性模型248. random forest 随即森林249. support vector machine (SVM) 支持向量机250. Maximum Entropy 最大熵251. Simulation 仿真252. co-simulation 协同仿真253. normal distribution 正态分布254. spatial configuration 空间结构255. randomly setting 随机设置256. pixel estimation 像素估计257. sample variance 样本方差258. national forest inventory sample plot data 国家森林库存样地数据259. natural deciduous forests 自然落叶森林260. linear relationships 线性关系261. approximation 近似法262. mathematical functions 数学函数263. black-box model 黑箱模型264. iterating training 迭代训练265. root node 根节点266. internal nodes, 内部节点267. recursive partitioning algorithm 逐步分割算法268. stratified 分层269. terminal node 终端节点270. regression tree theory 回归树理论271. split 分割272. statistical learning algorithm 统计学习算法273. high-dimensional feature space 高维特征空间274. kernel 卷积核275. empirical averages 经验平均值276. subsections 分段277. Accurately estimating 精度评价278. relative errors 相对模糊279. global scales 全球尺度280. root mean square error (RMSE) 均方根误差281. correlation coefficient 相关系数282. systematic sampling 系统抽样283. data collection 数据收集284. subset 子集285. mapping forest biomass /carbon 生物量/碳储量制图286. sequestration 隔离287.forest management and planning 森林管理和规划288. allometric models 异速生长的模型289. representativeness 代表性290. lidar data 激光雷达数据291. vegetation structure gradient 植被结构梯度292. randomly perturbing 随机扰动293. north coordinates 北坐标294. coarser spatial resolution 粗分辨率295. grouping errors 分组误差296. Medium spatial resolution 中分辨影像297. population parameters 人口参数298. Mixed pixels 混合像元299. Mismatch 误差300. high spatial resolution images 高分辨率影像。

