扫描电子显微分析与电子探针

合集下载

_扫描电镜与电子探针分析

_扫描电镜与电子探针分析

_扫描电镜与电子探针分析扫描电镜(Scanning Electron Microscope,SEM)和电子探针分析(Energy Dispersive X-ray Spectroscopy,EDS)是现代材料科学和纳米技术领域中广泛应用的两种重要分析技术。

本文将分别介绍扫描电镜和电子探针分析的原理、仪器结构和应用。

一、扫描电镜(SEM)扫描电镜是一种基于电子束的显微镜,通过聚焦的电子束对样品表面进行扫描,获得高分辨率的图像。

相比传统光学显微镜,SEM具有更高的分辨率和更大的深度聚焦能力。

SEM的工作原理如下:1.电子源:SEM使用热阴极电子枪产生的高速电子束。

电子束由一根细丝产生,经过加热后电子从细丝上发射出来。

2.透镜系统:电子束经过电子透镜系统进行聚焦和调节。

透镜系统包括几个电磁透镜,用于控制电子束的聚焦和扫描。

3.样品台:样品台用于固定样品并扫描表面。

样品通常需要涂覆导电性材料,以便电子束可以通过样品表面。

4.探测器:SEM使用二次电子和背散射电子探测器来检测从样品表面散射的电子。

这些探测器可以转化为图像。

SEM可以提供高分辨率的表面形貌图像,并通过电子束的反射和散射来分析样品的成分、孔隙结构和晶体结构等。

其应用广泛,包括材料科学、纳米技术、电子器件等领域。

二、电子探针分析(EDS)电子探针分析是一种基于X射线的成分分析技术,常与扫描电镜一同使用。

EDS可以对样品的元素成分进行快速准确的定性和定量分析。

其工作原理如下:1.探测器:EDS使用一个固态半导体探测器来测量从样品发射的X射线。

当样品受到电子束轰击时,样品中的元素原子被激发并发射出特定能量的X射线。

2.能谱仪:EDS使用能谱仪来分析探测到的X射线,该仪器能够将X 射线能量转换成电压信号,并进行信号处理和分析。

3.能量分辨率:EDS的精度取决于能谱仪的能量分辨率,分辨器的能量分辨率越高,分析结果越准确。

4.谱库:EDS使用事先建立的元素谱库进行定性和定量分析。

材料分析测试方法名词解释(2)

材料分析测试方法名词解释(2)

材料分析测试方法名词解释(2)材料分析测试方法名词解释36、超点阵斑点:当晶体内部的原子或离子发生有规律的位移或不同种原子产生有序排列时,使得原来消光的斑点重新出现,这种额外的斑点称为超点阵斑点。

37、二次衍射斑点:电子受原子散射作用强,致使衍射束强度可与透射束强度相当,一次衍射束作为新的入射束产生“二次衍射”。

“二次衍射”使得一些|FHKL|=0的消光又出现强度,这种斑点称为“二次衍射斑点”。

38、菊池花样:当电子束穿透较厚单晶样品时,除了衍射斑点外还会出现一些平行的亮暗线对,此即为菊池花样或菊池线——是非弹性散射的电子又被弹性散射的结果。

39、电子显微图像:物镜背焦面上各衍射斑点的球面波在物镜像平面上干涉所成图像,具有黑白衬度,且与样品的微观组织相对应。

40、像衬度:图像上不同区域间明暗程度的差别。

是在物镜背焦面上通过物镜光阑选择透射斑或衍射斑成像的结果。

41、质厚衬度:由于样品上不同微区质量(原子序数Z)或厚度差异而形成的衬度,是解释非晶体样品电子显微图像衬度的理论依据。

42、非弹性散射:入射电子与核外电子相互作用,除了方向的改变还有能量的变化。

43、衍衬衬度:由于晶体样品中各处衍射束强度差异而形成的衬度。

对于没有成分差异的单相材料,衍衬衬度是由样品各处满足布拉格条件程度的差异造成的。

44、中心暗场成像:将入射束反向倾斜一个相应角度,使散射电子沿光轴传播。

45、双光束条件:对于晶体样品,在明场像条件下只有(HKL)面满足衍射条件(衍射强度IHKL),其余晶面均与衍射条件存在较大偏差(衍射强度视为零),此时除直射束外只有一个强衍射束即(HKL)衍射束,构成“双光束条件”。

