高二理科数学期末复习测试卷6
高二数学(理科)期末试卷
高二数学(理科)期末试卷
本文档为高二数学(理科)期末试卷的题目和答案。
试卷题目包
括选择题、填空题、计算题和证明题。
试卷内容涵盖了高二数学课
程的各个知识点。
选择题部分包括了多项选择题和单项选择题,考察了学生对数
学概念和定理的理解和应用能力。
填空题部分要求学生填写正确的数值或表达式,考察了学生对
问题的分析和解决能力。
计算题部分要求学生进行具体的计算操作,涉及到数值运算、
代数运算、几何运算等,考察了学生对运算方法和计算规则的掌握。
证明题部分要求学生运用已学的数学理论和方法进行推导和证明,考察了学生的逻辑思维能力和数学推理能力。
试卷内容难度适中,旨在检测学生对高二数学知识的掌握程度
和应用能力。
根据试卷得分,可以评估学生的数学水平,并作出针
对性的教学调整。
希望本次期末试卷能够促进学生对数学学科的兴趣和研究动力,帮助他们提升数学能力和解决问题的能力。
对于学生来说,认真复课堂内容和做好试卷的备考是取得好成
绩的关键。
希望学生们抓住这次机会,全力以赴,取得优秀的成绩。
祝愿每位学生都能在高二数学(理科)期末试卷中取得好成绩!。
高二数学期末考试卷(理科)
高二数学期末考试卷(理科)一、 选择题(本大题共11小题,每小题3分,共33分)1、与向量(1,3,2)a =-平行的一个向量的坐标是( )A .(31,1,1)B .(-1,-3,2)C .(-21,23,-1)D .(2,-3,-22)2223,判断45、则MN =7( )A.5或54D.5或538、若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( )A .a ≤1B .a ≤3C .a ≥1D .a ≥39、已知),,2(),,1,1(t t b t t t a =--=,则||b a -的最小值为 ( )A .55 B .555 C .553 D .51110、已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y +2|,则动点P 的轨迹是 ( )A .椭圆B .双曲线C .抛物线D .无法确定11、已知P 是椭圆192522=+y x 上的一点,O 是坐标原点,F 是椭圆的左焦点且),(21+=4||=,则点P 到该椭圆左准线的距离为( ) A.6 B.4 C.3 D.25高二数学期末考试卷(理科)答题卷、以下四个关于圆锥曲线的命题中:||||PA PB k +=,则动点与椭圆135y +=有相同的焦点;1522=-mx y 的离心率)2,1(∈e ,若q p ,只有一个为真,求实数m 的取值范围. 17、(本题满分8分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1,试用向量法求平面A 1B C 1与平面AB CD所成的锐二面角的余弦值。
18、(本题满分8分)(1)已知双曲线的一条渐近线方程是x y 23-=,焦距为132,求此双曲线的标准方程;(2)求以双曲线191622=-x y 的焦点为顶点,顶点为焦点的椭圆标准方程。
1第19题图19、(本题满分10分)如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1(2)求(320、(本题满分10|=4,|BC |= 3 ,曲线段DE 上任一点到A 、B 两点的距离之和都相等.(1)建立适当的直角坐标系,求曲线段DE 的方程; 为中点,如果能,求该弦所在的直线的方程;若不能,说明理由.21、16、p 18、(1)19422=-y x 或14922=-x y ;(2)125922=+y x .19、如图,建立空间直角坐标系O —xyz . (1)依题意得B (0,1,0)、N (1,0,1) ∴| |=3)01()10()01(222=-+-+-.(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2) ∴1BA =(1,-1,2),1CB =(0,1,2),1BA ·1CB =3,|1BA |=6,|1CB |=5∴CB BA 故这样的直线存在,其方程为2y x =-+ 21、解:设A(x 1,y 1)、B(x 2,y 2),由⎩⎨⎧==++202x y c my x 得0222=++c my y可知y 1+y 2=-2m y 1y 2=2c ∴x 1+x 2=2m 2—2c x 1x 2= c 2, (1)当m =-1,c =-2时,x 1x 2 +y 1y 2=0 所以OA ⊥OB.(2)当OA ⊥OB 时,x 1x 2 +y 1y 2=0 于是c 2+2c=0 ∴c=-2(c=0不合题意),此时,直线l :02=-+my x 过定点(2,0).(3)由题意AB 的中点D(就是△OAB 外接圆圆心)到原点的距离就是外接圆的半径。
高二数学苏州市高二期末卷理科6试卷+答案+得分,定稿
学年高二期末测试数学(理科)注意事项:1.数学Ⅰ共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.满分160分,考试时间120分钟.2.答题前,考生务必将自己的学校、姓名、考试号填涂在答题卡上指定的位置.3.答题时,必须用书写黑色字迹的0.5毫米以上签字笔写在答题卡上指定的位置,在其它位置作答一律无效.4.如有作图需要,可用2B铅笔作答,并请加黑加粗,描写清楚.5.考试结束后,上交答题卡.市区均分:100.505分数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.命题“2,10x x x∃∈--=R”的否定是▲ .4. 8592.设i是虚数单位,复数z=43i12i+-,则| z | =▲ .4.2353.空间直角坐标系中,点P(-1,2,2)到原点O的距离为▲ .4.9544.7(2)x+展开式中含4x项的系数为▲ (用数字作答).4.7015.掷下4枚编了号的硬币,至少有2枚正面向上的情况的种数为▲ (用数字作答).3.3106.函数siny x=与y=x的交点个数为▲ .2.7937.若双曲线2221613x ym-=的右焦点在抛物线22y mx=的准线上,则实数m的值为▲ .4.0308.某射手射击1次,击中目标的概率为23.已知此人连续射击4次,设每次射击是否击中目标相互间没有影响,则他“击中3次且恰有两次连中”的概率为 ▲ . 3.6749.在平面内,设A ,B 为两个定点,且AB = 3,动点M 满足2MAMB=,则AM 的最大值为 ▲ . 3.13810.如图,在四棱锥P - ABCD 中,已知底面ABCD 是矩形,AB = 2,AD = a ,PD ⊥平面ABCD ,若边AB 上存在点M ,使得PM ⊥CM ,则实数a 的取值范围是 ▲ . 2.59911.过定点(1,2)一定可作两条直线与圆2222150x y kx y k ++++-=相切,则k 的取值范围是▲ . 1.95412.已知函数()21ln 22f x x ax x =+-存在单调递减区间,则实数a 的取值范围为 ▲ .2.56513.椭圆E :22143x y +=的左顶点为A ,点B ,C 是椭圆E 上的两个动点,若直线AB 与AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为 ▲ .1.93514.把正整数排列成如图(1)三角形数阵,擦去偶数行中的所有奇数及奇数行中的所有偶数,得到如图(2)的三角形数阵.设图(2)中的正整数按从小到大的顺序构成一个数列{a n },若a k = 431,则k = ▲ . 2.156PCBAMD第14题图(1)第14题图(2)124579101214161719212325262830323436123456789101112131415161718192021222324252627282930313233343536二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在直三棱柱ABC - A 1B 1C 1中,AB = AC = AA 1 = 3a ,BC = 2a ,D 是BC 的中点,E ,F 分别是A 1A ,C 1C 上一点,且AE = CF = 2a . (1)求证:B 1F ⊥平面ADF ;(2)求三棱锥B 1 - ADF 的体积; (3)求证:BE ∥平面ADF . 11.35816.(本小题满分14分)已知直线l :2x + y + 4 = 0与圆C :x 2 + y 2 + 2x - 4y + 1 = 0相交于A ,B 两点,求: (1)线段AB 的长;(2)以AB 为直径的圆M 的标准方程. 11.682 17.(本小题满分14分)在如图所示的空间直角坐标系中,正方体ABCD - A 1B 1C 1D 1的棱长为2,E 、F 分别为A 1D 1和A 1B 1的中点.(1)求异面直线AE 和BF 所成的角的余弦值;(2)求平面B 1BDD 1与平面BFC 1所成的锐二面角的余弦值;(3)若点P 在正方形ABCD 内部或其边界上,且EP ∥平面BFC 1,求EP 的最大值和最小值. 8.972A FCBDC B 111E1 1 1 A x18.(本小题满分16分)在1,2,3,……,9这9个自然数中,任取3个不同的数.(1)求这3个数中至少有1个是偶数的概率;(2)求这3个数之和为18的概率;(3)设X为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时X的值是2).求随机变量X的分布列及其数学期望E(X).8.59619.(本小题满分16分)如图所示,某企业拟建造一个体积为V的圆柱型的容器(不计厚度,长度单位:米).已知圆柱两个底面部分每平方米建造费用为a千元,侧面部分每平方米建造费用为b千元.假设该容器的建造费用仅与其表面积有关,设圆柱的底面半径为r,高为h(h≥2r),该容器的总建造费用为y千元.(1)写出y关于r的函数表达式,并求出此函数的定义域;(2)求该容器总建造费用最小时r的值.7.80520.(本小题满分16分)椭圆E:2214xy+=的左、右焦点分别为F1,F2,左、右顶点分别为A,B.(1)若Rt△F1F2C的顶点C在椭圆E上的第一象限内,求点C的坐标;(2)在定直线l:x=m(m> 2)上任取一点P(P不在x轴上),线段P A交椭圆于点Q,若∠PBQ始终为钝角,求实数m的取值范围.5.189r .ABNMP数学 Ⅱ(附加题)注意事项:1.数学Ⅱ共2页,考试时间30分钟.2.答题前务必要将选做题的前面标记框涂黑,以表示选做该题,不涂作无效答题. 3.请在答题卷上答题,在本试卷上答题无效. 4.请从以下4组题中选做2组题作答,如果多做,则按作答的前两组题评分.每小题10分,共40分.A 组(选修4-1:几何证明选讲)A 1.在以AB 为直径的半圆上有两点M ,N ,设弦AN 与BM 交于点P .求证:2AP AN BP BM AB ⋅+⋅=.A 2.在△ABC 中,已知CM 是∠ACB 的平分线,△AMC 的外接圆交BC 于点N .若AC =12AB , 求证:BN = 2AM .B 组(选修4-2:矩阵与变换)B 1.已知在二阶矩阵M 对应变换的作用下,四边形ABCD 变成四边形''''A BCD ,其中(1,1)A ,(1,1)B -, (1,1)C --,'(3,3)A -,'(1,1)B ,'(1,1)D --.(1)求出矩阵M ;(2)确定点D 及点'C 的坐标. 9.269B 2.给定矩阵M =21331233⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦,N = 2112⎡⎤⎢⎥⎣⎦及向量e 1 = 11⎡⎤⎢⎥⎣⎦,e 2 = 11⎡⎤⎢⎥-⎣⎦. (1)证明M 和N 互为逆矩阵;(2)证明e 1和e 2都是M 的特征向量. 8.136C 组(选修4-4:坐标系与参数方程)C 1.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为πcos()13ρθ-=,设曲线C 与x 轴及y 轴的交点分别为M ,N . (1)写出曲线C 的直角坐标方程,并求M , N 的极坐标; (2)设M ,N 的中点为P ,求直线OP 的极坐标方程. 7.043C 2.过点P (-3,0)且倾斜角为30°的直线和曲线1,()1x t tt y t t ⎧=+⎪⎪⎨⎪=-⎪⎩为参数相交于A ,B 两点.求线段AB 的长.6.259D 组(选修4-5:不等式选讲)D 1.求函数()f x = 4.D 2.设x ,y ,z 为正数,证明:()()()()3332222x y z x y z y x z z x y +++++++≥. 4.2011-2012学年高二期末测试数学(理科)参考答案 2012.7数学Ⅰ部分一、填空题:1.2,10x x x ∀∈--≠R 23.3 4.280 5.11 6.1 7.- 4 8.16819.6 10.(0,1] 11.83(3)(2,)- 12.(-∞,1) 13.(1,0) 14.226 二、解答题:15.(1)证明:∵AB = AC ,D 为BC 中点,∴AD ⊥BC . …………… 1分 在直三棱柱ABC - A 1B 1C 1中,∵B 1B ⊥底面ABC ,AD ⊂底面ABC ,∴AD ⊥B 1B . …………… 2分 ∵BC B 1B = B ,∴AD ⊥平面B 1BCC 1.…………… 3分∵B 1F ⊂平面B 1BCC 1,∴AD ⊥B 1F . …………… 4分 在矩形B 1BCC 1中,∵C 1F = CD = a ,B 1C 1 = CF = 2a , ∴Rt △DCF ≌ Rt △FC 1B 1.∴∠CFD = ∠C 1B 1F .∴∠B 1FD = 90°.∴B 1F ⊥FD . …………………… 5分 ∵AD FD = D ,∴B 1F ⊥平面AFD . …………… 6分 (2)∵B 1F ⊥平面AFD ,∴1113B ADF ADF V S B F -=⋅⋅△=11132AD DF B F ⨯⨯⨯⨯= ……………… 10分 (3)连EF ,EC ,设EC AF M =,连DM ,2AE CF a ==,∴四边形AEFC 为矩形,M ∴为EC 中点.D 为BC 中点,//MD BE ∴. ……………… 12分 M D ⊂平面ADF ,BE ⊄平面ADF ,//BE ∴平面ADF . ……………… 14分A FCBDC B 111E 1 1 1 AM16.解:(方法一)(1)圆C 即:(x + 1)2 + (y -2)2 = 4,圆心C 的坐标为(-1,2),半径为2, 圆心C 到直线l 的距离为d ==.…………………… 3分∴AB = . …………………… 7分 (2)设过圆心C 且与l 垂直的直线为m ,则m :12(1)2y x -=+,即1522y x =+. …………………… 9分联立直线l 与m 的方程,得所求圆心坐标为M 136(,)55-. …………… 11分∵圆M , ………………… 12分 ∴以AB 为直径的圆M 的标准方程为221364()()555x y ++-=. ………… 14分 (方法二)(1)联立直线l 与圆C 的方程,消去y ,得5x 2 + 26x + 33 = 0. …………………… 3分设A (x 1,y 1),B (x 2,y 2),∴AB = 12|x x -. ………………… 7分(2)设M (a ,b ),则a =121325x x +=-. ………………… 9分 代入直线l 的方程,得b =65.∴M 136(,)55-. ………………… 11分∵圆M , ………………… 12分 ∴以AB 为直径的圆M 的标准方程为221364()()555x y ++-=. ………… 14分17.解:(1)A (2,0,0),E (1,0,2),B (2,2,0),F (2,1,2).