ENVI主菜单中英文对照

ENVI主菜单中英文对照

ENVI主菜单中英文对照1.File 文件Open image file 打开图像文件Open vector file 打开矢量文件Open remote file 打开远程文件Open exteral file 打开特定文件Open previous file 最近使用文件Launch ENVI zoom 启动ENVI zoomEdit ENVI header 编辑头文件Generate test data 生成测试数据Data view 数据浏览Save file as 另存为Import from IDL variable 导入IDL变量Export to IDL variable 导出为IDL变量Compile IDL module 编译IDL程序IDL CPU parameters IDL CPU参数设置Tape utilties:磁带工具Read known tape formats 磁带格式读取各种传感器Read/write ENVI tapes ENVI磁带读写Read ENVI tape 磁带读取Write ENVI files to tape 写入磁带Scan tape and customize dump 浏览磁带并保存Dump tape 转储磁带Scan directory list 扫描目录Change output directory 更改扫描目录Save session to script 作业保存Execute startup script 脚本执行Restore display group 显示恢复ENVI queue manager ENVI队列管理ENVI log manager ENVI日志管理Close all files 关闭所有文件Preferences 参数设置Exit 退出2.Basic tools 基本工具Resize data(spatial/spectral) 数据重采样(空间子集/光谱子集)Subset data via ROIs 通过感兴趣区裁剪数据(选取子集)Rotate/flip data 旋转/翻转数据Layer stacking 图层堆栈Convert data(BSQ ,BIL ,BIP ) 数据格式转换Stretch data 数据拉伸Statistics 统计Compute statistcs 统计计算View statistics 查看统计文件Sum data bands 数据波段求和Generate random sample 生成随机样本Using ground truth classification 基于地表真实分类影像Using ground truth ROIs 基于地表真实感兴趣区Spactial statistics 空间统计Compute global spatial statistics 全局统计Compute local spatial statistics 局部统计Change detection 变化检测Measurement tool 量测工具Band math 波段运算Spectral math 光谱运算Segmentation image 图像分割Region of interest 感兴趣区Rool tool 感兴趣区Restore saved ROI file 打开感兴趣区文件Save ROIs to file 保存为感兴趣区文件Delete ROIs 删除感兴趣区Export ROIs to EVF 将感兴趣区导出为EVFExport ROIs to n-D visualizer 将感兴趣区导出进行n维散度分析Export ROIs to training data 将感兴趣区导出为矢量训练样本Output ROIs to ASCII 将感兴趣区导出为ASCII码文件Reconcile ROIs 调整感兴趣区Reconcile ROIs via map 利用地图调整感兴趣区Band threshold to ROI 利用波段阈值定义感兴趣区Creat class image from ROIs 利用感兴趣区生成分类图像Creat buffer zone from ROIs 利用感兴趣区生成缓冲区Compute ROI separability 计算感兴趣区分离度Mosaicking 图像镶嵌Pixel based 基于像素镶嵌Georeferenced 基于地理坐标镶嵌Tiled quickbird product 产品镶嵌Tiled worldview product 产品镶嵌Masking 掩膜Build mask 建立掩膜Apply mask 应用掩膜Preprocessing 预处理Calibration utilities 定标工具AVHRR Landsat calibration landsat 定标Quickbird radianceWorldview radianceFLAASH 大气纠正Quick atmospheric correction 快速大气校正Flat filed 平面场定标Log residuale 对数残差定标IAR reflectance IAR 反射率定标Empirical line 经验线性定标Thermal atm correction 热红外大气校正TIMS radiance 热红外多波段扫描仪定标Calculate emissivity 发射率计算General purpose utilities 通用工具Replace bad lines 坏行修补Dark substract 黑暗像元法Apply gain and offset 应用增益和偏移校正Destripe 多带噪声去除Cross-tarck Illumination correction 轨道光照修正Convert complex data complex转换Convert vax to IEEE vax转换为IEEEData-specific utilities 特定数据处理工具3.Classification 分类Supervised 监督分类Parallelepiped 平行六面体Minimum distance 最小距离法Mahalanobis distance 马氏距离法Maximum distance 最大似然法Spectral angle mapper 波谱角制图Spectral information divergence 光谱信息散度Binary encoding 二进制编码Netural net 神经网络Support vector machine 支持向量机Unsupervised 