46、相位衬度:由于入射电子束相位改变而引起的衬度。

47、消光距离:强烈的动力学相互作用的结果,使得I0和Ig在晶体深度方向上发生周期性的振荡。

振荡的深度周期即为“消光距离”——ξg48、扫描电子显微镜:继透射电子显微镜后发展起来的一种电子显微镜。

SEM或EPMA为什么要选电子探针

SEM或EPMA为什么要选电子探针

SEM或EPMA?为什么要选电子探针?扫描电子显微镜和电子探针显微分析仪基本原理相同,但很多人分不清其差异。

今天小析姐就和大家简单看一看两者的区别,EMPA技术的使用情况,为什么要选EMPA。

(PS:文末有惊喜)电子探针是一种工具,能够得到精确的样品的微米尺寸的域的定量化学分析。

高能电子的聚焦光束(点)与样品中的原子相互作用,产生X射线(和其他信号),我们将其与标准中的计数进行量化和比较。

它名义上是非破坏性的。

扫描电镜-是什么?SEM是一种生成我们样本的图像的工具。

一个光栅(扫描)的高能量电子束扫过表面,与样品中的原子相互作用,产生背散射电子,二次电子,俄歇电子,并在某些情况下产生光子在可见光范围(CL)。

它名义上是非破坏性的。

EPMA电子探针微量分析:这项技术有它自己的特点、优点、缺点。

它是值得考虑它是否是最好的技术来获取您所需要的信息。

(1)这是一种微技术,对于多相样品提供了离散的组合物,而不是总成分。

(2)在“正常操作条件”下,它的样本量(宽度,深度)以~ 1-3μm为标准,对于较小的夹杂物或薄膜来说限制了它的实用性。

(3)提供了微量元素的主量和微量定量,对微量元素分析的能力有限。

(4)尽管是无损的,样品需要安装和抛光;他们可以重新分析多次。

(5)它相对便宜而且容易获得。

(6)某种程度的复杂性。

SEM扫描电镜:(1)它提供的图像很容易理解,但需要了解各种参数(如工作距离、分辨率等)不能出现错误,影响图像质量。

(2)样品可以成像小的准备或没有准备(涂料、安装抛光),尽管这可能使详细检查变复杂。

(3)这种技术是相当简单的,可以在短时间内学习要点。

(4)使用EDS软件很容易出错,特别是试图获得小颗粒的化学反应。

EPMA的构造与SEM大体相似,只是增加了接收记录X射线的谱仪。

EPMA使用的X射线谱仪有波谱仪和能谱仪两类。

电子探针结构示意图1、能谱仪能谱仪全称为能量分散谱仪(EDS)。

目前最常用的是Si(Li)X射线能谱仪,其关键部件是Si(Li)检测器,即锂漂移硅固态检测器,它实际上是一个以Li为施主杂质的n-i-p型二极管。

扫描电子显微分析与电子探针演示文稿

扫描电子显微分析与电子探针演示文稿

扫描电子显微分析与电子探针演示文稿一、介绍电子显微分析技术是通过对物质进行扫描和分析,利用扫描电子显微镜和电子探针来获取材料的化学成分、晶体结构和显微结构等信息。

本文将介绍扫描电子显微分析和电子探针的原理、应用和相关技术。

二、扫描电子显微分析原理1.高能电子入射2.电子-物质相互作用当高能电子束与样品表面相互作用时,会产生多种次级电子、散射电子和反冲电子等。

通过检测和分析这些次级电子,可以推断出材料的表面形态、原子分布等信息。

3.映射制图三、电子探针电子探针是在扫描电子显微镜上配备的一个仪器,用于对样品进行微区分析,可以获得样品的化学成分、晶体结构和显微结构等信息。

1.材料组成分析电子探针可以通过扫描样品表面并测量X射线谱来确定样品的化学成分。

当高能电子束与样品相互作用时,会产生特定能量的X射线,通过测量和分析这些X射线的能量和强度,可以准确地确定样品中元素的类型和含量。

2.显微区结构分析电子探针还具有高空间分辨率,可以在显微区域内对样品的晶体结构进行分析。

利用电子束的扫描和集线系统结构,研究者可以选择一个很小的区域进行分析,从而得到显微区的晶体结构信息。

四、应用领域1.材料科学在材料科学中,扫描电子显微分析和电子探针技术可用于分析和表征各种材料的组成、晶体结构和显微结构,如金属材料、陶瓷材料、复合材料等。

这些信息有助于研究者了解材料的性能和性质。

2.地质学3.生物学五、技术发展1.分辨率的提高新一代的扫描电子显微镜和电子探针仪器分辨率更高,可实现更高精度的成分分析和显微观察。

例如,现在的仪器可以实现亚纳米级别的空间分辨率。

2.信号检测和处理技术的改进通过改进信号检测和处理技术,使得扫描电子显微分析和电子探针技术对噪声和干扰信号的抑制能力更强,从而提高了数据的准确性和可靠性。

六、总结扫描电子显微分析和电子探针技术是现代材料科学研究中不可或缺的工具。

它们在分析样品的化学成分、晶体结构和显微结构等方面具有重要作用,广泛应用于材料科学、地质学和生物学等领域。

电子探针扫描电镜显微分析

电子探针扫描电镜显微分析

第八章 电子探针、扫描电镜显微分析中国科学院上海硅酸盐所李香庭1 概论1.1 概述电子探针是电子探针X射线显微分析仪的简称,英文缩写为EPMA(Electron probe X-ray microanalyser),扫描电子显微境英文缩写为SEM(Scanning Electron Microscope)。

这两种仪器是分别发展起来的,但现在的EPMA都具有SEM的图像观察、分析功能,SEM也具有EPMA的成分分析功能,这两种仪器的基本构造、分析原理及功能日趋相同。

特别是现代能谱仪,英文缩写为EDS(Energy Dispersive Spectrometer)与SEM组合,不但可以进行较准确的成分分析,而且一般都具有很强的图像分析和图像处理功能。

由于EDS分析速度快等特点,现在EPMA通常也与EDS组合。

虽然EDS的定量分析准确度和检测极限都不如EPMA的波谱仪(Wavelength Dispersive Spectrometer ,缩写为WDS)高,但完全可以满足一般样品的成分分析要求。

由于EPMA与SEM设计的初衷不同,所以二者还有一定差别,例如SEM以观察样品形貌特征为主,电子光学系统的设计注重图像质量,图像的分辨率高、景深大。

现在钨灯丝SEM的二次电子像分辨率可达3nm,场发射SEM二次电子像分辨率可达1nm。

由于SEM一般不安装WDS,所以真空腔体小,腔体可以保持较高真空度;另外,图像观察所使用的电子束电流小,电子光路及光阑等不易污染,使图像质量较长时间保持良好的状态。