∴(1,0,2)AE =-,(0,1,2)BF =-. …………………… 2分则4cos ,5||||5AE BF AE BF AE BF ⋅<>===⋅.∴异面直线AE 和BF 所成的角的余弦值为45. …………………… 4分 (2)平面B 1BDD 1的一个法向量(1,1,0)=-m ,…………………… 5分设平面BFC 1的法向量为(,,)x y z =n , 120,(,,)(2,0,2)220.BF y z BC x y z x z ⎧⋅=-+=⎪⎨⋅=⋅-=-+=⎪⎩n n ∴,2.x z y z =⎧⎨=⎩取1z =得平面BFC 1的一个法向量(1,2,1)=n . ………………… 7分 cos ,||||⋅<>===⋅mn m n m n . ………………… 8分∴平面B 1BDD 1与平面BFC 1.…………… 9分 (3)设P (x ,y ,0)(0≤x ≤2,0≤y ≤2), …………… 10分则(1,,2)EP x y =--.由0EP ⋅=n ,得(1)220x y -+-=,即x + 2y - 3 = 0. …………… 11分∵0≤x ≤2,∴0≤3 - 2y ≤2.则1322y ≤≤.…………… 12分∵||(EP x==,∴当45y =时,EP当32y =时,EP . …………… 14分18.解:(1)记“这3个数至少有一个是偶数”为事件A ,∵偶数有2,4,6,8,奇数有1,3,5,7,9,∴12213045454539()C C C C C C P A C ++= …………………… 2分 3742=. …………………… 4分 (2)记“这3个数之和为18”为事件B ,考虑三个数由小到大排列后的最小数,它只有可能为1,2,3,4,5之一,三个数从小到大排列只有可能为189,279,369,378,459,468,567七种情况之一,∴397()P B C = …………………… 6分112=. …………………… 8分 (3)随机变量X 的取值只能为0,1,2之一,当X = 0时,共有35种情形,P (X = 0)= 3935512C =;当X = 1时,共有42种情形,P (X = 1)= 394212C =;当X = 2时,共有7种情形,P (X = 2)= 397112C =. 则…………………… 14分∴X 的数学期望为5112()012122123E X =⨯+⨯+⨯=. ……………………16 分 19.解:(1)设圆柱的高为h ,∵2πV r h =. ……………… 2分∴2222π2π2πbVya rb rh a r r=⋅+⋅=+. ……………… 5分 ∵h ≥2r > 0,∴22πV r r ≥> 0.即0 <r ……………… 7分(2)224πbVy a r r '=-. 令0y '=,得r =.……………… 9分 令0y '<( r > 0 ),得0r <<0y '>,得r >. ……… 11分 ∴当0r <<y 关于r 是减函数; 当r 时 ,y 关于r 是增函数. ……………………… 13分若b ≤2a,当r =米时,容器建造费用最小; ………… 14分 若b > 2a ,则y 在(0,]上单调减,所以r 米时,容器建造费用最小. ………………………… 15分总之,2,2.b a r b a =>≤ ………………………… 16分20.解:(1)椭圆E 中,a 2 = 4,b 2 = 1,c 2 = 3,F 1(0),F 20),A (-2,0),B (2,0),设C (x ,y ).① 若∠F 2F 1C = 90°,则点C 不在第一象限内,与条件矛盾,不成立. ……… 1分 ② 若∠F 1F 2C = 90°,将xE 的方程,得y = ±12. ∵点C 在第一象限内,∴C12). ………………… 3分 ③ 若∠F 1CF 2 = 90°,∴OC = OF 2x 2 + y 2 = 3. ………………… 5分 又2214x y +=,∴x 2 =83,y 2 =13. ∵点C 在第一象限内,x > 0,y > 0,∴x =,y =. 即C). ………………… 7分 (2)设00(,)Q x y ,则直线AQ 方程为:00(2)2y y x x =++. ∴00(2)(,)2y m P m x ++. ……………………………… 9分00(2,)BQ x y ∴=-,00(2)(2,)2y m BP m x +=-+.∵y 0≠0时,又PBQ ∠为钝角,∴0BP BQ ⋅<.∴2000(2)(2)(2)02y m x m x +--+<+. ……………………………… 12分 ∵-2 < x 0 < 2,∴2200(4)(2)(2)0x m y m --++<.A BNMPE∵220014x y =-,∴20(4)(103)0x m --<.∴103m >. ……………………… 16分数学 Ⅱ(附加题)部分A 1.证明:作PE AB ⊥于E ,AB 为直径,90ANB AMB ∴∠=∠=. ……………… 3分 ,,,P E B N ∴四点共圆,,,,P E A M 四点共圆.……………… 5分∴AE AB AP AN ⋅=⋅,①∴BE AB BP BM ⋅=⋅.② ……………… 7 分① + ②,得()AB AE BE AP AN BP BM +=⋅+⋅.……… 9分 即2AP AN BP BM AB ⋅+⋅=. ………………………… 10分A 2.证明:如图,在△ABC 中,∵CM 是∠ACM 的平分线,∴AC AMBC BM=. ………………… 3分 ∵12AC AB =, ∴2AB AMBC BM=.① ………………… 5分 又∵BA 与BC 是圆O 的两条割线,∴BM BA BN BC ⋅=⋅,即BA BNBC BM=.② ……………… 7分 由①,②可知,2AM BNBM BM=. ……………… 9分 ∴BN = 2AM . ……………… 10分 B 1.解:(1)设a b M c d ⎡⎤=⎢⎥⎣⎦, 则1311,1311a b a b c d c d -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦. …………………… 3分 ∴3,3,1,1.a b c d a b c d +=⎧⎪+=-⎪⎨-+=⎪⎪-+=⎩ 解得1,2,2,1a b c d ===-=-,1221M ⎡⎤∴=⎢⎥--⎣⎦.……… 5分 (2)由12132113--⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦,得'(3,3)C -. …………………… 7分设D (x ,y ),由121211x y -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦,得21,2 1.x y x y +=-⎧⎨--=-⎩………………… 9分 解得x = 1,y = -1,∴(1,1)D - . ………………… 10分 B 2.解:(1)∵MN =2313⎡⎢⎢⎢-⎢⎣ 1323⎤-⎥⎥⎥⎥⎦21⎡⎢⎣ 12⎤⎥⎦=10⎡⎢⎣01⎤⎥⎦, …………………… 2分 NM =21⎡⎢⎣12⎤⎥⎦2313⎡⎢⎢⎢-⎢⎣ 1323⎤-⎥⎥⎥⎥⎦=10⎡⎢⎣ 01⎤⎥⎦, ∴M 和N 互为逆矩阵. ……………………… 5分 (2)∵ 2313⎡⎢⎢⎢-⎢⎣ 1323⎤-⎥⎥⎥⎥⎦11⎡⎤⎢⎥⎣⎦=1313⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=1311⎡⎤⎢⎥⎣⎦. ……………………… 7分 2313⎡⎢⎢⎢-⎢⎣ 1323⎤-⎥⎥⎥⎥⎦11⎡⎤⎢⎥-⎣⎦=11⎡⎤⎢⎥-⎣⎦. ……………………… 9分∴e 1和e 2是M 的特征向量. ……………………… 10分C 1.解:(1)由cos()13πρθ-=,得1cos sin 12ρθθ+=, ∴曲线C的直角坐标方程为112x y +=,即2x +=.……………… 3分 当0θ=时,2ρ=,∴M 的极坐标为(2,0);当2πθ=时,ρ=,∴N的极坐标为)2π. ……………… 5分 (2)M 的直角坐标为(2,0),N的直角坐标为, ∴P的直角坐标为. ………………… 7分 则P的极坐标为π)6. ………………… 9分 ∴直线OP 的极坐标方程为,(,)6πθρ=∈-∞+∞. ………………… 10分C 2.解:直线的参数方程为3,1,2x y s ⎧=-+⎪⎪⎨⎪=⎪⎩(s 为参数), 曲线1,1,x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数)化为224x y -=. ………………… 3分将直线的参数方程代入上式,得2100s -+=. ………………… 5分 设A ,B 对应的参数分别为12s s ,,则1,2s == ………………… 7分∴AB 12s s =- ………………… 9分 =………………… 10分 D 1.解:()f x =1= ………………… 3分 由柯西不等式,得()f x==. ………………… 5分1= ………………… 7分 解得76x =. ………………… 9分 ∴()f x. ………………… 10分 D 2.∵2220x y xy +>≥,∴()()()3322x y x y x xy y xy x y +=+-++≥. ………………… 3分 同理()33y z yz y z ++≥,()33z x zx z x ++≥, ………………… 5分 三式相加即可得()()()()3332x y z xy x y yz y z zx z x +++++++≥. ……………… 7分∵()()()()()()222xy x y yz y z zx z x x y z y x z z x y +++++=+++++,…………… 9分 ∴()()()()3332222x y z x y z y x z z x y +++++++≥ . ……………… 10分。
(完整版)高二数学理科期末试卷
高二数学(上)期末考一、选择题:本小题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 不等式0322<--x x 的解集是( )A .()1,3-B .()3,1-C .()3,-∞-Y ()+∞,1D .()1,-∞-Y ()+∞,32. 已知平面α的法向量是()2,3,1-,平面β的法向量是()4,,2λ-,若//αβ,则λ的值是( ) A .103-B .6-C .6D .1033.已知, , a b c 满足c b a <<,且0ac <,那么下列选项中一定成立的是( ) A. ab ac > B. ()0c b a -< C. 22cb ab < D. ()0ac a c ->4. 已知{}n a 是由正数组成的等比数列,n S 表示{}n a 的前n 项的和.若13a =,24144a a =,则10S 的值是( ) A .511 B .1023 C .1533 D .30695. 下列有关命题的说法正确的是( ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. B .“1x =-”是“2560x x --=”的必要不充分条件.C .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈, 均有210x x ++<”. D .命题“若x y =,则sin sin x y =”的逆否命题为真命题6. 设21,F F 为双曲线1422=-y x 的两个焦点,点P 在双曲线上且02190=∠PF F ,则21PF F ∆的面积是( ) A.1 B.25C.2D.57. 已知向量)0,1,1(=→a ,)2,0,1(-=→b ,且→→+b a k 与→→-b a 2互相垂直,则k 的值是( ) A. 1 B.51 C. 53 D. 57 8. 若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且060C =,则a b +的最小值为( )A .3 B . 3C .43D .8-9.若双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过F 且倾斜角为︒60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率e 的取值范围是( ) A .[]2,1B .()2,1C .()+∞,2D . [)+∞,210.若抛物线24y x =的焦点是F ,准线是l ,则经过点F 、M (4,4)且与l 相切的圆共有( ). A.4个 B.2个 C.1个 D.0个二、填空题:本大题共5小题,每小题4分,满分20分.请把答案填在答题纸的相应位置.11.等差数列{}n a 中,若34512,a a a ++=则71a a += .12. 已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则z x y =+的最小值是 .13. 已知正方体1111D C B A ABCD -中,E 为11D C 的中点,则异面直线AE 与BC 所成角的余弦值为 . 14. 点P 是抛物线x y 42=上一动点,则点P 到点)1,0(-A 的距离与P 到直线1-=x 的距离和的最小值是 . 15.设{}n a 是公比为q 的等比数列,其前n 项积为n T ,并满足条件011,01,110099100991<-->->a a a a a ,给出下列结论:(1)10<<q ; (2)1198<T ;(3)110199<a a ;(4)使1<n T 成立的最小自然数n 等于199,其中正确的编号为 (写出所有正确的编号) 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16. (本小题满分13分)已知数列}{n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,⑴求12,a a 的值;⑵求数列{}n a 的通项公式。
高二数学下学期期末考试理科试题含答案
