通信原理第9章课件
合集下载
移动通信原理与工程09
第 9 章 移动通信天线原理与安装 波束。主瓣之外的波瓣叫副瓣或旁瓣或边瓣,与主瓣相反方向上的旁瓣叫后瓣, 见图9.2:全向天线水平波瓣和垂直波瓣图,其天线外形为圆柱型;图9.3:定 向天线水平波瓣和垂直波瓣图,其天线外形为板状。
图9.2
全向天线波瓣示意图
第 9 章 移动通信天线原理与安装
图9.3 定向天线 波瓣示意图
第 9 章 移动通信天线原理与安装
7.水平面半功率波束宽度65°定向中(13-16dBi)、高增益(大于16dBi)赋 形天线(零点填充,上第一副瓣抑制)
8.水平面半功率波束宽度90°定向中(12-15dBi)、高增益(大于15dBi)赋 形天线(零点填充,上第一副瓣抑制)
9.水平面半功率波束宽度65°定向中(13-16dBi)、高增益(大于16dBi)固 定电下倾天线(6°/9°),这种天线无赋形技术 10.水平面半功率波束宽度90°定向中(12-15dBi)、高增益(大于15dBi) 固定电下倾天线(6°/9°),这种天线无赋形技术
第 9 章 移动通信天线原理与安装
动通信中比较昂贵,有时也显得不切实际;而采用分集方法即在若干个支路上 接收相互间相关性很小的载有同一消息的信号,然后通过合并技术再将各个支 路信号合并输出,那么便可在接收终端上大大降低深衰落的概率。通常在接收 站址使用分集技术,因为接收设备是无源设备,所以不会产生任何干扰。分集 的形式可分为两类,一是显分集,二是隐分集。下面仅讨论显分集,它又可以 分为基站显分集与一般显分集两类。
基站天线垂直面内采用赋形波束设计时,为了使业务区内的辐射电平更均 匀,下副瓣第一零点需要填充,不能有明显的零深。通常零深相对于主波束大 于-20dB即表示天线有零点填充,对于大区制基站天线无这一要求。高增益天 线尤其需要采取零点填充技术来有效改善近处覆盖。
通信原理》樊昌信_第六版
因此,ms(t)的傅里叶变换Ms(f)可以写为:
M s(f) M (f)(f)
而(f)是周期性单位冲激脉冲的频谱,它可以求出等于:
(f)T 1n (f nsf)
式中, fs 1/T
将上式代入 Ms(f)的卷积式,得到
M s(f)T 1M (f)n (fns)f
编辑ppt
5
第9章模拟信号的数字传输
M s(f)T 1M (f)n (fns)f
上式中的卷积,可以利用卷积公式:
f(t) (t) f()(t )d f(t)
进行计算,得到
M s(f) T 1 M (f) n (f ns) f T 1 M (f ns)f
上式表明,由于M(f - nfs)是信号频谱M(f)在频率轴上平移了 nfs的结果,所以抽样信号的频谱Ms(f)是无数间隔频率为fs的 原信号频谱M(f)相叠加而成。
仍然是模拟调制,因为其代表信息的参量仍然是可 以连续变化的。
编辑ppt
10
第9章模拟信号的数字传输
由于原信号频谱的最低频率fL和最高频率fH之差永远等于信 号带宽B,所以当0 fL < B时,有B fH < 2B。这时n = 1,而 上式变成了fs = 2B(1 + k)。故当k从0变到1时,fs从2B变到4B, 即图中左边第一段曲线。当fL=B时,fH=2B,这时n = 2。故 当k=0时,上式变成了fs = 2B,即fs从4B跳回2B。当B fL < 2B时,有2B fH < 3B。这时,n = 2,上式变成了fs = 2B(1 + k/2),故若k从0变到1,则fs从2B变到3B,即图中左边第二段 曲线。当fL=2B时,fH=3B,这时n = 3。当k=0时,上式又 变成了fs = 2B,即fs从3B又跳回2B。依此类推。
M s(f) M (f)(f)
而(f)是周期性单位冲激脉冲的频谱,它可以求出等于:
(f)T 1n (f nsf)
式中, fs 1/T
将上式代入 Ms(f)的卷积式,得到
M s(f)T 1M (f)n (fns)f
编辑ppt
5
第9章模拟信号的数字传输
M s(f)T 1M (f)n (fns)f
上式中的卷积,可以利用卷积公式:
f(t) (t) f()(t )d f(t)
