七年级上去括号和添括号法则

合集下载

括号法则

括号法则

括号法则1. 去括号的法则是:括号前面是“+”号,去括号时,括号里的各项都不变;括号前面是“-”号,去括号时,括号里的各项都变号.例如;5a+(4b-3a)-(2b+a)=5a+4b-3a-2b-a=a+2b.练习题:5246-(246+694)= 354+(229+46)=(23+56)+47 = 125×(3+8)=2. 添括号的法则是:添括号时,括号前面是“+”号,括到括号里的各项都不变;括号前面是“-”号,括到括号里的各项都变号.例如:4a-3b-2c=4a-(3b+2c);7a+2b-5c=7a+(2b-5c).练习题:582-157-182= 2354-456-544=45627-258-742-1627= 458-45—155括号前面是加号时,去掉括号,括号内的算式不变。

括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。

法则的依据实际是乘法分配律注: 要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.去括号时应将括号前的符号连同括号一起去掉.要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.遇到多层括号一般由里到外,逐层去括号,也可由外到里.数"-"的个数.3. 一定要注意,若括号前面是除号,不能直接去除除号.小学数学巧算,移位凑合法法交换律两个数相加,交换加数的位置,和不变。

a+b=b+a加法结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

(a+b)+c=a+(b+c)减法的性质减去一个数,等于加这个数的相反数。

a-b=a+(-b)连续减去两个数,等于减去这两个数的和。

a-b-c=a-(b+c)减去一个数再加上一个数,等于减去这两个数的差。

添去括号法则

添去括号法则

添去括号法则
摘要:
1.添去括号的基本原则
2.添去括号的方法
3.添去括号的注意事项
4.实例分析
正文:
一、添去括号的基本原则
在数学运算中,括号是表示运算优先级的重要符号。

正确地添去括号,有助于清晰地表达运算顺序,避免出现错误的运算结果。

添去括号的基本原则如下:
1.先做括号内的运算;
2.乘除法优先于加减法;
3.同级运算按照从左到右的顺序进行。

二、添去括号的方法
1.添括号:为了明确运算顺序,可以在需要进行运算的项前加上括号。

例如,对于表达式3x + 5,为了明确先乘后加,可以写成(3x) + 5。

2.去括号:根据运算顺序和运算法则,可以去掉不必要的括号。

例如,对于表达式(2x + 3) + (4x - 5),可以简化为2x + 3 + 4x - 5。

三、添去括号的注意事项
1.添括号时,应确保括号内的运算符合运算顺序和法则;
2.去括号时,应注意不要改变原表达式的运算顺序和法则;
3.在复杂的数学运算中,添去括号需要结合运算顺序和法则进行。

四、实例分析
例:对于表达式3x * (2 + 4) - 5,按照以下步骤进行添去括号:
1.添括号:3x * (2 + 4) - 5 = (3x * 2) + (3x * 4) - 5
2.计算:(3x * 2) + (3x * 4) - 5 = 6x + 12x - 5
3.去括号:6x + 12x - 5 = 18x - 5
综上所述,添去括号是数学运算中常见的方法,掌握好这一方法有助于正确地进行数学运算。

去括号和添加括号法则练习

去括号和添加括号法则练习

去括号添括号法则及练习一、去括号法则:1、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;字母表示:a +(b + c)= a + b + c例如:23+(77+56)=23+77+56a +(b - c)= a + b - c例如:38+(62-48)=38+62-482、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变为相反的符号;字母表示:a -(b + c)= a - b - c例如:159-(59+26)=159-59-26a -(b - c)= a - b + c例如:378-(78-39)=378-78+393、去括号时,应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.x+(y-z)-(-y-z-x) =4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.a+3(2b+c-d)=5、遇到多层括号一般由里到外,逐层去括号,也可由外到里,数"-"的个数.24-(176+24)+[276-72-(134-72)+234]例题:4+(5+2) 4-(5+2)= =a+(b+c) a-(b+c)= =去括号练习:(1)a+(-b+c-d)=(2)a-(-b+c-d) =(3)-(p+q)+(m-n)=(4)(r+s)-(p-q) =(5)x+(y-z)-(-y-z-x) =(6)(2x-3y)-3(4x-2y)=下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c =-x-y+xy-1二、添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号。

整式的加减法去括号和添括号的用法(一)

整式的加减法去括号和添括号的用法(一)