EPMA一般以成分分析为主,必须有WDS进行元素成分分析,真空腔体大,成分分析时电子束电流大,所以电子光路、光阑等易污染,图像质量下降速度快,需经常清洗光路和光阑,通常EPMA二次电子像分辨率为6nm。

EPMA附有光学显微镜,用于直接观察和寻找样品分析点,使样品分析点处于聚焦园(罗兰园)上,以保证成分定量分析的准确度。

EPMA和SEM都是用聚焦得很细的电子束照射被检测的样品表面,用X射线能谱仪或波谱仪,测量电子与样品相互作用所产生的特征X射线的波长与强度,从而对微小区域所含元素进行定性或定量分析,并可以用二次电子或背散射电子等进行形貌观察。

电子探针、扫描电镜显微分析之一

电子探针、扫描电镜显微分析之一

第八章 电子探针、扫描电镜显微分析中国科学院上海硅酸盐所李香庭1 概论1.1 概述电子探针是电子探针X射线显微分析仪的简称,英文缩写为EPMA(Electron probe X-ray microanalyser),扫描电子显微境英文缩写为SEM(Scanning Electron Microscope)。

这两种仪器是分别发展起来的,但现在的EPMA都具有SEM的图像观察、分析功能,SEM也具有EPMA的成分分析功能,这两种仪器的基本构造、分析原理及功能日趋相同。

特别是现代能谱仪,英文缩写为EDS(Energy Dispersive Spectrometer)与SEM组合,不但可以进行较准确的成分分析,而且一般都具有很强的图像分析和图像处理功能。

由于EDS分析速度快等特点,现在EPMA通常也与EDS组合。

虽然EDS的定量分析准确度和检测极限都不如EPMA的波谱仪(Wavelength Dispersive Spectrometer ,缩写为WDS)高,但完全可以满足一般样品的成分分析要求。

由于EPMA与SEM设计的初衷不同,所以二者还有一定差别,例如SEM以观察样品形貌特征为主,电子光学系统的设计注重图像质量,图像的分辨率高、景深大。

现在钨灯丝SEM的二次电子像分辨率可达3nm,场发射SEM二次电子像分辨率可达1nm。

由于SEM一般不安装WDS,所以真空腔体小,腔体可以保持较高真空度;另外,图像观察所使用的电子束电流小,电子光路及光阑等不易污染,使图像质量较长时间保持良好的状态。

EPMA一般以成分分析为主,必须有WDS进行元素成分分析,真空腔体大,成分分析时电子束电流大,所以电子光路、光阑等易污染,图像质量下降速度快,需经常清洗光路和光阑,通常EPMA二次电子像分辨率为6nm。

EPMA附有光学显微镜,用于直接观察和寻找样品分析点,使样品分析点处于聚焦园(罗兰园)上,以保证成分定量分析的准确度。

EPMA和SEM都是用聚焦得很细的电子束照射被检测的样品表面,用X射线能谱仪或波谱仪,测量电子与样品相互作用所产生的特征X射线的波长与强度,从而对微小区域所含元素进行定性或定量分析,并可以用二次电子或背散射电子等进行形貌观察。

第二章第6节扫描电子显微分析

第二章第6节扫描电子显微分析
• 此外,由于经过晶体衍射后,强度损失很大,所以,波谱 仪难以在低束流和低激发强度下使用,这是波谱仪的两个 缺点。
能谱议和波谱仪的谱线比较
(a)能谱曲线;(b)波谱曲线
电子探针分析的基本工作方式
• 一是定点分析,即对样品表面选定微区作定点的全谱扫描, 进行定性或半定量分析,并对其所含元素的质量分数进行 定量分析;
①扫描电子束斑直径 ; ②入射电子束在样品中的扩展效应(作用区的大小和形 状);
高能电子与材料的相互作用区的形状与大小主要取 决于样品的原子序数,入射的高能电子虽不能改变作用区 的形状,但却能影响作用区的大小。
③操作方式及其所用的调制信号 由于各种成像操作方式所用的调制信号不同,因而得
到的图像的分辨率也不同; 如:二次电子成像、背散射电子成像;

一马当先,全员举绩,梅开二度,业 绩保底 。20.10.2220.10.2204:5104:51:4204:51:42Oc t-20

牢记安全之责,善谋安全之策,力务 安全之 实。2020年10月22日 星期四4时51分 42秒T hursday, October 22, 2020

相信相信得力量。20.10.222020年10月 22日星 期四4时51分42秒20.10.22
激发源。
图10-2 电子光学系统示意图
表10-1 几种类型电子枪性能比较
•电子束斑的要求:为了获得较高的信号强度和扫描像分 辨率,电子束应具有较高的亮度和尽可能小的束斑直径; 束斑的亮度和直径与电子枪的类型有关;
2.偏转系统
• 作用:使电子束产生横向 偏转,包括用于形成光栅 状扫描的扫描系统,以及 使样品上的电子束间断性 消隐或截断的偏转系统。
谢谢大家!

