DVD 在线租赁模型的建立与分析

合集下载

DVD在线租赁的数学模型

DVD在线租赁的数学模型

DVD在线租赁的数学模型数学模型是通过数学语言、符号和算法来描述和解释现实生活中的问题的工具。

DVD在线租赁业务是一种基于数字技术和互联网的新型商业模式,对于该业务,数学模型有着非常重要的应用价值。

下面将介绍DVD在线租赁业务的数学模型。

一、问题描述DVD在线租赁业务是一种基于互联网的流媒体服务,用户可以通过网络订购所需的DVD,收到DVD后使用一段时间后再归还。

该业务存在一些关键问题,比如如何安排库存,如何控制用户租赁时间等问题。

下面将对这些问题进行具体描述。

1. 库存安排问题在DVD在线租赁业务中,每个DVD的使用时间不同,一些DVD可能会在一段时间内连续租出,而另一些DVD则可能长时间放置于库存中未被租赁。

因此,如何安排库存是一个非常重要的问题。

库存成本和库存量之间存在着一定的关系,库存量越高,库存成本则越高。

因此,需要找到一个合适的库存量,使库存成本最小化。

2. 用户租赁时间问题用户租赁时间会直接影响业务的盈利情况。

用户租赁时间越长,公司的收益也就越高。

但是,租赁时间过长也会导致库存中的DVD数量减少,增加库存成本。

因此,需要找到一个合适的租赁时间,使业务的收益最大化。

二、数学模型DVD在线租赁业务的数学模型可以采用动态规划模型来描述。

该模型可以将库存管理和用户租赁时间问题结合起来,以最大化业务的盈利为目标。

1. 库存管理的动态规划模型库存管理问题可以用动态规划模型来解决。

假设有一个DVD的库存,指定库存中每个DVD可以被租赁的最大时间为t,且每个DVD被租赁的时间是相互独立的。

那么该问题可以表述为:设f(i,j)表示前i个DVD中所有租赁时间不超过j的最大收益,则有:f(i,j) = max{f(i-1,j-k) + profit(i,k)}, 0 <= k <= t其中,profit(i,k)表示第i个DVD租赁k天的收益,f(i,j-k)表示前i-1个DVD所有租赁时间不超过j-k的最大收益,可以使用递推公式计算出f(i,j)。

2005B优秀论文 国家二等奖

2005B优秀论文 国家二等奖

DVD在线租赁分配模型摘要:本文建立了DVD在线租赁分配的数学模型,本文中将满意度的衡量标准认为非零数字的大小,数字越小满意度越大。

对问题一,本文通过计算会员同时租看表1中三种DVD以上的人数最大为3人,可忽略,从而得出各种DVD分配过程几乎是独立的,我们可以独立的考虑分配每一种碟片,然后通过对于每个碟片最大利用次数的考虑,得到第一问题结果为6250,3125,1563,782,313,第二小问的结果为3959,1980,990,495,198。

对问题二,建立了用0—1规划的理论模型,但枚举算法难以解答,由此本文设置了类贪心算法。

在此算法中本文先把每种DVD分配给对该DVD 偏爱度高的会员,由于每位会员均可分到三张DVD,所以我们先考虑前三个偏爱度的情况。

若能满足他们的要求就把该DVD分给他们,还有那些不满足的,就再从小到大结合后面偏爱度的DVD进行调节分配。

使各会员的满意度尽可能地大,从而使总满意度最大化。

对问题三,本文考虑两次订购,且在第一次订购中100%的会员都能得到他想看的DVD,则只需按会员满意度达到最大时各DVD的数量购买DVD。

对于第二次订购,本文中建立了两个模型:模型1主要从满足一个月内95%的会员得到他想看的DVD出发,认为每种碟片分配是等可能的,继而得出第二次分配中还需各种DVD的量。

模型2的建立是为了提高DVD的满意度,认为每种碟片被分配的概率不完全相同,我们具体将DVD分为4类并且认为每类中碟片被分配的概率与其平均点击率成线性,确定每类DVD被分配的概率,继而得需购买各各种DVD的量和总量,最后根据问题二中的算法进行分配。

由模型1得需购买的DVD总量为3082张,由模型2得需购买的DVD总量为3108张。

对于问题四,本文分别建立了DVD成本与满意度的双目标规划模型和月费与会员数的关系建立了相应的规划模型。

本文还对问题三中的两个模型进行了评价。

最后提出了改进方向:将订租时间和归还时间随机处理。

DVD在线租赁

DVD在线租赁
次, 如上述 假 设 月 底 还 回 , 4 %的 光 碟 一 个 月 只 即 0 用一 次 .0 6 %的会 员 每 月 租 两 次 , 6 % 的光 碟 一 即 0
资源和知名度 , 面向其会员群提供 日益专业化和便 捷化 的 服 务 。这 项 服 务 充 分 发 挥 了 网络 的诸 多 优 势, 包括传播范围广泛 、 直达核 心消费群 、 强烈的互 动性 、 感官性强 、 成本相对低廉等 , 为顾 客提供更为
N. V 1 J 1 o. o 5
a n.2 6 00
DVD在 线租 赁
李秋晓 杨 美玲 葛兴伟
( 京工业 职业 技术学 院 , 京 10 4 ) 北 北 00 2 摘 要: 通过 建 立一种 比较 新颖 的 网站 在 线 DV 租赁 模 型 , D 合理 安 排 了网站 购 买 D VD 的数 量 和 分 配 其 会 员租赁的 D D, V 在满足会 员偏爱程度( 权重) 最大的基础上 , 依据基本概率论、 —1 0 规划的方法, 已知表格 从
Ab t c : i a t l to u e o e d I f b i iho fr nieDVD e t l s rie th srao sr tThs ri ei r csan v l a c n d mo e o we st whc feso l e n rn as evc .I a s n e a l q a tt fDVD n u eso be u n i o y a d n mb r fDVD ih c udb e td b sme b r .I aif igt en e so t whc o l ern e y i m es ns t yn h e d fi t s s me eso h ai o h i p eee cs i etbih s a rn a pa n t eb sso o rd rv d fo te mb r n t e b ss ft er rfrn e . t sa l e e tl ln o h ai fp we eie r m h s k o aab sn rb bl y t e r n eh f n wn d t yu ig p o a it h o y a dm t o o i d 0— 1P o rm .Th n t ea t l usfr r h p i rga e h ri ep t o wad t eo t— c mie itiu in pa ys nh tcl o s eigt ehg etp oi a dt ehg etd g e f e e s a t — zd dsrb t ln b y t eial c n i rn h ih s r f n h ih s e reo mb r ’s i o y d t m s fcin a de au tsa d i rv st emo e. a t n v lae n o mp o e h d 1 Ke rs: we ;d g e fs t fcin;0— 1Prg a ywo d p o r e reo i a t a s o o rm

(计算机软件及应用)DVD在线租赁问题数学模型

(计算机软件及应用)DVD在线租赁问题数学模型
根据用户租赁需求,按照dvd的租赁费用从低到 高排序,依次满足用户需求,以达到总租赁费用 最小化。
回溯算法
在无法通过贪心算法得到最优解时,采用回溯算 法搜索所有可能的解,找到最优解。
3
分治算法
将问题拆分成若干个子问题,分别求解子问题, 再将子问题的解合并得到原问题的解。
算法复杂度分析
时间复杂度
贪心算法的时间复杂度为O(nlogn),回溯算法的时间复杂度为 O(2^n),分治算法的时间复杂度为O(nlogn)。
2. 最大利润 = 总租赁 费用 - N × C(C为 DVD的购买成本)
3. 最佳租赁策略 = argmax(总租赁费用)
求解方法:采用动态 规划方法求解最佳租 赁策略和最大利润。 通过迭代计算不同租 赁策略下的总租赁费 用和最大利润,最终 得到最优解。
04
模型求解与分析
求解算法设计
1 2
贪心算法
模型假设与符号定义
N
DVD的总数量
n
当前租赁的DVD数量
P
每张DVD的租赁费用
模型假设与符号定义
T
租赁期限(天数)
R
续租费用
F
退租费用
模型方程与求解方法
模型方程:根据问题 描述和假设,建立以 下方程来表示DVD的 租赁过程和费用计算
1. 总租赁费用 = N × P×T+n×R×TF × T × (N - n)
租赁期限、续租和退租等。
确定变量
根据问题确定相关的变量,如 DVD数量、租赁费用、租赁期 限等。
建立方程
根据问题描述和变量,建立数 学方程来表示DVD的租赁过程 和费用计算。
求解方程
通过数学方法求解建立的方程 ,得出最优解或近似解。

