Testing nuclear forces by polarization transfer coefficients in d(vec p, vec p)d and d(vec

合集下载

NMR实验技术

NMR实验技术

1600
1400
1200
1000
800
600
400
Hz
二、液体核磁共振谱分析对样品的要求
1、样品要求:
人们往往把注意力集中在谱仪操作上,而忽视样品准备。作为样品
提供者来说所关心的是得到一个信噪比好、分辩力高的谱图。所以, 花几分钟把样品准备好,可以节省几小时的谱仪的操作时间,同样, 处理好的纯样品可以得到可靠,准确的结构(分离手段的应用与纯 度非常重要)信息 。
一、NMR技术的起源与发展
二、液体NMR谱仪的基本结构和对样品
的要求
三、实验技术,方法,特点和选择
四、实验技术的新进展
一、NMR的起源与发展
1、原理的发现
核磁共振(NMR)现象是于1946年由美国斯坦福大学F. Bloch和哈佛大学的E. M. Purcell领导的两个研究小组分 别在水和石腊中观察到质子在静磁场里对射频(Radio Frequency,RF)辐射的共振吸收现象,即NMR现象。因此, 他们两人获得了1952年的诺贝尔物理学奖。自从1948年由 Bloch教授的几位学生参于制造NMR谱仪后,60多年来核磁 共振不仅形成为一门有完整理论的新兴学科——核磁共振 波谱学,并且各种新的实验技术不断发展,仪器不断完善, 在化学、生物、医学、药物等许多领域得到了广泛的应用。

3、样品管及样品用量:

作为一般常观实验,无论是高场谱仪还是一般谱仪对测试样品管 要求并不高(做大分子样品和微量样品除外),但样品管必需清洗干 净、无残留溶剂和杂质,以免影响测试结果。 虑样品的匀场和接收信号线形正常,另外,是送样量的要求,分了量 在300~500的样品,用样量5mg左右。测13C谱得加倍量。谱图的灵敏 度主要取决于样品的摩尔浓度。