进行计算,得到
M s(f) T 1 M (f) n (f ns) f T 1 M (f ns)f
上式表明,由于M(f - nfs)是信号频谱M(f)在频率轴上平移了 nfs的结果,所以抽样信号的频谱Ms(f)是无数间隔频率为fs的 原信号频谱M(f)相叠加而成。
仍然是模拟调制,因为其代表信息的参量仍然是可 以连续变化的。
编辑ppt
10
第9章模拟信号的数字传输
由于原信号频谱的最低频率fL和最高频率fH之差永远等于信 号带宽B,所以当0 fL < B时,有B fH < 2B。这时n = 1,而 上式变成了fs = 2B(1 + k)。故当k从0变到1时,fs从2B变到4B, 即图中左边第一段曲线。当fL=B时,fH=2B,这时n = 2。故 当k=0时,上式变成了fs = 2B,即fs从4B跳回2B。当B fL < 2B时,有2B fH < 3B。这时,n = 2,上式变成了fs = 2B(1 + k/2),故若k从0变到1,则fs从2B变到3B,即图中左边第二段 曲线。当fL=2B时,fH=3B,这时n = 3。当k=0时,上式又 变成了fs = 2B,即fs从3B又跳回2B。依此类推。
通信原理 第09章 数据通信规程
在数据链路层上采取必要的控制手段对 数据信息的传输进行控制,使DTE与网 络或DTE与DTE之间能够有效、可靠地 传输数据信息。 数据链路控制规程是实 现链路控制、管理的相关规范、约定和 协议等,本章主要讲述常见的数据链路 通信控制规程,包括异步通信控制规程, BSC、HDLC等。
第9章 数据通信规程
图9-2 YMODEM协议数据帧格式
YMODEM协议不同于XMODEM 协议的地方是,数据块单元长度为1024 个字节。其它数据帧格式和XMODEM 协议一样。和XMODEM协议的其它差 异在于,在YMODEM协议中传输过程 开始后,接收方接收成功的帧并不向发 送方返回ACK,只对接收错误的帧返回 一个NCK,要求此帧重新发送。 YMODEM协议提供了一种批模式,在 此模式下,只有用一条命令就可以同时 传输多个文件。
SYN(Synchronous Idle)同步:用于 建立和保持收发两端的同步,SYN不能 放在DLE之后和与校验码有关系的控制 字符中间。 ETB (End of Transmission Block)数 据分组块传输结束:仅由发送端送出, 但校验码(BCC)仅随其后,但最后一 个信息码组的结束必须使用ETX。
并键入命令:Send FileName,这样就 激活了本地计算机上的Kermit协议。这 时,用户做的工作就完成了,Kermit完 成剩余部分。它在本地计算机上寻找一 个名为“FileName”的文件,并分组, 组的数量取决于文件的大小和每个分组 的大小。
图9.3 Kermit文件的传输
பைடு நூலகம்
在此协议中,以发送端向接收端发送 一初始化帧(S类型)来开始发送一个文件, 此帧通知接收端准备接收帧。S类型的帧和 它的最终确认帧包括了一些参数,如果两个 计算机之间要交换文件,那第它们必须按顺 序同意这些参数,从而使协议能正常工作。 它支持传输7位的ASCII字符,数据块能以 长达96字节的可变长度的分组形式传输, 对每个被传送的分组需要一个确认帧, Kermit协议支持批量文件的传输。Kermit 协议的帧格式如图9-4所示。
樊昌信通信原理第9章 最佳接收(7版)
n i 1
2 i
ni2 exp 2 2 n 2 n
设带限信道的截止频率为 fH,则抽样速率为 2fH ,在一个码元 持续时间 TB 内共得到 k =2fHTB 个抽样值。
当 k 很大时, 噪声 在一个TB 内的平均功率 可表示为:
1 k 2 1 ni k i 1 TB 2 f H
TB
0
r (t ) s1 (t ) dt
2
TB
0
r (t ) s0 (t ) dt
2
并利用 E0=E1 进行化简:
TB
0 TB
r (t ) s0 (t )dt W0 r (t ) s1 (t )dt W1 , 判为 s0(t) 0 r (t ) s0 (t )dt W0 r (t ) s1 (t )dt W1 , 判为 s1(t)