第二学期高二年级期末考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.复数z 满足()134i z i -=+,则z =( )A.52B.2C. D.52.设集合{}419A x x =-≥,03x B xx ⎧⎫=≤⎨⎬+⎩⎭,则A B ⋂等于( )A.(3,2]--B.5(3,2]0,2⎡⎤--⋃⎢⎥⎣⎦C.5(,2],2⎛⎫-∞-⋃+∞ ⎪⎝⎭ D.5(,3),2⎡⎫-∞-⋃+∞⎪⎢⎣⎭3.二项式(52x +的展开式中,3x 的系数为( )A.80B.40C.20D.104.由直线2y x =及曲线24y x x =-围成的封闭图形的面积为( ) A.1B.43C.83D.45.已知命题:p 若0x >,则sin x x <,命题 :q 函数2()2xf x x =-有两个零点,则下列说法正确的是( )①p q ∧为真命题;②p q ⌝∨⌝为真命题;③p q ∨为真命题;④p q ⌝∨为真命题 A.①②B.①④C.②③D.①③④6.函数3()1f x ax x =++有极值的一个充分不必要条件是( ) A.1a <- B.1a <C.0a <D.0a >7.为了解某社区居民的家庭年收入年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:但是统计员不小心丢失了一个数据(用m 代替),在数据丢失之前得到回归直线方程为0.760.4y x =+,则m 的值等于( )A.8.60B.8.80C.9.25D.9.528.2020年全国高中生健美操大赛,某市高中生代表队运动员由2名男生和3名女生共5名同学组成,这5名同学站成一排合影留念,则3名女生中有且只有两位女生相邻的排列种数共有( ) A.36B.54种C.72种D.144种9.《易经》是中国传统文化中的精髓.下图是易经先天八卦图(记忆口诀:乾三连、坤六断、巽下断、震仰盂、坎中满、离中虚、艮覆碗、兑上缺),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线),现从八卦中任取两卦,已知每卦都含有阳线和阴线,则这两卦的六根线中恰有四根阳线和两根阴线的概率为( )A.13B.514C.314D.1510.观察下列算式:311=3235=+ 337911=++ 3413151719=+++若某数3n 按上述规律展开后,发现等式右边含有“2021”这个数,则n =( ) A.42B.43C.44D.4511.如图是一个质地均匀的转盘,一向上的指针固定在圆盘中心,盘面分为A ,B ,C 三个区域,每次转动转盘时,指针最终都会随机停留在A ,B ,C 中的某一个区域,且指针停留在区域A ,B 的概率分别是p 和1206p p ⎛⎫<<⎪⎝⎭.每次转动转盘时,指针停留在区域A ,B ,C 分别获得积分10,5,0.设某人转动转盘3次获得总积分为5的概率为()f p ,则()f p 的最大值点0p 的值为( )A.17B.18C.19D.11012.定义在(2,2)-上的函数()f x 的导函数为()f x ',已知2(1)f e =,且()2()f x f x '>,则不等式24(2)xe f x e -<的解集为( )A.(1,4)B.(2,1)-C.(1,)+∞D.(0,1)二、填空题:本大题共4小题,每小题5分,共20分. 13.命题“0x ∃<,220x x -->”的否定是“______”. 14.曲线1ln y x x=-在1x =处的切线在y 轴上的截距为______. 15.我国在2020年11月1日零时开始展开第七次全国人口普查,甲、乙等5名志愿者参加4个不同社区的人口普查工作,要求每个社区至少安排1名志愿者,每名志愿者只去一个社区,则不同的安排方法共有______种.16.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲、乙在每局中获胜的概率均为12,且各局胜负相互独立,比赛停止时一共打了ξ局,则ξ的方差()D ξ=______.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知函数()|3|f x x =-,()|4|g x x m =-++. (1)当9m =时,解关于x 的不等式()()f x g x >;(2)若()()f x g x >对任意x R ∈恒成立,求实数m 的取值范围. 18.(本小题满分12分)盲盒里面通常装的是动漫、影视作品的周边,或者设计师单独设计出来的玩偶.由于盒子上没有标注,购买者只有打开才会知道自己买到了什么,因此这种惊喜吸引了众多年轻人,形成了“盲盒经济”.某款盲盒内可能装有某一套玩偶的A ,B ,C 三种样式,且每个盲盒只装一个.(1)某销售网点为调查该款盲盒的受欢迎程度,随机发放了200份问卷,并全部收回.经统计,有30%的人购买了该款盲盒,在这些购买者当中,女生占23;而在未购买者当中,男生女生各占50%.请根据以上信息填写下表,并判断是否有95%的把握认为购买该款盲盒与性别有关?附:)22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:(2)该销售网点已经售卖该款盲盒6周,并记录了销售情况,如下表:由于电脑故障,第二周数据现已丢失,该销售网点负责人决定用第4、5、6周的数据求线性回归方程,再用第1,3周数据进行检验.①请用4,5,6周的数据求出)关于x 的线性回归方程y bx a =+;(注:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-)②若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2盒,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠? 19.(本小题满分12分)在某学校某次射箭比赛中,随机抽取了100名学员的成绩(单位:环),并把所得数据制成了如下所示的频数分布表; (1)求抽取的样本平均数x (同一组中的数据用该组区间的中点值作代表);(2)已知这次比赛共有2000名学员参加,如果近似地认为这次成绩Z 服从正态分布()2,N μσ(其中μ近似为样本平均数x ,2σ近似为样本方差2 1.61s =),且规定8.27环是合格线,那么在这2000名学员中,合格的有多少人?(3)已知样本中成绩在[9,10]的6名学员中,有4名男生和2名女生,现从中任选3人代表学校参加全国比赛,记选出的男生人数为ξ,求ξ的分布列与期望E ξ. [附:若()2~,Z N μσ,则()0.6827P Z μσμσ-<<+=,(22)0.9545P Z μσμσ-<<+=, 1.27≈,结果取整数部分]20.(本小题满分12分) 已知()23x x f e x e =--. (1)求函数()f x 的解析式; (2)求函数()f x 的值域;(3)若函数1()g x f kx x ⎛⎫=-⎪⎝⎭在定义域上是增函数,求实数k 的取值范围. 21.(本小题满分12分)随着5G 通讯技术的发展成熟,移动互联网短视频变得越来越普及,人们也越来越热衷于通过短视频获取资讯和学习成长.某短视频创作平台,为了鼓励短视频创作者生产出更多高质量的短视频,会对创作者上传的短视频进行审核,通过审核后的短视频,会对用户进行重点的分发推荐.短视频创作者上传一条短视频后,先由短视频创作平台的智能机器人进行第一阶段审核,短视频审核通过的概率为35,通过智能机器人审核后,进入第二阶段的人工审核,人工审核部门会随机分配3名员工对该条短视频进行审核,同一条短视频每名员工审核通过的概率均为12,若该视频获得2名或者2名以上员工审核通过,则该短视频获得重点分发推荐.(1)某创作者上传一条短视频,求该短视频获得重点分发推荐的概率;(2)若某创作者一次性上传3条短视频作品,求其获得重点分发推荐的短视频个数的分布列与数学期望.22.(本小题满分12分)已知2()sin sin xxf x x e xe x ax a x =--+. (1)当()f x 有两个零点时,求a 的取值范围; (2)当1a =,0x >时,设()()sin f x g x x x=-,求证:()ln g x x x ≥+.六安一中2020~2021学年第二学期高二年级期末考试数学试卷(理科)参考答案一、选择题:二、填空题:13.0x ∀<,220x x --≤ 14.-315.240 16.114三、解答题:17.解:(1)当9m =时,由()()f x g x >,得341x x -++>,4349x x x <-⎧⎨--->⎩或43349x x x -≤≤⎧⎨-++>⎩或3349x x x >⎧⎨-++>⎩ 解得,5x <-或x 无解或4x >, 故不等式的解集为(,5)(4,)x ∈-∞-⋃+∞.(2)因为()()f x g x >恒成立,即|3||4|x x m ->-++恒成立, 所以|3||4|m x x <-++恒成立,所以min (|3||4|)m x x <-++, 因为|3||4||(3)(4)|7x x x x -++≥--+=(当43x -≤≤时取等号)所以min (|3||4|)7x x -++=,所以实数m 的取值范围是(,7)-∞. 18.解:(1)则2 4.714 3.8411109060140K =≈>⨯⨯⨯,故有95%的把握认为“购买该款盲盒与性别有关”. (2)①由数据,求得5x =,27y =,由公式求得222(45)(2527)(55)(2627)(65)(3027)5ˆ(45)(55)(65)2b--+--+--==-+-+-, 5ˆˆ27514.52ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为ˆ 2.514.5yx =+. ②当1x =时,ˆ 2.5114.517y=⨯+=,|1716|2-<; 同样,当3x =时,ˆ 2.5314.522y=⨯+=,|2223|2-<. 所以,所得到的线性回归方程是可靠的.19.解:(1)由所得数据列成的频数分布表,得样本平均数4.50.055.50.186.50.287.50.268.50.179.50.067x =⨯+⨯+⨯+⨯+⨯+⨯=(2)由(1)知~(7,1.61)Z N ,10.6827(8.27)0.158652P Z -∴≥==∴在这2000名学员中,合格的有:20000.15865317⨯≈人(3)由已知得ξ的可能取值为1,2,31242361(1)5C C P C ξ===,2142363(2)5C C P C ξ===,3042361(3)5C C P C ξ===, ξ∴的分布列为:1232555E ξ=⨯+⨯+⨯=(人)20.解:(1)令x e t =,(0)t >,则ln x t =,由()23x x f e x e =--,得()ln 23f t t t =--, 所以函数()f x 的解析式为()ln 23f x x x =--.(2)依题意知函数的定义域是(0,)+∞,且1()2f x x'=-, 令()0f x '>,得102x <<,令()0f x '<,得12x >,故()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞⎪⎝⎭上单调递减, 所以max 1()ln 242f x f ⎛⎫==--⎪⎝⎭;又因为0x →,()f x →-∞, 所以函数()f x 的值域为(,ln 24]-∞--.(3)因为12()ln 3g x f kx x kx x x ⎛⎫=-=---- ⎪⎝⎭在(0,)+∞上是增函数, 所以212()0g x k x x '=-+-≥在(0,)+∞上恒成立, 则只需2min 12k x x ⎛⎫≤-+ ⎪⎝⎭,而221211112488x x x ⎛⎫-+=--≥- ⎪⎝⎭(当4x =时取等号),所以实数k 的取值范围为1,8⎛⎤-∞- ⎥⎝⎦.21.解:(1)设“该短视频获得重点分发推荐”为事件A ,则21302333311113()C 115222210P A C ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ (2)设其获得重点分发推荐的短视频个数为随机变量X ,X 可取0,1,2,3.则3~3,10X B ⎛⎫⎪⎝⎭, 030333343(0)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭;121333441(1)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭; 212333189(2)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭;30333327(3)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以随机变量X 的分布列如下:343441189279()0123100010001000100010E X =⨯+⨯+⨯+⨯=(或39()31010E X =⨯=) 22.解:(1)由题知,()()(sin )x f x xe a x x =--有两个零点,sin 0x x -=时,0x =故当0x xe a -=有一个非零实根设()x h x xe =,得()(1)xh x x e '=+,()h x ∴在(,1)-∞-上单调递减,在(1,)-+∞上单调递增.又1(1)h e-=-,(0)0h =,0x >时,(0)0h >;0x <时,(0)0h <. 所以,a 的取值范围是1a e=-或0a >. (2)由题,()()1sin x f x g x xe x x==--法一:()1ln ln x x xe x x xe -≥+=,令0x t xe =>,令()ln 1(0)H t t t t =-->11()1t H t t t -'=-=()H x ∴在(0,1)上单调递减,在(1,)+∞上单调递增. ()(1)0H x H ∴≥=.1ln x xe x x ∴-≥+法二:要证1ln x xe x x -≥+成立故设()ln 1xM x xe x x =---,1()(1)xM x x e x ⎛⎫'=+-⎪⎝⎭,(0)x >, 令1()x N x e x =-,则21()0x N x e x'=+>,()N x ∴在(0,)+∞上单调递增又1202N ⎛⎫=<⎪⎝⎭,(1)10N e =->, 01,12x ⎛⎫∴∃∈ ⎪⎝⎭使()00N x =.001x e x ∴=,00ln x x =-,()M x ∴在()00,x 上单调递减,在()0,x +∞上单调递增.()0min 0000[()]ln 10x M x M x x e x x ∴==---=.1ln x xe x x ∴-≥+。
高二上学期期末考试数学(理科)试卷(含参考答案)
高二第一学期理科数学期末考试试题一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{14}A x x =<<,{lg(1)}B x y x ==-,则AB =( )A .{12}x x <<B .{12}x x ≤<C .{12}x x -<<D .{12}x x -≤< 2. 如果命题“p 且q ”是假命题,“q ⌝”也是假命题,则( ) A .命题“⌝p 或q ”是假命题 B .命题“p 或q ”是假命题 C .命题“⌝p 且q ”是真命题 D .命题“p 且q ⌝”是真命题3. 已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为( ) A. 110 B. 55 C. 50 D. 不能确定4. 以抛物线28y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A. 22(1)1x y ++= B. 22(1)1x y -+= C. 22(2)4x y ++= D. 22(2)4x y -+=5.“3a =”是 “函数()3xf x ax =-有零点”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件6.已知n m ,是两条不同的直线, βα,是两个不同的平面,给出下列命题: ①若βα⊥,α//m ,则β⊥m ; ②若α⊥m,β⊥n ,且n m ⊥,则βα⊥;③若β⊥m ,α//m ,则β⊥α; ④若α//m ,β//n ,且n m //,则βα//. 其中正确命题的序号是( )A .①④B .②④C .②③ D.①③7.我国古代数学典籍《九章算术》第七章“盈不足”中有一问题: “今有蒲生一日,长三尺。
莞生一日,长一尺。
蒲生日自半。
莞生日自倍。