材料分析方法(第4版)-第十二章

材料分析方法(第4版)-第十二章

信 号 二次电子 背散射电子 吸收电子 特征X射线 俄歇电子
深度范围 5~10
50~200 100~1000 100~1000 0.5~2
由表12-1 可见,产生俄歇电子的样品深度最小,其次为二次电子,吸 收电子和特征X射线产生的样品深度范围最大。 如图12-7,电子束在样品中一般扩展成一个滴状区域,其扩展区域深度和 形状受加速电压和样品原子序数的影响,扩展区域随加速电压升高而增大, 随样品原子序数增大而减小
5
材料分析方法-第四版
——高等学校优秀教材
第一节扫描电子显微镜的系统结构和工作原理
一、电子光学系统 3. 扫描线圈
扫描线圈的作用是使电子束偏转
,并在样品表面作有规则的扫描,
两 种 方 式 见 图 12-2 表 面 形 貌 分 析 时
,采用光栅扫描方式,电子束在样
品表面扫描出方形区域电子通道花
样分析时,采用角光栅(摇摆)扫描方
三、环境扫描模式与GSED电子探头
GSED探头工作原理:如图12-6所示,入射电子束与样品相互作用产 生的二次电子逸出样品表面,在环境二次电子探测器所加的几百伏正电压 的作用下加速向上运动;这些加速运动的二次电子与气体分子碰撞,使其
电离,产生正离子和电子(称为环境二次电子); 这个电子加速和气体电
离过程反复进行,导致原始
图12-4 低真空模式示意图
电子枪和镜筒的高真空依靠机械 泵和分子涡轮泵控制,而样品室的 压力则依靠调节外接水蒸气的浓度 ,在10~130Pa间自由切换。低真空 模 式 下 所 用 的 电 子 探 头 是 LFD ( large field detector)探头。
材料分析方法-第四版
——高等学校优秀教材
图12-8 二次电子像分辨率的测定

材料现代分析与测试 第七章 扫描探针显微分析

材料现代分析与测试 第七章 扫描探针显微分析

第七章扫描探针显微分析第一节概述电子探针显微分析(Electrom Probe Microanalysis——EPMA)也称为电子探针X射线显微分析,是利用电子光学和X射线光谱学的基本原理将显微分析和成分分析相结合的一种微区分析方法。

该分析方法特别适用于分析试样中微小区域的化学成分分析,是研究材料组织结构和元素分布状态的极为有用的分析方法。

扫描探针显微镜(Scanning Probe Microscopes 简称SPM)包括扫描显微镜(STM)、原子力显微镜(AFM)、激光力显微镜(LFM)、磁力显微镜(MFM)、静电力显微镜以及扫描热显微镜等,是一类完全新型的显微镜。

它们通过其端粗细只有一个原子大小的探针在非常近的距离上探索物体表面的情况,便可以分辨出其它显微镜所无法分辨的极小尺度上的表面特征。

一、SPM的基本原理控制探针在被检测样品的表面进行扫描,同时记录下扫描过程中探针尖端和样品表面的相互作用,就能得到样品表面的相关信息。

因此,利用这种方法得到被测样品表面信息的分辨率取决于控制扫描的定位精度和探针作用尖端的大小(即探针的尖锐度)。

二、SPM的特点1. 原子级高分辨率。

STM在平行和垂直于样品表面方向的分辨率分别可达0.1nm 和0.01nm,即可以分辨出单个原子,具有原子级的分辨率。

2. 可实时地得到实空间中表面的三维图像,可用于具有周期性或不具备周期性的表面结构研究及表面扩散等动态过程的研究。

3. 可以观察单个原子层的局部表面结构,因而可直接观察表面缺陷、表面重构、表面吸附体的形态和位置,以及由吸附体引起的表面重构等。

4. 可在真空、大气、常温,以及水和其它溶液等不同环境下工作,不需要特别的制样技术,并且探测过程对样品无损伤。

这些特点适用于研究生物样品和在不同试验条件下对样品表面的评价。

5. 配合扫描隧道谱STS(Scanning Tunneling Spectroscopy)可以得到有关表面结构的信息,例如表面不同层次的态密度、表面电子阱、电荷密度波、表面势垒的变化和能隙结构等。

扫描电子显微镜(SEM)和电子探针显微分析装置(EPMA)

扫描电子显微镜(SEM)和电子探针显微分析装置(EPMA)

扫描电⼦显微镜(SEM)和电⼦探针显微分析装置(EPMA)扫描电⼦显微镜和电⼦探针显微分析仪基本原理相同,但很多⼈分不清其差异,实际上需要使⽤电⼦探针领域⽐较少,⽽扫描电镜相对普遍。

扫描电⼦显微镜(SEM),主要⽤于固体物质表⾯电⼦显微⾼分辨成像,接配电⼦显微分析附件,可做相应的特征信号分析。

最常⽤的分析信号是聚焦电⼦束和样品相互作⽤区发射出的元素特征X-射线,可⽤EDS(X-射线能谱仪)或者WDS(X-射线波谱仪)进⾏探测分析,获得微区(作⽤区)元素成分信息,⽽WDS这个电⼦显微分析附件却来源于EPMA。

另外⼀个重要信号是背散射电⼦(Bse),其中⾼能Bse还可作为晶体衍射信号,使⽤EBSD装置获取微区晶体结构取向信息,EBSD⾃1990年代发展以来,近20年应⽤发展迅速。

扫描电镜及扫描电⼦显微分析附件(EDS、WDS、EBSD)SEM作为⼀个电⼦显微分析平台,分析附件可根据⽤户需要来选配,有需要这个的,有需要那个的,因此扫描电镜结构种类具有多样性,从tiny、small、little style,to middle、large、huge style.就EDS或WDS分析技术来讲,在SEM上使⽤,基本上使⽤⽆标样分析,获得电⼦束样品作⽤区内相对粗糙的半定量结果,因此SEM配置EDS⾮常普遍,⽽配置WDS⽐较少,其中EDS可以探测到微量元素的存在,WDS可以获得痕量元素的存在。

商品化EPMA产⽣于1955年左右,⽐SEM商品化提前10年,其主要⽬的是要精确获得微⽶尺度晶粒或颗粒的成分信息,利⽤电⼦束样品作⽤区发射的特征X射线,使⽤探测分析⼿段是WDS,⼀般配置4道WDS,中⼼对称布置在电⼦束周围,基于此标配,EPMA结构⽐较单⼀,各品牌型号结构差距不⼤。