DVD在线租赁决策模型

DVD在线租赁决策模型

dsiuino V .A e n f e rc e s g t de t pei eD D dmad av c ir t f D t do t l w eL i i mo lo rdc t V e n , d a e tb o D h t e h t a ie u o sc t h n
产品 ,这既节约大量的制作 、配送费用 ,又方便 了
消 费者 。
在线 D VD租 赁 问题 主 要 包 括 D D 的 需 求 预 V 测 、购买和分配等问题 ,20 0 5年全国大学生数学 建模竞赛 B题就 是以此为背景 而出的,具体题 目
和 数 据 可 从 ht :/ mc c u c/ c O / mb t p / m. d . n m m 5 p . 1m 2 0 c s e s0 5 .ap下载 。
维普资讯
20 06年 1 2月 增刊







D D在 线 租 赁 决 策模 型 ’ V
侯德彬 ,常晓剑,贾世功 ( 电子科技大学 成都 60 5 ) 1 4 0
摘 要 :以 20 05年全 国大学生数 学建模 竞赛 B题 为 背景 ,针 对现在 网上 流行 的 D D在 线租 赁 V
问题是 要求 站在 网站管 理人 员的立 场 ,以网站
获得最大赢利和使会员获得最大满意度为 目 ,对 标 各种 D D的购买量 和如何根据会员订单分配拥有 V 的 D D进行 决 策。为 了简化 问题 ,我们 只考 虑 V

[ 收稿 日期】20 0 2 0 6— 7— 2
・ ・
[ 作者简介】 侯德彬(9 3一) 男,本科生,就读 于电子信息科 学与技术专业。 18 ,

11560-数学建模-2005年BD题《DVD在线租赁》题目、论文、点评

11560-数学建模-2005年BD题《DVD在线租赁》题目、论文、点评

2005年B\D题《DVD在线租赁》题目、论文、点评DVD租赁优化方案王颖高德宏...在线租赁是信息时代发展的必然趋势。

在租赁过程中,网络经营者主要关注DVD 的预测、购买和分配。

本文提出了简单随机抽样、分类预测和关联预测等三种方法进行需求预测。

针对问题一,利用需求预测得到观霜DVD的人数服从二项分布,并计算出多种可靠度下购买DVD的数量。

以会员的最大满意度为目标函数,建立一个整数规划模型,得到问题二的分配方案。

并计算出前30位会员的分配结果。

在问题三中,我们考虑到60%的会员由于两次租赁而导致DVD可重复利用,因而,采用了两阶段购买的策略,在每个购买阶段都建立了双目标整数规划,从而得到的购买量比原来网站拥有量小,并且会员的满意度达到99.38%,本文最后还给出了考虑归还DVD周期的情形下购买与分配的模型。

DVD租赁优化方案.pdf (388.78 KB)DVD在线租赁系统的优化设计李蓬蓬朱小满...本文在DVD在线租赁背景下,对DVD的租赁与归还,网方的购买与分配以及需求预测等相关问题进行了建模和研究。

首先,对题中给出的表示会员对各DVD的偏爱程度的偏好指数进行修正,提出了绝对满意度和相对满意度的合理定义。

在模型的建盘和求解上,本文首先建立了基于DVD租用次数限制的通用模型和以Pois8ion过程模拟DVD归还过程的随机服务模型解决了在预知市场需求的情况下,各DVD采购量的问题。

随后,建立0-1整数线性规划模型并结合Lingo软件进行求解,很好地回答了现有碟的一次性分配问题。

结合抽样统计的知识,建立0-1规划模型用以解答第三问的多目标规划问题。

在双目标规划的求解处理上,采取以满意度为限制条件,以碟的总量最小为目标进行规划的方式寻优求解。

针对第四问,本文引入VIP机制,分别建立并求解了VIP会员与普通会员的权重不同时的加权规划模型、VIP会员有优先权的分层规划模型。

还简单讨论了会员的信用度、邮递时间、租赁规则、DVD价格因素等实际问题DVD在线租赁系统的优化设计.pdf (315.72 KB)DVD租赁问题的模型设计及求解王成文野...本文讨论了DVD在线租赁的服务供应商可能遇到的问题与其解决方案。

DVD在线租赁问题的数学模型和计算

DVD在线租赁问题的数学模型和计算

收 稿 日期 : 07— 0— 8 20 1 0
作者简介 : 张
立( 94 ) 男 , 17 一 , 江苏武进人 , 常熟理工学 院数学系讲师 , 硕士 , 研究方向 : 优化和数学建模
维普资讯
第 2期

立 :V D D在线 租赁 问题 的数 学模 型和计算
3 : .A 每月 租借 D D一 次 的会 员 的 比例 ;:每月 租借 D D两 次 的会 员 的 比例. V A: V
4 第 i D D应该 准备 的数 量 ( =12, , , ) .b: 种 V i , 345 . 5 . 一个 月 内对第 i D D有需 求 的会员 得到 满足 的 比例 ( =12 3 4 5 . . : 种 V i ,, ,,) 6 D:D D每月可 用 次数 的数学期 望. .E V 7 , 一 个月 内对第 i .Q : 种需 求 的人数 上 限( =12 34, ) i ,, , 5 .
1 2, .0) , … 2 .
3 模 型 的建 立 和 求 解
对第 一个 问题 , 考虑 到会 员 租 赁 的 实 际情 况 , 1中给 出 的某 种 D D的人 数 可 以看 成 是 某 月 选 择 该 表 V D D人 数 的数 学期 望 , 月 实际选 择该 D D的人数 会有 少许 波动 , 文认 为对 第 种 D D的总 的需 求可 以 V 每 V 本 V
3 7
3 .客 户提 交订单 应该 注 明 自己的租借 类 型 : 该月 内一 次或 者两 次. 4 .对 于租借 一 次或者 两次 的会员 , 员 必须在 3 该会 0天 内归 还所借 的 D D V.
符号 和变量 说 明如下 : 1 .N:网站现 有 的会 员人 数. . 2 P : i D D被选 中的概率 ( =12 3 4, ) g: i D D没有 选 中的概率 ( =12 3, 5 . . 第 种 V i , , , 5 ; 第 种 V i , , 4, )

DVD在线租赁问题的最优规划模型

DVD在线租赁问题的最优规划模型
关 键词 : 性规 划 ; 线 满意度 ;ig Ln o
中圈分 类号 : B14 文 献标 识码 : 文章 编 号 :6 22 6 (0 60 -0 6 0 T 1 A 17 — 8 820 )6- 0 - 5 0
l 引 言
生 数 学建 模 竞 赛 ( U M)0 5 C MC 2 0 D题 为 例 【 应 用 l 】 , 线 性 规 划 方 法 。建 立 关 于 此 问 题 的最 优 规 划 模
所 分得 的 DV 的满意度 为 : = D Mi

× ‘ ,
凡个会员 的总体满意度为:


程度 。依此 , 我们可 以将会员的在线订单上凡是 非0 项全部算作 1从而可 以计算出定单上该张 , D 的总数 。
另 外 , 们 还 应 考 虑 到 , 为 网 站 方 , 该 我 作 应 是 定 购 的 DV 数 量 最 小 但 同 时 又 应 该 能 使 会 D 员 的满 意 度 最 大 。上 法 确 定 的 DV 数 没 有 考 D 虑 到 满 意 度 的 问题 。 为 此 。 们 参 考层 次 分 析 我
随着互 联 网 的迅 速发 展 , 电子 商务 已经成 为

种新的商务手段。D D在线租赁问题 , V 就是许
型 .并应用 LN O软件和 M Ⅱb软件进行模型 IG aa
的分 析和求 解 。
2 建模 21 符 号说 明 .
多 知名 网站利 用 自己拥有 的知 名度 , 对入 会 的会 员进 行 在线服务 的一种形 式 。网站对顾 客 收费成 为会 员 , 受 D 享 VD租 赁服 务 。会 员对 网站 提供 的
06× 2 +04X X凡 c . x x凡 . ≥s加 m% ( ) X 1