问几何日而长等?”(蒲常指一种多年生草本植物,莞指水葱一类的植物)现欲知几日后,莞高超过蒲高一倍.为了解决这个新问题,设计右面的程序框图,输入3A =,1a =.那么在①处应填( )A .2?T S >B .2?S T >C .2?S T <D .2?T S < 8.过函数()3213f x x x =-图象上一个动点作函数的切线,则切线倾斜角的范围为( )A. 3[0,]4π B.3π[0,)[,π) 24π⋃ C. 3π[,π) 4 D. 3(,]24ππ 9.已知定义在R 上的函数()f x 满足: ()1y f x =-的图象关于()1,0点对称,且当0x ≥时恒有()()2f x f x +=,当[)0,2x ∈时, ()1x f x e =-,则()()20162017f f +-= ( )(其中e为自然对数的底)A. 1e -B. 1e -C. 1e --D. 1e +10.已知Rt ABC ∆,点D 为斜边BC 的中点,63AB =,6AC =,12AE ED =,则A E E B ⋅等于( ) A. 14- B. 9- C. 9 D.1411.在平面直角坐标系中,不等式组22200x y x y x y r +≤⎧⎪-≤⎨⎪+≤⎩(r 为常数)表示的平面区域的面积为π,若,x y 满足上述约束条件,则13x y z x ++=+的最小值为 ( )A .1- B.17- C. 13 D .75-12. 设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,离心率为e ,过2F 的直线与双曲线的右支交于B A ,两点,若AB F 1∆是以A 为直角顶点的等腰直角三角形,则=2e ( )A.221+B. 224-C.225-D.223+ 二、填空题:本大题共4小题,每小题5分,满分20分.13. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.14.已知α为锐角,向量(cos ,sin )a αα=、(1,1)b =-满足223a b ⋅=,则sin()4πα+= .15.某三棱锥的三视图如图所示,则其外接球的表面积为______.16.若实数,,a b c 满足22(21)(ln )0a b a c c --+--=,则b c -的最小值是_________.三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.17. (本小题满分10分)在数列{}n a 中,14a =,21(1)22n n na n a n n +-+=+.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 18. (本小题满分12分) 在ABC ∆中,角,,A B C 所对的边分别是,,a b c,且sin sin sin sin 3a Ab Bc C C a B +-= .(1)求角C ;(2)若ABC ∆的中线CD 的长为1,求ABC ∆的面积的最大值.19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.(本小题满分12分)在五面体ABCDEF 中, ////,222AB CD EF CD EF CF AB AD =====,60DCF ︒∠=,AD ⊥平面CDEF .(1)证明:直线CE ⊥平面ADF ; (2)已知P 为棱BC 上的点,23CP CB =,求二面角P DF A --的大小.21. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>的右焦点(1,0)F ,过点F 且与坐标轴不垂直的直线与椭圆交于P ,Q 两点,当直线PQ 经过椭圆的一个顶点时其倾斜角恰好为60︒. (1)求椭圆C 的方程;(2)设O 为坐标原点,线段OF 上是否存在点(,0)T t (0)t ≠,使得QP TP PQ TQ ⋅=⋅?若存在,求出实数t 的取值范围;若不存在,说明理由.22.(本小题满分12分)已知函数()ln a f x x x=+. (1)求函数()f x 的单调区间; (2)证明:当2a e≥时, ()x f x e ->.高二数学期末考试试题参考答案ACBDA CBBAD DC 13. 56 14.315. 323π 16. 117.解:(1)21(1)22n n na n a n n +-+=+的两边同时除以(1)n n +,得*12()1n na a n n n+-=∈+N , …………3分 所以数列n a n ⎧⎫⎨⎬⎩⎭是首项为4,公差为2的等差数列. …………………4分(2)由(1),得22n an n=+,…………………5分所以222n a n n =+,故2111(1)111()222(1)21n n n a n n n n n n +-==⋅=⋅-+++,………………7分所以111111[(1)()()]22231n S n n =-+-++-+, 1111111[(1)()]223231n n =++++-++++ 11(1)212(1)n n n =-=++. ……………10分 18.解:(1)∵ sin sinsin sin a A b B c C Ca B +-=,222cos 2a b c C Cab +-∴==…………4分,即tan C =(0,)C π∈3C π∴=.………………6分(2) 由222211()(2)44CD CA CB CA CB CA CB =+=++⋅ 即2222111(2cos )()44b a ab C b a ab =++=++…………………8分从而22442,3ab a b ab ab -=+≥≤(当且仅当a b ==10分 即114sin 223ABC S ab C ∆=≤⨯=…………………12分19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==.………1分因为51()()(3)(1)000316iii x x y y =--=-⨯-++++⨯=∑,…………………2分 ,52310)1()3()(22222512=+++-+-=-∑=i ix x …………………………3分=…………………………4分所以相关系数()()0.95ni ix x y yr--===≈∑.………………5分因为0.75r>,所以可用线性回归模型拟合y与的关系.……………6分(2)记商家周总利润为Y元,由条件可得在过去50周里:当70X>时,共有10周,此时只有1台光照控制仪运行,周总利润Y=1×3000-2×1000=1000元.…………8分当5070X≤≤时,共有35周,此时有2台光照控制仪运行,周总利润Y=2×3000-1×1000=5000元.……………………………9分当50X<时,共有5周,此时3台光照控制仪都运行,周总利润Y=3×3000=9000元.…………………10分所以过去50周周总利润的平均值10001050003590005460050Y⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………………………12分20.证明:(1)//,2,CD EF CD EF CF===∴四边形CDEF为菱形,CE DF∴⊥,………1分又∵AD⊥平面CDEF∴CE AD⊥………2分又,AD DF D⋂=∴直线CE⊥平面ADF.………4分(2) 60DCF∠=,DEF∴∆为正三角形,取EF的中点G,连接GD,则,GD EF GD CD⊥∴⊥,又AD⊥平面CDEF,∴,,DA DC DG两两垂直,以D为原点,,,DA DC DG所在直线分别为,,x y z轴,建立空间直角坐标系D xyz-,………5分2,1CD EF CF AB AD=====,((0,,E F∴-,(1,1,0),(0,2,0)B C………6分由(1)知(0,CE=-是平面ADF的法向量,………7分()()0,1,3,1,1,0DF CB==-,222(,,0)333CP CB==-,(0,2,0)DC=则24(,,0)33DP DC CP=+=,………8分设平面PDF的法向量为(),,n x y z=,∴n DFn DP⎧⋅=⎪⎨⋅=⎪⎩,即2433yx y⎧=⎪⎨+=⎪⎩,令z=3,6y x==-,∴(6,3,n=-………10分∴1cos ,223n CE n CE n CE⋅===-………11分∴二面角P DF A --大小为60.………12分21. 解:(1)由题意知1c =,又tan 603bc ==,所以23b =,………2分2224a b c =+=,所以椭圆的方程为:22143x y += ;………4分 (2)当0k =时, 0t =,不合题意设直线PQ 的方程为:(1),(0)y k x k =-≠,代入22143x y+=,得:2222(34)84120k x k x k +-+-=,故0∆>,则,0k R k ∈≠ 设1122(,),(,)P x y Q x y ,线段PQ 的中点为00(,)R x y ,则2120002243,(1)23434x x k k x y k x k k +===-=-++ ,………7分由QP TP PQ TQ ⋅=⋅ 得:()(2)0PQ TQ TP PQ TR ⋅+=⋅= , 所以直线TR 为直线PQ 的垂直平分线,………8分直线TR 的方程为:222314()3434k k y x k k k +=--++ , ………10分 令0y =得:T 点的横坐标22213344k t k k ==++,………11分因为2(0,)k ∈+∞, 所以234(4,)k +∈+∞,所以1(0,)4t ∈. ………12分所以线段OF 上存在点(,0)T t 使得QP TP PQ TQ ⋅=⋅,其中1(0,)4t ∈.22.解:(1)函数()ln af x x x=+的定义域为()0,+∞.由()ln a f x x x =+,得()221a x af x x x x ='-=-.………1分①当0a ≤时, ()0f x '>恒成立, ()f x 递增, ∴函数()f x 的单调递增区间是()0,+∞ ………2分 ②当0a >时,则()0,x a ∈时,()0,f x '<()f x 递减,(),x a ∈+∞时, ()0f x '>,()f x 递增.∴函数()f x 的单调递减区间是(0,)a ,单调递增区间是(),a +∞.………4分 (2)要证明当2a e ≥时, ()x f x e ->,即证明当20,x a e >≥时, ln xa x e x-+>,………5分 即ln xx x a xe -+>,令()ln h x x x a =+,则()ln 1h x x ='+,当10x e <<时, ()0h x '<;当1x e>时, ()0h x '>. 所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1x e =时, ()min1h x a e ⎡⎤=-+⎣⎦.于是,当2a e ≥时, ()11h x a e e≥-+≥.①………8分 令()xx xe φ-=,则()()1xx x x exe e x φ---'=-=-.当01x <<时, ()0x ϕ'>;当1x >时, ()0x φ'<. 所以函数()x φ在()0,1上单调递增,在()1,+∞上单调递减.当1x =时, ()max1x e φ⎡⎤=⎣⎦.于是,当0x >时, ()1x eφ≤.②………11分 显然,不等式①、②中的等号不能同时成立.故当2a e≥时, (f x )xe ->.………12分。
高二下学期期末考试数学理科试题答案试题
卜人入州八九几市潮王学校二零二零—二零二壹下期期末统一检测高二数学试题(理科)参考答案及评分意见一.选择题〔50分〕 CDCADCDCBD二.填空题〔25分〕11. 11611x -y -4=0.15.①②④ 三.解答题〔75分〕 16.〔12分〕解令x =1,那么a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1. ①.......................2分令x =-1,那么a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.②.......................6分(1)∵a 0=C =1,..............................................8分 ∴a 1+a 2+a 3+…+a 7=-2........................................10分 (2)(①+②)÷2, 得a 0+a 2+a 4+a 6==1093......................................................................12分 17.〔12分〕 解:〔1〕-.3006-100080030010-100020005006-1000200050010-10004000800,2000,4000.(800)0.50.40.2,(2000)0.50.60.50.40.5,(4000)0.50.60.3X X p X p X p X =⨯⨯=⨯=⨯=⨯===⨯===⨯+⨯===⨯=利润产量价格成本考虑产量和价格,利润可以取,,,,即三个X 的分布列如下表:.............................................8分 〔2〕.............................................................12分 18.〔12分〕解:(1)f ′(x )=3x 2-x +b ,因f (x )在(-∞,+∞)上是增函数, 那么f ′(x )≥0,即3x 2-x +b ≥0,∴b ≥x -3x 2在(-∞,+∞)上恒成立............................3分 设g (x )=x -3x 2.当x =时,g (x )max =,∴b ≥......................................6分 (2)由题意知f ′(1)=0,即由〔1〕得3-1+b =0,∴b =-2.............7分x ∈[-1,2]时,f (x )<c 2恒成立,只需f (x )在[-1,2]上的最大值小于c 2即可.因f ′(x )=3x 2-x -2,令f ′(x )=0,得x =1或者x =-.f ′(x )>0,得x 2(,)3∈-∞-或者x (1,)∈∞,f ′(x )<0,得x 2(,1)3∈-即f(x)在x =-处取极大值...................................10分.. 又)32(-f =+c ,f (2)=2+c .∴f (x )max =f (2)=2+c ,∴2+c <c 2.解得c >2或者c <-1,所以c 的取值范围为(-∞,-1)∪(2,+∞).........................12分 19.〔12分〕解:〔1〕设AD 中点为O ,连接PO∆PAD 为等边三角形,且边长为2 ∴PO ⊥AD ,PO =3ODCBA Pzyx又 面PAD ⊥面ABCD 于AD∴PO ⊥面ABCD∴PO 为点P 到平面ABCD 的间隔,即P 到平面ABCD 的间隔为3...............6分连接BO , ABCD 是菱形,且∠BAD =60,O 为AD 中点,∴BO ⊥AD∴以O 为坐标原点,OA 、OB 、OP 分别为z y x ,,轴,建立如下列图的空间直角坐标系,那么有A(1,0,0)、P 〔0,0,3〕、B 〔0,3,0〕、C 〔-2,3,0〕. 设APB 平面的法向量为()z y x n ,,1=()0,3,1-=AB ,()3,0,1-=AP⎪⎩⎪⎨⎧==∴⎪⎩⎪⎨⎧=+-=+-∴zx y x z x y x 33,0303,∴可取()1,1,31=n同理,可取平面PAC 的法向量()1,1,02=n 设二面角A —PB -C 的平面角为θ,那么510252cos =⋅==θ 由图可知,二面角A —PB -C 的平面角是钝角∴二面角A —PB -C 的平面角的余弦值为510-……………………………………….12分 20.〔13分〕解(1)F (x )=ax 2-2ln x ,其定义域为(0,+∞),∴F ′(x )=2ax -=2(ax 2−1)x(x >0).………………………………………2分①当a >0时,由ax 2-1>0,得x >. 由ax 2-1<0,得0<x <. 故当a >0时,F (x )在区间⎪⎭⎫⎝⎛+∞,1a 上单调递增,在区间⎪⎭⎫⎝⎛a 1,0上单调递减.…………………………………………………6分 ②当a ≤0时,F ′(x )<0(x >0)恒成立.故当a ≤0时,F (x )在(0,+∞)上单调递减.