非监督分类IsodataK-MeansDecision tree 决策树分类Build new decision tree 新建决策树Edit existing decision tree 编辑决策树Execute existing decision tree 执行决策树Endmember collection 端元收集器Create class image from ROIs 利用感兴趣区生成分类图像Post classification 分类后处理Assign class colors 分类颜色设置Rule classifier 规则分类器Class statistics 分类结果统计Change detection statistics 变化监测统计Confusion matrix 混淆矩阵分析Using ground truth image 基于地表真实影像Using ground truth ROIs 基于地表真实感兴趣区ROC curves ROC曲线Using ground truth image 基于地表真实影像Using ground truth ROIs 基于地表真实感兴趣区Generate random sample 生成随机样本Using ground truth image 基于地表真实影像Using ground truth ROIs 基于地表真是感兴趣区Majority/minority analysis 主要/次要分析Clump classes 分类集群Sieve classes 分类筛选Combine classes 分类合并Overlay classes 分类叠加Buffer zone image 缓冲区分析Segmentation image 图像分割Classification to vector 分类结果转换为矢量4.Transform 变换Image sharpening 图像融合HSV融合Color normalized(Brovey) Brovey融合Gram-schmidt spectral shapening Gram-schmidt融合PC spectial sharpening 主成分分析CN spectial sharpening CN波谱融合Band ratios 波段比Principal components 主成分分析Forward PC rotation 正向主成分分析Compute new statistics and rotate 计算统计值分析PC rotation from existing stats 现有统计值分析Inverse PC rotation 反向主成分分析变换Independent components独立主成分分析Forward IC rotation 独立主成分分析Compute new stats and rotate 计算统计值分析IC rotation from existing stats 现有统计值分析IC rotation from existing transformInverse IC rotation 反向独立主成分分析变换MNF rotation MNF变换(最小噪声分离)Forward MNF 正向MNF变换Estimate noise statistics from data 估算噪声分析Previous noise statistics 历史噪声统计Noise statistics from dark data 黑区图像估计噪声Inverse MNF transform 反向MNF变换Apply forward MNF to spectra 波谱应用正向MNF变换Apply inverse MNF to spectra 波谱应用反向MNF变换Color transforms 颜色空间变换RGB to HSVHSV to RGBHLS to RGBHSV to RGBDecorrelation stretch 去相关拉伸Photographic stretch 摄影拉伸Saturation stretch 饱和度拉伸Synthetic color image 合成彩色影像NDVITasseled cap 缨帽变换5.Filter 过滤器Convolutions and morphology 卷积滤波Texture 纹理分析Occurrence measures 概率统计Co-occurrence measures 二阶概率统计Adaptive 自适应滤波Lee Enhanced lee增强 lee 滤波Frost Enhanced frost 增强 forst 滤波Grmma、Kuan、Local sigma、Bit errors FFT filtering 傅立叶变换滤波Forward EET 正向傅立叶变换Filter definition 滤波器自定义Inverse FFT 反向傅立叶变换6.Spectial 波谱工具SPEAR tools SPEAR工具THOR workflows 流程化高光谱工具Target detection wizard 目标检测向导Spectial libraries 波谱库Spectial slices 波谱切割MNF rotation MNF变换(最小噪声分离)Pixel purity index 纯净像元指数PPIn-Dimensional visualizer n维数据可视化Mapping methods 制图方法Vegetation analysis 植被分析Vegetation suppression 植被抑制SAM target finder with bandmax 基于bandMax的SAM目标查找提取RX anomaly detection RX异常检测Spectral hourglass wizard 波谱沙漏向导Automated spectial hourglass 自动波谱沙漏向导Spectral analyst 波谱分析Multi range SFF 多谱段SFFSMACC endmember extraction SMACC端元提取Spectial math 波谱运算Spectral resampling 波普重采样Gram-schmidt spectial sharpening Gram-schmidt 波谱融合PC spectial sharpening PC波段融合CN spectial sharpening CN波段融合EFFORT polishing EFFORT 波谱打磨FLAASH FLAASH大气校正Quick atmospheric correction 快速大气校正Build 3D cube 