使Pe最小的最佳判决分界点 r0 :
令
Pe 0 ' r0
P(1) f1 (r0 ) P(0) f 0 (r0 ) 0
则有 即
f 0 (r0 ) P(1) f1 (r0 ) P(0)
判 决 规 则
——称为“最大似然准则”,可使误码率最小。
f 0 (r ) P(1) 若 f (r ) P(0) , 则判为“0” —— s0(t) 1 f 0 (r ) P(1) —— s1(t) 若 f (r ) P(0) , 则判为“1” 1
1 n TB i 1
2 i
k
TB
0
n 2 (t ) dt
1 n 2 2 n i 1 n0
2 i
1
通信原理与通信技术3版第9章
图9-3 异步通信与同步通信示意图
19
第九章 数据通信与通信网
同步串行通信:
(1) 同步信息添加在每一个数据块上; (2) 数据块是一批字符或二进制位串组成的数据; (3) 分为面向字符和面向位流两种传输方式:
• 面向字符:每个数据块的头部用一个或多个同步字符SYN来表 示数据块的开始;而尾部用另一个字符ETX代表数据块的结束 。
第九章 数据通信与通信网
1
主要内容
9.1 数据通信与数据通信系统 9.2 通信网 9.3 现代通信网的支撑技术 9.4 通信网的发展历程
第九章 数据通信与通信网
2
9.1 数据通信与数据通信系统
第九章 数据通信与通信网
数据:能够由计算机或数字终端设备进行处理并以某种方式编制 成二进制码的数字、字母和符号的集合,是信息的表现形式;
(3)路由选择:灵活的路由选择技术可以帮助网络绕开发生故障 或拥塞的节点,以提供更可靠的服务质量。
(4)流量控制:流量控制是一种使目的端通信实体可以调节信源 端通信实体发出的数据流量的协议机制,可以调节数据发送的数量和 速率。
最大传输速率: 信道传输数据的速率上限叫做信道的最大传输速率,也就是信道容量。
10
第九章 数据通信与通信网
码元传输速率(波特率): 信号每秒钟变化的次数叫做波特率(Baud)。
吞吐量 : 信道在单位时间内成功传输的信息量,单位一般为比特/秒。
利用率: 利用率是吞吐量和最大数据传输速率之比。
延迟: 从发送者发送第一位数据开始,到接收者成功地收到最后一位数 据为止,所经历的时间。
图9-1 数据通信系统的组成
9
第九章 数据通信与通信网
数据通信的主要性能指标
北邮-通信原理-第九章-信道编码(推荐完整)
任一码组在传输中产生传输中产生一个或多 个错误,都会变成另一个信息码组。无法检 错和纠错。
P 15
原因:码组中只有信息码元,没有监督码元
9.1 信道编码的基本概念
检错和纠错的基本原理
例2:利用2位二进制数字的4种组合表示4 种天气,再加1位奇偶校验位。
信息位 监督位
晴
00
0
云
01
1
P 19
dmin t e 1
9.1 信道编码的基本概念
两种简单的信道编码
(n,1)重复码(以(3,1) 重复码为例)
许用码组(000),(111) dmin=n 可纠1位错或检2位错 用来纠错时,出现错误的概率为
信道分类(按差错出现类型)
独立随机差错信道
差错随机出现,且相互独立(无记忆性) 原因:由高斯白噪引起(信道本身的传输特性比
较理想) 太空信道、卫星信道、同轴电缆、光缆信道、视
距微波信道
P5
9.1 信道编码的基本概念
信道分类(按差错出现类型)
突发差错信道
差错成串出现(记忆性) 原因:信道传输特性不理想(衰落和码间干扰),
非线性码:约束关系不是线性关系。(缺少 理论和应用上的研究)
P9
9.1 信道编码的基本概念
信道编码分类(按编码方式分类)
分组码:将信息序列分成独立的若干组进行 编码。编码后,一组中的码元只与本组的原 始信息码元有关,而与其他组的信息码元无 关。
分组码用符号(n,k)表示。k是一组中信息码 元的数目,n是码元总数目,则监督码元有n-k位
P 18
9.1 信道编码的基本概念
一种编码的最小码距直接关系到这种编码的检错和纠 错能力(图9.1.2)
精简版第九章循环码PPT课件
2020/9/26
通信原理II讲义
5
什么是循环码?