电⼦探针显微分析装置EPMA结构原理电⼦探针显微分析系统EPMAEMPA主要追求微区化学定量结果精准,因此电⼦光学分辨率设计相对宽松,电⼦显微分析对汇聚束束电流要求较⼤,束斑较粗。

TEM,SEM,EDS,WDS 比较

TEM,SEM,EDS,WDS 比较

透射电镜、扫描电镜和电子探针微区成分分析技术等以电子束为照明源的分析仪器,都是利用电子与物质的交互作用所产生的各种信息来揭示物质的形貌、结构和成分弹性(相干)散射:原子核的正电荷对电子的吸引作用所致,电子改变方向,能量无变化。

(相干)散射波在结晶物质中可以产生相干干涉——电子衍射。

非弹性(非相干)散射:原子核及核外电子与入射电子相互作用,有能量损失,产生连续X射线谱、特征X射线谱、俄歇电子、二次电子、阴极荧光等。

要利用TEM分析材料的显微组织,首先需要制备对电子束“透明”的样品,电子束穿透固体样品的能力,主要取决于加速电压U(电子能量E)和样品原子序数Z,一般U越高、Z越低,电子穿透的厚度越大。

对电子束聚焦成像的装置——电子透镜改变透镜电流,改变f,改变放大倍数电磁透镜具有景深大、焦点长的特点:景深大: 观察粗糙表面很有利,立体感强。

焦点长: 对图像的观察记录带来方便. 荧光屏上清晰的像, 在荧光屏下的照相底片记录的像也是清晰的。

透射电镜主要由三部分组成:电子光学系统、真空系统、电源系统。

真空系统作用:防止电子束与气体分子碰撞而改变运动轨迹;防止灯丝(W丝)氧化;减少样品污染;防止电极间的高压放电(保证电子枪中电极间的绝缘)。

制样技术①复型技术(只能提供有关表面形貌的资料)塑料一级复型、碳一级复型、萃取复型②薄膜样品的制备(研究材料内部结构和晶体缺陷)切片、机械研磨或化学抛光、双喷电解或离子束轰击减薄③粉末样品的制备电子衍射与X射线衍射的比较电子衍射与X射线衍射在几何原理上有许多类同之处,均应用布拉格方程、倒易点阵、厄瓦尔德球及结构因子来讨论、分析衍射图像,二者所得到的晶体衍射花样在几何特征上也大致相似。

不同点:①显微图像与微区晶体结构分析相结合由于电子束可以聚焦,人们可借助借助于TEM显微图像,在放大几十万倍的情况下,选择小至微纳米的微区或单个晶粒进行晶体结构分析。

②电子的散射比X射线大物质对电子的散射比对X射线大得多(10 ~10倍),因此电子在物质中的穿透深度比X射线小得多,参与衍射的仅为表面的几十个原子层,故特别适用于表面和薄膜的晶体结构研究。

电子探针显微分析

电子探针显微分析
晶体 分子式 反射晶面 晶面间距(Å) 可检测元素范围(Å)
氟化锂
石英
LiF
SiO2
200
10-11
2.013
3.34
Kα系:Ca20 ~ Rb37 Lα系:Sb51 ~ U92
Kα系:S16 ~ Cu29 Lα系:Nb41 ~ W74 Mα系:Hg80 ~ U92 Kα系:Si14 ~ Fe26 Lα系:Rb37 ~ Dy66 Mα系:Hf72 ~ U92
元素分析范围:
从Mg12到U92元素
样品要求:
1) 样品不需要破坏,可以多次使用。 2) 化学分析的结果是样品成分的平均值,而电子探针分析 的是某一微区内的成分,区域范围内为微米数量级。 电子探针和扫描电镜具有相似结构。电子探针是以成分 分析精度高为其特点,显微像观察作为辅助手段使用的。 微区成分分析和高分辨显微像工作参数比较 工作内容 微区成分分析 高分辨显微像 束流(安培) 10-7~10-8 10-11~10-12 束直径(微米) 0.1~1 0.005~0.01
电子探针分为三个部分:
a) 电子光学系统 b) 样品室 c) 信号检测系统
a) 电子光学系统
这个系统为电子探针提供足够高的入射能量、足够大的束流 和在样品表面轰击点处尽可能小的束斑直径的电子探针束。 入射电子的能量取决于电子枪的加速电压,一般为30~ 50kV。电子探针采用较大的入射电流是为了提高X射线的信号强 度。
2)回转式波谱仪
原理: 聚焦圆的圆心不能移动,分光晶体和检测器在聚焦圆的 圆周上以1:2的角速度运动,以保证满足Bragg方程。 回转式波谱仪的特点: 结构简单,但出射方向 改变很大,在表面不平度很 大的情况下,由于X射线在 样品内行进的路线不同,往 往会因为吸收条件变化而造 成分析上的误差。