建立3D立方体Preprocessing 预处理Calibration utilitiesAVHRRLandsat calibrationQUickbird radianceWorldview radianceFLAASHQuick atmospheric correctionFlat filedLog residualeIAR reflectanceEmpirical lineThermal atm correctionTIMS radianceCalculate emissivityGeneral purpose utilitiesReplace bad linesDark substractApply gain and offsetDestripeCross-tarck illumination correctionConvert complex dataConvert vax to IEEEData-specific utilities7.Map (配准与镶嵌)Registration 几何校正Rigorous orthorectification 严格模型正射校正Orthorectification 正射校正Mosaicking 图像镶嵌Georeference from input geometry 输入几何文件进行几何校正 Georeference SPOT SPOT几何校正Georeference SeaWiFS SeaWiFS几何校正Georeference ASTER ASTER几何校正Georefencece AVHRR AVHRR几何校正Georeference ENVISAT ENVISAT几何校正Georeference MODIS MODIS几何校正Georeference COSMO-SkyMed(DGM) DGM几何校正Georeference RADARSAT RADARSAT几何校正Build RPCs 构建RPCsCustomize map projections 自定义地图投影Convert map projection 地图投影转换Layer stacking 波段组合Map coordinate converter 地图坐标转换ASCII coordinate conversion ASCII坐标转换Merge old “map_proj.txt” file 合并原有map_proj.txt文件GPS-Link GPS连接8.Vector 矢量工具Open vector image 打开矢量文件Create new vector layer 新建矢量层Using existing vector layer 基于现有矢量层Using raster image file 基于栅格图像文件Using user defined parameters 基于用户自定义参数Create world boundaries 创建世界边界Available vectors list 当前矢量列表Intelligent digitizer 智能数字化工具Raster to vector 栅格转矢量Classification to vector 分类结果矢量化Rasterize point data 离散点栅格化Convert contours to DEM 等高线转为DEM9.Topographic 地形工具Open topographic file 打开地形文件Topographic modeling 地形模型Topographic features 地貌特征分析DEM extraction DEM提取DEM提取向导;提取向导;使用现有文件;选择立体控制点对;选择立体匹配点;构建核面图像;提取DEM;编辑DEM;立体3D测量;3D核面指针Create hill shade image 山体阴影图生成Replace bad values 坏值替换Rasterize point data 离散点栅格化Convert contours to DEM 等高线转为DEM3D SurfaceView 3D曲面浏览Outil bathym rie10.Radar 雷达工具Open/prepare radar file 打开/预处理雷达数据文件Calibration 定标Beta noughtSigma noughtAntenna pattern correction 天线阵列校正Slant-to-ground range 斜地校正Incidence angle image 入射角图像Adaptive filters 自适应滤波Texture filters 纹理滤波Synthetic color image 彩色图像合成Polarimetric tools 极化分析工具Synthesize AIRSAR Data AIRSAR数据合成Synthesize SIR-C data SIR-C数据合成Extract polarization sigbatures 极化信号提取Multilook compressed data 数据压缩多视Phase image 相位图像Pedestal height image 图像消隐脉冲高度AIRSAR scattering classification AIRSAR散射机理分析TOPSAR tools TOPSAR工具Open TOPSAR file 打开TOPSAR文件Convert TOPSAR data 打开TOPSAR数据DEM replace bad value DEM坏值替换11.window 窗口Window finder 查找窗口Start new display window 新建显示窗口Start new vector window 新建矢量窗口Start new plot window 新建绘图窗口Start 3D liDAR viewer LiDAR三维浏览器Available files list 当前文件列表Available bands list 当前波段列表Available vectors list 当前矢量列表Remote connection manager 远程连接管理Mouse button descriptions 鼠标按键说明Display information 显示信息Cursor location/value 光标定位/数值信息Point collection 点收集Maximize open displays 显示窗口最大化Link diaplays 关联显示Close all display windows 关闭所有显示窗口Close all plot windows 关闭所有绘图窗口。