整式的加减法去括号和添括号的用法(一)整式的加减法去括号和添括号的用法本文将介绍整式的加减法去括号和添括号的用法,并详细讲解以下几个方面:1.去括号和添括号的定义2.整式去括号的规则和示例3.整式添括号的规则和示例4.注意事项和常见错误1. 去括号和添括号的定义•去括号:将一个整式中的括号内的表达式按照括号前的符号进行分配运算,去掉括号。

•添括号:在一个整式中提取其中的一部分进行括号,用于改变运算顺序或减少计算量。

2. 整式去括号的规则和示例•去括号的规则:–括号前有正号或无符号:将括号内的每一项与括号前的符号相乘。

–括号前有负号:将括号内的每一项与括号前的符号相乘,并改变项内的符号。

•示例1:–原式:2(3x + 5y)–去括号后:6x + 10y•示例2:–原式:-3(2x - 4y)–去括号后:-6x + 12y3. 整式添括号的规则和示例•添括号的规则:–可以在整式中的任意位置添加括号,但需保持运算的正确性。

–添括号可以改变整式的运算顺序,提高计算效率。

•示例1:–原式:3x + 2y + 4z - 5w–添括号后:(3x + 2y) + (4z - 5w)•示例2:–原式:2x^2 + 3x - 5–添括号后:2x^2 + (3x - 5)4. 注意事项和常见错误•注意事项:–在运算中,括号的使用必须符合数学运算的法则。

–添括号时要注意运算顺序,确保计算的正确性。

•常见错误:–在去括号过程中,忽略了括号前的符号,导致计算错误。

–在添括号过程中,未保持原式的运算顺序,导致计算结果不正确。

这些是整式的加减法去括号和添括号的常用用法和规则,希望可以帮助你更好地理解和运用整式的运算。

在实际运算中,需要根据具体的情况和题目要求灵活运用这些方法。

去括号和添括号的法则

去括号和添括号的法则

去括号和添括号的法则一、去括号法则在代数表达式中,有时候我们需要去除括号来简化表达式。

去括号法则适用于求和、求差和乘法运算。

下面是去括号的三个法则:1.同号相乘法则:当括号外面有一个正号或者一个负号时,我们可以通过将括号里面的每一项与括号外面的符号相乘来去括号。

例如,对于表达式(a+b+c),如果去除括号,则结果为a+b+c。

2.一正一负相乘法则:当括号外面有一个正号,而括号里面的每一项前面有一个负号时,我们可以通过去除括号并反转每一项的正负号来去括号。

例如,对于表达式(a-b-c),如果去除括号,则结果为a-b-c。

3.乘法分配律:当括号外面有一个数与括号里面的每一项相乘时,我们可以通过将括号里面的每一项与括号外面的数相乘来去括号。

例如,对于表达式3(a+b+c),如果去除括号,则结果为3a+3b+3c。

这些去括号法则是非常有用的,因为它们可以使复杂的表达式变得简洁,并且可以更容易地进行计算。

二、添括号法则添括号法则正好与去括号法则相反,它适用于求和、求差和乘法运算。

添加括号可以改变表达式的结构和优先级。

下面是添括号的两个法则:1.加减添括号法则:当一个数和一个和式相加或相减时,我们可以通过在和式的前后添加括号来添括号。

例如,对于表达式a+b-c,我们可以添括号为(a+b)-c,或者a+(b-c),这样可以改变运算的顺序和结果。

2.乘法添括号法则:当一个数与一个乘积相乘时,我们可以通过在乘积的前后添加括号来添括号。

例如,对于表达式a*b+c,我们可以添括号为(a*b)+c,或者a*(b+c),这样可以改变运算的顺序和结果。

添括号法则在对表达式进行化简、分解或重组时非常有用。

它可以帮助我们更好地理解和计算复杂的代数运算。

三、应用场景和示例示例1:简化表达式考虑以下代数表达式:3(a+b)+2(b-c)。

使用乘法分配律和去括号法则,我们可以简化这个表达式为3a+3b+2b-2c。

示例2:重组表达式考虑以下代数表达式:a*b+c*d。

七年级数学去括号和添括号知识精讲 人教义务代数

七年级数学去括号和添括号知识精讲 人教义务代数

七年级数学去括号和添括号知识精讲 人教义务代数 重点、难点重点:1.掌握去括号与添括号法则:(1)去括号法则:①括号前面是“+”号时,把括号连同它前边的“+”号都去掉,括号里的各数符号不变。