请注意“线性”和“循环”本身是不相干的事 情,我们对循环码的定义已经包括了线性特性。 在下页表所列的4种(3,2)码中,只有第一种符 合我们对循环码的定义。
2020/9/26
通信原理II讲义
6
信息 00 01 10 11
2020/9/26
什么是循环码?
c8=1011100
2020/9/26
通信原理II讲义
3
什么是循环码?
例如c3=(0101110)循环移一位是c8=(1011100), 再循环移一位是c7=(0111001)。
2020/9/26
通信原理II讲义
4
什么是循环码?
c3 c2
c4
c8 c7
c6 c5
c1
(a ) (7 ,3 )循 环 码 的 码 字 循 环 关 系
n 1
cx c n 1 xn 1 c n 2 xn 2 ... c 1 x c 0c ixi
i 0
2020/9/26
通信原理II讲义
12
循环性
码字 Ccn1cn2...c1c0 的循环左移1位为
C1cn2...c1c0cn1
其码多项式
c 1 x c n 2 x n 1 ...c 1 x 2 c 0 x c n 1
但g’(x)的次数小于g1(x),g2(x),与假设矛盾。
2020/9/26
通信原理II讲义
16
循环码的性质
设 gx g r 1 x r 1 g r 2 x r 2 ... g 1 x g 0
则根据循环性和线性性
fx f0 f1 x ... fn r x n rg x
第九章 差错控制编码_sxq
ASK
FSK
PSK
DPSK
信 道 噪 声
解 调
解 密
译 码
信 宿
同步系统
A/D
信源编码 信道编码
数据压缩 差错控制
3
copyright 信息科学与技术学院通信原理教研组
在通信过程中,会受到各种外来干扰,如脉冲干扰,随 机噪声干扰,人为干扰及通信线路传输性能的限制都将使信 号失真。由于以上原因,引起数据信息序列产生错误,称之 为差错。
10-1 10-2 10-3 Pe 10-4 10-5 10-6
D
编码后
C
信噪比 (dB)
copyright 信息科学与技术学院通信原理教研组 32
传输速率和Eb/n0的关系 对于给定的传输系统式 10-1 中,RB为码元速率。 -2 10 若希望提高传输速率, 由上式看出势必使信噪 -3 10 比下降,误码率增大。 假设系统原来工作在图 Pe 中C点,提高速率后由C 10-4 点升到E点。但加用纠 错编码后,仍可将误码 10-5 率降到D点。这时付出 的代价仍是带宽增大。 10-6
copyright 信息科学与技术学院通信原理教研组
25
4、对纠错编码的要求
纠、检错能力强,编码效率高,码长短, 编码规律简单。
copyright 信息科学与技术学院通信原理教研组
26
5. 差错控制编码的效用
假设在随机信道中,发送“0”和“1”的错 误概率相等,都等于p,且p<<1,在码长为n 的码组中,发生r个错误的概率为:
20
3、分组码
对被传输的信息序列分组,每组为k个信息元,对 每组按某种关系附加(n-k) 个监督码元 (校验),形成 为n位的码字。这种方法构成的码组称为分组码。
第九章 通信原理PPT课件
2
00 1
01 0
1
00 0
011
0
折叠二进制码对小信号的抗噪性能强,大信号反之,由于语
音信号小电压出现的概率较大,所以折叠码有利于减小语音信号
的平均量化噪声。
11
9.5 脉冲编码调制
格雷二进码 表示方法:
任何相邻电平的码组只有一位码位不同,即相邻码字 的距离恒为1。
除极性码外,绝对值相等时,其幅度码相同,故又称 反射二进码。
9.5
3位编码器(均匀量化),其输入信号抽样脉冲值在-0.5和7.5之间。
现在共有3个不同的Iw值,表示量化值的二进制码有3位,即c1c2c3。它 们能够表示8个十进制数,从0至7。
量化值
c1
c2
c3
0
0
0 0.5 0
1
0
0