人工智能的主要研究内容

人工智能的主要研究内容

人工智能的主要研究内容人工智能(Artificial Intelligence, AI) 是计算机科学的一个重要领域,旨在利用计算机系统模拟和实现人类智能的各个方面。

随着技术的发展,人工智能研究已经取得了重要的突破和进展,涉及的研究内容包括但不限于以下几个方面:一、机器学习(Machine Learning)机器学习是人工智能领域中的核心内容。

它通过设计和开发算法,使机器能够从数据中学习,改进和优化自身的性能。

在机器学习领域,研究者主要关注以下几个方向:1.1 监督学习(Supervised Learning)监督学习是指训练机器模型,通过给定的输入样本和相应的标签来进行学习。

例如,通过输入房屋的各种特征(如面积、地理位置等),并给出相应的房价标签,机器学习模型可以预测房屋的价格。

监督学习的目标是建立一个准确预测的模型。

1.2 无监督学习(Unsupervised Learning)与监督学习相比,无监督学习使用没有标签的数据进行训练。

无监督学习的目标是从数据中发现潜在的模式和结构,为数据提供合理的解释和分类。

例如,聚类算法可以将相似的数据点组合在一起,形成不同的簇。

1.3 强化学习(Reinforcement Learning)强化学习是通过与环境的交互来训练机器模型,使其自动学习并获得适应环境的最佳行为策略。

机器根据当前的状态做出决策,并根据环境给予的奖励或惩罚来调整自己的行为。

强化学习在游戏和机器人控制等领域具有广泛的应用。

二、自然语言处理(Natural Language Processing, NLP)自然语言处理是研究计算机如何理解和处理人类自然语言的方法和技术。

它涉及以下几个主要方面:2.1 语言理解(Language Understanding)语言理解是指让计算机能够理解人类语言中的含义和语境。

例如,人工智能可以通过自然语言处理技术来识别和理解用户输入的问题,并给出准确和合理的回答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