②括号前面是“-”号时,把括号连同它前边的“-”号都去掉,括号里的各数都变号。

(2)添括号法则:①添上带有“+”号的括号时,括号里的各数都不变号。

②添上带有“-”号的括号时,括号里的各数都变号。

2.会在有理数的加减法混合运算中,正确使用去添括号,使题目简化。

难点:正确应用去、添括号,使有理数的混合运算简便。

[讲一讲]例1:去括号(1)m-(a+b-c) (2)m+(a+b-c)分析:(1)中某个数减去若干数的和等于逐一减去各个加数(2)中某个数加上若干数的和等于逐一加上各个加数,因此可得结果。

解:(1)原式=m-(+a)-(+b)-(-c)=m-a-b+c(2)原式=m+(a+b-c)=m+(+a)+(+b)+(-c)=m+a+b-c这样就完成了去括号的目的,(1)与(2)即去括号法则,以后可以直接用结果。

.例2:计算:(1))]25.25187(4323[49--- (2))]32()243211(43[32+--+---分析:解题时先将括号去掉,转成代数和的形成,再用添括将易计算的项放在一起,可使计算过程简化,减少出错率解:(1)原式]41251874323[49+--= 4125187432349-+-= =49-49+187=187(2)原式]3224321143[32-+----= )322211(32-+---=32221132+-+-=21-=例3:按下列要求,把3a-2b+c 添上括号(1)把它放在前面带“+”号的括号里(2)把它放在前面带“-”号的括号里。

分析:这是一个简单的练习,通过它来掌握法则的应用,注意法则(2)中变号的问题。

解:(1)3a-2b+c=+(3a-2b+c)(2)3a-2b+c=-(-3a+2b-c)例4:已知:a=13,b=54,c= -83,d= -68。

2.4.3 去括号和添括号(课件)七年级数学上册(华东师大版2024)

2.4.3 去括号和添括号(课件)七年级数学上册(华东师大版2024)
括号内的各项要变号.
课前回顾
1)合并同类项的概念: 把多项式中的同类项合并成一项叫做合并同类项.
2)合并同类项的法则: 把同类项的系数相加,所得的结果作为系数,
字母和字母的指数保持不变。
3)运用合并同类项化简多项式的一般步骤: 一、找,二、移,三、合
新课导入
第1章我们学过有理数的加法结合律,即:a+(b+c)=a+b+c.
=214a+(47a+53a)
=214a+100a
=314 a.
2)214a-39a-61a
=214a-(39a+61a)
=214a-100a
=114 a.
典例分析
1.在各式的括号中填上适当的项,使等式成立;
1) + + + = -( -a-b-c-d )
= +( a+b+c+d )
( ×) (4) x – 2 (– y + g ) = x + 2y + g
( ×) (5) –( a- 2b ) + ( c–2 ) = - a–2b + c–2
( ×) (6) - ( b + a ) = - a + b
( ×) (7) - ( 3 x – 2 ) = 2 + 3 x
典例分析
2.填空
-3a+3b+2c+2d
(10)-3(a-b)-2(-c-d)=_____________________;
典例分析
例3 化简求值:(5
解:(5
2
2
+ 5 − 7) −
+ 5 − 7) −
1

添去括号法则

添去括号法则

添去括号法则
【原创实用版】
目录
1.添去括号法则的概述
2.添去括号法则的规则
3.添去括号法则的实例解析
4.添去括号法则的应用场景
5.添去括号法则的注意事项
正文
一、添去括号法则的概述
添去括号法则,是数学中一种用于简化表达式的方法。