电子探针显微分析

电子探针显微分析

E
+
FWHM
2 noise
K为常数 E为谱线能量
16
不同分辨率的BN谱图
试样:BN (C、O),加速电压:3kV
125eV
130eV
140eV
17
2、超薄窗及无窗探头的应用
(1)有机膜超薄窗对低能量(1keV)X 射线也有较高的透过率,所以可分析轻 元素。以前Be窗口元素分析范围为11Na -92U,现在一般都用有机膜超薄窗口, 分析元素可从4Be-92U。
18
(2)无窗探头的应用
无窗探头可以检测LiKα(56eV)、重元素的L线
和M线的X射线强度提高,特别是轻元素X射线强度成 倍提高。适合于轻元素和低加速电压的元素分析。
Improvement in sensitivity of windowless design vs conventional thin window detector for selected X-ray lines
• 电子探针仪镜筒部分的构造大体上和 扫描电子显微镜相同,只是其检测器 部分使用的是X射线谱仪,专门用来检 测X射线的特征波长或特征能量,以此 来对微区的化学成分进行分析。因此 除专门的电子探针仪外,有相当一部 分电子探针仪是作为附件安装在扫描 电镜或透射电镜镜筒上,以满足微区 组织形貌、晶体结构及化学成分三位 一体同位分析的需要。
电子探针仪的结构与工作原理
• 电子探针仪的结构示意图。由图可知,电 子探针的镜筒及样品室和扫描电镜并无本 质上的差别,因此要使一台仪器兼有形貌 分析和成分分析两个方面的功能,往往把 扫描电子显微镜和电子探针组合在一起。
• 电子探针的信号检测系统是X射线谱仪,用 来测定特征波长的谱仪叫做波长分散谱仪 (WDS)或波谱仪。用来测定X射线特征能量 的谱仪叫做能量分散谱仪(EDS)或能谱仪

第三章扫描电子显微镜与电子探针显微分析

第三章扫描电子显微镜与电子探针显微分析

5. 可做综合分析。
6. SEM装上波长色散X射线谱仪(WDX)(简称 波谱仪)或能量色散X射线谱仪(EDX)(简称 能谱仪)后,在观察扫描形貌图像的同时,可 对试样微区进行元素分析。
7. 装上半导体样品座附件,可以直接观察晶体管 或集成电路的p-n结及器件失效部位的情况。
8. 装上不同类型的试样台和检测器可以直接观察 处于不同环境(加热、冷却、拉伸等)中的试 样显微结构形态的动态变化过程(动态观察)。
其它物理信号
除了上述六种信号外,固体样品中还会 产生例如阴极荧光、电子束感生效应和电 动势等信号。
这些信号经过调制后也可以用于专门的 分析。
小结
X射线
与物质相互 作用
1.散射(相干,非相干) 2.光电效应(俄歇,二次荧光,光电子) 3.透射 4.热
电子束
与物质相互 作用
1.背散射; 3.透射电子; 5.俄歇; 7.阴极荧光……
7. 非弹性背散射电子的能量分布范围很宽,从数十 电子伏到数千电子伏。
8. 从数量上看,弹性背散射电子远比非弹性背散射 电子所占的份额多。
9. 背散射电子的产生范围在1000 Å到1 μm深。
由于背散射电子的产额随原子序数的增加而增 加,所以,利用背散射电子作为成像信号不仅能 分析形貌特征,也可用来显示原子序数衬度,定 性地进行成分分析。
LaB6 filament
W filament
(2)电磁透镜(ቤተ መጻሕፍቲ ባይዱlectromagnetic lens)
• 其作用是把电子枪的束斑逐渐聚焦缩小,使原来 直径约50μm的束斑缩小成一个只有数nm的细小 束斑。
• 扫描电子显微镜一般由三个聚光镜,前两个聚光 镜是强透镜,用来缩小电子束光斑尺寸。

电子探针显微分析仪

电子探针显微分析仪

X射线显微分析仪
近年来除x射线显微分析仪之外,在其基础上又出现 许多新仪器。例如自动杂质分选仪和离子显微分析仪 等。前者是当电子束对样品进行扫描时,利用由于被 测样品的平均原子序数不同而造成的背散射电子强度 上的差异来区分杂质种类的,并可得出扫描范围、面 积率和杂质密度等信息。后面的一种仪器也称为离子 探针质量分析仪或二次离子发射显微分析仅等,它是 以离子束代替X射线显微分析仪中的电子束、以双聚 焦质谱仪代替X射线分光谱仪来对样品进行分析,它 能够用于区分同位素的种类。
X射线显微分析仪
EMA与SEM不同的是,前者着重微区成分分析而后者主要用作 图像观察。EMA和SEM中作微区化学成分分析都基于测量电子 束激发产生的x射线。这些x射线的标定和测量可以用能谱仪 (EDS)或晶体分光谱仪(CDS),后者有时称作波谱仪(WDS)。
虽然,近年来SEM配上EDS系统这种配置的仪器使用日益广泛, 但请记住.由于EMA本身的一些特点,使它在做微区成分分析 上的优越性明显地胜过SEM。EMA一般配几道CDS,并有非常 稳定的样品台和电子光学系统。这种设计,使它进行元素定量 分析的准确性较高,有利于轻元素的定性和定量分析,在痕量 元素分析上更显著地优于EDS。
X射线显微分析仪
2 原理 2.1 X射线显微分析仪的基本特点与结构 2.1.1 x射线显微分析仪的特点 2.1.2 X射线显微分折仪的基本结构
图的左边称为镜筒部分,也有人称 为镜体或电子光学系统。为了获取 所需要的电子束,镜筒内必须保持 10-5Torr左右的真空度。镜筒的上部 是由阴极(灯丝)、栅极(常称为威耐 耳特圆帽)和阳极等组成的电子枪。 电子束由电子枪产生并被加速而获 得能量,再由聚光镜和物镜将其聚 焦变细,最后照射到样品室内的样 员上。为使电子束能够照射到样品 的任意位置上,镜筒部分还装有光 学显微镜、电子束扫描装置和样品 驱动装置。