DVD在线租赁问题的模型分析

DVD在线租赁问题的模型分析

DVD在线租赁问题的模型分析摘要针对题目要求本文采用逐层深入的方法,从计算DVD购买量、按照购买量分配DVD、计算DVD购买量并且分配再核实购买量,最后考虑其他的因素,确定一套DVD网上租赁的原则.问题一,以DVD在线租赁为背景,利用概率论中数字特征等知识,通过对历史数据进行分析,结合DVD周转周期,以等概率模型计算,求得最后每种DVD购买量.问题二,建立对DVD分配方案的指派模型,以会员满足度最大为目标函数,使用贪婪算法对其求解,并最终得到分配方案:(见表7)问题三,选取调查表中偏好靠前的K张DVD,得到暂定购买量,并对其进行初次分配及二次分配,变换K的取值排列,得到6种方案,在两次分配均满足95%以上的会员得到的DVD均在其订单中的基础上,选择实际DVD量最少的方案,并得到最终各DVD购买量:(见表9)问题四,加入考虑不同租赁会员的归还时间,运用排队论泊松分布的特征函数等知识,计算得到不同租赁会员归还时间的数学期望,得到更为符合实际的DVD周转周期,从而进一步确定需要购买的DVD数量,并通过简化问题三模型,得到最终DVD购买量,并向网站管理员提出:鼓励更多会员租赁两次,有助于节省网站DVD购买成本.关键词:数字特征;周转周期;指派模型;贪婪算法;泊松分布1 问题重述随着信息时代的到来,网络成为人们生活中越来越不可或缺的元素之一.许多网站利用其强大的资源和知名度,面向其会员群提供日益专业化和便捷化的服务.例如,音像制品的在线租赁就是一种可行的服务.这项服务充分发挥了网络的诸多优势,包括传播范围广泛、直达核心消费群、强烈的互动性、感官性强、成本相对低廉等,为顾客提供更为周到的服务.考虑如下的在线DVD租赁问题.顾客缴纳一定数量的月费成为会员,订购DVD租赁服务.会员对哪些DVD有兴趣,只要在线提交订单,网站就会通过快递的方式尽可能满足要求.会员提交的订单包括多张DVD,这些DVD是基于其偏爱程度排序的.网站会根据手头现有的DVD数量和会员的订单进行分发.每个会员每个月租赁次数不得超过2次,每次获得3张DVD.会员看完3张DVD之后,只需要将DVD放进网站提供的信封里寄回(邮费由网站承担),就可以继续下次租赁.请考虑以下问题:1)网站正准备购买一些新的DVD,通过问卷调查1000个会员,得到了愿意观看这些DVD的人数(题目给出了其中5种DVD的数据).此外,历史数据显示,60%的会员每月租赁DVD两次,而另外的40%只租一次.假设网站现有10万个会员,对表1中的每种DVD来说,应该至少准备多少张,才能保证希望看到该DVD的会员中至少50%在一个月内能够看到该DVD?如果要求保证在三个月内至少95%的会员能够看到该DVD呢?2)表2中列出了网站手上100种DVD的现有张数和当前需要处理的1000位会员的在线订单,如何对这些DVD进行分配,才能使会员获得最大的满意度?请具体列出前30位会员分别获得哪些DVD.3)继续考虑表2,并假设表2中DVD的现有数量全部为0.如果你是网站经营管理人员,你如何决定每种DVD的购买量,以及如何对这些DVD进行分配,才能使一个月内95%的会员得到他想看的DVD,并且满意度最大?4)如果你是网站经营管理人员,你觉得在DVD的需求预测、购买和分配中还有哪些重要问题值得研究?请明确提出你的问题,并尝试建立相应的数学模型.2 问题分析本题对网站会员的租赁次数进行统计,得到租赁2次的会员占总人数的60%,租赁1次的会员占总人数的40%,因而可以利用概率论,得到会员不同租赁行为的概率,从而确定DVD的需求量以及分配情况.在问题一中,以抽样方式,得到1000个会员对5种新DVD的需求量,并通过选择不同租赁方式的会员占总会员的百分比得到各种DVD的周转周期,再与题目提供的抽样结果结合,得到满足不同会员需要所需要购买的DVD 数量. 对于问题二,对DVD 进行分配的目标函数为:总偏好数值最小,因而对表二的会员订单进行分析.由于订单是以数字越小表示越高的偏爱程序,同时以0作为不感兴趣的标志,因而不利于目标函数的建立.故对表二的数据进行处理,对不在会员订单范围内的DVD ,记其偏好为11,建立从1到11偏好逐渐减少的偏好数值.其次,根据每月最多2次租赁,每次租赁3张DVD ,得到目标函数的制约条件.由于本模型已有数据众多,不适合应用LINGO 软件进行求解,因而根据现有DVD 数量,选用指派问题中的贪婪算法进行求解.并列举前30名会员的分派情况.问题三为问题二的进一步细化,首先定义只有当分派的3张DVD 均在会员的在线订单中才记为满足该会员的观看要求.再对表二的数据进行简化,取各会员偏好的前几位,并对其余的偏好系数设为11.再根据简化后的数据,对各会员对某一DVD 的需求进行求和,得到第j 种DVD 的观看总人数j Q ,根据DVD 周转周期得到各DVD 的需求量 j D ,再以 jD 为暂定购买量,根据问题二的求解方法,进行第一次分配,并得到第一次分配各种DVD 的实际分派量j D ',再次以 jD 为暂定购买量,对未得到但有订单要求的偏好数值进行再次分配,同样根据问题二的求解方法,得到第二次分配各种DVD 的实际分派量j D '',通过比较j D '和j D '',得到最终的购买量.最后根据不同的简化方案得到6种方案结果,根据成本最低的原则,选择在两次分配均满足95%会员得到需要的DVD 的前提下,DVD 最终购买量最小的一种方案作为选择方案,并给出在此方案下各DVD 的购买量j D .由于租赁DVD 是一门事业,因而必然以利润为追求目的,而购买DVD 以及邮费将是租赁公司的最大成本支出.在DVD 租借过程中,每张DVD 都有其周转周期,即每张DVD 在一定时间内,将能满足大于1人的需要,本模型以周转周期为主要突破口,根据排队论得知每张DVD 的归还时间满足泊松分布,根据不同租赁次数的会员各自的归还时间分配,根据泊松分布计算其拥有DVD 的时间,并以加权函数形式,得到DVD 归还时间的数学期望,得到一个新的周转周期,并代入问题一,问题二以及问题三的模型,得到不同的分配方案以及购买方案.由于周转周期转变,因而对于一定观看人数的DVD 而言,其实际需要量也会相应改变,同时对会员的满足度上也会作出相应变化,根据“成本最低”原则,在能满足一定比例会员需求量的基础上,选择购买量最低的一个方案,使得成本能明显降低.同时由于周转周期,使得每月的分配次数也变化,在问题四中,对模型进行简化,并假设100%会员将在不久的将来每月租赁2次,从而简化模型得到最后的购买量.通过比较周转周期及会员租赁情况改变前后,DVD 总购买量的比较,得到使运营成本减少的建议方案,并针对建议方案为网站管理员提供意见.3 模型假设1) 会员除会费不需要缴纳其他款项2) DVD 运输时间算入会员租借DVD 的时间中 3) 会员每次租借DVD 的最大时间为30天4) 每月租借2次DVD 的会员以租借第一次DVD 开始计算.在30天内归还第2次租借的DVD5) 会员可在归还DVD 后,不再租借DVD 6) 会员对各DVD 的偏好短期内不产生变化 7) 每个月以30天计算8) 每位会员看完3张DVD 后马上归还网站4 符号说明::::1,2,,100012,,1000:,,,,:,,,,:j j ij ij j T D D j j Q :j j S i j (i =1,2100;j =1,21000c i j (i =1,2100;j =1,21000B 一定时间内,同一DVD 最多能满足的会员数量每张DVD 的周转周期DVD 的总需求量第张DVD 的需求量(=)第张DVD 的观看人数(=,)第号会员对第张DVD 的偏好程度)判断第号会员是否获得第张DVD )第():,,:i j tag i i =1,2100rate 张DVD 的现有存量第号会员获得的DVD 是否在其订单中()能得到满足的会员比例5 模型建立及求解在本模型中,利用概率解决DVD 的周转问题,再应用贪婪算法,在各会员的10个偏好选择中,选择满意度较大的进行分配,以达到满意度最大作为目标函数,同时,对于未能完全按照偏好进行分配3张DVD 的情况,随机对该会员分派一张DVD.模型先从制约条件较少出发,加入各制约条件或改变选择数量,不断深化.并考虑网站的成本问题,令顾客满意度DVD 成本达到最大,加入经济效益的制约因素.【问题一】假设DVD 在第一个月的第一天才开始进行租借活动,即DVD 的数量为总存量.根据表1,可以得知对1000个会员而言,愿意观看这5种DVD 的数量(见表1).表1 对1000个会员调查的部分结果则根据统计学中的抽样原理,假设网站现有10万会员,根据下列公式NN M M总量为时的观看人数=*样本数为时的观看人数 (1)可以得到10万会员愿意观看这5种DVD 的数量,见表2表2 10万会员愿意观看的情况讨论DVD 周转情况.