通过对表达式中的括号进行添去操作,可以简化复杂的数学表达式,使计算更加简便。

二、添去括号法则的规则
1.去括号时,负号外的因数是正数去正号,负号去负号。

2.去括号时,负号外的因数是负数去负号,正号去正号。

3.添括号时,正号外的因数是正数添正号,负号添负号。

4.添括号时,负号外的因数是负数添负号,正号添正号。

三、添去括号法则的实例解析
例 1:计算表达式 (2+3)*(4-5)
解:先去括号,得到 2+3*4-3*5,再计算乘法和加法,得到最终结果-1。

例 2:计算表达式 (2-3)/(4+5)
解:先去括号,得到 2-3/4+3/5,再计算除法和加法,得到最终结果
0.2。

四、添去括号法则的应用场景
添去括号法则在数学计算中应用广泛,尤其是在代数运算、四则运算等场景中,能够帮助我们简化复杂的表达式,提高计算效率。

五、添去括号法则的注意事项
在进行添去括号操作时,需要注意以下几点:
1.确保正确判断括号外的因数是正数还是负数。

2.在添括号时,要遵循括号的优先级,先计算括号内的运算。

3.在去括号时,要注意符号的变化,避免计算错误。

去(添)括号法则以及混合运算的运算顺序

去(添)括号法则以及混合运算的运算顺序

3000 8 125
1.36 0.25 0.4
第3页共4页
翰林学堂 78 36 78 64
56 103 56 3
30 4 70 4
120 8 20 8
562 397 281 397
1.4 5.5 2 3.24
104 4 2.4 0.3 1.5 0.75 0.25
9.9 9 1.5 1.2 0.8 3.2 0.8 0.15
8-(4-3.5)÷0.25
7.8 32 1 0.625
0.84÷[(2.3+0.5)×0.6]
[8.95-(0.65+0.8)]÷2.5
第4页共4页
a b c a b c 例如: 378 78 39 378 78 39
3. 乘除法同级运算中括号前是乘号 括号前是乘号,去完括号后,原来括号中的运算符号不改变。(与加法类似)
字母表示: a (b c) a b c 例如: 4 25 38 4 25 38
a (b c) a b c 例如: 40 25 4 40 25 4
4. 乘除法同级运算中括号前是除号 括号前是除号,去完括号后,原来括号中的运算符号改变。(与减法类似)
字母表示: a (b c) a b c 例如: 4200 42 25 4200 42 25
a b c a b c 例如: 38 62 48 38 62 48
2. 加减法同级运算中括号前是减号 括号前是减号,去完括号后,原来括号中的运算符号改变。
字母表示: a b c a b c 例如:159 59 26 159 59 26

如何快速理解添括号与去括号

如何快速理解添括号与去括号

如何快速理解添括号与去括号
一、法则
添括号法则:
如果括号前面是加号,加上括号后,括号里面的符号不变。

如果括号前面是减号,加上括号后,括号里面的符号全部改为与其相反的符号。

去括号法则:
括号前面是加号,把括号和它前面的加号去掉,括号里各项都不变号;括号前面是减号,把括号和它前面的减号去掉,括号里各项要改变符号.
二、讲解
因为正负数可以表示相反意义的量,所以我们可以用“好”和“坏”来表示“正”和“负”。

带正号的括号我们比喻成一个好国家,比如中国。

带负号的括号我们比喻成一个坏国家,比如日本。

在一个国家里有好人(正数)和坏人(负数)。

在我们中国(带正号的括号里),好人(正数)就是好人(正数),坏人(负数)就是坏人(负数)。

在日本(带负正号的括号里)所谓的好人,其实是坏人,所谓坏人反而是好人。

现在我们来理解添括号法则:
带正号的情况好理解,我们重点说添上带负号的括号:好人(正数)到了日本(带负正号的括号里)会被认为是坏人(负数),而坏人(负数)到了日本(带负正号的括号里)反而成了好人(正数)。

现在我们来理解去括号法则:
去掉带正号的括号情况好理解,我们重点说去带负号的括号:日本国里(带负正号的括号里)所谓的好人(正数),去掉括号后,其实是坏人(负数);日本国里(带负正号的括号里)所谓的坏人(负数),去掉括号后,其实是好人(正数)。