博士研究生英语综合教程第二版

博士研究生英语综合教程第二版

新编研究生英语系列教程博士研究生英语综合教程(第二版/教师用书)北京市研究生英语教学研究会主编陈大明徐汝舟副主编刘宁王焱华许建平编者赵宏凌邹映辉杨凤珍来鲁宁张剑柳君丽曹莉郑辉中国人民大学出版社KEY TO THE EXERCISESUnit One ScienceText 1 Can We Really Understand Matter?I. Vocabulary1. A2. B3. A4. C5. D6. B7. B8. CII. Definition1. A priority2. Momentum3. An implication4. Polarization5. the distance that light travels in a year, about 5.88 trillion miles or 9.46 trillion km.6. a contradictory or absurd statement that expresses a possible truth7. a device that speeds up charged elementary particles or ions to high energiesIII. Mosaic1. The stress: (Omitted)Pronunciation rule: An English word ended with–tion or –sion has its stress on the last syllable but one.2. molecule3. A4. B5. C6. B7. A8. AIV. TranslationA.(Refer to the relevant part of the Chinese translation)B.In September 1995, anti-hydrogen atom—an anti-matter atom—was successfullydeveloped in European Particle Physics Laboratory in Switzerland. After the startling news spread out, scientists in the West who were indulged in the research of anti-matter were greatly excited. While they were attempting to produce and store anti-matter as the energy for spacecraft, they raised a new question: Many of the mysterious nuclear explosions in the recent one hundred years are connected with anti-matter. That is to say, these hard-to-explain explosions are tricks played by anti-mat ter. They are the “destruction”phenomenon caused by the impact between matter and anti-matter.V. GroupingA.Uncertainty:what if, illusory, indescribable, puzzle, speculation, seemingly, in some mysterious wayB.Contrast:more daunting, the hardest of hard sciences, do little to discourage, from afar, close scrutiny, work amazingly wellC. Applications of Quantum mechanics:the momentum of a charging elephant, building improved gyroscopes1. probabilities2. illusory3. discourage4. scrutinyVI. Topics for Discussion and Writing(Omitted)WRITING•STRATEGY•DEFINITIONI. Complete the following definitions with the help of dictionaries.1. To bribe means to influence the behavior or judgment of others (usually in positions ofpower) unfairly or illegally by offering them favors or gifts.2. Gravity is defined as the natural force by which objects are attracted to each other,especially that by which a large mass pulls a smaller one to it.3. The millennium bug refers to the computer glitch that arises from an inability of thesoftware to deal correctly with dates of January 2000 or later.4. Globalization is understood as the development so as to make possible internationalinfluence or operation.II. Write a one-paragraph definition of the following words.1. hypothesisA hypothesis is an idea which is suggested as a possible way of explaining facts,proving an argument, etc. Through experiments, the hypothesis is either accepted as true (possibly with improvements) or cast off.2. scienceScience is defined as the intellectual and practical activity encompassing the systematic study of the structure and behavior of the physical and natural world through observation and experiment.3. superstitionSuperstition refers to a belief which is not based on reason or fact but on old ideas about luck, magic, etc. For example, it is a common superstition that black cats are unlucky.4. pessimismPessimism is a tendency to give more attention to the bad side of a situation or to expect the worst possible result. A person with pessimism is a pessimist who thinks that whatever happens is bad.5. individualismIndividualism is the idea that the rights and freedom of the individual are the most important rights in a society. It has a bad sense in that little attention is paid to the rights of the collective or a good one in that independence is emphasized rather than dependence on others.Text 2 Physics Awaits New Options as Standard Model IdlesI. Vocabulary1. C2. A3. B4. A5. C6. D7. D8. BII. Definition1. A refrain2. A spark3. A jingle4. Symmetry5. develops or studies theories or ideas about a particular subject.6. studies the origin and nature of the universe.7. studies the stars and planets using scientific equipment including telescopes.III. Mosaic1. gravity2. anti-/opposite3. D4. B5. A6. A7. B8.AIV. TranslationA.(Refer to the relevant part of the Chinese translation)B.The Standard Model of particle physics is an unfinished poem. Most of the pieces are there,and even unfinished, it is arguably the most brilliant opus in the literature of physics. With great precision, it describes all known matter – all the subatomic particles such as quarks and leptons –as well as the forces by which those particles interact with one another.These forces are electromagnetism, which describes how charged objects feel each other’s influence: the weak force, which explains how particles can change their identities, and the strong force, which describes how quarks stick together to form protons and other composite particles. But as lovely as the Standard Model’s description is, it is in pieces, and some of those pieces – those that describe gravity – are missing. It is a few shards of beauty that hint at something greater, like a few lines of Sappho on a fragment of papyrus. V. GroupingA.Particle physics:supersymmetry, equation, superpartners, stringB.Strangeness:bizarre, beyond the ken ofC.Antonyms:gravity–antigravity1. novelty2. revelatory3. Symmetry4. gravityVII. Topics for Discussion and Writing(Omitted)WRITING • STRATEGY• EXEMPLIFICATION AN D ILLUSTRATION(Omitted)Text 3 Supporting ScienceI. Vocabulary1. D2. C3. A4. C5. C6. A7. B8. A9. C 10. D 11. B 12. AII. Definition1. A portfolio2. A vista3. Cryptography4. Paleontology5. a business or an undertaking that has recently begun operation6. a group of people having common interests7. a person with senior managerial responsibility in a business organizationIII. Rhetoric1. pouring money into2. column3. unbridled4. twilight5. blossomed intoIV. Mosaic1. phenomenon criterion datum medium(because these words originated from Latin and retain their Latin plural form)2. A3. A4. B5. B6. B7. C8. BV. TranslationA.(Refer to the relevant part of the Chinese translation)B. The five scientists who won the 1996 Nobel Prize point out that the present prosperityand development are based on the fruits of basic scientific research and the negligence of basic scientific research will threaten human development of the 21st century.EU countries noticed that one of their weaknesses is “insufficient investment in research and development.” Korea and Singapore do not hesitate to pour money into research and development. The developed countries in the West have used most of the scientific and technological development resources for the research and development of new and high technology. This has become an obvious trend at present. It is evident from the experiences of various countries that new and high technology can create and form new industries, open up and set up new markets. The innovation of traditional industries with new and high technology is a key method to strengthen the competitive competency of an enterprise.VI. Grouping:A.Negligence of basic research:corporate breakups, cut back on research, ignore it, subject to a protracted dissection and review, second-guessing, dropped dramatically, subjected to a scrutiny, skirling our supportB.Significant examples of basic research:computing, biotechnology, the Internet, number theory, complex analysis, coding theory, cryptography, dinosaur paleontology, genetics research)C.Ways to intensify arguments:moved support for science from a “want to have” squarely into the “need to have”column1. resounding2. second-guessing3. downsized4. subjectedVII. Topics for Discussion and Writing(Omitted)WRITING • STRATEGY • COMPARISON, CONTRAST, AND ANALOGY (Omitted)Text 4 Why Must Scientists Become More Ethically Sensitive Than They Used to Be?I. Vocabulary1. B2. B3. A4. C5. B6. D7. D8. A9. D 10. B 11. B 12. DII. Definition1. A constraint2. Algorithm3. A prerequisite4. Ethics5. an important topic or problem for debate or discussion6. a person’s principles or standards of behaviour; one’s judgement of what is important inlife.7. a formal plan put forward for consideration to carry out a projectIII. Rhetoric1. brushed under the carpet2. smell3. hands and brains4. battle front5. module . . . moduleIV. Mosaic1. /z/ /s/ /s/ /z/ /s//s/ /iz/ /z/ /s/ /z//iz/ /z/ /s/ /z/ /z//z/ /s/ /s/ /z/ /z//s/ after voiceless consonants/z/ after voiced consonants/iz/ after a word ended with –es2. B3. D4. A5. D6. A7. CV. TranslationA.(Refer to the relevant part of the Chinese translation)B. Scientists and medical ethicists advocate the prohibition of human cloning as a way toproduce life. They all agree that human cloning exerts severe threats on human dignity.Social critics point out that cloned children will lack personality and noumenon. G. Annas, professor of health laws in Boston university, points out that “human cloning should be banned because it may fundamentally alter the definition of ourselves.”VI. Grouping:A.The change of attitudes towards ethical consideration:occupy media slots and Sunday supplements, latest battle front, can no longer be swept aside, more sensitiveB.Academic science:a worldwide institutional web, peer review, respect for priority of discovery,comprehensive citation of the literature, meritocratic preferment, smuggle ethical considerations from private life, from politics, from religion, from sheer humanitariansympathyC.Industrial science:intimately involved in the business of daily lifeD.Post-academic science:a succession of “projects”, compound moral risks with financial risks, largely the work ofteams of scientists1. individualistic2. energized3. comprehensive4. heterogeneousVII. Topics for Discussion and Writing(Omitted)WRITING • STRATEGY • CAUSE AND EFFECT(Omitted)Text 5 Beauty, Charm, and Strangeness: Science as MetaphorI. Vocabulary1. B2. A3. C4. B5. C6. B7. A8. B9. A 10. CII. Rhetoric1. pitch2. landscape3. unblinking4. yawn5. wringsIII. Mosaic1.physical poetic political scientific optical atomic2. (Omitted)3. B4. B5. A6. C7. DIV. TranslationA.