……………………………8分 (2)原式等价于方程a ==φ(x )在区间[,e]上有两个不等解.∵φ′(x )=2x (1−2lnx )x 4>0,∴φ(x )在(,)上为增函数,在(,e)上为减函数,那么φ(x )max =φ()=,……………………………10分 而φ(e)=<==φ(). ∴φ(x )min =φ(e), 如图当f (x )=g (x )在[,e]上有两个不等解时有φ(x )min =,……………………………12分a 的取值范围为≤a <.………………………………………………..13分21.〔14分〕解:〔1〕函数()y f x =在π(0,)2上的零点的个数为1.……………………………1分理由如下:因为()e sin cos x f x x x =-,所以()e sin e cos sin x x f x x x x '=++.……………………2分 因为π02x <<,所以()0f x '>, 所以函数()f x 在π(0,)2上是单调递增函数. ················· 3分因为(0)10f =-<,π2π()e 02f =>,根据函数零点存在性定理得函数()y f x =在π(0,)2上的零点的个数为1. ················· 4分〔2〕因为不等式12()()f x g x m +≥等价于12()()f x m g x -≥,所以12ππ[0,],[0,]22x x ∀∈∃∈,使得不等式12()()f x g x m +≥成立,等价于()1min 2min ()()f x m g x -≥,即1min 2max ()()f x m g x -≥. ············· 6分当π[0,]2x ∈时,()e sin e cos sin 0x x f x x x x '=++>,故()f x 在区间π[0,]2上单调递增,所以0x =时,()f x 获得最小值1-. ······················ 7分又()cos sin x g x x x x '=-,由于0cos 1,sin x x x x ≤≤≥所以()g x '0<,故()g x 在区间π[0,]2上单调递减,因此,0x =时,()g x 获得最大值. ·················· 8分所以(1m --≥,所以21m --≤.所以实数m 的取值范围是(,1-∞-. ·················· 9分 〔3〕当1x >-时,要证()()0f x g x ->,只要证()()f x g x >只要证e sin cos cos x x x x x x ->,只要证(()e sin 1cos x x x x >+,由于sin 0,10x x +>+>,只要证e1x x >+. ··········· 10分 下面证明1x >-时,不等式e1x x +成立. 令()()e 11x h x x x =>-+,那么()()()()22e 1e e 11x x xx x h x x x +-'==++, 当()1,0x ∈-时,()0h x '<,()h x 单调递减; 当()0,x ∈+∞时,()0h x '>,()h x 单调递增.所以当且仅当0x =时,()h x 获得极小值也就是最小值为1.令k ,其可看作点()sin ,cos A x x 与点()B 连线的斜率,所以直线AB 的方程为:(y k x =,由于点A 在圆221x y +=上,所以直线AB 与圆221x y +=相交或者相切, 当直线AB 与圆221x y +=相切且切点在第二象限时,直线AB 获得斜率k 的最大值为1. ···················· 12分故0x =时,()10k h <=;0x ≠时,()1h x k >≥.··········· 13分 综上所述,当1x >-时,()()0f x g x ->成立. …………………………………14分。
高二理科数学期末复习卷和答案
高二理科数学期末复习卷临界值表:线性回归直线方程:1221;ni ii nii x y nx ya y bxb xnx==-⋅=-=-∑∑一、选择题。
1.(计数原理)在251()x x-的展开式中,第4项的系数是( ) .A .B .C .D .35C -2.(概率)若书架上有中文书5本,英文书3本,日文书2本,则随机抽取一本恰为外文书的概率为( ) A.12B .C .D .3.(随机变量及其分布)4张奖券中只有1张能中奖,现分别由4名同学无放回 地抽取。
若已知第一名同学没有抽到中奖券,则第二名同学抽到中奖券的概率是( )A .14B. 13C .12D .1来4.(随机变量及其分布)已知随机变量X 服从正态分布N(3,1),且(24)P X ≤≤=0.6826,则=( )A .0.1585B .0.1588 C. 0.1587 D .0.15865.(统计案例)设有一个回归方程ˆ2 2.5y x =-,变量x 增加一个单位时, 变量ˆy平均( ) A .增加2.5 个单位 B .增加2个单位 C. 减少2.5个单位 D .减少2个单位6.(计数原理)由数字1,2,3,4,5组成没有重复数字的五位数,其中偶数共有 ( )个.A .60B .48C .36D .24 7.(导数)函数2()(cos )f x x =的导函数为( ) A.2sin x - B.2cos x C.2sin cos x x D.2sin cos x x -8.(导数)已知函数)(x f 满足:1)2()22(lim0=∆-∆+→∆xf x f x ,则)2(f '等于 ( )(A )1 (B )0 (C )21(D )29.(导数)已知xxx f sin )(=,则)(x f '等于 ( ) (A )x x cos (B )x x cos - (C )2sin cos x x x x - (D )2sin cos xxx x +10.(推理)在平面内6个两两相交的圆,最多可以将平面分割成的部分数为 ( )(A )28 (B )32 (C )34 (D )36 11.(复数)复数201020092i ii i z ++++= (i 是虚数单位)的值是 ( )(A )0 (B )i +-1 (C )1- (D )i12.(复数)若i m m m m Z )43(1222--+--=是纯虚数(i 是虚数单位),则实数m 的值为 ( )(A )1- (B )14-或 (C )34-或 (D )3- 二、填空题。
高二数学上学期期末复习题6(理科)
高二数学上学期期末复习题六(理科)(2013.12)1.已知命题2:10q x x ∀∈+>R ,,则q ⌝为( )A 210x x ∀∈+≤R , B 210x x ∃∈+<R , C 210x x ∃∈+≤R ,D 210x x ∃∈+>R ,2.过点(12)P -,与直线210x y +-=垂直的直线的方程为( )A .240x y -+=B .052=+-y xC .032=-+y xD . 032=++y x 3. 双曲线222y x -=的渐近线方程是( )A y x =±B y =C y =D 2y x =± 4.直线013=+-y x 与0126=+-y x 的位置关系是( ) A 相交 B 平行 C 重合 D 垂直 5.若椭圆1C :1212212=+b y a x (011>>b a )和椭圆2C :1222222=+b y a x (022>>b a )的焦点相同,且12a a >,则下面结论正确的是( ) ① 1C 和2C 一定没有公共点 ②22212221b b a a -=-③ 1122a b a b > ④ 1212a a b b -<-A .②③④ B. ①③④ C .①②④ D. ①②③6.直三棱柱ABC —A 1B 1C 1中,若CA = a ,CB =b ,1CC =c , 则1A B = ( ) (A )+-a b c (B )-+a b c (C )-++a b c (D )-+-a b c7. “2a =”是“直线20ax y +=与1x y +=平行”的 ( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件 8.已知直线l 和不重合的两个平面α,β,且l α⊂,有下面四个命题:①若l ∥β,则α∥β; ②若α∥β,则l ∥β; ③若l ⊥β,则α⊥β; ④若α⊥β,则l ⊥β。
高二理科期末数学试卷参考答案
高二理科期末考试数学参考答案一、选择题1. C 2.D 3.D 4. D 5.C 6.D 7. B 8. B 9. A 10. B 11.C 12. D二、填空题13. 24 14. 45.15. 7 16. (-2,2) 三、解答题17.解 (1)散点图如图所示:…………… 2 分(2)x =2+3+4+54=3.5,y =2.5+3+4+4.54= 3.5,………… 4 分∑4i =1x i y i =2×2.5+3×3+4×4+5×4.5=52.5,…………… 5 分 ∑4i =1x 2i =4+9+16+25=54,…………… 6 分 ∴b ^=52.5-4×3.5×3.554-4×3.52=0.7,…………… 7 分 a ^ =3.5-0.7×3.5=1.05,…………… 8 分∴所求线性回归方程为y ^=0.7x +1.05.…………… 9 分(3)当x =10时,y ^=0.7×10+1.05=8.05,…………… 10 分∴预测加工10个零件需要8.05小时.18.解 (1)由y =f (x )的图象经过点P (0,2),知d =2,…………1 分∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c .…………2 分由在点M (-1,f (-1))处的切线方程为6x -y +7=0,知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6. ∴⎩⎪⎨⎪⎧ 3-2b +c =6-1+b -c +2=1,即⎩⎪⎨⎪⎧ 2b -c =-3b -c =0………… 4 分解得b =c =-3.…………5 分故所求的解析式是f (x )=x 3-3x 2-3x +2.…………6 分(2)f ′(x )=3x 2-6x -3.………… 7 分令f ′(x )>0,得x <1-2或x >1+2;…………9 分令f ′(x )<0,得1-2<x <1+ 2.…………10 分故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞,1-2)和(1+2,+∞),单调递减区间为(1-2,1+2).………… 12 分19. 解:(1)3245151121026=-=-=C C P , 即该顾客中奖的概率为32…… 4 分 (2)ξ的所有可能取值为 0,10,20,50,60. ………… 5 分31)0(21026===C C P ξ, ………… 6 分52)10(2101316===C C C P ξ,………… 7 分151)20(21023===C C P ξ,………… 8分152)50(21016===C C P ξ,………… 9分 151)60(21013===C C P ξ…………10 分……… 12 分20 .解:(1)设正三棱柱的侧棱长为h ,由AB =2及正三棱柱的性质知B (3,0,0),B 1(3,0,h ),A (0,-1,0),C 1(0,1,h ).……… 1 分∴AB 1→=(3,1,h ),BC 1→=(-3,1,h ).……… 2 分又∵AB 1⊥BC 1,∴AB 1→·BC 1→=0,即3×(-3)+1×1+h 2=0,得h 2=2.……… 3 分∵h >0,∴h =2,则正三棱柱的侧棱长为 2.………4 分(2)连结AC 1(图略),∵点M 是BC 1的中点,∴AM →=12(AB →+AC 1→)……… 5分=12(AB →+AA 1→+A 1C 1→)=12AB →+12AA 1→+12AC →.……… 7 分(3)∵B (3,0,0),C (0,1,0),∴BC →=(-3,1,0).……… 8 分又∵AB 1→=(3,1,2), ∴AB 1→·BC →=3×(-3)+1×1+2×0=-2,………9 分|AB 1→|=3+1+2=6,|BC →|=3+1+0=2,而→→BC ,AB cos 1 =AB 1→·BC →|AB 1→|·|BC →|=-26×2=-66,……… 11 分∴异面直线AB 1与BC 所成角的余弦值为66.……… 12 分21. 解:(1)证明:联立⎩⎪⎨⎪⎧y 2=-x y =k (x +1),消去x ,得ky 2+y -k =0.……… 1 分设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-1k,y 1·y 2=-1.……… 2 分 因为y 12=-x 1,y 22=-x 2,所以(y 1·y 2)2=x 1·x 2.……… 3 分所以x 1·x 2=1,所以x 1x 2+y 1y 2=0,……… 5 分即OA →·OB →=0,所以OA ⊥OB .………6分(2)设直线l 与x 轴的交点为N ,……… 7 分则N 的坐标为(-1,0),所以S △AOB =12|ON |·|y 1-y 2| =12×|ON |×(y 1+y 2)2-4y 1·y 2……… 9 分 =12×1× 1k 2+4=10,……… 11 分 解得k 2=136,所以k =±16.……… 12 分 22.解 (1)f ′(x )=3x 2-x +b ,∵f (x )在(-∞,+∞)上是增函数,则f ′(x )≥0,即3x 2-x +b ≥0,……… 2 分∴b ≥x -3x 2在(-∞,+∞)上恒成立.……… 3分设g (x )=x -3x 2.当x =16时,g (x )max =112,∴b ≥112.……… 5 分 (2)由题意知f ′(1)=0,即3-1+b =0,∴b =-2.……… 6 分 x ∈[-1,2]时,f (x )<c 2恒成立,只需f (x )在[-1,2]上的最大值小于c 2即可.……… 7 分∵f ′(x )=3x 2-x -2,令f ′(x )=0,得x =1或x =-23.……… 8 分 ∵f (1)=-32+c , f ⎝ ⎛⎭⎪⎫-23=2227+c ,f (-1)=12+c , f (2)=2+c .∴f (x )max =f (2)=2+c ,……… 10 分∴2+c <c 2.解得c >2或c <-1,……… 11 分∴c 的取值范围为(-∞,-1)∪(2,+∞).……… 12 分。
高二理科数学第二学期期末考试试卷(含答案)
高二数学第二学期期末考试(理科)试题(含答案)一、选择题:(每题5分,共60分)1.若将复数表示为、是虚数单位)的形式,则()A.0 B.-1 C.1D.22。
在的展开式中的常数项是()A。
B.C.D.3。
函数的定义域为,导函数在内的图象如图所示,则函数在内有极大值点()A.1个B.2个C.3个D.4个4.已知曲线,其中x∈[—2,2],则等于( )A.B.C.D.-45.设随机变量X~B(3,),随机变量Y=2X+3,则变量Y的期望和方差分别为()A.7,B.7,C.8, D.8,6.给出下列四个命题,其中正确的一个是()A.在线性回归模型中,相关指数,说明预报变量对解释变量的贡献率是B.在独立性检验时,两个变量的列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大C.相关指数用来刻画回归效果,越小,则残差平方和越大,模型的拟合效果越好D.随机误差e是衡量预报精确度的一个量,它满足E(e)=07.在平面上,若两个正三角形的边长之比1:2,则它们的面积之比为1:4,类似地,在空间中,若两个正四面体的棱长之比为1:2,则它的体积比为()A.1:4 B.1:6 C.1:8 D.1:98.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种9.一个电路如图所示,A、B、C、D、E、F为6个开关,其闭合的概率都是错误!,且是相互独立的,则灯亮的概率是()A.错误!B.错误!C.错误!D.错误!10.函数的最小值是()A.10 B. 9 C.8 D.711.f′(x)是f(x)的导函数,f′(x)的图象如下面右图,则f(x)的图象只可能是( )A.B.C.D.12.已知函数f(x)=x3-3x2-9x+3,若函数g(x)=f(x)-m在x∈[-2,5]上有3个零点,则m 的取值范围为()A.(-24,8)B.(-24,1] C.[1,8)D.[1,8]二、填空题(每题5 分,共20分)13.如果随机变量,且,则_ _ __14.已知,那么等于________________15。