去括号与添括号重难点题型

去括号与添括号重难点题型

去括号与添括号-重难点题型【知识点1 去括号的法则】(1)去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.(2)去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;①a-(b-c)=a-b+c,括号前是“-”号,去括号时连同它前面的“-”号一起去掉,括号内各项都要变号.说明:①去括号法则是根据乘法分配律推出的;①去括号时改变了式子的形式,但并没有改变式子的值.【题型1 去括号】【例1】(2020秋•越秀区期末)下列去括号运算正确的是()A.﹣(3x﹣2y+1)=3x﹣2y+1B.(2x﹣3y)﹣(5z﹣1)=2x﹣3y+5z﹣1C.﹣(3a+2b)﹣(c+d)=﹣3a﹣2b﹣c﹣dD.﹣(a﹣2b)﹣(2c﹣d)=﹣a+2b﹣2c﹣d【变式1-1】(2020秋•微山县月考)下面去括号错误的是()A.a2﹣(a﹣b+c)=a2﹣a+b﹣cB.5+a﹣2(3a﹣5)=5+a﹣6a+5C.3a−13(3a2−2a)=3a−a2+23aD.a3﹣[a2﹣(﹣b)]=a3﹣a2﹣b【变式1-2】(2020秋•西城区校级期中)下列各式中去括号错误的是()A.x﹣(3y+14)=x﹣3y−14B.m+(﹣n+a﹣b)=m﹣n+a﹣bC.−12[4x+(6y﹣3)]=﹣2x﹣3y﹣3D.(a+12b)﹣(−25c+34)=a+12b+25c−34【变式1-3】(2021秋•海州区校级期中)下列去括号正确吗?如有错误,请改正.(1)+(﹣a﹣b)=a﹣b;(2)5x﹣(2x﹣1)﹣xy=5x﹣2x+1+xy;(3)3xy﹣2(xy﹣y)=3xy﹣2xy﹣2y;(4)(a+b)﹣3(2a﹣3b)=a+b﹣6a+3b.【知识点2 添括号的法则】添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.【题型2 添括号】【例2】(﹣a+2b+3c)(a+2b﹣3c)=[2b﹣()][2b+(a﹣3c)].【变式2-1】a﹣b﹣c+d=a﹣b﹣()=a+()=a﹣().【变式2-2】按下列要求,给多项式3x3﹣5x2﹣3x+4添括号:(1)把多项式后三项括起来,括号前面带有“+”号;(2)把多项式的前两项括起来,括号前面带“﹣”号;(3)把多项式后三项括起来,括号前面带有“﹣”号;(4)把多项式中间的两项括起来.括号前面“﹣”号.【变式2-3】把多项式a3+2a2b﹣2ab2﹣b3中含有a,b项的放在前面带有“﹣”号的括号里,其他项放在前面带有“+”号的括号里.【题型3 利用去括号法则化简代数式】【例3】先去括号,再合并同类项:6a 2﹣2ab ﹣2(3a 2−12ab );2(2a ﹣b )﹣[4b ﹣(﹣2a +b )];9a 3﹣[﹣6a 2+2(a 3−23a 2)];2t ﹣[t ﹣(t 2﹣t ﹣3)﹣2]+(2t 2﹣3t +1).【变式3-1】先去括号,后合并同类项:(1)x +[﹣x ﹣2(x ﹣2y )];(2)12a ﹣(a +23b 2)+3(−12a +13b 2); (3)2a ﹣(5a ﹣3b )+3(2a ﹣b );(4)﹣3{﹣3[﹣3(2x +x 2)﹣3(x ﹣x 2)﹣3]}.【变式3-2】去括号,合并同类项(1)﹣3(2s ﹣5)+6s ;(2)3x ﹣[5x ﹣(12x ﹣4)]; (3)6a 2﹣4ab ﹣4(2a 2+12ab );(4)﹣3(2x 2﹣xy )+4(x 2+xy ﹣6)【变式3-3】先去括号,再合并同类项;(1)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)(3)2x﹣[2(x+3y)﹣3(x﹣2y)](4)(a+b)2−72(a+b)−54(a+b)2+(﹣3)2(a+b).【题型4 利用添括号与去括号求值】【例4】(2020秋•北碚区校级期中)若代数式2mx2+4x﹣2(y2﹣3x2﹣2nx﹣3y+1)的值与x的取值无关,则m2019n2020的值为()A.﹣32019B.32019C.32020D.﹣32020【变式4-1】已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A.1B.5C.﹣5D.﹣1【变式4-2】观察下列各式:①﹣a+b=﹣(a﹣b);②2﹣3x=﹣(3x﹣2);③5x+30=5(x+6);④﹣x ﹣6=﹣(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1﹣b=﹣1,求﹣1+a2+b+b2的值.【变式4-3】先阅读下面的文字,然后按要求解题:例:1+2+3+…+100=?如果一个一个顺次相加显然太繁琐,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法运算律,是可以大大简化计算,提高运算速度的.因为1+100=2+99=3+98=…=50+51=101所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×=.(1)补全例题的解题过程;(2)计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b)+(a+100b)。