(Refer to the relevant part of the Chinese translation)B. There are only two forms of human spiritual creation: science and poetry. The formergives us convenience; and the latter gives us comfort. In more common words, the former enables us to have food to eat when we are hungry; and the latter makes us aware that eating is something more than eating, and it is very interesting as well. To have science without poetry, atomic bomb will be detonated; to have poetry without science, poets will starve to death.Scientists should not despise poets; and poets should not remain isolated from scientists.If the two fields conflict each other, human beings would be on the way to doom. In fact, the greatest scientists like Newton, Einstein and Mrs. Currie were all endowed with poetic spirit.I assert that in observing the apple falling to the ground, Newton not only discovered thegravity of the earth, he also wrote a beautiful poem.V. GroupingA.Human reason:guilty of hubris, cramped imagination, commonsense logic, an ignorant manB.Differences between art and science:different in their methods and in their ends, a scientific hypothesis can be proven, new combinations of old materials, transform the ordinary into extraordinary, a practical extension into technology, the sense of an endingC.Similarities between art and science:in their origin, quest to reveal the world1. indistinguishable2. transform3. poetic4. extension5. subdueVI. Topics for Discussion and Writing(Omitted)WRITING • STRATEGY • DIVISION AND CLASSIFICATIONI. Organize the following words into groups.People: physician; driver; boxer; mother; teacherSchools: school; college; institute; kindergarten; universityColors: brown; purple; violet; black; yellowPrepositions: along; toward; upon; without; intoVerbs:listen; read; write; hear; lookII. Complete the following lists.1. College students can be classified according to:A.academic achievementB.attitude toward politics, friendship, etc.C.sexD.heightE.place of originF.value of lifeG.major2. Transportation means can be classified according to:A.speedB.sizeeD.fuelfortF.historyG.water, land, or airIII. Write a paragraph of classification on the books which you like to read.(Omitted)Text 6 Is Science Evil?I. Vocabulary1. C2. A3. D4. B5. B6.A7. C8. C9. D 10. AII. Definition1. Canon2. Validity3. A premise4. Disillusionment5. the process of establishing the truth, accuracy, or correctness of something6. a mode of thinking based on guessing rather than on knowledgeIII. Mosaic1. 1) / / illusion dis-=not -ment=noun ending2) / / science pseudo-=false3) / / conscious -ness=noun ending4) / / question -able=adjective ending5) / / extenuate -ation=noun ending6) / / indict -ment=noun ending7) / / rebut -al=noun ending8) / / perpetrate -ion=noun ending9) / / problem -ic=adjective ending10) / / dissolute -ion=noun ending2. Para. 13: Only when scientific criticism is crippled by making particulars absolute can aclosed view of the world pretend to scientific validity –and then it is a falsevalidity.Para.14: Out of dissatisfaction with all the separate bits of knowledge is born the desire to unite all knowledge.Para. 15: Only superficially do the modern and the ancient atomic theories seem to fit into the same theoretical mold.1) Para. 13: Only + adverbial clause of time + inverted orderPara. 14: Prepositional phrase + inverted orderPara. 15: Only + adverb + inverted order2) Inverted order is used to emphasize.3. C4. B5. A6. CIV. TranslationA.(Refer to the relevant part of the Chinese translation)B. At present there exist two conflicting tendencies towards the development of science andtechnology. The opponents of science hold that the development of modern science has not brought blessings to human beings, instead it has brought human beings to the very edge of disaster and peril. On the other hand, the proponents of scientific and technological progress maintains that the crises facing human beings today—such as environmental pollution, ecological unbalance, natural resource exhaustion—are the natural consequences of the development of science, and the solution to which lies in the further development of science. Both of the above tendencies are reasonable in a sense with their respective one-sided view. If we view the development of modern science and technology from the point of view of our times and with dialectic viewpoints, we can find out that the problem facing modern science and technology is not how to understand the progress of modern science and technology, but how to find out the theoretical basis for the further development of science and technology in order to meet the needs of the times.V. GroupingA.Attitudes toward science:expect to be helped by science and only by science, the superstition of science, the hatred of science, the one great landmark on the road to truthB.Characteristics of science:powerful authority, solve all problems, thoroughly universalC.Scientific knowledge:a concrete totality, cannot supply us with the aims of life, cannot lead usD.Contrast between ancient and modern science:progress into the infinite, making particulars absolute, not as an end in itself but as a tool of inquiry1. corruption2. totality3. inquiry4. superstition5. landmarkVI. Topics for Discussion and Writing(Omitted)WRITING • STRATEGY • GENERALIZATION AND SPECIFICATIONWRITING • STRATEGY • COMBINATION OF WRITING STRATEGIES (Omitted)Unit Two EngineeringText 7 Engineers’ Dream of Practical Star FlightI. Vocabulary1. D2. C3. B4. D5. A6. C7.CII. Definition1. Annihilation2. A skeptic3. A cosmic ray4. Anti-matter5. A workshop6. the curved path in space that is followed by an object going around another larger object7. any one of the systems of millions or billions of stars, together with gas and dust, heldtogether by gravitational attractionIII. Mosaic1. 闭音节, 字母u 发/ / 的音,如A, C and D.2. (Omitted)3. (Omitted)4. C5. C6. B7. A8. BIV. TranslationA.(Refer to the relevant part of the Chinese translation)B. Human beings have long been attempting sending unmanned devices, called interstellarprobes, into the outer space to understand the changes of climates, geological structures and the living beings on the stars and planets out there. A probe is usually sent into the orbit of the earth by “riding” a spacecraft or carrier rockets. After its orbital adjustments are made, the rocket engine is ignited and the probe continues its journey to the orbit of the other star or planet. With the rocket engine broken off, the probe immediately spreads its solar-cell sails and antenna, controlling its posture with sensors. When convinced that it is in the orbit of the targeted star, the probe starts its propeller and flies to the preset destination.V. GroupingA.Astronomical phenomena:interstellar medium, a wind of particles, galaxy, reserves of comets, the Kuiper Belt,orbit, Pluto, the Oort Cloud, the bombardment photonB.Space equipment:interstellar probe, gravitational lens, chemical rocket, thruster, reflective sailC.To explore the universe:scoop, bend, sampleD.Challenges and solutions in interstellar flights:carry its own supply of propellant, matter-antimatter, nuclear power1. gravitational2. propulsion3. probed4. interstellarVI. Topics for Discussion and Writing(Omitted)WRITING • RHETORIC • SIMILE AND METAPHORI. Complete the following similes with the words given, using one word once only.1. as drunk as a ___ bear 11. as cool as ___ cucumber______2. as faithful as a ___ dog_____ 12. as white as ____ snow ________3. as greedy as ____Jew_____ 13. as cunning as a ____ fox__________4. as rich as _____ king_____ 14. to fight like a ____ _lion_________5. as naked as a ___ frog_____ 15. to act like a stupid __ ass_________6. as red as a _ _lobster_ 16. to spend money like __ water_______7. as beautiful as a _ butterfly__ 17. to eat like a _ wolf________8. as busy as a ____ bee______ 18. to sleep like a _____ log ______9. as firm as a ____ rock _____ 19. to swim like a ____ fish________10. as rigid as a ___stone____ 20. to tremble like a _____ _ leaf_________II. Explain the following metaphors.1. Creaking doors hang the longest.creaking door: anything or anybody in a bad condition2. I could hardly put up with his acid comment.acid comment: bitter remark.3. Her eyes were blazing as she stormed at me.blazing: filled with angerstormed: shouted; screamed4. She burnt with love, as straw with fire flames.burnt with love: extremely excited with love5. The talk about raising taxes was a red flag to many voters.a red flag: a danger signal (that might stop the support of many voters)6. The charcoal fire glowed and dimmed rhythmically to the strokes of bellows.glowed and dimmed: became bright and gloomy7. The city is a jungle where nobody is safe after the dark.a jungle: a disorderly place8. To me he is power—he is the primitive, the wild wolf, the striking rattlesnake, thestinging centipede.the primitive, the wild wolf, the striking rattlesnake, and the stinging centipede: the most terrifying creatureText 8 Blinded By The LightI. Vocabulary1. A2. C3. A4. C5. D6. A7. BII. Rhetoric1. riveted2. pack3. pours4. creepsIII. Mosaic1. 开音节发字母读音, 如A, B and C.2. (Omitted)3. (Omitted)4. C5. D6. D7. C8. AIV. TranslationA.(Refer to the relevant part of the Chinese translation)B. The energy released from nuclear fusion is much more than that from nuclear fission, andthe radioactivity given out from fusion is only one hundredth of that from fission. The major fuel used for nuclear fusion is hydrogen and its isotopes, deuterium and tritium, among which deuterium could be directly extracted from sea water. The energy of deuterium contained in one liter of sea water is equal to 300 liters of petroleum. In the ocean there are about 35,000 billion tons of deuterium, which could be used for more than one billion years. Compared to the fission energy, the fusion energy on the earth is nearly limitless.V. GroupingA. Nuclear-fusion:the doughnut-shaped hollow, reactor, the Tokamak Fusion reactor, fusion, generate, consumeB. Verbs related to nuclear-fusion reaction:ignite, release, stickC. Excitement and cool-down:not a few tears, The experiment is an important milestone, but fusion power is still along way . . . , But no one knows for sure whether…, Even then it will take decades of engineering before…1. nuclear fusion2. repel3. blastVI. Topics for Discussion and Writing(Omitted)W RITING • R HETORIC • METONYMY AND SYNECDOCHEI. Study the uses of metonymy in the following sentences and then put them into Chinese.1.The election benched him in the district court.他在这次竞选中当上了地区法官。