扫描电镜组织观察及电子探针的应用

扫描电镜组织观察及电子探针的应用

扫描电镜组织观察及电子探针的应用一、实验目的1. 了解扫描电镜的结构及工作原理。

2.通过实际分析, 明确扫描电镜和电子探针仪的用途。

二、结构与工作原理简介1.扫描电子显微镜(Scanning Electronic Microscopy, SEM)扫描电子显微镜(是介于透射电镜和光学显微镜之间的一种微观性貌观察手段, 扫描电镜的优点是, ①有较高的放大倍数, 20-30万倍之间连续可调;②有很大的景深, 视野大, 成像富有立体感, 可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。

目前的扫描电镜都配有X射线能谱仪装置, 这样可以同时进行显微组织性貌的观察和微区成分分析, 因此它像透射电镜一样是当今十分有用的科学研究仪器。

扫描电子显微镜是由电子光学系统, 信号收集处理、图象显示和记录系统, 真空系统三个基本部分组成。

其中电子光学系统包括电子枪、电磁透镜、扫描线圈和样品室。

扫描电子显微镜中的各个电磁透镜不做成相透镜用, 而是起到将电子束逐级缩小的聚光作用。

一般有三个聚光镜, 前两个是强磁透镜, 可把电子束缩小;第三个透镜是弱磁透镜, 具有较长的焦距以便使样品和透镜之间留有一定的空间, 装入各种信号接收器。

扫描电子显微镜中射到样品上的电子束直径越小, 就相当于成相单元的尺寸越小, 相应的放大倍数就越高。

扫描线圈的作用是使电子束偏转, 并在样品表面做有规则的扫动。

电子束在样品上的扫描动作和显相管上的扫描动作保持严格同步, 因为它们是由同一个扫描发生器控制的。

电子束在样品表面有两种扫描方式, 进行形貌分析时都采用光栅扫描方式, 当电子束进入上偏转线圈时, 方向发生转折, 随后又有下偏转线圈使它的方向发生第二次转折。

发生二次偏转的电子束通过末级透镜的光心射到样品表面。

在电子束偏转的同时还带用逐行扫描的动作, 电子束在上下偏转线圈的作用下, 在样品表面扫描出方形区域, 相应地在样品上也画出一帧比例图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


下图给出了ZrO2(Y2O3)陶瓷析出相与基体定点成分分析结果,可见 析出相(t相)Y2O3含量低,而基体(c相)Y2O3含量高,这和相图是相 符合的。
ZrO2(Y2O3)陶瓷析出相与基体的定点分析(图中数字为Y2O3mol%)

下图给出BaF2晶界线扫描分析的例子,图(a)为BaF2晶界的形貌像和 线扫描分析的位置,图(b)为O和Ba元素沿图(a)直线位置上的分布, 可见在晶界上有O的偏聚。
第二十三章 扫描电子显微分析与电子探针
第一节 扫描电子显微镜工作原理及构造

一、工作原理
图22-1 扫描电子显微镜原理示意图
二、构造与主要性能

扫描电子显微镜由电子光学系统(镜筒)、偏转系统、信号检测放大系 统、图像显示和记录系统、电源系统和真空系统等部分组成
1.电子光学系统

由电子抢、电磁聚光镜、光栏、样品室等部件组成。 作用:获得扫描电子束,作为使样品产生各种物理信号的激发源。
图10-19 Si(Li)X射线能谱仪
Si(Li)能谱仪的优点:



(1)分析速度快 能谱仪可以同时接受和检测所有不同能量的X射线光 子信号,故可在几分钟内分析和确定样品中含有的所有元素,带铍窗 口的探测器可探测的元素范围为11Na~92U,20世纪80年代推向市场 的新型窗口材料可使能谱仪能够分析Be以上的轻元素,探测元素的范 围为4Be~92U。 (2)灵敏度高 X射线收集立体角大。由于能谱仪中Si(Li)探头可以放 在离发射源很近的地方(10㎝左右),无需经过晶体衍射,信号强度几 乎没有损失,所以灵敏度高(可达104cps/nA,入射电子束单位强度所 产生的X射线计数率)。此外,能谱仪可在低入射电子束流(10-11A)条 件下工作,这有利于提高分析的空间分辨率。 (3)谱线重复性好。由于能谱仪没有运动部件,稳定性好,且没有聚焦 要求,所以谱线峰值位置的重复性好且不存在失焦问题,适合于比较 粗糙表面的分析工作。
表22-2 扫描电子显微镜景深
第二节 像衬原理与应用

一、像衬原理 像的衬度就是像的各部分(即各像元)强度相对于其平均强度的变化。 SEM可以通过样品上方的电子检测器检测到具有不同能量的信号电子 有背散射电子、二次电子、吸收电子、俄歇电子等。
1.二次电子像衬度及特点

背散射电子衬度有以下几类:

(1)成分衬度 (2)形貌衬度 (3)磁衬度(第二类)
背散电子检测效率低,衬度小 (3)主要反应原子序数衬度
二次电子运动轨迹 背散射电子运动轨迹 图10-7 二次电子和背散射电子的运动轨迹
二、应用

一、能谱仪

能谱仪全称为能量分散谱仪(EDS). 目前最常用的是Si(Li)X射线能谱仪,其关键部件是Si(Li)检测器, 即锂漂移硅固态检测器,它实际上是一个以Li为施主杂质的n-i-p型 二极管。
图22-18 Si(Li)检测器探头结构示意图

以Si(Li)检测器为探头的能谱仪实际上是一整套复杂的电子学装 置。
二次电子信号主要来自样品表层5~10nm深度范围,能量较低(小于 50eV)。 影响二次电子产额的因素主要有: (1)二次电子能谱特性; (2)入射电子的能量; (3)材料的原子序数; (4)样品倾斜角θ。
二次电子像的衬度可以分为以下几类:

(1)形貌衬度 (2)成分衬度 (3)电压衬度 (4)磁衬度(第一类)
能谱议和波谱仪的谱线比较
(a)能谱曲线;(b)波谱曲线
电子探针分析的基本工作方式

一是定点分析,即对样品表面选定微区作定点的全谱扫描,进行定性 或半定量分析,并对其所含元素的质量分数进行定量分析; 二是线扫描分析,即电子束沿样品表面选定的直线轨迹进行所含元素 质量分数的定性或半定量分析; 三是面扫描分析,即电子束在样品表面作光栅式面扫描,以特定元素 的X射线的信号强度调制阴极射线管荧光屏的亮度,获得该元素质量 分数分布的扫描图像。
4.图像显示和记录系统

作用:将信号检测放大系统输出的调制信号转换为能显示在阴极射线 管荧光屏上的图像,供观察或记录。
5.电源系统

作用:为扫描电子显做镜各部分提供所需的电源。 由稳压、稳流及相应的安全保护电路组成
6.真空系统

作用:确保电子光学系统正常工作、防止样品污染、保证灯丝的工作 寿命等。
波谱仪的特点:



波谱仪的突出优点是波长分辨率很高。如它可将波长十分接近的 VKβ(0.228434nm)、CrKα1(0.228962nm)和CrKα2(0.229351nm)3根谱线清 晰地分开。 但由于结构的特点,谱仪要想有足够的色散率,聚焦圆的半径就要足 够大,这时弯晶离X射线光源的距离就会变大,它对X射线光源所张 的立体角就会很小,因此对X射线光源发射的X射线光量子的收集率 也就会很低,致使X射线信号的利用率极低。 此外,由于经过晶体衍射后,强度损失很大,所以,波谱仪难以在低 束流和低激发强度下使用,这是波谱仪的两个缺点。
BaF2晶界的线扫描分析 (a)形貌像及扫描线位置;(b)O及Ba元素在扫描线位置上的分布

下图给出ZnO-Bi2O3陶瓷试样烧结自然表面的面分布分析结果,可以 看出Bi在晶界上有严重偏聚。

ZnO-Bi2O3陶瓷烧结表面的面分布成分分析 (a)形貌像;(b)Bi元素的X射线面分布像
Preparation of nanotube-shaped TiO2 powder
右图为形貌衬度原理
二次电子像衬度的特点:

(1)分辨率高 (2)景深大,立体感强 (3)主要反应形貌衬度。 什么是最小衬度?

ZnO
水泥浆体断口
2.背散射电子像衬度及特点

影响背散射电子产额的因素有: (1)原子序数Z (2)入射电子能量E0 (3)样品倾斜角θ
图22-6 背散射系数与原子序数的关系
图22-2 电子光学系统示意图
表22-1 几种类型电子枪性能比较
2.偏转系统

作用:使电子束产生横向偏转,包括用于形成光栅状扫描的扫描系 统,以及使样品上的电子束间断性消隐或截断的偏转系统。 偏转系统可以采用横向静电场,也可采用横向磁场。
3.信号检测放大系统

作用:收集(探测)样品在入射电子束作用下产生的各种物理信号,并 进行放大。 不同的物理信号,要用不同类型的收集系统。 闪烁计数器是最常用的一种信号检测器,它由闪烁体、光导管、光电 倍增管组成。具有低噪声、宽频带(10Hz~1MHz)、高增益(106)等 特点,可用来检测二次电子、背散射电子等信号。
二、波谱仪


波谱仪全称为波长分散谱仪(WDS)。 在电子探针中,X射线是由样品表面以下μm数量级的作用体积中激发 出来的,如果这个体积中的样品是由多种元素组成,则可激发出各个 相应元素的特征X射线。 被激发的特征X射线照射到连续转动的分光晶体上实现分光(色散), 即不同波长的X射线将在各自满足布拉格方程的2θ方向上被(与分光晶 体以2:1的角速度同步转动的)检测器接收。
1.断口形貌观察 2.显微组织观察 3.其它应用(背散射电子衍射花样、电子通道花样等用于晶体学取 向测定)
第三节 电子探针X射线显微分析(EPMA)

EPMA的构造与SEM大体相似,只是增加了接收记录X射线的谱仪。 EPMA使用的X射线谱仪有波谱仪和能谱仪两类。
图22-17 电子探针结构示意图
SEM的主要性能

(1)放大倍数 可从20倍到20万倍连续调节。 (2)分辨率 影响SEM图像分辨率的主要因素有: ①扫描电子束斑直径 ; ②入射电子束在样品中的扩展效应; ③操作方式及其所用的调制信号; ④信号噪音比; ⑤杂散磁场; ⑥机械振动将引起束斑漂流等,使分辨率下降。 (3)景深 SEM(二次电子像)的景深比光学显微镜的大,成像富有立体感。
能谱仪的缺点:


(1)能量分辨率低,峰背比低。由于能谱仪的探头直接对着样品,所 以由背散射电子或X射线所激发产生的荧光X射线信号也被同时检测 到,从而使得Si(Li)检测器检测到的特征谱线在强度提高的同时,背 底也相应提高,谱线的重叠现象严重。故仪器分辨不同能量特征X射 线的能力变差。能谱仪的能量分辨率(130eV)比波谱仪的能量分辨 率(5eV)低。 (2)工作条件要求严格。Si(Li)探头必须始终保持在液氦冷却的低温 状态,即使是在不工作时也不能中断,否则晶体内Li的浓度分布状态 就会因扩散而变化,导致探头功能下降甚至完全被破坏。
相关文档
最新文档