去括号和添加括号法则及练习(精排版)

去括号和添加括号法则及练习(精排版)

去括号添括号法则及练习一、去括号法则:1、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;字母表示:a +(b + c)= a + b + c例如:23+(77+56)=23+77+56a +(b - c)= a + b - c例如:38+(62-48)=38+62-482、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变为相反的符号;字母表示:a -(b + c)= a - b - c例如:159-(59+26)=159-59-26a -(b - c)= a - b + c例如:378-(78-39)=378-78+393、去括号时,应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.x+(y-z)-(-y-z-x) =4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.a+3(2b+c-d)=5、遇到多层括号一般由里到外,逐层去括号,也可由外到里,数"-"的个数.24-(176+24)+[276-72-(134-72)+234]例题:4+(5+2) 4-(5+2)= =a+(b+c) a-(b+c)= =去括号练习:(1)a+(-b+c-d)=(2)a-(-b+c-d) =(3)-(p+q)+(m-n)=(4)(r+s)-(p-q) =(5)x+(y-z)-(-y-z-x) =(6)(2x-3y)-3(4x-2y)=下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c =-x-y+xy-1二、添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号。

添去括号法则小口诀

添去括号法则小口诀

添去括号法则小口诀
嘿,朋友们!今天咱们来聊聊添去括号法则的小口诀,这可是数学里很有用的小窍门哦!
先说添括号法则的口诀,“添括号,看符号。

正不变,负全变。

”啥意思呢?就是说如果括号前是加号,添括号后里面的符号都不变;要是括号前是减号,添括号后里面的符号全都要变。

比如说,a + b c ,要在 b c 前添括号,因为前面是加号,所以添上括号就是a + (b c)。

要是 a b + c ,在 b + c 前添括号,前面是减号,那就得变成 a (b c)。

再来说说去括号法则的口诀,“去括号,看符号。

正不变,负全变。

”这和添括号法则是一个道理哦。

像(a + b c),括号前是加号,去掉括号后就是 a + b c 。

但要是(a b + c),括号前是减号,去掉括号就得变成 a b c 。

怎么样,是不是觉得这口诀还挺简单好记的?可别小看这小小的口诀,它能帮咱们在做数学题的时候又快又准呢!
每次做题的时候,心里默念一下口诀,就不容易出错啦。

而且多练习几遍,这法则就能深深地印在咱们的脑子里,做题的时候就能自然而然地用出来。

其实数学里好多知识都有这样的小窍门,只要咱们用心去发现,去记住,数学就没那么可怕啦,还会变得很有趣呢!
所以呀,大家一定要把这个添去括号法则的小口诀记住哦,这样在数学的海洋里就能更轻松地畅游啦!加油哦,小伙伴们!。

七年级初一上去括号和添括号法则

七年级初一上去括号和添括号法则

精心整理-来源网络 2.3去括号与添括号一、教材分析“添括号”与“去括号”是整式加减运算的必不可少的步骤,它的导出,本质上是运算律的运用。

运算律是代数中最基本、最重要的内容,这节课就是灵活运用这一数学通性,推导出“去括号”和“添括号”法则的实践课。

在“去括号”法则探究过程中,始终注意引导学生运用运算律12(再提问:这样式子如何化简?(学生分组讨论,然后小组代表回答。

)由此引入本节课题,教师板书课题“去括号、添括号”。

(教学说明:在复习旧知中,学生在合并同类项时遇到新问题,如何解决呢?学生急于知道,从而激发了学生的求知欲。

)(二)体会过程,探索规律上式中(2ab—πr2)=(+1)×(2ab—πr2)=(+1)×2ab-(+1)×πr2(分配律)法则,教师板书去括号法则。

(1)括号前面是“+”号,把括号连同它前面的“+”号去掉,括号内各项不变符号。

(2)括号前面是“一”号,把括号连同它前面的“一”号去掉,括号内各项都要改变符号。

我们将上面两式反过来看可以得到以下两个等式:--+=-+-a b c a b c+-=++-,()a b c a b c()-来源网络(1)你能用运算律解释上面两个式子吗?(2)你能发现这两个等式中各项符号的规律吗?请用自己的语言表述你发现的规律。