1
1.5
2
0
1 2.5 0
3 3.5 0
1
1
4
1
0
0
4.5
5
1 5.5 0
M=2N 在语音通信中,通常采用8位的PCM编码就能够保证满意 的通信质量。我国采用的是8位编码的A律13折线PCM 编码。
14
9.5 脉冲编码调制
若把自然二进码从低位到高位依次给以2倍的加权,就可 变换为十进数。如设二进码为(an-1, an-2, …, a1, a0)
则D=an-12n-1+an-22n-2+…+a121+a020 便是其对应的十进数(表示量化电平值)。 特点: 编码简单、易记,而且译码可以逐比特独立进行。
9
9.5 脉冲编码调制
特点: (1)相邻码之间只有一个码字不同,这样误一位码造
现代通信原理、技术与仿真第9章 差错控制编码
21
第9章 差错控制编码
(2) 在信道容量C及信息的传输速率R一定的情况下,由式 (9.1)可知,增加码长n也可以使误码率Pe指数减小,即通过增 加信道中传输信息的码长可以减小误码率。
香农有扰信道的编码定理本身并未给出具体的纠错编码方 法,但它为信道编码奠定了理论基础,从理论上指出了信道编 码的发展方向。
前向纠错(FEC)、混合纠错检错(HEC)、信息反馈(IRQ,也称 反馈校验)。图9.1所示为差错类型和差错控制方式。
6
第9章 差错控制编码
图9.1 差错类型和差错控制方式
7
第9章 差错控制编码
1. 检错重发(ARQ)方式 检错重发方式又称为自动请求重发方式。这种差错控制方 式在发送端对数据序列进行分组编码,加入一定多余码元使之 具有一定的检错能力,成为能够发现错误的码组。接收端收到 码组后,按一定规则对其进行有无错误的判别,并把判决结果 (应答信号)通过反向信道送回发送端。如果有错误,则发送端 把前面发出的信息重新传送一次,直到接收端认为已正确收到 信息为止。在具体实现检错重发系统时,通常有3种形式,即 停发等候重发、返回重发和选择重发。 ARQ方式的组成如图9.2所示。
28
第9章 差错控制编码
在一个码组中,各码字之间的距离不一定都相等,有的大, 有的小。通常称码组中最小的码距为最小码间距离,用 d0表示。由上述重复编码的例子可知,两个码字之间不同的 位数越多,其检错纠错能力越强,即码间距离越大,其检错 纠错能力越强。所以一个码组的最小码间距离d0就决定了该 码组的检错纠错能力。
(1) 在编码长度n及信息的传输速率R一定时,为减小Pe, 可以增加信道容量C。由图9.6可见,E(R)随信道容量C的 增加而增大。由式(9.1)可见,误码率Pe随E(R)的增大而指数 减小,即增加信道容量可以减小误码率。由信道容量公式
第9章 差错控制编码
(2) 在信道容量C及信息的传输速率R一定的情况下,由式 (9.1)可知,增加码长n也可以使误码率Pe指数减小,即通过增 加信道中传输信息的码长可以减小误码率。
香农有扰信道的编码定理本身并未给出具体的纠错编码方 法,但它为信道编码奠定了理论基础,从理论上指出了信道编 码的发展方向。
前向纠错(FEC)、混合纠错检错(HEC)、信息反馈(IRQ,也称 反馈校验)。图9.1所示为差错类型和差错控制方式。
6
第9章 差错控制编码
图9.1 差错类型和差错控制方式
7
第9章 差错控制编码
1. 检错重发(ARQ)方式 检错重发方式又称为自动请求重发方式。这种差错控制方 式在发送端对数据序列进行分组编码,加入一定多余码元使之 具有一定的检错能力,成为能够发现错误的码组。接收端收到 码组后,按一定规则对其进行有无错误的判别,并把判决结果 (应答信号)通过反向信道送回发送端。如果有错误,则发送端 把前面发出的信息重新传送一次,直到接收端认为已正确收到 信息为止。在具体实现检错重发系统时,通常有3种形式,即 停发等候重发、返回重发和选择重发。 ARQ方式的组成如图9.2所示。
28
第9章 差错控制编码