可知当DVD 在会员手中回到网站,DVD 即能马上为其他会员拥有,因而,对于第j 张DVD 而言,其愿意观看人数为jQ (1,2,,100j = ),但并不需要j Q 张DVD ,而只是需要1*j Q λ张DVD ,其中λ是一定天数间隔A 中为同一个DVD 最多能满足的客户数,用公式表达如下:ATλ=(2) 其中,T 为每张DVD 的周转周期,单位:天则对于第j 张DVD 而言,当其观看人数为j Q 时,需要的DVD 数j D (demand )为:1**j j j T D Q Q A λ⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥ (3)下面针对问题一的两个问题进行解答:A. 保证希望看到该DVD 的会员中至少50%在一个月内能够看到该DVD由于把时间限制在一个月中,而在上述的假设已经说明,DVD 的租借从第一个月开始,故在这一个月前,没有任何的租借行为.因而在本月中,不同的租借方式有如下两种:一个月租赁1次或一个月租赁2次.根据模型假设可知,本模型以每月30天计算,因而取平均天数,得到:对于一个月租赁1次的会员,假设其拥有DVD 天数为30天;对于一个月租赁2次的会员,其每次租赁拥有DVD 的天数为30/2=15天.按照已知数据:60%会员每月租赁2次,40%会员每月租赁1次,故以此概率为权值,对DVD 周转周期T 进行加权求值:0.6*150.4*3021(T =+=天)(4) 由于要保证50%会员能观看希望看到的DVD ,而且对于一个月而言,其天数间隔A 为30天,根据公式(2)得到在此情况下,需求量D 的表达公式:0.5**30j j T D Q ⎡⎤=⎢⎥⎢⎥ (5)以表2中的愿意观看人数为j Q ,DVD 周转周期为21天代入(5)式得到各DVD 的实际需求量(见表3).表3 保证50%会员在一个月内看到DVD 所需要的DVD 数量B. 保证在三个月内至少95%的会员能够看到该DVD同样根据假设,DVD 的租借在第一个月的第一天开始,并且每月以30天计算,由于时间跨度为三个月,而且租赁中没有规定各会员每月的租赁情况相同,因而在三个月中,不同的租赁情况有4种:1)每月均租赁2次,即租借DVD6次;2)其中一个月租赁2次,其余两个月租赁1次,即租借DVD5次; 3)其中两个月每月租赁2次,另一月租赁1次,即租借DVD4次; 4)每月均租赁1次,即租借DVD3次.根据上述分析得知,假设每月租赁2次的会员拥有DVD 的时间为15天,每月租赁1次的会员拥有DVD 的时间为30天,并且60%会员每月租赁2次,40%会员每月租赁1次.根据概率,得到各会员3个月中租借DVD 次数的数学期望E :33330332212033333(0.6)*(0.4)*(6)(0.6)*6(0.6)*0.4*5*0.6*(0.4)*4(0.4)*34.8()kk k k E C k C C C C --==-=+++=∑次其中,k 为3个月中,每月租赁1次的月数,0,1,2,3k =因而,在3个月(90天)中,平均每会员拥有一次租赁DVD 的时间为9018.75()4.8=天,因而DVD 周转周期T 为18.75天.由于要保证95%会员在三个月内能观看希望看到的DVD ,由于时间间隔为3个月,因而时间间隔A 为90天,根据公式(2),得到在此情况下,DVD 需求量D 的表达式:0.95**90j j T D Q ⎡⎤=⎢⎥⎢⎥ (6)以表2中对各DVD 的观看人数为j Q ,DVD 周转周期为18.75天代入(6)得到各DVD 的需求量(见表4)表4 保证三个月内至少95%的会员能看到该DVD 所需要的DVD 数【问题二】根据题目给出的1000名会员对100张DVD 的在线订单,列举了每位会员希望租借的10张DVD ,并以数字1,2,3……表示对某DVD 的偏爱程度,数字越小,偏爱程度越高.并根据已有数据制定分配方案使得会员的满意度最高.由于题目数据中是以0表示DVD 不在会员订单中,但以1表示偏爱程度最高,对建立目标函数不便,故对题目数据进行变换:由于偏爱程度是从1-10排列,且10为偏好最小,故以数值11替换数据中的数值0,从而得到一个统一的,偏好从1-11的会员订单,其中数值1表示偏好最高,数值11表示偏好为0.(数据变换见过程见表5,表6)表5 题目给出的会员在线订单表6 替换后的会员在线订单为能建立目标函数,本模型所用的全部偏好数据均以数据处理后表6为准.根据偏好以及题目要求:制定分配方案,使得会员满意度最高,可构造0-1规划模型.目标函数:100100011min *ij ij i j c S ==∑∑ (7)其中:ij S 为第i 位会员对第j 张DVD 的偏好程度,12,,100i = ,,12,,1000j = ,;01ij i j c i j ⎧=⎨⎩表示第位会员没有获得第张DVD 表示第位会员获得第张DVD制约条件:1)32)3)0,1ijj ijj iij ccB c =≤=∑∑ (8)其中:j B j 为第张DVD 的现有数量由于本题涉及未知量为10万个(100*1000=100000),故不适宜使用LINGO 软件进行求解,本模型采用指派模型,运用贪婪算法[1],以MATLAB为编程平台,求解ijc.算法思路:1)在表6中,偏好数为11代表该DVD不在会员选择中,因而本算法计算偏好选择时,不考虑偏好为11的会员选择.2)对DVD1进行分析,首先考虑对DVD1偏好数字为1的会员总数量(记为P,当1(12,,100 jP B B j j≤=表示第种DVD的现有存量,)时,为所有对DVD1偏好为1的会员均分配一张DVD1,每分配一张DVD,DVD 存量减1;否则,按照会员编号,从小到大逐一分配DVD,直到DVD 存量为0.3)依次对DVD2,DVD3……DVD100重复思路2).4)进行对偏好数字为1的分配后,再依次对各DVD偏好为2的会员进行分配,而此时的jB为经过了前面分配后各种DVD的现有存量.重复思路2和思路3,直到对偏好10的分配完全结束.5)由于在分配过程中,可能出现某种DVD在分配过程中便已经完全分配,或对某会员而言,其10个选择DVD在对其分配前就已经存量为0的情况,故当分派完全结束后,对未能满足为其提供3张DVD的会员随机分配DVD,由于此时分配的DVD并非会员的喜爱,因而对满足度没有任何共享,但能保证1000名会员均获得3张DVD.算法流程图:图1 算法流程图根据算法,编写程序(程序见附录8.1 solve1.m ),得到ij c ,并对1ij c =所对应的,i j 值进行排列,得到第i 名会员,所能得到的DVD 序号k j ,(12,3k =,表示每人所获得的3张DVD 号),经过MATLAB 运行,得到1000名会员的分配情况,下面列举前30名会员的具体分配方案(见表7).在此分配方案下,我们得到最小偏好数值为9140,其中分配的3张DVD 均为会员所偏好的人数为799人;其中2张为会员所偏好的人数为164人;其中1张为会员所偏好的人数为37人;全部分配均不在选择范围内的人数为0人.由此可见,此分配方案在满足会员选择方面结果良好.同时为便于理解,可对最小偏好数值进行转换,具体操作是:对于每份问卷,对会员对各DVD 的偏好数值转换为为其带来的满意度,即:对偏好数值为1的DVD 给会员带来的满意度为10,偏好数值为2的DVD 给会员带来的满意度为9,如此类推,偏好数值为10的DVD 给会员带来的满意度为1,而不在在线订单中的DVD 所带来的满意度为0.则转换后,目标函数相对应的转换为:100100011max *ij ij i j c S ==∑∑(其中ij S 为满意度),运用上述程序进行计算,可得到最大满意度为23860.表7 前30名会员分配方案【问题三】问题三是对问题二的深化,并结合问题一中对DVD 周转周期的研究,通过几种不同简化数据方法的比较得到最后答案.首先对“会员得到想看的DVD ”进行定义.定义只有当分配给会员的DVD 全在会员在线订单中,才记会员得到想看的DVD ;否则认为没能满足会员想看的DVD.再确定在一个月中的分配次数.由于60%会员在一个月内租赁2次,因而按照每月分配两次对DVD 进行分配,并假设第2次分配前,第1次借出的DVD 已经收回.对两次分配均要求满足95%会员看到想看的DVD.根据上述两点说明及要求,对模型进行简化并计算.步骤如下:1) 把表6中的数据以会员编号为行,DVD 编号为列,构建一个1000行100列的矩阵,记为1000*100()ij a ,其中ij a 为第i 个会员对第j 张DVD 的偏爱程度,当11ij a =时表明对应DVD 不在某会员的在线订单中. 