添括号法则:(1)所添括号前面是“+”号,被括进来的各项不改变符号;(2)所添括号前面是“-”号,被括进来的各项都要改变符号。

(教学说明:学生通过具体例子的运算、观察、发现,从而得出去括号、添括号法则,通过自主探究、合作交流,养成独立思考及与他人合作的学习习惯,体验数学学习充满着探索性和创造性。

)(12(-⨯(1)(123(六)自主总结、谈谈体会1、本节课学习了什么知识,用来解决什么问题?2、在去括号和添括号的过程中,你们常出现的错误是什么?(七)作业习题2.3第4、5、6题教学反思:-来源网络-来源网络。

3. 去括号与添括号

3. 去括号与添括号
解:(1)原式=x-3+6x-3x2-4+6x-2x2 =(-3x2-2x2)+(x+6x+6x)+(-3-4) =-5x2+13x-7
(2)原式=3x2-5xy+{-x2-[-3xy+2x2-2xy+y2]} =3x2-5xy+{-x2+3xy-2x2+2xy-y2} =3x2-5xy-x2+3xy-2x2+2xy-y2 =(3x2-x2-2x2)+(-5xy+3xy+2xy)-y2=-y2
=2xy-10xy2-3xy2+xy =3xy-13xy2 当x=-1,y=1时,原式=3×(-1)×1-13×(-1)×12
=-3+13=10
评析:根据已知条件,由非负数的性质,先求出x、y 的值,这是求值的关键,然后代入化简后的代数式, 进行求值。
思考:已知A=3a2+2b2,B=a2-2a-b2,求当 (b+4)2+|a-3|=0时,A-B的值。
(A)a2+(-2a+b+c) (C)a2+(-2a)+b+c
(B)a2+(-2a-b-c) (D)a2-(-2a-b-c)
评析:此题既要用去括号,又要用添括号法则,即先去括号, 再添括号,然后选择正确答案。
精讲: 讲解点4:添括号法则的应用
添括号一个最简单的应用就是简便计算, 根据加法的交换律和结合律,把一些特 殊的项括到括号里先计算,从而使整个 式子的计算大为简便。另外还可以按照 题目的要求,把多项式中具有某些特征 的项重新排列或分组,达到预定的要求, 此时就要添括号了。
[典例] 化简18x2y3-[6xy2-(xy2-12x2y3)]

24.3 去括号和添括号课件 2024-2025-华东师大版(2024)数学七年级上册

24.3 去括号和添括号课件 2024-2025-华东师大版(2024)数学七年级上册
去掉,括号里的各项都不改变正负号. 2. 括号前面是“-”号,把括号和它前面的“-”号
去掉,括号里的各项都改变正负号.
典例精析
例1 去括号: (1) a + (b - c); (3) a + (-b + c);
(2) a - (b - c); (4) a - (-b - c).
解:(1) a + (b - c) = a + b - c. (2) a - (b - c) = a - b + c. (3) a + (-b + c) = a - b + c. (4) a - (-b - c) = a + b + c.
2. 所添括号前面是“-”号,括到括号里的各项都 改变正负号.
添括号与去括号的过程正好相反,添括号是否正确, 可以用去括号法则检验!
做一做
在括号内填入适当的项: (1) x2 - x + 1 = x2 - ( x - 1 ); (2) 2x2 - 3x - 1 = 2x2 + ( -3x - 1 ); (3) (a - b) - (c - d) = a - ( b + c - d ).
第二章 整式及其加减
2.4 整式的加减
3 去括号和添括号
华师版七年级(上)
教学目标
1. 掌握去括号、添括号的法则. 2. 能利用去(添)括号法则进行简单的计算. 重点:去(添括号)法则. 难点:利用去(添括号)进行简单的计算.
导入新课
问题 周三下午,校图书馆内起初有 a 位同学. 后来又 有一些同学前来阅读,第一批来了 b 位同学,第二批 又来了 c 位同学,则图书馆内共有 (a + b + c) 位同学.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上去括号和添括
号法则
Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-
2.3去括号与添括号
一、教材分析
“添括号”与“去括号”是整式加减运算的必不可少的步骤,它的导出,本质上是运算律的运用。

运算律是代数中最基本、最重要的内容,这节课就是灵活运用这一数学通性,推导出“去括号”和“添括号”法则的实践课。

在“去括号”法则探究过程中,始终注意引导学生运用运算律进行推导,启发学生将推导的过程用语言归纳出“去括号”法则,“添括号”法则的得出通过“等式的反身性”和“乘法分配律”两种途径得出。