在一个码组中,各码字之间的距离不一定都相等,有的大, 有的小。通常称码组中最小的码距为最小码间距离,用 d0表示。由上述重复编码的例子可知,两个码字之间不同的 位数越多,其检错纠错能力越强,即码间距离越大,其检错 纠错能力越强。所以一个码组的最小码间距离d0就决定了该 码组的检错纠错能力。
(1) 在编码长度n及信息的传输速率R一定时,为减小Pe, 可以增加信道容量C。由图9.6可见,E(R)随信道容量C的 增加而增大。由式(9.1)可见,误码率Pe随E(R)的增大而指数 减小,即增加信道容量可以减小误码率。由信道容量公式
《通信原理》课件--第9章
fs 4B
3B
2B
B
0
B
2B 3B 4B 5B 6B
12
fL
第9章模拟信号的数字传输
由上图可见,当fL = 0时,fs =2B,就是低通模拟信号的抽样 情况;当fL很大时,fs趋近于2B。fL很大意味着这个信号是一 个窄带信号。许多无线电信号,例如在无线电接收机的高频 和中频系统中的信号,都是这种窄带信号。所以对于这种信 号抽样,无论fH是否为B的整数倍,在理论上,都可以近似 地将fs取为略大于2B。 图中的曲线表示要求的最小抽样频率fs,但是这并不意味着 用任何大于该值的频率抽样都能保证频谱不混叠。
11
第9章模拟信号的数字传输
由于原信号频谱的最低频率fL和最高频率fH之差永远等于信 号带宽B,所以当0 fL < B时,有B fH < 2B。这时n = 1,而 上式变成了fs = 2B(1 + k)。故当k从0变到1时,fs从2B变到4B, 即图中左边第一段曲线。当fL=B时,fH=2B,这时n = 2。故 当k=0时,上式变成了fs = 2B,即fs从4B跳回2B。当B fL < 2B时,有2B fH < 3B。这时,n = 2,上式变成了fs = 2B(1 + k/2),故若k从0变到1,则fs从2B变到3B,即图中左边第二段 曲线。当fL=2B时,fH=3B,这时n = 3。当k=0时,上式又 变成了fs = 2B,即fs从3B又跳回2B。依此类推。
ms(t)m(t)T(t)
用波形图示出如下:
4
第9章模拟信号的数字传输
m(t)
(a)
T(t)
-3T -2T -T 0 T 2T 3T
(c) ms(t)
(e)
3B
2B
B
0
B
2B 3B 4B 5B 6B
12
fL
第9章模拟信号的数字传输
由上图可见,当fL = 0时,fs =2B,就是低通模拟信号的抽样 情况;当fL很大时,fs趋近于2B。fL很大意味着这个信号是一 个窄带信号。许多无线电信号,例如在无线电接收机的高频 和中频系统中的信号,都是这种窄带信号。所以对于这种信 号抽样,无论fH是否为B的整数倍,在理论上,都可以近似 地将fs取为略大于2B。 图中的曲线表示要求的最小抽样频率fs,但是这并不意味着 用任何大于该值的频率抽样都能保证频谱不混叠。
11
第9章模拟信号的数字传输
由于原信号频谱的最低频率fL和最高频率fH之差永远等于信 号带宽B,所以当0 fL < B时,有B fH < 2B。这时n = 1,而 上式变成了fs = 2B(1 + k)。故当k从0变到1时,fs从2B变到4B, 即图中左边第一段曲线。当fL=B时,fH=2B,这时n = 2。故 当k=0时,上式变成了fs = 2B,即fs从4B跳回2B。当B fL < 2B时,有2B fH < 3B。这时,n = 2,上式变成了fs = 2B(1 + k/2),故若k从0变到1,则fs从2B变到3B,即图中左边第二段 曲线。当fL=2B时,fH=3B,这时n = 3。当k=0时,上式又 变成了fs = 2B,即fs从3B又跳回2B。依此类推。
ms(t)m(t)T(t)
用波形图示出如下:
4
第9章模拟信号的数字传输
m(t)
(a)
T(t)
-3T -2T -T 0 T 2T 3T
(c) ms(t)
(e)
相关主题