核磁共振中常用的英文缩写和中文名称

核磁共振中常用的英文缩写和中文名称

NMR中常用的英文缩写和中文名称收集了一些NMR中常用的英文缩写,译出其中文名称,供初学者参考,不妥之处请指出,也请继续添加.相关附件NMR中常用的英文缩写和中文名称APT Attached Proton Test 质子连接实验ASIS Aromatic Solvent Induced Shift 芳香溶剂诱导位移BBDR Broad Band Double Resonance 宽带双共振BIRD Bilinear Rotation Decoupling 双线性旋转去偶(脉冲)COLOC Correlated Spectroscopy for Long Range Coupling 远程偶合相关谱COSY ( Homonuclear chemical shift ) COrrelation SpectroscopY (同核化学位移)相关谱CP Cross Polarization 交叉极化CP/MAS Cross Polarization / Magic Angle Spinning 交叉极化魔角自旋CSA Chemical Shift Anisotropy 化学位移各向异性CSCM Chemical Shift Correlation Map 化学位移相关图CW continuous wave 连续波DD Dipole-Dipole 偶极-偶极DECSY Double-quantum Echo Correlated Spectroscopy 双量子回波相关谱DEPT Distortionless Enhancement by Polarization Transfer 无畸变极化转移增强2DFTS two Dimensional FT Spectroscopy 二维傅立叶变换谱DNMR Dynamic NMR 动态NMRDNP Dynamic Nuclear Polarization 动态核极化DQ(C) Double Quantum (Coherence) 双量子(相干)DQD Digital Quadrature Detection 数字正交检测DQF Double Quantum Filter 双量子滤波DQF-COSY Double Quantum Filtered COSY 双量子滤波COSYDRDS Double Resonance Difference Spectroscopy 双共振差谱EXSY Exchange Spectroscopy 交换谱FFT Fast Fourier Transformation 快速傅立叶变换FID Free Induction Decay 自由诱导衰减H,C-COSY 1H,13C chemical-shift COrrelation SpectroscopY 1H,13C化学位移相关谱H,X-COSY 1H,X-nucleus chemical-shift COrrelation SpectroscopY 1H,X-核化学位移相关谱HETCOR Heteronuclear Correlation Spectroscopy 异核相关谱HMBC Heteronuclear Multiple-Bond Correlation 异核多键相关HMQC Heteronuclear Multiple Quantum Coherence异核多量子相干HOESY Heteronuclear Overhauser Effect Spectroscopy 异核Overhause效应谱HOHAHA Homonuclear Hartmann-Hahn spectroscopy 同核Hartmann-Hahn谱HR High Resolution 高分辨HSQC Heteronuclear Single Quantum Coherence 异核单量子相干INADEQUATE Incredible Natural Abundance Double Quantum Transfer Experiment 稀核双量子转移实验(简称双量子实验,或双量子谱)INDOR Internuclear Double Resonance 核间双共振INEPT Insensitive Nuclei Enhanced by Polarization 非灵敏核极化转移增强INVERSE H,X correlation via 1H detection 检测1H的H,X核相关IR Inversion-Recovery 反(翻)转回复JRES J-resolved spectroscopy J-分解谱LIS Lanthanide (chemical shift reagent ) Induced Shift 镧系(化学位移试剂)诱导位移LSR Lanthanide Shift Reagent 镧系位移试剂MAS Magic-Angle Spinning 魔角自旋MQ(C) Multiple-Quantum ( Coherence ) 多量子(相干)MQF Multiple-Quantum Filter 多量子滤波MQMAS Multiple-Quantum Magic-Angle Spinning 多量子魔角自旋MQS Multi Quantum Spectroscopy 多量子谱NMR Nuclear Magnetic Resonance 核磁共振NOE Nuclear Overhauser Effect 核Overhauser效应(NOE)NOESY Nuclear Overhauser Effect Spectroscopy 二维NOE谱NQR Nuclear Quadrupole Resonance 核四极共振PFG Pulsed Gradient Field 脉冲梯度场PGSE Pulsed Gradient Spin Echo 脉冲梯度自旋回波PRFT Partially Relaxed Fourier Transform 部分弛豫傅立叶变换PSD Phase-sensitive Detection 相敏检测PW Pulse Width 脉宽RCT Relayed Coherence Transfer 接力相干转移RECSY Multistep Relayed Coherence Spectroscopy 多步接力相干谱REDOR Rotational Echo Double Resonance 旋转回波双共振RELAY Relayed Correlation Spectroscopy 接力相关谱RF Radio Frequency 射频ROESY Rotating Frame Overhauser Effect Spectroscopy 旋转坐标系NOE谱ROTO ROESY-TOCSY Relay ROESY-TOCSY 接力谱SC Scalar Coupling 标量偶合SDDS Spin Decoupling Difference Spectroscopy 自旋去偶差谱SE Spin Echo 自旋回波SECSY Spin-Echo Correlated Spectroscopy自旋回波相关谱SEDOR Spin Echo Double Resonance 自旋回波双共振SEFT Spin-Echo Fourier Transform Spectroscopy (with J modulation) (J-调制)自旋回波傅立叶变换谱SELINCOR Selective Inverse Correlation 选择性反相关SELINQUATE Selective INADEQUA TE 选择性双量子(实验)SFORD Single Frequency Off-Resonance Decoupling 单频偏共振去偶SNR or S/N Signal-to-noise Ratio 信/ 燥比SQF Single-Quantum Filter 单量子滤波SR Saturation-Recovery 饱和恢复TCF Time Correlation Function 时间相关涵数TOCSY Total Correlation Spectroscopy 全(总)相关谱TORO TOCSY-ROESY Relay TOCSY-ROESY接力TQF Triple-Quantum Filter 三量子滤波WALTZ-16 A broadband decoupling sequence 宽带去偶序列WATERGATE Water suppression pulse sequence 水峰压制脉冲序列WEFT Water Eliminated Fourier Transform 水峰消除傅立叶变换ZQ(C) Zero-Quantum (Coherence) 零量子相干ZQF Zero-Quantum Filter 零量子滤波T1 Longitudinal (spin-lattice) relaxation time for MZ 纵向(自旋-晶格)弛豫时间T2 Transverse (spin-spin) relaxation time for Mxy 横向(自旋-自旋)弛豫时间tm mixing time 混合时间τ c rotational correlation time 旋转相关时间。

极化转移和相干转移

极化转移和相干转移

小 , 则 以 b =1 8 0 -2 代 入 得 :
(1 8 0

i 2
+
( I - I ) sin 2
2


I

x I co s I sin iI z sin 2
(1 8 0

-
2
x I I co s I sin - iI z sin 2
1H的能级布居数来增强信号,一旦去耦就无法得到增强信号。
结合J偶合调制,我们采用以下序列:
设置tD=1/2J,这意味着,通过90度脉冲与tD时间演化后13C的信号将重聚
偶合作用,我们使用矢量来解释整个过程。
极化和极化转移
极化转移的实现 : J调制与极化转移 由于对1H我们只选择性反转布居数,此处只考虑13C磁化矢量: 经过90°脉冲作用后,在xy平面可以得到+5和-3分量.
规则5: 在二维实验中,t1维的路径根据实验目的来确定。欲得到绝对 值谱,t1必须选择单线路径。若取p=+1路径,得到N型峰,称为 相干转移回波。若取p=-1路径,得到P型峰,称为相干转移反回 波。欲得到二维纯吸收谱或二维相敏谱,t1维必须选取对称的 双线路径p=±1.
脉冲对相干阶的影响
脉冲功率对相干阶的影响
回波重聚化学位移,则所有质子的布居数都反转,180°脉冲使观测核的两态翻转。 90y 1801H & 18013C 90x
tD = 1 / 4JCH tD
y y
tD
y
1801H,y 18013C,y
b a
x
b
tD b a
x
a
极化和极化转移
极化转移的实现 : 非选择性极化转移