2) 取各会员偏好的前K 位,其余偏好数值置为11,即简化为各会员的订单只有K 张DVD ,记简化后的矩阵为1000*100()ij b .其中:K 的取值自定,并且对不同的会员可以有不同的K 值,最后对不同的K 值取法进行分析比较,得到最终答案.3) 对1000*100()ij b 进行分析,首先计算简化后,希望观看第j 张DVD 的总人数j Q ,为方便统计j N 的值,引入变量ij r ,ij r 的值表示如下:111011ij ij ij b r b ≠⎧⎪=⎨⎪⎩时=时 (9)则得到j Q 的表达式:10001j ij i Q r ==∑ (10)4) 根据公式(3),可以得到在一定DVD 周转周期T 的情况下,第j 张DVD的需求量 jD 的表达式: 1**j j j T D Q Q A λ⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥(11) 其中:j Q 为希望观看第j 张DVD 的总人数;λ是一定天数间隔A 中为同一个DVD 最多能满足的客户数;T 为每张DVD 的周转周期5) 以 jD 为暂定购买量,根据问题二的分配方法,以矩阵1000*100()ij a 作为各用户的偏好程度,对1000名用户进行DVD 分配,并记录第一次各张DVD 的实际分派数量j D ',并对矩阵1000*100()ij a 进行变换,对各用户第一次分配得到的3张DVD 对应的偏好数值变为11,并记变换后的矩阵为1000*100()ij c .6) 在分配过程中,为各用户加入一变量()i tag ,()i tag 的取值如下:1()i i tag i ⎧⎪⎪=⎨⎪⎪⎩第名用户在此次分配中获得的3张DVD 均为其订单中选择的0第名用户在此次分配中获得的3张DVD 有 至少1张并非其订单中选择的 (12) 记()1i tag =的总人数为TAG ,则:10001()i i TAG tag ==∑根据TAG 与会员总人数,可以得到在该轮分配中,能得到满足的会员比例rate 的表达式:TAGrate =会员总人数(13)根据题意,本问的检验条件为:95%rate ≥7) 第一次分配结束后,根据假设,仍以 jD 为暂定购买量,再次根据问题二的分配方法,但在第二次分配中以矩阵1000*100()ij c 作为各用户的偏好程度,对1000名用户进行DVD 分配,并记录第二次各张DVD 的实际分派数量j D ''.8) 对于第二次分配的结果,重复步骤6),同样,在第二次分配中,检验条件为:95%rate ≥9) 若两次分配中有任一次不能满足95%rate ≥这以检验条件,则说明本次步骤1)中选择的K 值不正确,对K 进行调整,并重复步骤1)到8),直到满足两次均有95%rate ≥. 10) 在两次均满足95%rate ≥的前提下,对各DVD 的实际需求量j D 进行求解,j D 的表达式如下:{}max ,j j j D D D '''= (14)11) 尝试不同的K 取值,在满足两次95%rate ≥的前提下,得到对应的DVD总购买量D ,其中1001j j D D ==∑,比较不同K 值下D 的数量,并从中选择一个既能满足95%会员看到想看的DVD ,同时购买DVD 数量较少的一个方案.根据题目可知,对于1000名会员而言,60%每月租赁2次,40%每月租赁1次,因而每月总租赁次数的数学期望E 用公式表达为:0.6*1000*20.4*1000*11600(E =+=次)而对于每人每次租赁DVD 数为3张,因而一个月交易DVD 总数量为4800张,平均每人交易4.8张,因而K 首先取值为100%会员均取前5位偏好,再根据计算所得结果,逐次调整K 的取值.调整原则为:当两次95%rate ≥时,K 的值往下调整或改变不同K 值之间的比例关系.下面对不同K 的取值,代入程序(程序见附录8.2 solve2.m ),利用MATLAB 求解,得到如下满足程度(见表8):的情况,因而不再对DVD 进行第二次分配.根据表8可知,对于前4种情况,均能保证两次分配的满足程度在95%以上,因而4种方案都是可取的.在方案可取的前提下,考虑DVD 成本问题.由于DVD 成本与DVD 的总购买量是成正比的,因而成本较低这一问题与DVD 总购买量较低是等价的,故在前4种方案中选择第4种方案作为K 的取值,并代入程序solve2.m 得到各DVD 的实际购买量(见表9):表9 方案4中各DVD实际购买量【问题四】由于各会员租借DVD 的时间以及归还DVD 的时间不确定,且各会员之间的租赁行为是相互独立的,根据排队论相关知识,得知会员的租借及归还时间满足泊松分布,并根据模型假设3)和模型假设4),可得在30天内,会员能在当中的任意一天归还DVD ,并且,租赁第2次前,必须先归还第一次租赁的DVD ,故对于不同租赁方式的会员,其归还时间模型不同.1) 对于每月租赁1次的会员由于每月只租赁1次,因而在30天内的任何一天,会员均可归还所借的DVD ,根据泊松分布及概率中概率之和等于1的定理[2],可得到如下式子:3011!kk k λλ-==∑ (15)其中:λ为泊松分布参数,表示归还时间对公式(15)利用MATLAB 求解,解得10λ=,并得到该泊松分布数学期望10E =,即对于每月租赁1次的会员,其归还时间数学期望为10天.2) 对于每月租赁2次的会员根据题目要求,只有在归还第1次租赁的DVD 后,才能租赁第2次,因而在30天内需要租赁2次DVD 的会员,根据模型假设2)和模型假设4),得知会员必须在第一次租借DVD 后的29天内归还才能满足其租赁第二次的需要,同时两次租赁的总归还时间之和不得大于30天.同样根据泊松分布,可以得到如下式子:2930111!!k j k k j k j λλλλ---==⎡⎤⎛⎫=⎢⎥ ⎪⎢⎥⎝⎭⎣⎦∑∑ (16) 求解公式(16),解得8λ=,并得到该泊松分布数学期望8E =,即对于每月租赁2次的会员,其归还时间数学期望为8天.对问题一,根据上述两种不同情况的分析,得到如下数据:对于每月租赁1次的会员,平均归还时间为10天;对于每月租赁2次的会员,平均归还时间为8天.结合题目已知数据:60%会员每月租赁2次;40%会员每月租赁1次.故通过系数加权,得到全体会员归还时间的数学期望E :0.6*80.4*108.8E =+=(天)因而对E 取不比它小的最小整数,得到DVD 周转周期9T =(天),代入公式(5):0.5**30j j T D Q ⎡⎤=⎢⎥⎢⎥ 以及公式(6):0.95**90j j T D Q ⎡⎤=⎢⎥⎢⎥,分别得到在考虑会员归还状况下满足:1)希望看到该DVD的会员至少50%能在一个月中看到该DVD所需要的DVD数(见表10):表10 考虑会员归还行为下50%在一个月内能看到DVD所需DVD数2)保证三个月内至少95%会员能看到该DVD所需要的DVD数(见表11):表11 考虑会员归还行为下95%在三个月内能看到DVD所需DVD数把表10,表11分别与表3,表4做比较,得知,在考虑会员归还行为后,由于DVD的周转时间变短,因而同等数量的DVD能为更多会员服务,因而在一定时间内,要满足相同数量会员要求时,需要的DVD数量明显减少,约为考虑会员归还行为前的二分之一.从经济角度上看,此种方案能很好的减少网站的购买成本,从而提高顾客满意度DVD成本的值.由于问题二并没有涉及一定时期内的DVD周转问题,因而讨论会员的归还周期就问题二这一单独问题而言并没有直接关系.但对于于问题二紧密相关的问题三而言,会员的租赁行为以及归还行为将直接影响网站预测购买DVD的总量,从而直接与网站的经营成本挂钩.为了节约成本,需要尽可能的提高每张DVD在一定时期内能服务的人数;同时为更好的对网站的未来规怀提供意见,本模型假设每一会员在一个月内将租赁DVD2次,并且在归还第一次租借DVD后才能租借第二次,两次DVD拥有时间之和小于30天(即一个月).根据计算得到的DVD周转周期9T=天,可以知道在一个月中,一个DVD最多能周转的次数30NT⎡⎤=⎢⎥⎢⎥,代入已知数据,得到考虑会员归还行为后,4N=,即一个月时间内最多一张DVD能满足4名会员的观看需要.为了简化模型,不妨假设4N≡,并且会员第一次与第二次租借DVD分别在一个月的上半月及下半月,即等价于在15天内对1000名会员进行两次不重复人员分配,再次简化为500名会员在7天内的一次分配(注:每位会员在15天内只会分配一次DVD).由于简化为500名会员的一次分配,故在本次分配中共分配DVD数量为500*3=1500(张),因而对问题三中的K取值为2K=,代入程序中进行验证,得。