二、教学目标
1、掌握去括号、添括号法则,并能熟练的运用法则进行计算。

2、在去括号、添括号法则的教学中,通过学生的观察、思考、练习,培养他们的观察、推理和归纳思维能力等,并进一步培养他们的发现、分析、解决问题的能力。

三、教学重点
去括号、添括号法则。

四、教学难点
括号前面是负号时,去括号、添括号法则的应用。

五、教学流程
(一)复习引入提问学生:
(1)做过习题1.4第4题后,有什么体会?
(2)做过习题2.2第10后,能得出什么结论?
问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余部分油漆,请根据图中尺寸(教材图2—6),算出:较大一面墙比较小一面墙的油漆面积大多少?
为生讨论后,就学生得出的(2ab—πr2)-(ab
(甲)
(2ab—πr2)-(ab—πr2)如何计算要计算上式,先要去括号,如何去括号呢
再提问:这样式子如何化简(学生分组讨论,然后小组代表回答。


由此引入本节课题,教师板书课题“去括号、添括号”。

(教学说明:在复习旧知中,学生在合并同类项时遇到新问题,如何解决呢?学生急于知道,从而激发了学生的求知欲。

)
(二)体会过程,探索规律
上式中 (2ab—πr2)=(+1)×(2ab—πr2)
=(+1)×2ab-(+1) ×πr2 (分配律)
=2ab—πr2
-(ab—πr2)=(-1)×(ab—πr2)
=(-1)×ab—(-1) ×πr2 (分配律)
= -ab +πr2
通过上面去括号后,我们有
(2ab—πr2)-(ab—πr2)=2 ab—πr2- ab+πr2
= (去括号)
= (交换律)
= (结合律)
= (分配律)(教学说明:这一过程由学生完成,并注意请学生搞清楚,计算中每一步的根据是什么?——培养推理有据的习惯。


问:由上面的运算可以看出,去括号运算的根据是什么?(分配律)
请你模仿上面的做法,完成下面的去括号:
a b c
++-= ,()
-+-=。

a b c
()
引导学生观察左右两边的变化规律,教师问:你能得出什么规律?
学生讨论交流,教师引导学生将上面的练习过程及结果用语言概括出,从而归纳出去括号的法则,教师板书去括号法则。

(1)括号前面是“+”号,把括号连同它前面的“+”号去掉,括号内各项不变符号。

(2)括号前面是“一”号,把括号连同它前面的“一”号去掉,括号内各项都要改变符号。

我们将上面两式反过来看可以得到以下两个等式:
()a b c a b c +-=++-, ()a b c a b c --+=-+-
(1)你能用运算律解释上面两个式子吗?
(2)你能发现这两个等式中各项符号的规律吗?请用自己的语言表述你发现的规律。

添括号法则:
(1)所添括号前面是“+”号,被括进来的各项不改变符号;
(2)所添括号前面是“-”号,被括进来的各项都要改变符号。

(教学说明:学生通过具体例子的运算、观察、发现,从而得出去括号、添括号法则,通过自主探究、合作交流,养成独立思考及与他人合作的学习习惯,体验数学学习充满着探索性和创造性。


(三)练习巩固,熟悉法则
1、教材P.73,练习1、2。

2、教材P. 74,练习1、2、3。

(四)例题讲解
例1 先去括号,再合并同类项:
(1)()()()x y z x y z x y z +-+-+---;
(2)2222(2)(2)a ab b a ab b ++--+。

(教学说明:例1使学生掌握去括号法则,复习合并同类项,特别是(2)中
22(1),(1)(2),(1)a ab b -⨯-⨯-⨯它们的和如何表示,是学生最容易出错的地方。


(五)提高训练,培养能力
1、化简:
(1)5(53)(2)a a b a b ---+-; (2)2(2)5(3)xy y xy y --++。

2、教材P73,练习3。

(教学说明:上述题目的设置,目的是进一步巩固所学法则,同时提高学生的综合能力,这里可看到去括号、添括号,合并同类项等代数知识在解决实际问题中的重要作用。


3、a b +
(六)自主总结、谈谈体会
1、本节课学习了什么知识,用来解决什么问题?
2、在去括号和添括号的过程中,你们常出现的错误是什么?(七)作业习题2.3第4、5、6题
教学反思:。

相关文档
最新文档