核磁共振相关专业英语

核磁共振相关专业英语

APT Attached Proton Test 质子连接实验ASIS Aromatic Solvent Induced Sh芳香溶剂诱导位移 BBDR Broad Band Double Resonance 宽带双共振BIRD Bilinear Rotation Decoupling 双线性旋转去偶(脉冲)COLOC Correlated Spectroscopy for Long Range Coupling 远程偶合相关谱COSY ( Homonuclear chemical shift ) Correlation Spectroscopy (同核化学位移)相关谱CP Cross Polarization 交叉极化CP/MAS Cross Polarization / Magic Angle Spinning 交叉极化魔角自旋CSA Chemical Shift Anisotropy 化学位移各向异性CSCM Chemical Shift Correlation Map 化学位移相关图CW continuous wave 连续波DD Dipole-Dipole 偶极-偶极DECSY Double-quantum Echo Correlated Spectroscopy 双量子回波相关谱DEPT Distortionless Enhancement by Polarization Transfer 无畸变极化转移增强2DFTS two Dimensional FT Spectroscopy 二维傅立叶变换谱DNMR Dynamic NMR 动态NMRDNP Dynamic Nuclear Polarization 动态核极化DQ(C) Double Quantum (Coherence) 双量子(相干)DQD Digital Quadrature Detection 数字正交检测DQF Double Quantum Filter 双量子滤波DQF-COSY Double Quantum Filtered COSY 双量子滤波COSY DRDS Double Resonance Difference Spectroscopy 双共振差谱EXSY Exchange Spectroscopy 交换谱FFT Fast Fourier Transformation 快速傅立叶变换FID Free Induction Decay 自由诱导衰减H,C-COSY 1H,13C chemical-shift Correlation Spectroscopy 1H,13C化学位移相关谱H,X-COSY 1H,X-nucleus chemical-shift Correlation Spectroscopy 1H,X-核化学位移相关谱HETCOR Heteronuclear Correlation Spectroscopy 异核相关谱HMBC Heteronuclear Multiple-Bond Correlation 异核多键相关HMQC Heteronuclear Multiple Quantum Coherence异核多量子相干HOESY Heteronuclear Overhauser Effect Spectroscopy 异核Overhause效应谱HOHAHA Homonuclear Hartmann-Hahn spectroscopy 同核Hartmann-Hahn谱HR High Resolution 高分辨 HSQCHeteronuclear Single Quantum Coherence 异核单量子相干INADEQUATE Incredible Natural Abundance Double Quantum Transfer Experiment 稀核双量子转移实验(简称双量子实验,或双量子谱)INDOR Internuclear Double Resonance 核间双共振INEPT Insensitive Nuclei Enhanced by Polarization 非灵敏核极化转移增强INVERSE H,X correlation via 1H detection 检测1H的H,X核相关 IR Inversion-Recovery 反(翻)转回复JRES J-resolved spectroscopy J-分解谱LIS Lanthanide (chemical shift reagent ) Induced Shift 镧系(化学位移试剂)诱导位移LSR Lanthanide Shift Reagent 镧系位移试剂MAS Magic-Angle Spinning 魔角自旋MQ(C) Multiple-Quantum ( Coherence ) 多量子(相干)MQF Multiple-Quantum Filter 多量子滤波MQMAS Multiple-Quantum Magic-Angle Spinning 多量子魔角自旋MQS Multi Quantum Spectroscopy 多量子谱NMR Nuclear Magnetic Resonance 核磁共振NOE Nuclear Overhauser Effect 核Overhauser效应(NOE)NOESY Nuclear Overhauser Effect Spectroscopy 二维NOE谱NQR Nuclear Quadrupole Resonance 核四极共振PFG Pulsed Gradient Field 脉冲梯度场PGSE Pulsed Gradient Spin Echo 脉冲梯度自旋回波PRFT Partially Relaxed Fourier Transform 部分弛豫傅立叶变换PSD Phase-sensitive Detection 相敏检测 PW Pulse Width 脉宽RCT Relayed Coherence Transfer 接力相干转移RECSY Multistep Relayed Coherence Spectroscopy 多步接力相干谱REDOR Rotational Echo Double Resonance 旋转回波双共振RELAY Relayed Correlation Spectroscopy 接力相关谱 RF Radio Frequency 射频ROESY Rotating Frame Overhauser Effect Spectroscopy 旋转坐标系NOE谱ROTO ROESY-TOCSY Relay ROESY-TOCSY 接力谱 SC Scalar Coupling 标量偶合SDDS Spin Decoupling Difference Spectroscopy 自旋去偶差谱 SE Spin Echo 自旋回波SECSY Spin-Echo Correlated Spectroscopy自旋回波相关谱SEDOR Spin Echo Double Resonance 自旋回波双共振SEFT Spin-Echo Fourier Transform Spectroscopy (with J modulation) (J-调制)自旋回波傅立叶变换谱SELINCOR Selective Inverse Correlation 选择性反相关SELINQUATE Selective INADEQUA TE 选择性双量子(实验)SFORD Single Frequency Off-Resonance Decoupling 单频偏共振去偶SNR or S/N Signal-to-noise Ratio 信 / 燥比SQF Single-Quantum Filter 单量子滤波SR Saturation-Recovery 饱和恢复TCF Time Correlation Function 时间相关涵数TOCSY Total Correlation Spectroscopy 全(总)相关谱TORO TOCSY-ROESY Relay TOCSY-ROESY接力 TQF Triple-Quantum Filter 三量子滤波WALTZ-16 A broadband decoupling sequence 宽带去偶序列WATERGATE Water suppression pulse sequence 水峰压制脉冲序列WEFT Water Eliminated Fourier Transform 水峰消除傅立叶变换ZQ(C) Zero-Quantum (Coherence) 零量子相干ZQF Zero-Quantum Filter 零量子滤波T1 Longitudinal (spin-lattice) relaxation time for MZ 纵向(自旋-晶格)弛豫时间T2 Transverse (spin-spin) relaxation time for Mxy 横向(自旋-自旋)弛豫时间 tm mixing time 混合时间τc rotational correlation time 旋转相关时间。