DVD在线租赁(2005年数学建模D题)

DVD在线租赁(2005年数学建模D题)
DVD在线租赁 DVD在线租赁
2005年数学建模D题
问题重述
考虑如下的在线DVD租赁问题。 考虑如下的在线DVD租赁问题。顾客缴纳一定数量的月费成 DVD租赁问题 为会员,订购DVD租赁服务。会员对哪些DVD有兴趣, DVD租赁服务 DVD有兴趣 为会员,订购DVD租赁服务。会员对哪些DVD有兴趣,只要在线提 交订单,网站就会通过快递的方式尽可能满足要求。 交订单,网站就会通过快递的方式尽可能满足要求。会员提交的 订单包括多张DVD 这些DVD是基于其偏爱程度排序的。 DVD, DVD是基于其偏爱程度排序的 订单包括多张DVD,这些DVD是基于其偏爱程度排序的。网站会根 据手头现有的DVD数量和会员的订单进行分发。 DVD数量和会员的订单进行分发 据手头现有的DVD数量和会员的订单进行分发。每个会员每个月租 赁次数不得超过2 每次获得3 DVD。会员看完3 DVD之后 之后, 赁次数不得超过2次,每次获得3张DVD。会员看完3张DVD之后,只 需要将DVD放进网站提供的信封里寄回(邮费由网站承担), DVD放进网站提供的信封里寄回 ),就可 需要将DVD放进网站提供的信封里寄回(邮费由网站承担),就可 以继续下次租赁。请考虑以下问题: 以继续下次租赁。请考虑以下问题: 网站正准备购买一些新的DVD 通过问卷调查1000个会员, DVD, 1000个会员 1. 网站正准备购买一些新的DVD,通过问卷调查1000个会员,得到了 愿意观看这些DVD的人数( 给出了其中5 DVD的数据)。此外 DVD的人数 的数据)。此外, 愿意观看这些DVD的人数(表1给出了其中5种DVD的数据)。此外, 历史数据显示,60%的会员每月租赁DVD两次 而另外的40% 的会员每月租赁DVD两次, 40%只租一 历史数据显示,60%的会员每月租赁DVD两次,而另外的40%只租一 假设网站现有10万个会员,对表1中的每种DVD来说, 10万个会员 DVD来说 次。假设网站现有10万个会员,对表1中的每种DVD来说,应该至 少准备多少张,才能保证希望看到该DVD的会员中至少50% DVD的会员中至少50%在一个 少准备多少张,才能保证希望看到该DVD的会员中至少50%在一个 月内能够看到该DVD 如果要求保证在三个月内至少95% DVD? 95%的会员能 月内能够看到该DVD?如果要求保证在三个月内至少95%的会员能 够看到该DVD DVD呢 够看到该VD租给哪个会员,即分配方案,对于每 种DVD,每个会员都要知道是租还是不租。因此我们引 入 x ij 表示第j种DVD是否租给第i个会员。

DVD在线租赁DVD在线租赁 数学建模

DVD在线租赁DVD在线租赁  数学建模

数学建模论文王伟自动化与信息工程学院自091 刘宏自动化与信息工程学院电气085 关庆理学院计算0822011年7月21日DVD在线租赁摘要针对本题我们采用关键词:一、问题重述随着信息时代的到来,网络成为人们生活中越来越不可或缺的元素之一。

许多网站利用其强大的资源和知名度,面向其会员群提供日益专业化和便捷化的服务。

例如,音像制品的在线租赁就是一种可行的服务。

这项服务充分发挥了网络的诸多优势,包括传播范围广泛、直达核心消费群、强烈的互动性、感官性强、成本相对低廉等,为顾客提供更为周到的服务。

考虑如下的在线DVD租赁问题。

顾客缴纳一定数量的月费成为会员,订购DVD租赁服务。

会员对哪些DVD有兴趣,只要在线提交订单,网站就会通过快递的方式尽可能满足要求。

会员提交的订单包括多张DVD,这些DVD是基于其偏爱程度排序的。

网站会根据手头现有的DVD数量和会员的订单进行分发。

每个会员每个月租赁次数不得超过2次,每次获得3张DVD。

会员看完3张DVD 之后,只需要将DVD放进网站提供的信封里寄回(邮费由网站承担),就可以继续下次租赁。

请考虑以下问题:1)网站正准备购买一些新的DVD,通过问卷调查1000个会员,得到了愿意观看这些DVD的人数(表1给出了其中5种DVD的数据)。

此外,历史数据显示,60%的会员每月租赁DVD两次,而另外的40%只租一次。

假设网站现有10万个会员,对表1中的每种DVD来说,应该至少准备多少张,才能保证希望看到该DVD的会员中至少50%在一个月内能够看到该DVD?如果要求保证在三个月内至少95%的会员能够看到该DVD呢?2)表2中列出了网站手上100种DVD的现有张数和当前需要处理的1000位会员的在线订单(表2的数据格式示例如下表2,具体数据请从/mcm05/problems2005c.asp下载),如何对这些DVD进行分配,才能使会员获得最大的满意度?请具体列出前30位会员(即C0001~C0030)分别获得哪些DVD。

DVD在线租赁问题数学模型

DVD在线租赁问题数学模型

2)如何对手中DVD已编号有的DD0V01D进行D00分2 配,D0以03 使所D有004会员的…

DVD现有数量
8
1
22
10

意度和达到最大C00。01 0
0
2
0

C0002
1
0
9
0

会员 C0003
0
6
0
0

在线
订单 C0004
0
0
0
0

C0005
5பைடு நூலகம்
0
0
0







D001-D020表示20种DVD, C0001-C0100表示100个会员,会员的在线订单用数字1,2,…表示,数字越小表示会员 的偏爱程度越高,数字0表示对应的DVD当前不在会员的在线订单中。
问题二类似于“分配问题”或“指派问题(Assignment problem)”,我们可以对偏 爱度进行适当的处理以满足我们的要求。0-1规划是处理该问题的最佳方法,因此如 何使用这一方法将是研究问题二的关键。
问题三看似是问题一与问题二的结合(存贮+分配),但实际要复杂得多。他综合 考虑一个月内DVD的购买、分配方案,是一个多目标线性规划。从经济效益看,在 保证95%以上会员一个月内看到想看的DVD的情况下,希望购买尽量少的DVD, 从社会效应看,则要尽可能多地考虑让总的满意度最大。 这时,可以将多目标变为单目标规划,以求得一个经济与社会效益的综合最优。由 于问题三牵涉到两次分配,而对会员满意率的理解又有多种解释,因此目标及约束 函数会和问题一、问题二有很大差别。而问题三的模型又可从当前满意度最大和一 段时间内满意度最大两个角度来考虑。