高二下学期数学期末考试试卷(理科)
高二下学期数学期末考试试卷(理科)高二下学期数学期末考试试卷(理科)(时间:120分钟,分值:150分)一、单选题(每小题5分,共60分)1.平面内有两个定点F1(-5,0)和F2(5,0),动点P满足|PF1|-|PF2|=6,则动点P的轨迹方程是()A.x216-y29=1(x≤-4) B.x29-y216=1(x≤-3)C.x216-y29=1(x≥4) D.x29-y216=1(x≥3)2.用秦九韶算法计算f(x)=3x6+4x5+5x4+6x3+7x2+8x+1当x=0.4时的值,需要进行乘法运算和加法运算的次数分别为( )A. 6,6B. 5,6C. 6,5D. 6,12高二理科数学试卷(4-2)高二理科数学试卷(4-3)3.下列存在性命题中,假命题是( ) A. ∃x ∈Z ,x 2-2x-3=0B. 至少有一个x ∈Z ,x 能被2和3整除C. 存在两个相交平面垂直于同一条直线D. x ∈{x 是无理数},x 2是有理数 4.将甲、乙两枚骰子先后各抛一次,a 、b 分别表示抛掷甲、乙两枚骰子所出现的点数.若点P (a ,b )落在直线x +y =m (m 为常数)上,且使此事件的概率最大,则此时m 的值为 ( ) A. 6B. 5C. 7D. 85.已知点P 在抛物线24x y =上,则当点P 到点()1,2Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A. ()2,1B. ()2,1-C.11,4⎛⎫- ⎪⎝⎭ D.11,4⎛⎫⎪⎝⎭高二理科数学试卷(4-4)6.按右图所示的程序框图,若输入81a =,则输出的i =( ) A. 14 B. 17 C. 19D. 217.若函数()[)∞+-=,在12xk x x h 在上是增函数,则实数k 的取值范围是( ) A. B. C.D.8.空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的无量纲指数,空气质量按照AQI 大小分为六级:0~50为优,51~100为良。
高二第二学期理科数学期末考试试卷-附答案
ξ -10 1 P13ab高二第二学期期末考试试卷数学(理科)一、选择题(每小题4分,共40分)请将正确选项填入答题纸选择题答题栏....... 1.从甲地到乙地,每天有直达汽车4班,从甲地到丙地,每天有5个班车,从丙地到乙地,每天有3个班车,则从甲地到乙地不同的乘车方法有( )A .19种B .12种C .32种D .60种2.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A .15 B .25 C .825 D .9253.甲、乙两工人在同样的条件下生产某种产品,日产量相等,每天出废品的情况为下表所示,则有结论( )A .甲的产品质量比乙的产品质量好一些;B .两人的产品质量一样好;C .乙的产品质量比甲的产品质是好一些;D .无法判断谁的质量好一些.3题表 4题图4.通过上面的残差图,我们发现在采集样本点的过程中,样本点数据不准确的为( )A .第四个B .第五个C .第六个D .第七个5.对服用某种维生素对婴儿头发稀疏与稠密的影响调查如下:服用的60人中头发稀疏的有5人,不服用的60人中头发稀疏的有46人,作出如下列联表:头发稀疏头发稠密总计 服用维生素 5 a 60 不服用维生素46 b 60 总计51a +b120则表中a ,b 的值分别为( )A .9,14B .69,14C .55,24D .55,146.设随机变量ξ服从正态分布ξ~N (0,1),(1)0.2P X >=,则(10)P X -<<=( )A .0.1B .0.3C .0.6D .0.87.9)1(xx -的展开式中x 3的系数为( )A .﹣84B .84C .﹣36D .368.有6个人排成一排照相,要求甲、乙、丙三人站在一起,则不同的排法种数为( )A .24B .72C .144D .2889.对同一目标进行两次射击,第一、二次射击命中目标的概率分别为0.5和0。
7,则两次射击中至少有一次命中目标的概率是( )A .0.15B .0。
高二上学期期末考试(理科)数学试卷-附带答案
高二上学期期末考试(理科)数学试卷-附带答案一.选择题(共12小题,满分60分,每小题5分) 1.(5分)不等式2x−1x+2≥3的解集为( ) A .{x |﹣2<x ≤12}B .{x |x >﹣2}C .{x |﹣7≤x <﹣2}D .{x |﹣7≤x ≤﹣2}2.(5分)已知p :∀x ∈R ,(x +1)2<(x +2)2;q :∃x ∈R ,x =1﹣x 2,则( ) A .p 假q 假B .p 假q 真C .p 真q 真D .p 真q 假3.(5分)若实数a ,b 满足ab =1(a ,b >0),则a +2b 的最小值为( ) A .4B .3C .2√2D .24.(5分)已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直,则实数m 的值为( ) A .﹣3B .−13C .13D .15.(5分)已知F 1,F 2是椭圆C :x 24+y 23=1的左、右焦点,点P 在椭圆C 上.当∠F 1PF 2最大时,求S △PF 1F 2=( ) A .12B .√33C .√3D .2√336.(5分)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c 且B =2A ,则c b−a的取值范围是( )A .(0,3)B .(1,2)C .(2,3)D .(1,3)7.(5分)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A .4B .92C .5D .68.(5分)已知直线l :y =kx +m (m <0)过双曲线C :x 2a 2−y 22=1的左焦点F 1(﹣2,0),且与C 的渐近线平行,则l 的倾斜角为( ) A .π4B .π3C .2π3D .3π49.(5分)“a +1>b ﹣2”是a >b ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(5分)已知函数f (x )=ax 2﹣3ax +a 2﹣3(a <0),且不等式f (x )<4对任意x ∈[﹣3,3]恒成立,则实数a 的取值范围为( ) A .(−√7,√7)B .(﹣4,0)C .(−√7,0)D .(−74,0)11.(5分)古代城池中的“瓮城”,又叫“曲池”,是加装在城门前面或里面的又一层门,若敌人攻入瓮城中,可形成“瓮中捉鳖”之势.如下图的“曲池”是上、下底面均为半圆形的柱体.若AA 1⊥面ABCD ,AA 1=3,AB =4,CD =2,E 为弧A 1B 1的中点,则直线CE 与平面DEB 1所成角的正弦值为( )A .√39921B .√27321C .2√4221D .√422112.(5分)关于x 的方程2|x +a |=e x 有三个不同的实数解,则实数a 的取值范围是( ) A .(﹣∞,1] B .[1,+∞) C .(﹣∞,l ﹣ln 2]D .(1﹣ln 2,+∞)二.填空题(共4小题,满分20分,每小题5分)13.(5分)若不等式ax 2+bx ﹣2>0的解集为(﹣4,1),则a +b 等于 .14.(5分)如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圆内一点P ,若OC →=m OA →+2mOB →,AP →=λAB →则λ= .15.(5分)公差不为0的等差数列{a n }的前n 项和为S n ,若a 2,a 5,a 14成等比数列S 5=a 32,则a 10= .16.(5分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与不过坐标原点O 的直线l :y =kx +m 相交于A 、B 两点,线段AB 的中点为M ,若AB 、OM 的斜率之积为−34,则椭圆C 的离心率为 . 三.解答题(共6小题,满分70分)17.(10分)已知x ,y 满足的约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0(1)求z 1=9x ﹣4y 的最大值与最小值; (2)求z 2=x+2y+4x+2的取值范围. 18.(12分)已知函数f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx . (1)求f(π6)的值;(2)在锐角△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若f(A2)=1,a =2,求b +c 的取值范围.19.(12分)已知双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2. (Ⅰ)求双曲线的标准方程;(Ⅱ)若抛物线y 2=2px (p >0)的焦点F 与该双曲线的一个焦点相同,点M 为抛物线上一点,且|MF |=3,求点M 的坐标.20.(12分)如图,在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB ,E ,F ,M 分别是PB ,CD ,PD 的中点. (1)证明:EF ∥平面P AD ;(2)求平面AMF 与平面EMF 的夹角的余弦值.21.(12分)已知A 、B 是椭圆x 24+y 2=1上两点,且OA →⋅OB →=0.(O 为坐标原点)(1)求证:1|OA|2+1|OB|2为定值,并求△AOB 面积的最大值与最小值;(2)过O 作OH ⊥AB 于H ,求点H 的轨迹方程.22.(12分)已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是S n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n +1)在直线x ﹣y +2=0上.求数列{a n }、{b n }的通项公式.参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分) 1.【解答】解:由2x−1x+2≥3得,2x−1x+2−3≥0即x+7x+2≤0解得,﹣7≤x <﹣2. 故选:C .2.【解答】解:对于命题p :∀x ∈R ,(x +1)2<(x +2)2,当x =﹣2时,不等式(x +1)2<(x +2)2不成立所以命题p 为假命题对于命题q :∃x ∈R ,x =1﹣x 2,方程x 2+x ﹣1=0的判别式Δ=1+4=5>0,故方程有解,即∃x ∈R ,x =1﹣x 2,故命题q 为真命题. 所以p 假q 真. 故选:B .3.【解答】解:因为ab =1(a ,b >0),所以a +2b ≥2√2ab =2√2 当且仅当a =2b 且ab =1即b =√22,a =√2时取等号 所以a +2b 的最小值为2√2. 故选:C .4.【解答】解:已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直 故a →⋅b →=m +1+2m =0,故m =−13. 故选:B .5.【解答】解:由椭圆的性质可知当点P 位于椭圆的上下顶点时,∠F 1PF 2最大由椭圆C :x 24+y 23=1,可得|OP |=√3,|F 1F 2|=2c =2√4−3=2所以S △PF 1F 2=12|OP |•|F 1F 2|=12×√3×2=√3. 故选:C .6.【解答】解:由正弦定理可知c b−a=sinC sinB−sinA=sin(B+A)sinB−sinA=sin3A sin2A−sinA=2sin3A 2cos 3A 22cos 3A 2sinA 2=sin3A2sinA 2=sin A 2cosA+2cos 2A 2sinA 2sinA2=2cos A +1∵A +B +C =180°,B =2A∴3A +C =180°,A =60°−C 3<60° ∴0<A <60° ∴12<cos A <1则2<2cos A +1<3. 故c b−a的取值范围是:(2,3).故选:C .7.【解答】解:∵F (1,0),根据题意设y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2) 联立{y =k(x −1)y 2=4x ,可得k 2x 2﹣(2k +4)x +k 2=0∴{x 1+x 2=2k+4k2x 1x 2=1,又|AF |=2|BF |∴1+x 1=2(1+x 2) ∴x 1=1+2x 2,又x 1x 2=1 ∴x 2=12,x 1=2∴|AB |=p +x 1+x 2=2+2+12=92故选:B .8.【解答】解:设l 的倾斜角为α,α∈[0,π). 由题意可得k =−ba ,(﹣2)2=a 2+2,b 2=2,a ,b >0 解得a =√2=b∴k =tan α=﹣1,α∈[0,π). ∴α=3π4 故选:D .9.【解答】解:由a +1>b ﹣2,可得a >b ﹣3由a >b ﹣3不能够推出a >b ,故“a +1>b ﹣2”是“a >b ”的不充分条件 由a >b ,可推出a >b ﹣3成立,故“a +1”>b ﹣2”是a >b ”的必要条件 综上“a +1>b ﹣2”是“a >b ”的必要不充分条件 故选:B .10.【解答】解:由不等式f (x )<4对任意x ∈[﹣3,3]恒成立 即ax 2﹣3ax +a 2﹣7<0对任意x ∈[﹣3,3]恒成立 ∵a <0,对称轴x =32∈[﹣3,3] ∴只需x =32<0即可可得a ×94−32×3a +a 2−7<0. 即(4a +7)(a ﹣4)<0 解得−74<a <4 ∴−74<a <0. 故选:D .11.【解答】解:因为AA 1⊥平面ABCD ,AB ⊂平面ABCD ,则AA 1⊥AB由题意可以点A 为原点,AB 所在直线为y 轴,AA 1所在直线为z 轴,平面ABCD 内垂直于AB 的直线为x 轴建立空间直角坐标系,如图所示则A (0,0,0),B (0,4,0),C (0,3,0),D (0,1,0),A 1(0,0,3) B 1(0,4,3),C 1(0,3,3),D 1(0,1,3) 又因为E 为A 1B 1的中点,则E (2,2,3)则B 1E →=(2,−2,0),B 1D →=(0,﹣3,﹣3),CE →=(2,−1,3) 设平面DEB 1的法向量n →=(x ,y ,z ),则{B 1E →⋅n →=2x −2y =0B 1D →⋅n →=−3y −3z =0令x =1,则y =1,z =﹣1,则n →=(1,1,−1) 设直线CE 与平面DE B 1所成角为θ 则sinθ=|cos <CE →,n →>|=|CE →⋅n →||CE →||n →|=2√14×√3=√4221. 故选:D .12.