NMR中常见术语解释

NMR中常见术语解释
DQF-COSY
Double Quantum Filtered COSY双量子滤波COSY
DRDS
Double Resonance Difference Spectroscopy双共振差谱
EXSY
Exchange Spectroscopy交换谱
FFT
Fast Fourier Transformation快速傅立叶变换
T1
Longitudinal (spin-lattice) relaxation time for MZ纵向(自旋-晶格)弛豫时间
T2
Transverse (spin-spin) relaxation time for Mxy横向(自旋-自旋)弛豫时间
tm
mixing time混合时间
τc
rotational correlation time旋转相关时间
INADEQUATE
Incredible Natural Abundance Double Quantum Transfer Experiment稀核双量子转移实验(简称双量子实验,或双量子谱)
INDOR
Internuclear Double Resonance核间双共振
INEPT
Insensitive Nuclei Enhanced by Polarization非灵敏核极化转移增强
COLOC
Correlated Spectroscopy for Long Range Coupling远程偶合相关谱
COSY
( Homonuclear chemical shift ) COrrelation SpectroscopY(同核化学位移)相关谱
CP
Cross Polarization交叉极化

常用化学试剂英文缩写中文对照表

常用化学试剂英文缩写中文对照表
bp Boiling point
Bpoc 1-methyl-1-(4-biphenyl)ethoxycarbonyl
Bpy 2,2’-Bipyridyl
br Broad (spectral)
BSA Bistrimethylsilyl acetamide
Bt Benzotriazo-1-yl or 1-benzotriazolyl
Coc Cinnamyloxycarbonyl
COD 1,5-Cyclooctadiene
concd Concentrated
COSY Correlation spectroscopy
COT Cyclooctatetrene
Cp Cyclopentadienyl
基准试剂 PT Primary reagent
实验试剂 LR Laboratory reagent
超纯试剂 UP Ultra pure
生化试剂 BC Biochemical
光 谱 纯 SP Spectrum pure
气相色谱 GC Gas chromatography
光谱纯试剂:缩写为SP,表示光谱纯净。但由于有机物在光谱上显示不出,所以有时主成分达不到99.9%以上,使用时必须注意,特别是作基准物时,必须进行标定。
优级纯试剂 GR Guaranteed reagent
分析纯试剂 AR Analytical reagent
学纯试剂 CP Chemical pure
Bz Benzoxyl
oC Degree Celsius
calcd Calculated
Cam Carboxyamidomethyl
cAMP Adenosine cyclic 3’,5’-phosphate