UNSUPERVISED IMAGE SEGMENTATION BASED ON A NEW FUZZY HMC MODELC.Carincotte,S.Derrode GSM,Inst.Fresnel(CNRS-UMR6133), Dom.Univ.de St J´e rˆo me,F-13013Marseille Cedex20cyril.carincotte@fresnel.frG.Sicot,J.M.BoucherGET,ENST Bretagne, TAMCIC,CNRS FRE2658, CS83818,F-29238Brest CedexABSTRACTIn this paper,we propose a technique,based on a fuzzy Hid-den Markov Chain(HMC)model,for the unsupervised seg-mentation of images.The main contribution of this work is to simultaneously use Dirac and Lebesgue measures at the class chain level.This model allows the coexistence of hard and fuzzy pixels in the same picture.In this way, the fuzzy approach enriches the classical model by adding a fuzzy class,which has several interpretations in signal pro-cessing.One such interpretation in image segmentation is the simultaneous appearance of several thematic classes on the same pixel(mixture).Model parameter estimation is performed through an extension of the Iterative Conditional Estimation(ICE)algorithm to take into account the fuzzy part.The fuzzy segmentation of a real image of clouds is studied and compared to the classification obtained with a “classical”hard HMC model.1.INTRODUCTIONThis work addresses fuzzy statistical unsupervised image segmentation.Image segmentation is one of the major prob-lem in image processing.The aim is to try to restitute the ground truth image(x)from a noisy observation(y).To that goal,the HMC model has been used successfully[1], thanks to the use of a Hilbert-Peano scan that converts the 2D grid into a1D sequence[2].The success of HMC mod-els is due to the fact that when the unobservable process X can be modelled by afinite Markov chain and when the noise is not too complex,then X can be recovered from the observed process Y using different Bayesian classification techniques like Maximum A Posteriori(MAP),or Maximal Posterior Mode(MPM).Nevertheless,it is sometimes interesting to take into ac-count,not only the uncertainty of the noisy observation, but also the imprecision of this observation.To this aim, fuzzy Markov chains and fuzzy HMC have recently been studied respectively in[3]and in[4].However,by adding a fuzzy class in a statistical model,we obtain an original modelling,different from both probabilistic and fuzzy mod-ellings.Indeed,it preserves the propriety(measure of un-certainty)and robustness of the statistical segmentation and enriches it with the fuzzy characteristic(measure of impre-cision).This has already been done in unsupervised image segmentation in two different estimation contexts:blind and contextual in[5],and hidden Markov randomfield(HMRF) in[6].Fuzzy HMRF have also been used to model the so-called partial volume effect encountered in medical images context[7].In this work,we propose to adapt this point of view to the HMC context.The paper is organized as follows:HMC structure is briefly recalled in Section2.We specify in Section3the fuzzy HMC model used for image segmentation.The un-known parameters estimation,achieved with an extension of the ICE method[5]to the context considered here,is then briefly parative results on a real image are presented in Section5,whereas conclusions and perspec-tives are drawn in Section6.2.HMC MODELFor notational brevity,X1→n will denote the sequence of random variables{X1,...,X n}and x a realization of pro-cess X.2.1.Markov chain modelThe sequence X={X n}n∈{1,...,N}is afinite Markov chain of order one,with length N,if and only if:P(X n=x n|X1→n−1=x1→n−1)=P(X n=x n|X n−1=x n−1),(1) with each X n taking its value in the set of classesΩ= {0,...,K−1}.We only consider here the homogeneous Markov chain, in which Eq.(1)does not depend on the position n in thesequence.The set of state transition probabilities matrix T= t x n−1,n is defined by:t j,i=P(X n=i|X n−1=j),∀i,j∈Ωand∀n∈{2,...,N}with the state transition coef-ficients having the properties:t j,i≥0and K−1i=0t j,i=1. The initial state probabilities are defined by:πi=P(X1=i),∀i∈Ω.2.2.Hidden Markov chain modelUsually,HMC based image segmentation methods consider the two following assumptions:H1:the random variables Y1,...,Y N are independent conditionally on X and H2: the distribution of each Y n conditionally on X is equal to its distribution conditionally on X n.Let X=X1→N be an homogeneous Markov chain, corresponding to the unknown class image.We get P(X=x)=πx1 N n=2t x n−1,x n.Assuming that distributions of(X n,Y n)are indepen-dent of n,each state x n of the state space is associated with a distribution,characterizing the repartition of observations:f xn(y n)=P(Y n=y n|X n=x n).(2) Given an observed sequence y=y1→N,we can com-pute the joint state-observation probability by:P(X=x,Y=y)=πx1f x1(y1)Nn=2t x n−1,x n f x n(y n).In unsupervised classification,the distributionP(X=x,Y=y)is unknown and mustfirst be estimated in order to apply a Bayesian classification technique.There-fore the following sets of parameters need to be estimated:1.The setΓcharacterizing the homogeneous Markovchain,i.e.the initial probability vectorπ=(πi)∀i∈Ωand the transition matrix T.2.The set∆characterizing the K pdf presented in Eq.