【解答】解:由已知有方程2|x+a|=e x有三个不同的实数解可转化为y=|x+a|的图象与y=12ex的图象有三个交点设直线y=x+a的图象与y=12e x相切于点(x0,y0)因为y′=12e x所以{ y 0=x 0+a y 0=12e x 012e x=1解得:{x 0=ln2y 0=1a =1−ln2 要使y =|x +a |的图象与y =12e x 的图象有三个交点 则需a >1﹣ln 2即实数a 的取值范围是(1﹣ln 2,+∞) 故选:D .二.填空题(共4小题,满分20分,每小题5分)13.【解答】解:∵不等式ax 2+bx ﹣2>0的解集为(﹣4,1) ∴﹣4和1是ax 2+bx ﹣2=0的两个根 即{−4+1=−ba −4×1=−2a解得{a =12b =32; ∴a +b =12+32=2. 故答案为:2.14.【解答】解:根据条件知,OP →与OC →共线; ∵AP →=λAB →;∴OP →−OA →=λ(OB →−OA →); ∴OP →=(1−λ)OA →+λOB →; 又OC →=m OA →+2mOB →; ∴λ=2(1﹣λ); ∴λ=23. 故答案为:23.15.【解答】解:设数列的公差为d ,(d ≠0) ∵S 5=a 32,得:5a 3=a 32 ∴a 3=0或a 3=5;∵a 2,a 5,a 14成等比数列 ∴a 52=a 2•a 14∴(a 3+2d )2=(a 3﹣d )(a 3+11d )若a 3=0,则可得4d 2=﹣11d 2即d =0不符合题意 若a 3=5,则可得(5+2d )2=(5﹣d )(5+11d ) 解可得d =0(舍)或d =2 ∴a 10=a 3+7d =5+7×2=19 故答案为:19.16.【解答】解:设A (x 1,y 1),B (x 2,y 2).线段AB 的中点M (x 0,y 0). ∵x 12a 2+y 12b 2=1,x 22a 2+y 22b 2=1 相减可得:(x 1+x 2)(x 1−x 2)a 2+(y 1+y 2)(y 1−y 2)b 2=0把x 1+x 2=2x 0,y 1+y 2=2y 0,y 1−y 2x 1−x 2=k 代入可得:2x 0a 2+2y 0k b 2=0又y 0x 0•k =−34,∴1a 2−34b 2=0,解得b 2a 2=34. ∴e =√1−b 2a2=12.故答案为:12.三.解答题(共6小题,满分70分)17.【解答】解:(1)由z 1=9x ﹣4y ,得y =94x −14z 1 作出约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0对应的可行域(阴影部分)平移直线y =94x −14z 1,由平移可知当直线y =94x −14z 1经过点C 时,直线y =94x −14z 1的截距最小,此时z 取得最大值 由{x +y −3=05x +2y −18=0,解得C (4,﹣1). 将C (4,﹣1)的坐标代入z 1=9x ﹣4y ,得z =40 z 1=9x ﹣4y 的最大值为:40. 由{x +y −3=02x −y =0解得B (1,2)将B (1,2)的坐标代入z 1=9x ﹣4y ,得z =1 即目标函数z =9x ﹣4y 的最小值为1. (2)z 2=x+2y+4x+2=1+2•y+1x+2,所求z 2的取值范围. 就是P (﹣2,﹣1)与可行域内的点连线的斜率的2倍加1的范围 K PC =0.由{5x +2y −18=02x −y =0解得A (2,4),K P A =4+12+2=54 ∴z 2的范围是:[1,72].18.【解答】解:(1)f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx =sin(π4+x)cos(π4+x)+√3sinxcosx =12sin(π2+2x)+√32sin2x=12cos2x +√32sin2x=sin(2x +π6) 所以f(π6)=sin(2×π6+π6) =sin π2 =1;(2)f(A2)=sin(A +π6)=1 在锐角三角形中0<A <π2所以π6<A +π6<2π3故A +π6=π2,可得A =π3 因为a =2,由正弦定理bsinB=c sinC=a sinA=√32=4√33所以b +c =4√33(sinB +sinC) =4√33[sinB +sin(2π3−B)] =4√33(sinB +√32cosB +12sinB) =4√33(32sinB +√32cosB) =4sin(B +π6) 又B +C =2π3,及B ,C ∈(0,π2) 所以B ∈(π6,π2) 所以B +π6∈(π3,2π3) 则b +c =4sin(B +π6)∈(2√3,4].19.【解答】解:(Ⅰ)由题意设所求双曲线方程为x 2a 2−y 2b 2=1又双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2 则a =1,c =2 即b 2=c 2﹣a 2=3即双曲线方程为x 2−y 23=1;(Ⅱ)由(Ⅰ)可知F (2,0) 则p =4即抛物线的方程为y 2=8x 设点M 的坐标为(x 0,y 0) 又|MF |=3 则x 0+2=3则x 0=1,y 0=±2√2即点M 的坐标为(1,2√2)或(1,﹣2√2).20.【解答】(1)证明:取P A 的中点N ,连接EN ,DN ,如图所示: 因为E 是PB 的中点,所以EN ∥AB ,且EN =12AB又因为四边形ABCD 为正方形,F 是CD 的中点,所以EN ∥DF ,且EN =DF 所以四边形ENDF 为平行四边形,所以EF ∥DN因为EF ⊄平面P AD ,DN ⊂平面P AD ,所以EF ∥平面P AD ;(2)解:以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 、y 、z 轴 建立空间直角坐标系,如图所示:设AB =2,则E (1,0,1),F (1,2,0),P (0,0,2),D (0,2,0),M (0,1,1); 所以EM →=(−1,1,0) MF →=(1,1,−1),AF →=(1,2,0) 设平面AMF 的法向量为m →=(x ,y ,z ),则由m →⊥AF →,m →⊥MF →可得{x +2y =0x +y −z =0,令y =1,得m →=(−2,1,−1)设平面EMF 的法向量为n →=(a ,b ,c ),则由n →⊥MF →,n →⊥EM →可得{a +b −c =0−a +b =0,令b =1,得n →=(1,1,2)则cos <m →,n →>=m →⋅n →|m →||n →|=√4+1+1×√1+1+4=−12因为两平面的夹角范围是[0,π2]所以平面AMF 与平面EMF 夹角的余弦值为12.21.【解答】证明:(1)设A (r 1cos θ,r 1sin θ),B (r 2cos (90°+θ),r 2sin (90°+θ)),即B (﹣r 2sin θ,r 2cos θ) 则r 12cos 2θ4+r 12sin 2θ=1,r 22sin 2θ4+r 22cos 2θ=1,即1r 12=cos 2θ4+sin 2θ,1r 22=sin 2θ4+cos 2θ故1|OA|2+1|OB|2=1r 12+1r 22=54△AOB 面积为S =12r 1r 2=2√4sin θ+17sin θcos θ+4cos θ∵4sin 4θ+17sin 2θcos 2θ+4cos 2θ=(2sin 2θ+2cos 2θ)+9sin 2θcos 2θ=4+94sin 22θ ∴当sin2θ=0时,S 取得最大值1,当sin2θ=±1时,S 取值最小值45故△AOB 面积的最大值为1,最小值为45;(2)解:∵|OH ||AB |=|OA ||OB | ∴1|OH|2=|AB|2|OA|2|OB|2=r 12+r 22r 12+r 22=1r 12+1r 22=54∴|OH|2=45故点H 的轨迹方程为x 2+y 2=45.22.【解答】解:∵a n 是s n 与2的等差中项,∴2a n =S n +2,即S n =2a n ﹣2. ∴当n =1时,a 1=2a 1﹣2,解得a 1=2.当n ≥2时,a n =S n ﹣S n ﹣1=(2a n ﹣2)﹣(2a n ﹣1﹣2) 化为a n =2a n ﹣1∴数列{a n }是等比数列,首项为2,公比为2,a n =2n . ∵点P (b n ,b n +1)在直线x ﹣y +2=0上. ∴b n ﹣b n +1+2=0,即b n +1﹣b n =2∴数列{b n }是等差数列,首项为1,公差为2.∴b n=1+2(n﹣1)=2n﹣1.。
高二数学理科期末试卷
高二数学理科期末试卷(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高二数学(上)期末考一、选择题:本小题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 不等式0322<--x x 的解集是( ) A .()1,3- B .()3,1- C .()3,-∞- ()+∞,1D .()1,-∞- ()+∞,32. 已知平面α的法向量是()2,3,1-,平面β的法向量是()4,,2λ-,若//αβ,则λ的值是( )A .103-B .6-C .6D .1033.已知, , a b c 满足c b a <<,且0ac <,那么下列选项中一定成立的是( ) A. ab ac > B. ()0c b a -< C. 22cb ab < D. ()0ac a c ->4. 已知{}n a 是由正数组成的等比数列,n S 表示{}n a 的前n 项的和.若13a =,24144a a =,则10S 的值是( )A .511B .1023C .1533D .30695. 下列有关命题的说法正确的是( ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. B .“1x =-”是“2560x x --=”的必要不充分条件. C .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈, 均有210x x ++<”. D .命题“若x y =,则sin sin x y =”的逆否命题为真命题6. 设21,F F 为双曲线1422=-y x 的两个焦点,点P 在双曲线上且02190=∠PF F ,则21PF F ∆的面积是( )B.25D.57. 已知向量)0,1,1(=→a ,)2,0,1(-=→b ,且→→+b a k 与→→-b a 2互相垂直,则k 的值是( )A. 1B. 51C. 53D. 578. 若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且060C =,则a b +的最小值为( )A B . C .43D .8-9.若双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过F 且倾斜角为︒60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率e 的取值范围是( ) A .[]2,1B .()2,1C .()+∞,2D . [)+∞,210.若抛物线24y x =的焦点是F ,准线是l ,则经过点F 、M (4,4)且与l 相切的圆共有( ).个 个 个 个二、填空题:本大题共5小题,每小题4分,满分20分.请把答案填在答题纸的相应位置. 11.等差数列{}n a 中,若34512,a a a ++=则71a a += .12. 已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则z x y =+的最小值是 .13. 已知正方体1111D C B A ABCD -中,E 为11D C 的中点,则异面直线AE 与BC 所成角的余弦值为 .14. 点P 是抛物线x y 42=上一动点,则点P 到点)1,0(-A 的距离与P 到直线1-=x 的距离和的最小值是 .15.设{}n a 是公比为q 的等比数列,其前n 项积为n T ,并满足条件011,01,110099100991<-->->a a a a a ,给出下列结论:(1)10<<q ; (2)1198<T ;(3)110199<a a ;(4)使1<n T 成立的最小自然数n 等于199,其中正确的编号为 (写出所有正确的编号)三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16. (本小题满分13分)已知数列}{n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,⑴求12,a a 的值;⑵求数列{}n a 的通项公式。
高二期末测试卷数学(理科)
高二期末测试卷数学(理科)本试卷共4页,分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。
第I 卷(选择题共60分) 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑。
(特别强调:为方便本次阅卷,每位考生在认真填涂“数学”答题卡的前提下,再将I 卷选择题答案重涂在另一答题卡上。
)如需改动,用橡皮擦千净后,再改涂在其它答案标号。
3.参考公式:[]1cos cos cos()cos()2αβαβαβ=++-;sin sin 2sincos22x yx yx y +-+=;[]1sin sin cos()cos()2αβαβαβ=-+--;sin sin 2cos sin 22x y x yx y +--=;[]1sin cos sin()sin()2αβαβαβ=++-;cos cos 2cos cos 22x y x yx y +-+=;[]1cos cos sin()sin()2αβαβαβ=+--;cos cos 2sin sin 22x y x yx y +--=-。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在数列1,1,2,3,5,8,x ,21,34,55中,x 等于( ) A .11 B .12 C .13 D .142.对于向量a ,b ,c 和实数λ,下列叙述正确的是( )A .若0a b ∙=,则0a =或0b =B .若0a λ=,则0λ=或0a =C .若22a b =,则a b =或0a = D .若a b a c ∙=∙,则b c = 3.已知4cos(45πθ+=,则sin 2θ等于( )A .725-B .725C .925D .17254.已知a ,b 均为单位向量,他们的夹角为60︒,那么a b +等于( )A B C D .451与1-这两数的等比中项是( ) A .1 B .-1 C .1± D .126.化简AB BD AC C D−−→+−−→-−−→-−−→等于( ) A .AD −−→ B .0 C .BC −−→ D .DA−−→ 7.等比数列{}n a 中,2a =9,5a =243,则{}n a 的前4项和为( )A .81B .120C .168D .1928.在ABC ∆中,若2sin b a B =,则A 等于( )A .30︒或60︒B .45︒或60︒C .120︒或60︒D .30︒或150︒9.函数21sin(2)2cos 2x y x π+-=+的最小正周期是( )A .2πB .4πC .2πD .π10.在ABC ∆中,角A ,B 均为锐角,且cos sin A B >,则ABC ∆的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形11.已知a b ⊥,2a =,6b =,且32a b +与a b λ-垂直,则实数λ的值为( ) A .-6 B .6 C .6± D .112.等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 前9项的和9S 等于( )A .66B .99C .144D .297 第II 卷(非选择题 共90分) 注意事项:1.第II 卷包括填空题和解答题共两个大题2.第II 卷所有题目的答案考生需用黑色签字笔答在“数学”答题卡指定的位置 二、填空题:本大题共4个小题,每小题4分,共16分。