化学专业 英语词汇及相关词组的缩写

化学专业 英语词汇及相关词组的缩写

polymer atomlinkage molecule monomer complex proteinsubstituted conformation organic inorganic strength kevlarfibre(fiber) polymerization ethene polyethene constituent terminate random n.n.n.n.n.adj.nadj.adj.n.adj.adj.n.n.n.n.n.n.n.n.n.adj.聚合物原子连接,剪接分子单体复杂的,合成的,综合的蛋白质蛋白质的取代的,代替的构象有机的,组织的无机的强度凯夫拉纤维纤维,构造,纤维制品聚合乙烯聚乙烯(PE)成分,组分停止,结束,终止随意,任意任意的,随便的interval propagation acidamino sequence activity accessible spontaneously manufacturebiopolymer nucleic catalyst facilitate accelerate dimmer basealcohol amine carboxylic chloride n.n.n.adj.adj.n.n.adj.adv.vt.n.n.adj.n.vt.v.n.n.n.n.adj.n.间隔,距离,时间间隔链增长酸酸的氨基的次序,顺序,序列活性易接近的自发地,本能地制造,加工制造,产品生物高分子核的催化剂使容易,使便利,推动加速,促进二聚物碱醇胺羧基的氯化物acid chlorideaceticesteramidefree radical initiation propagation mechanism double bond formula susceptible ionicinitiator neutralize cation anionic kinetics solvent counter-ionion-pair stereochemistry stereoregularity adj.n.n.n.n.n.n.adj.adj.n.v.n.adj.n.n.n.n.酰氯醋酸的,乙酸的酯酰胺自由基引发增长机理双键分子式,公式易受影响的离子的引发剂使失效,抵消,中和阳离子阴离子的动力学溶剂反离子,抗衡离子离子对立体化学立构规整性blend copolymerization copolymer homopolymersynthesisstep-growth polymerization condensationadditionsuccessiveapplicationrigiditystressstrainmoduluslinearbranchedglass-transition temperature amorphouscrystallineeboniteadditivereinforce vt./n.n.n.n.n.n.n.adj.n.n.n.n.n.adj.adj.adj.adj.n.n.vt.混合,共混共聚合共聚物均聚物合成逐步聚合缩合加成连续的应用,申请,运用坚硬,刚性,刚度应力应变模量线的,线性的支化的玻璃化温度无定形的,非晶的结晶的硬橡胶添加剂补强,加固fillerpigment plasticizer lubricant processing aid forcibly standpoint extensibility vinylpolyvinyl chloride elasticity nonquantitative handdraperatiospin(span spun) filamentchopstapletwistdeniertenacity n.n.n.n.adv.n.n.n.n.adj.n.n.n.v.n.vt.n.vt.n.n.填料颜料增塑剂滑润剂加工助剂强制地,有力地立场,观点延长性,伸长乙烯基聚氯乙烯(PVC)弹性非定量的手感悬垂性比,比率纺,纺纱细丝切,砍人造短纤维捻,编织旦尼尔(纤度单位)韧性weathering resistancecoefficientalkalichemicaldielectric dielectric constant finish permanent specific gravity aluminum abrasion configuration moldextrudethermal form intricate magnitude transparent ceramic n.n.adj.adj.n.n.n.adj.n.n.n.n.vt.v.adj.n.adj.n.耐候性系数碱碱性的化学的化学药品电介质,绝缘体介电常数光洁度永久的,持久的密度铝磨损构造,结构,构型模型模塑,模压挤出热成型复杂的,错综的大小,数量,量级透明的陶瓷porcelainfire retardance asbestosmica conductivity surgicalimplant inertness malleablecast iron constraint parameter plasticization macroscopic elongation thermodynamic salvation thermoplast flexible processability adj.n.n.n.n.adj.n.v.n.adj.n.n.n.adj.n.adj.n.n.adj.n.陶器的瓷器,瓷阻燃性石棉云母电导率,传导率,传导性外科的外科手术植入不活拨,惰性有延展性的铸铁约束,强制参数,参量增塑,塑化,塑炼宏观的伸长热力学的溶剂化(作用)热塑性塑料,热塑柔性的,柔软的加工性foamphthalicdominateethylhexylDOP(dioctyl phthalate) polyether polycondensation oligomerdistinctioninteractdiluentextenderprimary plasticizer secondary plasticizer phthalate preferentially phenolic resin melamine polyurethane n.v.adj.v.n.n.n.n.n.n.n.v.adj.n.n.n.adv.n.n.泡沫,泡沫塑料发泡邻苯二甲酸的支配,占优势乙基己基邻苯二甲酸二辛酯聚醚,多醚缩聚反应低聚物区别,差别互相作用稀释的稀释剂填充剂主增塑剂助增塑剂邻苯二甲酸酯择优地酚醛树脂三聚氰胺聚氨酯gauchetranshelixplate-out pearlesence polytetrafluoroethylene obviatetalcpolyolefin compatiblesprayconventional multifunctional stearatepastillemontanic acid polycarbonate pultrusion polysulfoneoleodiscolorationparallel adj.n.n.n.n.vt.n.n.adj.vt.adj.adj.n.n.n.n.n.adj.n.v.左右式的反式螺旋,螺旋状物积垢珠光聚四氟乙烯消除,排除滑石,云母聚烯烃协调的,一致的喷射,喷溅常规的,传统的多功能的硬脂酸盐芳香重剂,粉蜡笔褐煤酸聚碳酸酯拉挤成型聚砜油的,油酰基的变色,污点相应,平行cadmium organo mercaptide brittle aesthetic appeal decyl adipate azelate adipic sebacic glycol triethyl titanium tatrachoride reactant alkane ethanol chromic silica alumina cyclohexane n.adj.n.adj.adj.n.n.n.n.adj.adj.n.adj.n.n.n.n.n.adj.n.n.n.镉有机金属的硫醇盐易碎的,脆弱的美学的,审美的要求癸基己二酸壬二酸酯脂肪的葵二酸的乙二醇三乙(烷)基的钛四氯化物反应物烷烃乙醇铬的硅土氧化铝(亦称矾土)环己烷isobutenefilternickel molybdenum charcoal hydride corrugated ductilitycobalt crosslinking dicumyl peroxide polymethylene diazomethane sodium paraffin serendipitous benzaldehyde coaxialfacility premature microporousness nanometer n.vt.n.n.n.n.adj.n.n.n.n.n.n.n.adj.n.adj.n.adj.n.n.异丁烯过滤镍钼活性炭氢化物波纹的延展性钴(Co)交联过氧化二异丙苯聚亚甲基重氮甲烷钠石蜡偶然发现的苯甲醛同轴的,共轴的设备,工具未成熟的,太早的微孔性纳米multidomain aggregationgranule montmorillonite homogenizematrixengender polypropylene propylenebromideslurryaluminum diethyl chloride titanium trichloride isotactichexanetacticitymethanolbulkymethylstiffnesstertiaryoxidative n.n.n.n.n.n.v.n.n.n.n.adj.n.n.n.adj.n.n.adj.adj.多畴聚集物,聚集(态)小粒,颗粒蒙脱石均质化,使均质基质,基体造成聚丙烯丙烯溴化物浆,泥浆,料液二乙基氯化铝三氯化钛等规的,全同立构的己烷立构规整性甲醇大的,容量大的甲基坚硬,硬度第三的,第三位的氧化的,具有氧化特性的degradationretardphenolicantioxidant dithiocarboxylic acid dilauryl dithiopropionate phosphateultravioletturfmattranslucent hydrochloric petroleumethane bichloridefluffymasticateprofoundextremelynegativesteric hidrance repulsionaliphatic n.vt.adj.n.n.adj.n.n.adj.adj.n.adj.v.adj.adj.adj.n.adj.降解,降级延迟,使减速,阻止酚的,石碳酸的防老剂,抗氧化剂二硫代碳酸二月桂基二硫代丙酸酯磷酸盐(酯)紫外线的草根土,草皮垫子半透明的氯化氢的,盐酸的石油二氯乙烷松散的,蓬松的塑炼,破料深刻的,深奥的极端的,非常的负的,阴性的位阻排斥,推斥脂肪族的,脂肪质的dehydrochlorination popcorn-like dryblendambientcalendarplastisol organosolrefluxsteam-stripvinyl acetate n.adj.n.n.n.n.n.n.n.n.米花状的干混料,干混合环境温度,室温压延机增塑溶胶,增塑糊稀释增塑糊,有机溶胶回流汽提乙酸乙烯酯Name Reagents and Trade NameBrederick Reagen Burgess ReageCaro’s AcidColman’s ReagentCorey-Kim Reagent Danishefsky’s Diene Dess-Martin Periodinane Diazald Eschenmoser’s Sslt Freons(Fluorohalocarbons)Fremy’s SaltGilman ReagentsHünig’s BaseJones Reagent Lawesson Reagent Lindar Catalyst Mander’s Reagent Meerwein’s SaltMosher EstersOxoneRed-AlSelectrideSimmons-Smith Reagent SkellysolveSuper HydrideTebbe’s ReagentViehe’s SaltVilsmeier Reagent Wieland-Miescher Ketone Wilkinson’s Catalyst Wittig ReagentDess-MartinWieland-Miescher Dimethoxydimethylaminomethane(amide acetal)MeO2CN-SO2N+(Et)3(alcohol dehydration) Sulfomonoperacid HOSO2OOHDisodium Iron TetracarbonylDimethyl sulfide-chlorine1-Methoxy-3-trimethylsiloxybuta-1,3-dieneN-Methyl-N-nitroso-p-toluenesulfonamide(diazomethane) Me2N+=CH2I-(Mannich reagent)11(CFCl3),12(CF2Cl2),13(CF3Cl),13B1(CF3Br),14(CF4),2 1(CHFCl2),22(CHF2Cl),23(CHF3),114(CF2ClCF2Cl),116( CF3CF3)(KO3S)2NOLithium DiorganocupratesDiisopropylethylamine(base catalyst)Chromic acid in acetonePd on CaCO3/PbOMethyl cyanoformate(NCC(=O))OMe Triethyloxonium Fluoroborate(Me3O+BF4-,methylating reagent)α-Methoxy-α-trifluromethylphenylacetatesPotassium monopersulfate(KHSO5)Sodium bis(2-methoxyethoxy)aluminium Hydridetri-sec-butylborohydride(L-Li,K=potassium)CH2I2-Zn(Cu)Petroleum ether solvents(alkane fractions)Sodium TriethylborohydrideCp2Ti(CH2)(Cl)AlMe2Me2N+=CCl2Cl-Me2N+=CHClCl-(Ph3P)3RhClPh3P=CR2MeO PSSOMePSSLawessonCH2ClAlCH3CH3TebbeSpectroscopy and Separation AcronymsASISδCDCICIDNP CMR COSY DEPT DNMREI ENDOR ESR(=EPR) EXAFS EXSY FABFIDFIDFTGLC HETCOR HMQC HOESY HPLCICR INDOR INEPTIRJLCLISMCDMSNMR NOE(SY) ODORD ORTEP PESR f ROESY TLCUV Aromatic solvent induced shifts (NMR)Chemical shift (NMR)Circular DichroismChemical Ionization (mass spec)Chemically Induced