(2).In the Gaussian case,∆is composed of the meansand the variances.3.NEW FUZZY HMC MODELLet us consider the problem of segmenting a satellite image into two classes:“land”and“sea”.There obviously may be some pixels with only“land”and others with only“sea”, but there may also exist many pixels,as over the coast,in which“land”and“sea”are simultaneously present.Thus we have two hard classes,say0for“land”and1for“sea”, and a fuzzy one.Let specify this fuzzy class byε∈]0,1[, which can be seen as the proportion of the area of class1(“sea”)in the considered pixel,the quantity1−εconse-quently represents the proportion of“land”in this pixel.Let us consider the two classes caseΩ={0,1},called “hard”in what follows.3.1.Fuzzy Markov chain representationAs detailed in[5,6],a simple way to introduce a fuzzy class in such a statistical model is to consider that X n does not take its value in the set{0,1}anymore,but in the contin-uous interval[0,1].The new representation of X n is then X n=εn,with:•εn=0if the pixel is from class“0”,•εn=1if the pixel is from class“1”,•εn∈]0,1[if the pixel is a fuzzy one.3.2.Fuzzy Markov chain probabilitiesThe statistical approach requires a definition of a priori prob-ability defined onΩ={0,1}.As stated previously,each component X n contains two types of components:two hard(discrete)components and a(continuous)fuzzy one.Letδ0,δ1be Dirac weights on 0and1andµthe Lebesgue measure on]0,1[.By taking ν=δ0+δ1+µas a measure on[0,1],the distribution of X n can be defined by a density h on[0,1]with respect toν.If we assume that X is homogeneous and the distribu-tion of each X n is uniform on the fuzzy class,P(X n=εn) can be written:h(0)=P(X n=0)=π0,h(1)=P(X n=1)=π1,h(εn)=P(X n=εn)=1−π0−π1,∀εn∈]0,1[.Let now detail the expression of the transition probabil-ities of the Markov chain:P(X n=εn|X n−1=εn−1)=P(X n=0|εn−1)δ0(εn)+P(X n=εn|εn−1)1]0,1[(εn)+P(X n=1|εn−1)δ1(εn).4.PARAMETERS ESTIMATIONIn order to apply some Bayesian criterion,we need to define X|Y.We again consider assumptions H1and H2.4.1.ICE procedure principleFor the estimation of the parameters inΘ={Γ,∆},we propose to use an adaptation of the general ICE algorithm[5], which can be seen as an alternative to well-known Estimation-Maximization(EM)algorithm.In fact,ICE does not referto the likelihood,a notion which is difficult to handle in the context of our study,but it is based on the conditional ex-pectation of some estimators from the complete data(x,y). It is an iterative method which produces a sequence of esti-mationsθq of parameterθas follows:(1)initializeθ0,(2) computeθq+1=E q[ˆθ(X,Y) Y=y],whereˆθ(X,Y) is an estimator ofθ.In practice,we stop the algorithm at iteration Q ifθQ−1≈θQ.This procedure leads to two dif-ferent situations detailed in the next subsections.4.2.Estimation of parameters inΓAs in the classical case,parameters inΓcan be calculated analytically by using the normalized Baum-Welch algorithm. In this new context,the forward and backward probabilities can be defined by:αn+1(ξ)∝ ]0,1[αn(ξ)tζ,ξfξ(y n+1)dζ,(3)βn(ξ)∝ ]0,1[βn+1(ζ)tξ,ζfζ(y n+1)dζ.These integrals can not be solved analytically.A nu-merical integration must be performed;the interval]0,1[ can be partitioned into a given number of sub-intervals.We though obtained F“discrete fuzzy”classes,whose fuzzy value corresponds to the medium value of the considered sub-interval.The bigger F is,the closer it is from Eq.(3), which implies bigger computation time(see discussion in Section5).4.3.Estimation of parameters in∆The set∆has to be estimated in this new context.Denoting by N(m,σ2)the normal distribution with mean m and varianceσ2,the pdf can then be expressed by:εn=0:N(m0,σ20),εn=1:N(m1,σ21),εn∈]0,1[:N (1−εn)m0+εn m1,(1−εn)2σ20+ε2nσ21 .For the parameters∆={m0,m1,σ0,σ1},θq+1are not tractable.However,they can be estimated by computing the empirical mean of several estimates according toθq+1= 1L L l=1ˆθ(x l,y),where x l is an a posteriori realization of X conditionally on Y.It can be shown that X|Y isa non homogeneous Markov chain whose parameters can be computed with the forward and backward probabilities in Eq.(3).Accordingly,the parameters of the fuzzy class can then be estimated.Due to the numerical approximation,the fuzzy HMC model with two hard classes tends to be a HMC withmore Fig.1.Excerpt of a Space Shuttle Sensor photograph (432×208),acquired in February2nd1984,near the Parana River in SouthernBrazil.