高二下学期期末数学试题含答案(理科)
高二下学期期末数学试题(理科)一、选择题:本大题共8小题,每小题5分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 在复平面内,复数iz +=21对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2. 设随机变量等可能地取值1,2,3,⋯,n ,若3.0)4(=<X P ,则n 的值为 A. 11 B. 10 C. 9 D. 8 3. 若1)1(4)1(6)1(4)1(234+-+-+-+-=x x x x S ,则S =A. 4)2(-xB. 4)1(-xC. 4xD. 4)1(+x4. 已知随机变量X 服从二项分布,即X ~B (6,31),则P (X =2)的值为A. 24380B. 24313C. 2434D. 1635. 函数x x x f cos 2)(+=在[0,2π]上取得最大值时的x 的值为A. 0B. 6πC. 3πD. 2π6. 如果)()()(b f a f b a f =+,且2)1(=f ,则=++++)2009()2010()5()6()3()4()1()2(f f f f f f f f A. 2010 B. 2009C. 2008D. 10057. 若n n n x a x a x a a x x 2222102)1(++++=++ ,则=++++n a a a a 2420 A. n2 B. 12+n C. 213-n D. 213+n8. 定义在R 上的函数f (x )满足)2()2(x f x f -=+,若方程0)(=x f 有且只有三个不相等的实根,且0是其中的一个根,则方程的另外两个根必为A. -1,1B. -1,4C. 2,4D. -2,2二、填空题:本大题共6小题,每小题5分,满分30分. 请把答案填在题中横线上.9. 对于回归方程25775.4ˆ+=x y,当4=x 时,y 的估计值是 ▲ .10. 质点运动规律为t t y 233+=,其中y (单位:m )表示在时刻t (单位:s )的位移,则t =2s 时,质点的加速度是 ▲ m/s 2.11. 计算=⎰dx xπ022cos ▲ .12. 函数)2ln(2--=x x y 的单调递增区间为 ▲ .13. 某班周一的课程表要排入语文、数学、英语、物理、化学、体育共六门课程,如果第一节不排体育,第六节不排数学,则不同的排法共有 ▲ 种(用数字作答). 14.已知点列如下:)1,1(1P ,)2,1(2P ,)1,2(3P ,)3,1(4P ,)2,2(5P ,)1,3(6P ,)4,1(7P ,)3,2(8P ,)2,3(9P ,)1,4(10P ,)5,1(11P ,)4,2(12P ,…,则60P 的坐标为 ▲ .三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分12分). 假定在这段时间内两地是否降雨相互之间没有影响,求在这段时间内: (1)甲、乙两地都降雨的概率; (2)甲、乙两地都不降雨的概率; (3)其中至少一个地方降雨的概率.16.(本小题满分12分)设复数i m m m m m z )65(3622++++--=,试求实数m 为何值时, (1)z 是实数; (2)z 是虚数; (3)z 是纯虚数.17.(本小题满分14分)某单位有8名员工,其中有5名员工曾经参加过一种或几种技能培训,另外3名员工没有参加过任何技能培训,现要从8名员工中任选3人参加一种新的技能培训.(1)求恰好选到1名曾经参加过技能培训的员工的概率;(2)这次培训结束后,仍然没有参加过任何技能培训的员工人数ξ是一个随机变量,求ξ的分布列和数学期望.18.(本小题满分14分)已知函数12)(+=x x f .(1)求过点(1,3),且与函数)(x f y =的图象相切的直线方程; (2)求过点(2,4),且与函数)(x f y =的图象相切的直线方程.19.(本小题满分14分)已知函数2)()(a x x x f -=,求f (x )的单调区间与极值.20.(本小题满分14分)在数列}{n a 中,)2(1>=a a a ,)()1(2*21N n a a a n nn ∈-=+. (1)求证:2>n a ; (2)求证:11<+nn a a ; (3)若3>n a ,证明:当43lg 3lga n ≥时,31<+n a .参考答案及评分标准一、选择题二、填空题9. 276 10. 312 11. 2π 12. (2,+∞) 13. 504 14. (5,7)三、解答题15.(本小题满分12分)解:设在元旦期间甲地降雨的事件为A ,乙地降雨的事件为B , 则P (A )=0.2,P (B )=0.3.(1)甲、乙两地都降雨的事件为AB ,所以甲、乙两地都降雨的概率为 P (AB )=P (A )P (B ⨯0.3=0.06; (4分)(2)甲、乙两地都不降雨的事件为B A ,所以甲、乙两地都不降雨的概率为56.07.08.0))(1))((1()()()(=⨯=--==B P A P B P A P B A P ; (8分)(3)设元旦期间甲、乙两地至少一个地方降雨的事件为C ,则事件C 与事件B A 互斥,所以甲、乙两地至少一个地方降雨的概率为44.056.01)(1)(=-=-=B A P C P . (12分)16.(本小题满分12分)解:(1)要使z 为实数,则⎩⎨⎧≠+=++.03,0652m m m , (2分)解之得 2-=m . (4分)(2)要使z 为虚数,则⎩⎨⎧≠+≠++.03,0652m m m (6分)解之得2-≠m ,且3-≠m . (8分)(3)要使z 为纯虚数,则⎪⎪⎪⎩⎪⎪⎪⎨⎧≠+≠++=+--.03,065,03622m m m m m m , (10分)解之得3=m . (12分)17.(本小题满分14分)解:(1)恰好选到1名已参加过其它技能培训的员工的概率为5615382315==C C C P . (5分) (2)随机变量ξ可能取值为:0,1,2,3. (6分)561)0(3833===C C P ξ;5615)1(382315===C C C P ξ; 2815)2(381325===C C C P ξ;285)3(3835===C C P ξ. 所以随机变量ξ的分布列是(10分) 随机变量ξ的数学期望为56105285328152561515610=⨯+⨯+⨯+⨯=ξE . (14分)18.(本小题满分14分) 解:由12)(+=x x f ,得xx f 1)(='. (2分)(1)由3)1(=f ,得点(1,3)在函数)(x f y =的图象上, (3分) 所以过点(1,3)的切线斜率1)1(1='=f k , (5分)故过点(1,3),且与函数)(x f y =的图象相切的直线方程为)1(13-⨯=-x y ,即2+=x y . (7分)(2)由4122)2(≠+=f ,得点(2,4)不在函数)(x f y =的图象上.设过点(2,4)的直线,且与函数)(x f y =的图象相切于点(0x ,120+x ),于是可得该切线的斜率021x k =, (9分)所以该切线的方程为)(112000x x x x y -=--. (10分)由点(2,4)在该切线上,得)2(1124000x x x -=--,解得10=x 或40=x . (12分) 故过点(2,4),且与函数)(x f y =的图象相切的直线方程为2+=x y 或321+=x y . (14分)19.(本小题满分14分)解:))(3(43)(2)()(222a x a x a ax x a x x a x x f --=+-=-⨯+-=', (2分) 令0)(='x f ,得3ax =,或a x =. (3分) (1)当0=a 时,03)(2≥='x x f , (4分) 所以函数f (x )单调递增区间为(-∞,+∞),且f (x )没有极值; (6分) (2)当0>a 时,a a<,当x 变化时,)(x f ',f (x )变化情况如下表:(8分)所以函数f (x )单调递增区间为(-∞,3a )与(a ,+∞),单调递减区间为(3a,a ),f (x )的极大值为3274)3(a a f =,极小值为0)(=a f ; (10分)(3)当0<a 时,aa <,当x 变化时,)(x f ',f (x )变化情况如下表:(12分) 所以函数f (x )单调递增区间为(-∞,a )与(3a ,+∞),单调递减区间为(a ,3a ),f (x )的极大值为0)(=a f ,极小值为3274)3(a a f =. (14分)20.(本小题满分14分)证明:(1)①当1=n 时,21>=a a 结论成立; (1分) ②假设)(*N k k n ∈=时,2>k a 成立, 当1+=k n 时,要证2)1(221>-=+k kk a a a ,只要证0442>+-k k a a , 即证0)2(2>-k a .由2>k a 知,0)2(2>-k a 成立,所以21>+k a . (4分) 由①、②知,对于*N n ∈,2>n a . (5分) (2)由2>n a 及)1(221-=+n nn a a a ,得)2()1(21-+=-=+n n n n n n n a a a a a a a , 因为02>-n a ,所以n n n a a a >-+)2(,所以1)2(<-+n n n a a a ,故11<+nn a a)(*N n ∈.(8分)(3)若3>n a ,则43)1311(21)111(21)1(21=-+<-+=-=+n n n n n a a a a a , 即431<+n n a a ,431<-n n a a ,⋯⋯,4312<a a , (10分)将上述n 个式子相乘得n n a a )43(11<+,即n n a a )43(1<+. (11分) 下面用反证法证明:假设31≥+n a ,则n a )43(3<,即43lg 3lg n a <,则43lg 3lga n <,与已知43lg 3lga n ≥矛盾. (13分)所以假设不成立,原结论成立,即当43lg 3lga n ≥时,31<+n a . (14分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二理科数学期末复习测试卷6
命题人:张灵丽
一、选择题
1、 方程为1Ry x 422=+的曲线是焦点在y 轴上的椭圆,则R 的取值范围是
A 、R>0
B 、0<R<2
C 、0<R<4
D 、2<R<4
2、曲线19
y 25x 22=+与1k 9y k 25x 2
2=-+-()9k <之间有 A 、相同的长短轴 B 、相同的焦距 C 、相同的离心率 D 、以上都不正确
3、双曲线1b
y a x 2222=-和椭圆()0b m ,0a 1b y m x 22
22>>>=+的离心率互为倒数,那么以a,b,m 为边长的三角形是
A 、锐角三角形
B 、直角三角形
C 、钝角三角形
D 、等边三角形
4、已知命题p:“任意[]x
e a ,1,0x ≥∈”,命题q:“存在R x 0∈,使0a x 4x 020=++”,若命题“q p ∧”是真命题,则实数a 的取值范围是
A 、[]4,e
B 、[]4,1
C 、()+∞,4
D 、(]1,∞-
5、若函数()()⎪⎩
⎪⎨⎧⎪⎭⎫ ⎝⎛π<≤<≤---=,2x 0x cos ,0x 11x x f 的图像与坐标轴所围成的封闭图形的面积为a ,则a 的值为
A 、21
B 、42π+
C 、1
D 、2
3 6、设()x f 是定义在R 上的奇函数,且()02f = ,当x>0时,有()()0x x f x xf 2
/<- 恒成立,则不等式()0x f x 2
>的解集是 A 、()()+∞-,20,2 B 、()()2,00,2 - C 、()()+∞-∞-,22, D 、()()2,02, -∞-
7、若不等式a 103x 2x ≥++-对于任意实数x 恒成立,则实数a 的取值范围为
A 、(]5lg ,∞-
B 、(]5lg ,0
C 、()5lg ,∞-
D 、()+∞,5lg
8、根据定积分的定义,
dx x 320⎰不等于
A 、()n 21i n 23n 1i n lim ⋅⎥⎦⎤⎢⎣⎡-∑=∞→
B 、n 1n i 3
n 1i n lim ⋅⎪⎭⎫ ⎝⎛∑=∞→
C 、n 2n i 23n 1i n lim ⋅⎪⎭⎫ ⎝⎛∑=∞→
D 、n 1n i 3
n 21i n 2lim ⋅⎪⎭⎫ ⎝⎛∑=∞→ 9、对任意复数()i ,R y ,x yi x z ∈+=为虚数单位,则下列结论正确的是
A 、y 2z z =-
B 、222y x z +=
C 、x 2z z ≥-
D 、y x z +≤
10、当()+∞∈,0x 时,可得到不等式3x 22x 2x x
4x ,2x 1x 22≥⎪⎭⎫ ⎝⎛++=+≥+,由此可以推广为1n x p x n +≥+
,取值p 等于 A 、n n B 、2n C 、n D 、n+1
二、填空题
11、()
=--⎰-dx x x 9323
3 。
12、不等式x log x x log x 22+<-的解集是 。
13、已知圆C 过双曲线116
y 9x 2
2=-的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是 。
14、若点P 是曲线x ln x y 2-=上任意一点,则点P 到直线y=x-2的最小距离为 。
15、在平面直角坐标系中,以点()1,1为圆心,2为半径的圆在以直角坐标系的原点为极点,以Ox 轴为极轴的极坐标系中对应的极坐标方程为 。
三、解答题
16、已知
()6a 2dx b a 3ax x 311+=-++⎰-且()()
dx b a 3ax x t f 3t 0-++=⎰为偶函数,求a,b 。
17、椭圆方程为1b
y a x 2222=+()0b a >>的一个顶点为A ()2,0,离心率36e =。
(1)求椭圆的方程;
(2)直线L:y=kx-2()0k ≠与椭圆相交于不同的两点M 、N ,且满足0MN AP ,PN MP =⋅=,求k 。
18、已知函数()()R a x 3ax x x f 23∈--=。
(1)若函数()x f 在区间[)+∞,1上为增函数,求实数a 的取值范围;
(2)若3
1x -=是函数()x f 的极值点,求函数()x f 在区间[]a ,1上的最大值。
19、已知在四棱锥P-ABCD 中,底面ABCD 是矩形,且AD=2,
AB=1,P A ⊥ 平面ABCD ,E,F 分别是线段AB,BC 的中点。
(1) 求证:PF ⊥FD ; (2) 判断并说明PA 上是否存在点G ,使得EG//平面PFD ; (3) 若PB 与平面ABCD 所成的角为045,求二面角 A-PD-F 的余弦值。
A B C
E 。
D F P G
20、已知函数()b ax x 3x x f 23++-=在1x -=处的切线与x 轴平行。
(1)求a 的值和函数()x f 的单调区间;
(2) )若函数()x f 的图像与抛物线3x 15x 23y 2+-=
恰有三个不同交点,求b 的取值范围。
21、已知()(),2,0OB ,2,0OA =-=直线l :2y -=,动点P 到直线l 的距离为d ,且。
(1)求动点P 的轨迹方程;
(2)直线m:()0k 1x k y >+=与点P 的轨迹交于M ,N 两点,当17AN AM ≥⋅时,求直线m 的倾斜角α的取值范围;
(3)设直线h 与点P 的轨迹交于C ,D 两点,写出命题“如果直线h 过点B ,那么12-=⋅”的逆命题,并判断该逆命题的真假,请说明理由。