DVD在线租赁的数学模型

DVD在线租赁的数学模型

DVD在线租赁的数学模型介绍在互联网时代,人们越来越依赖在线服务。

DVD在线租赁作为一种常见的在线服务方式,已成为许多人看电影的首选。

然而,如何正确制定租赁计划,既使用户感到满意,又使公司获得合理的收益,是DVD在线租赁公司经常面临的挑战。

在本文中,我们将介绍DVD在线租赁公司所使用的数学模型。

通过对不同租赁计划的分析,我们将了解这些数学模型如何用于决策制定,以保证租赁计划的成功。

数学模型租赁计划的设计是基于数学模型的。

在这个模型中,需要考虑以下因素:用户需求DVD在线租赁公司需要了解用户的喜好和需求,以制定合适的租赁方案。

用户可以选择租用几张DVD,租赁期限以及收费方式。

因此,DVD在线租赁公司需要了解用户偏好,包括喜欢的影片类型、租赁频率和数量等相关信息。

库存管理DVD在线租赁公司需要保持足够的库存,以满足用户的需求。

此外,还要考虑库存成本、采购成本和退货等因素。

因此,库存管理是该模型中的重要部分,需要考虑到库存成本和库存的最优量。

前期投入和回报DVD在线租赁公司需要考虑前期投入和回报,包括购买DVD的成本、租赁服务器的成本等。

此外,还需要计算租赁计划的收益,以形成合理的租赁收费模式。

数据分析DVD在线租赁公司需要收集并分析大量的用户数据,以了解用户需求和行为模式。

数据分析使得公司可以更好地了解他们的用户,并优化他们的租赁计划。

模型的优化优化模型是保证租赁计划成功的重要步骤。

在优化模型时,DVD在线租赁公司可以从以下几个方面入手:利润最大化DVD在线租赁公司的目标之一是获得尽可能多的收入。

他们可以通过分析数据和制定不同的租赁方案来提高利润。

成本最小化相对于获得更多的收入,DVD在线租赁公司最好的选择是尽可能地降低成本。

成本最小化可以使得公司在竞争中获得更大的优势。

最优库存库存管理是DVD在线租赁公司的关键点之一。

他们可以通过最优库存,降低库存成本和租赁计划的风险。

总结在本文中,我们介绍了DVD在线租赁公司所使用的数学模型。

数学建模-DVD租赁在线租赁问题

数学建模-DVD租赁在线租赁问题

DVD 租赁问题摘要我们通过分析题目可知,在租赁过程中,网络经营者主要关注DVD 的购买和分配。

根据题目所提出的要求,本文针对在线DVD 租赁问题中的订购、分配等问题进行了研究,建立了DVD 的购买和分配0-1规划模型,给出了该问题的优化方案。

问题一:通过对调查问卷的整理分析,我们得到了1000个会员对于其中5种DVD 愿意观看的频数。

因此我们认为愿意观看各种DVD 的人数服从二项分布,从而计算出在多种可靠度下应该购买DVD 的数量,见表一。

!问题二:题目要求如何进行分配,使会员获得最大满意度。

所以我们以会员的标准最大满意度∑∑==⨯1000110011000116i j ijijbx 为目标函数,建立一个0—1规划模型,得到分配方案,并使用软件LINGO 编程求解。

得到最大满意度%,和前30位会员的分配方案(见表五)。

问题三:我们以会员的最大满意度和网站的最小购买量建立双目标函数。

考虑到60%的会员在一个月内由于两次租赁,而致使一部分DVD 可被重复利用,因而,我们采用了分两个阶段购买的方案,在每个购买阶段都建立了双目标整数规划模型,利用lingo 求得应购买3066张。

从而使实际购买量比网站原来的拥有量小,并且使会员的满意度达到了%。

问题四:我们对新出的DVD 进行市场需求预测;利用市场预测选取购买方案,最后按会员在线的订单进行合理分配。

在这个过程中,我们追求获得最大收益。

因而一方面减少购买DVD 所需的成本,另一方面最大化满足各会员的需求。

关键词: 二项分布、0-1规划、双目标规划、满意度…一、问题重述许多网站利用其强大的资源和知名度,面向其会员群提供日益专业化和便捷化的服务。

音像制品的在线租赁就是一种可行的服务。

这项服务充分发挥了网络的诸多优势,包括传播范围广泛、直达核,为顾客提供更为周到的服务。

顾客缴纳一定数量的月费成为会员,订购DVD租赁服务。

会员提交的订单包括多张DVD,这些DVD是基于其偏爱程度排序的。

数学建模第一次作业+DVD在线租赁分析报告

数学建模第一次作业+DVD在线租赁分析报告

DVD租赁第二问报告
1建模目的:
根据订单信息,将现有的100中DVD分配给1000位会员,使分配方案总满意度最大
2关键问题分析:
1,分配方案获得最大满意度,分配依据是会员订单及他们标注的优先级
2,由于现有的DVD数量可能小于需求,会员每次实际得到的DVD可能小于3张,也就意味着可能无法完全满足
3 条件数据:
1,100种DVD分配给1000名会员
2,每个会员每月可租赁两次,每次小于等于3张
3,最大满意度:分配方案使得偏爱程度数字之和最小
4 建模方向:
1,构建矩阵A,A为1000行100列矩阵,其中,第i行第j列元记为Aij,Aij 表示第i位会员得到了第j张碟片Aij张,所以Aij=0或1,且对于矩阵A,每行之和小于等于3,每列之和小于等于该列代表的碟片的数量
2,构建矩阵B,B为100行1000列矩阵,其中,第i行第j列元Bij表示第j 位会员对第i种碟片的满意度,依题意,B为确定矩阵
3,记矩阵C=AB,则使得矩阵C范数最小的A为所求,其代表的分配方案为最佳分配方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DVD 在线租赁模型的建立与分析摘要:DVD 在线租赁业务在信息时代的今天正逐渐发展,并受欢迎。

本文以某一DVD 在线租赁业务网站的某些具体情况为例,对租赁业务部分环节进行分析,并建立模型解决了几个较典型的问题。

问题一:认为调查表具有代表性,由调查数据的规律,得到愿意观看每种DVD 的人数。

假设DVD 返还周期是30 天。

若会员要在一个月内借两次,就必须要在15 天之前返还,此时一张DVD 相当于两张来满足不同会员的需求。

根据:DVD 的流动盘数≥要求满足的会员人数,解得到第①问DVD1=6250 张,第②问DVD1=3959 张。

上方法得出的结果实际只是需购买量的上限,即最坏情况,因为它没有考察DVD 租还的动态过程,鉴于此给出改进的方法二,首先找出两类会员租借期限服从的正态分布,再计算出会员平均租借期限的置信区间,根据期限换算出DVD 月平均租借次数的下实现会员满意度达到最高和会员得到的DVD 数量尽量为3 的目标,基于此建立两个模型:多目标规划模型和改进规划模型。

对于多目标规划模型,采用贪心方法思想求解,得到满意度之和为23860,配送出的DVD 张数之和为2753,分配方案见表[3]。

对于改进规划模型,用LINGO 软件求解,得到满意度之和为24746,分配方案见表[4]。

前两种模型都没有保证每个会员必须得到3 张DVD,只是追求满意度最大。

而调整可行解模型是基于每个会员必须得到3 张DVD 的条件下,使满意度最大。

模型的算法为:先找到满足约束条件的一个可行解,再不断的迭代调整可行解直到最优。

满意度之和为24320,分配方案见表[5]。

多目标规划模型的结果在满足最优度之和最大的目标下较优。

调整可行解模型在满足会员必须得到3 张DVD 的目标下较优,并且一次分配中剩余较少。

结合对本题的理解和实际情况,调整可行解模型最优。

问题三:依据表[1],当偏爱度>4 时,统计出愿意观看每种DVD 的人数由问题一的思路,求出各种DVD 的购买量(见表[6]),算出DVD 的总张数为3562 >3000。

进一步利用问题2 贪心算法的思想,得到结果如下:DVD 总张数为3562,配送数量k 为3000,剩余DVD 的数量为562,百分比为15.78%,会员对配送出的k 张DVD 的满意度之和为27000,分配方案见表[7]。