(a)Classical HMC(b)Fuzzy HMC(F=1)Fig.2.Segmentations obtained with the classical HMC model and the new fuzzy HMC one(F=1fuzzy class).classes(F+2),but with the parameters of those pdf de-pending only on the two hard classes.5.SEGMENTATIONThe new fuzzy HMC model has been tested on the clouds image in Fig.1.This image is undoubtedly well suited to the fuzzy model presented here since the sky and the opaque cloud can be considered as hard classes,whereas the spots where the sky can be seen through clouds can be consid-ered as the fuzzy class.It should be noted that the2-classes segmentation task is really not obvious even for a human observer.Both HMC and fuzzy HMC models parameters have been estimated with one hundred of ICE iterations.The im-age classification was performed with respect to the fuzzy MPM classifier,detailed in[6].Fig.2-(a)presents the segmentation obtained with a3-classes classical HMC model.We canfirst see that the global shape of the cloud is not precisely segmented and is quite rough.Furthermore,we can constat that the hard class,corresponding to the opaque zone of the cloud,is also not precisely detected.Fig.2-(b)shows the segmentation result obtained with the fuzzy HMC model and one fuzzy “discrete”class(F=1,ε=0.5on]0,1[).As we canfirst observe,the global shape of the cloud seems to be much more accurate.Furthermore,the hard class,corresponding to the opaque zone of the cloud,seems to be in respect with the real one.The resulting image confirms the interest of(a)F =2(b)F =3(c)F =4(d)F =5Fig.3.Segmentations obtained with the new fuzzy HMC model for different numbers of fuzzy classes F .F fuzzy classes 012345Time (sec.)4172114178250327Table putation time for different numbers of fuzzy classes F .the fuzzy HMC model.Fig.3presents segmentation results for different num-ber of “discrete”fuzzy classes F .It implies different values of fuzzy measure,i.e.different values of ε,and so different corresponding fuzzy classes.For example,F =2implies ε∈{0.25,0.75},F =3implies ε∈{0.165,0.495,0.825},...We can observe that bigger is the number of “discrete”fuzzy classes F ,more accurate is the fuzzy segmentation.Each fuzzy class can be interpreted as the measure of impre-cision between “sky”and “cloud”on the considered pixel.For example,the fuzzy class corresponding to ε=0.1is very close to the hard class 0,and could be considered as so.In this work,we are not concerned by the choice of a threshold or others hardening methods.Indeed,fuzzy HMC model seems to be useful in situation where the aim is to detect and characterize mixed areas.Due to numerical approximations,the computational com-plexity involved in the model is quite lower than the one involved in the classical HMC.Table 1presents the com-putational time according to the number of fuzzy classes F (50ICE iterations),for the presented results.Let us specify one possible application of such segmen-tation of clouds.An important problem in meteorology is to automatically classify clouds.One could imagine that dif-ferent kinds of clouds would be characterized by different parameters.As the parameter estimation is automated,it becomes possible to perform an automated classification of clouds from the estimates so obtained.6.CONCLUSIONIn this work,we described a new fuzzy HMC model,with application to unsupervised image segmentation.The main contribution of this work is the simultaneous use of fuzzy and statistical methods in a HMC model and the use of the fuzzy extension of the Baum-Welch probabilities for param-eters estimation.Experiments on a real image confirm the interest of the fuzzy classification,which seems to be very performing in situation where the aim is to detect and characterize mixed area.As it has been explained in this work,fuzzy and hard segmentations are not competing but correspond to two dif-ferent situations.This new fuzzy HMC model is able to cope with fuzzy situations,where the classical HMC failed.From this work,we plan to study others densities h than the uniform one and try to apply this new model to synthetic aperture radar images.The extension of the model to K hard classes could also be of interest.7.REFERENCES[1]N.Giordana and W.Pieczynski,“Estimation of gener-alized multisensor HMC and unsupervised image seg-mentation,”IEEE Trans.on Pat.Anal.and Mach.Intel.,vol.19,no.5,pp.465–475,1997.[2]W.Skarbek,“Generalized Hilbert scan in image print-ing,”in Theoretical Foundations of Computer Vision ,R.Klette and W.G.Kropetsh,Eds.Akademik Verlag,Berlin,1992.[3]K.E.Avrachenkov and E.Sanchez,“Fuzzy Markovchains,”Fuzzy Optimization and Decision Making ,vol.1,no.2,pp.143–159,June 2002.[4]M.A.Mohamed and P.Gader,“Generalized hiddenMarkov models-Part I:Theorical frameworks,”IEEE Trans.on Fuzzy Syst.,vol.8,no.1,pp.67–81,2000.[5]H.Caillol,W.Pieczynski,and A.Hillion,“Estimationof fuzzy Gaussian mixture and unsupervised statistical image segmentation,”IEEE Trans.on Im.Proc.,vol.6,no.3,pp.425–440,1997.[6]F.Salzenstein and W.Pieczynski,“Parameter estima-tion in hidden fuzzy Markov random fields and image segmentation,”Graph.Mod.and Im.Proc.,vol.59,no.4,pp.205–220,July 1997.[7]S.Ruan,B.Moretti,J.Fadili,and D.Bloyet,“FuzzyMarkovian segmentation in application of magnetic res-onance images,”Comp.Vis.and Im.Under.,vol.85,pp.54–69,2002.。

相关文档
最新文档