关键字:租赁0-1 规划贪心算法LINGO 软件DVD 在线租赁模型的建立与分析1.问题的重述随着信息时代的到来,网络成为人们生活中越来越不可或缺的元素之一。

许多网站利用其强大的资源和知名度,面向其会员群提供日益专业化和便捷化的服务。

DVD 在线租赁就是其中一种可行的服务,并广受欢迎。

考虑具体问题。

顾客缴纳月费成为会员,订购DVD 租赁服务。

会员通过在线提交订单提出对哪些DVD 有兴趣,网站就会通过快递的方式尽可能满足要求。

会员提交的订单包括多张DVD,它们基于其偏爱程度排序。

网站会根据DVD 数量和在线订单进行分发。

网站政策为:会员每个月租赁次数不得超过2 次,每次获得3 张DVD。

会员看完3张DVD 之后,只需要将DVD 放进网站提供的信封里寄回(邮费由网站承担),就可以继续下次租赁。

考虑解决以下问题:1)网站正准备购买一些新的DVD,通过问卷调查出会员愿意观看各种DVD的情况。

此外,据历史数据,60%的会员每月租赁DVD 两次,另外40%只租一次。

给出一定数量会员,某些DVD,求至少准备的张数,保证希望看到各种DVD 的会员中至少50%在一个月内能够看到每一种DVD?继续做出:如果是95%在三个月内。

2)给出某时刻网站DVD 的现有张数和当前需要处理的在线订单。

设计出对这些DVD 的分配方案使会员获得最大的满意度?3)继续根据在线订单,假设其中DVD 的现有数量全部为0。

作为网站经营管理人员,决定每种DVD 的购买量,接着继续对这些DVD 进行分配,使一个月内95%的会员得到他想看的DVD,并且满意度最大?4)作为网站经营管理人员,研究在DVD 的需求预测、购买和分配中还有哪些重要问题。

明确提出问题,并尝试建立相应的数学模型。

2.问题的分析由假设可知调查表的结果具有代表性,由表1 我们可以得到每种DVD 的愿意观看人数的比例,折合10 万会员得愿意看每种DVD 的人数。

由于每人的租赁情况不同,会员分两种:每月租赁DVD 两次的会员和每月只租一次的会员。

显然每月租赁DVD 两次的会员在15 天前要还一次,则此种DVD 在这个月内可以再租给另一个人,当两张看待。

分析问题1 的两问可知:它们都要满足某DVD 的流动盘数≥要求比例⨯ 愿意观看的人数,建立线性规划可求解问题一。

DVD 的分配在使会员满意度达到最高的同时,要求每个会员一次最多只能借3 张DVD 且每种有数量的限制条件约,于是建立0-1 规划模型,可以利用贪心算法和LINGO 软件进行求解。

综合问题一和问题二的思想方法, 就可求解问题3。

3.模型假设1.DVD 经租赁后只用于会员自己观看使用,不做拷贝之用; 2.会员租赁DVD 的期限为30 天;3.会员必须在还清前一次DVD 后才能进行下次租赁;4.1000 个会员的调查结果提供的信息具有代表性,规律具有推广性 5.会员每次可租赁DVD 最多三张;6. 每次给会员配送的DVD 当中,不会有两张相同的。

4.符号说明i : 第i 个会员; j : 第j 种DVD ;W 1: W 1=40%的会员只租一次 ;W 2: W 2=60%的会员每月租赁DVD 两次; Xi : 需购买的第i 种DVD 的张数;Ai : 10 万人中愿意观看第i 种DVD 的人数;a ij : 第i 个会员对第j 种DVD 的满意度,其定义如下:,011,0ij ij ij ij ij s s a s s ==⎧⎫⎨⎬-≠⎩⎭其中s i j 越小表示满意度越高,在此转化为a ij ,它越大表示满意度越高;x ij : 第i 个会员是否被分配了第j 种DVD (0:否;1:是); d j : 第j 种DVD 的数量(算法中用D [j ]表示); S : 表示1000 个会员总的满意度。

5.问题1 的解决5.1 方法一: 分析及求解:若会员在30 天之内借DVD 两次,就必须要在15 天之前返还所借,60%的会员每月租赁两次,即DVD 总数中有60%每月被借出过两次,而另外40%的只租一次。

·对于保证至少50%会员在一个月内能够看到某种DVD 60%的DVD 一张相当于两张来满足会员的需求,40%的DVD 一张就是一张来满足会员的需求·对于保证至少95%会员在三个月内能够看到某种DVD 60%的DVD 一张相当于六张来满足不同会员的需求,40%的DVD 一张相当于三张来满足不同会员的需求·针对这两种问题,都要满足:某DVD 的流动盘数≥要求比例⨯ 愿意观看的人数,写出模型如下:目标:min (W 1αXi + W 2βXi ) 约束: W 1αXi + W 2βXi ≥γAi 其中:W 1=40% W 2=60% ①50% α=1 β=2 γ=50%②95% α=3 β=6 γ=95% 利用上述公式得到结果如下表[1]。

方法评价及改进:本方法得出的结果实际只是需购买量的上限,即最坏情况,因为它没有动态考察 DVD 租还的过程,鉴于此给出改进的方法二,涉及其动态过程。

求解准备分析:40%(W 1)的会员每月只租DVD 一次,60%(W 2)的会员每月租赁DVD 两次,故可把会员分为两类:1.租两次;2.租一次。

设第一类会员租期最短为r 1,最长期限为r 2,对第二类会员,同样相应设为r 3、r 4。

DVD 在会员手中的时间为介于最短租期与最长期限之间的变量,设为x ,并且认为x 服从正态分布N (m ,s 2 ) 求解方案及过程:1.令天数区间[r 1,r 2]为[4,16];[ r 3,r 4]为[14,26]2.两类会员租借DVD 的天数均值=34121210,2022r r r r μμ++====3.确定租期区间后,必须要求绝大部分会员(确定比例为99%)使用天数在租期区间内,根据3s 法则,由P{| x - m |≤ 3s }=0.99,算出1 s = 2 s =24.利用MATLAB 软件[1]中的randn 命令模拟产生1000 个服从上两种正态分布N(m ,s 2 )的两组随机数5 ·根据上随机数,再用normfit 命令求出均值m 的置信度为0.95 的置信区间·μ1 的置信度为0.95 的置信区间为[9.4351,10.2249]·μ2 的置信度为0.95 的置信区间为[19.8215,20.7185]·那么通过加权(w1 与w2)处理,综合两类,得到会员租借DVD 的平均天数ave_days 的置信度为0.95 的置信区间为[w1*μ1+w2*μ2,w1*μ1’+w2*μ2’]=[13.5897 ,14.4223]·一个月每张DVD 的平均租借次数ave_time 为:30 天÷ ave_days,得出ave_time 的置信区间为[2.0801,2.2076]6. 设愿意观看某种DVD 的人数为guys,它根据1000 个会员调查的部分结果表所确定的每一种比例来确定·对于保证至少50%在一个月内能够看到该种DVD应准备的该DVD 张数为ave_timeguys ⨯ 50%·对于保证至少95%在三个月内能够看到该种DVD应准备的该DVD 张数为ave_time 3/guys 95%⨯结果如下表:1.模型中认为DVD 的租借期服从某种随机分布,所以这从某个角度模拟了DVD 借还动态过程。

2.此模型中,我们是从网站管理人员的角度来考虑。

3.模型的不足有这些:①由于缺少样本(会员租借天数),只能主观认为这是个正态分布;②两类会员的租借天数综合成平均天数的操作缺少理论依据。

6.问题2 的模型建立与求解在这个分配问题中,我们认为首先应该理解“对各会员,是否如果他获得DVD 就必须是三张”。

认为得到DVD 的会员必须发三张,建立一个0-1 规划模型,用LINGO80 求解,发现其无解,即不可能满足发放会员DVD 一定是三张。

除非发给他们不想看的DVD,这样违背了会员的意愿偏好。

为避免这种情况,我们认为会员得到的DVD 必须是他想看的,他们得到的DVD 数小于等于三张,基于此我们首先建立以①满意度之和最大②得到DVD 的会员尽量是三张为目标 的多目标规划模型。

6.1 模型一:多目标规划目标:会员满意度达到最高;每个会员得到DVD 的张数与3 的距离之和最小。

相关文档
最新文档