Dynamic Nuclear PolarizationCarbon-13 Magnetic ResonanceCorrelation Spectroscopy(NMR)Distortionless Enhancement by Polarization Transfer (NMR) Dynamic NMRElectron Impact (MS)Electron Nuclear Double ResonanceElectron (Paramagnetic) Spin ResonanceExtended X-Ray Absorption Fine SpectrumExchange spectroscopy (NMR saturation transfer)Fast Atom Bombardment (MS)Flame Ionization Detecter (VPC)Free Induction Decay (NMR)Fourier TransformGas-liquid Chromatography (VPC)Heteronuclear correlation (NMR)Proton detected Heteronuclear Multiquantum Coherence (NMR) Heteronuclear Overhauser Spectroscopy (NMR)High Performance Liquid ChromatographyIon Cyclotron ResonanceInternuclear Double ResonanceInsensitive Nuclei Enhanced by Polarization Transfer (NMR) InfraredCoupling Constant (NMR)Liquid ChromatographyLanthanide Induced shifts (NMR)Magnetic Circular DichroismMass SpectrumNuclear Magnetic ResonanceNuclear Overhauser Effect (Spectroscopy)Optical DensityOptical Rotatory DispersionOak Ridge Thermal Ellipse ProgramPhotoelectron SpectroscopyRetention Factor (Chromatography)Rotating frame Nuclear Overhauser Spectroscopy (NMR)Thin Layer ChromatographyUltraviolet SpectroscopyVPC XPS Vapor Phase Chromatography (GLC) (ESCA) X-Ray Photoelectron SpectroscopyStandard Abbreviations and Acronymsα[α]ÅAcacac ADP AIBN AM1 AMP Anal anhyd AOaqAratm ATP ATPase av9-BBN 9-BBN-H Bn,Bzl BOC,Boc BODIPY bpbpybrBu,n-Bu s-But-BuBzB3L YP℃calcd cAMP CAN CASSCF CASPT2 cat CBZ,Cbz CCCD observed optical rotation in degreesspecific rotation [expressed without units;the units, (deg·mL)/(g·dm),are understood]angstrom(s)acetylacetylacetonateadenosine 5’-diphosphate2,2’-azobisisobutyronitrileAustin model 1adenosine 5’-monophosphatecombustion elemental analysisanhydrousatomic orbitalaqueousarylatmosphere(s)adenosine 5’-triphosphateadenosinetriphosphataseaverage9-borabicyclo[3.3.1]nonyl9-borabicyclo[3.3.1]nonanebenzyltert-butoxycarbonyldipyrromethene boron difluorideboiling point,base pair2,2’-bipyridylbroad (spectral)normal (primary) butylsec-butyltert-butylbenzoyl (not benzyl)3-parameter hybrid Becke exchange/Lee-Yang-Parr correlation functional degrees Celsiuscalculatedadenosine cyclic 3’,5’-phosphateceric ammonium nitratecomplete active space self-consistent fieldcomplete active space with second-order perturbation theorycatalyticbenzyloxycarbonyl (preferred over the abbreviation Z)coupled clustercircular dichroismcDNA CICIF CIDNP cmcm-1cod compd concd concn COSY cotCpm-CPBA CVCyδdDABCO dansyl DBN DBU DCC DCE DCM DDQ DEAD DEPT DFT DIBALH DMA DMAP DMDO DME DMF DMPU DMSO DMT DNA DPSdrDTTE1 complementary deoxyribonucleic acidchemical ionization; configuration interactioncrystallographic information filechemically induced dynamic nuclear polarizationcentimeter(s)wavenumber(s)1,5-cyclooctadienecompoundconcentratedconcentrationcorrelation spectroscopy1,3,5,7-cyclooctatetraenecyclopentadienylmeta-chloroperoxybenzoic acidcyclic voltammetrycyclohexylchemical shift in parts per million downfield from tetramethylsilane day(s);doublet(spectral);decidensity1,4-diazabicyclo[2.2.2]octane5-(dimethylamino)-1-naphthalenesulfonyl1,5- diazabicyclo[4.3.0]non-5-ene1,8- diazabicyclo[5.4.0]undec-7-eneN,N’-dicyclohexylcarbodiimide1,2-dichloroethanedichloroethane2,3-dichloro-5,6-dicyano-1,4-benzoquinonediethyl azodicarboxylatedistortionless enhancement by polarization transferdensity functional theorydiisobutylaluminum hydridedimethylacetamide4-(N,N-dimethylamino)pyridinedimethyldioxirane1,2-dimethoxyethanedimethylformamide1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinonedimethyl sulfoxide4,4’-dimethoxytrityl(4,4’dimethoxyltriphenylmethyl) deoxyribonucleic acidtert-butyldiphenylsilyldiastereomer ratiodithiothreitolunimolecular eliminationE2ED50 EDTA EI EPReq equiverESIEtFAB FDFID Fmoc FTgGC GTPhHF HMBC HMPA HMQC HOMO HPLC HRMS HSQC HzICR INDO IPIRJkKLLAH LCAO LD50 LDA LFER LHMDS lit bimolecular eliminationdose effective in 50﹪of test subjectsethylenediaminetetraacetic acidelectron impactelectron paramagnetic resonanceequationequivalentenantionmer ratioelectrospray ionizationethylfast atom bombardmentfiled desorptionflame ionization detector;free induction decay9-fluorenylmethoxycarbonylFourier transformgram(s);prefix to NMR abbreviation denoting gradient-selected (e.g.gCOSY,gHMQC)gas chromatographyguanosine 5’-triphosphatehour(s)Hartree-Fockheteronuclear multiple bond correlationhexamethylphosphoric triamide(hexamethylphosphoramide)heteronuclear multiple quantum correlationhighest occupied molecular orbitalhigh-performance liquid chromatographyhigh-resolution mass spectrometryheteronuclear single quantum correlationhertzion cyclotron resonanceintermediate neglect of differential overlapionization potentialinfraredcoupling constant (in NMR spectrometry)kiloKelvin(s)(absolute temperature)liter(s)lithium aluminum hydridelinear combination of atomic orbitalsdose that is lethal in 50﹪of test subjectslithium diisopropylamide;local density approximationlinear free energy relationshiplithium hexamethyldisilazane,lithium bis(trimethylsilyl)amideliterature value (abbreviation used with period)LTMP LUMO μmMM+ MALDI max MCD MCR MCSCF MD Me MEM Mes MHz min lithium 2,2,6,6-tetramethylpiperididelowest unoccupied molecular orbitalmicromultiplet (spectral);meter(s);millimolar (moles per liter);megaparent molecular ionmatrix-assisted laser desorption ionizationmaximummagnetic circular dichroismmulticomponent reactionmulti-configuration self-consistent fieldmolecular dynamicsmethyl(2-methoxyethoxy)methyl2,4,6-trimethylphenyl(mesityl)[not methylsulfonyl(mesyl)] megahertzminute(s);minimuHOW TO APPROACH THE ANALYSIS OF A SPECTRUM (OR WHAT YOUCAN TELL AT A GLANCE)·Concentrate first on learning these major peaks and recognizing their presence or absence.1.Is a carbonyl group present? The C=O group gives rise to a strong absorption in the region1820-1660 cm-1(Conjugated ketones appear near 1680 cm-1).The peak is often the strongest in the spectrum and of medium width.2.If C=O is present,check the following types (if it is absent,go to step 3):ACIDS:Is O-H also present?·Broad absorption near 3400-2400 cm-1(usually overlaps C-H) AMIDES:Is N-H also present?·Medium absorption near 3400 cm-1;sometimes a double peak.ESTERS:Is C-O also present?·Strong-intensity absorption near 1300-1000 cm-1.ANHYDRIDES:Two C=O absorption near 1810 and 1760 cm-1.ALDEHYDES:Is aldehyde C-H present?·Two weak absorptions near 2850 and 2750 cm-1.KETONES:The preceding five choices have been eliminated.3.If C=O is absent:Compound may haveALCOHOLS,PHENOLS:Check for O-H.·Broad absorption near 3400-3300 cm-1.·Confirm this by finding C-O near 1300-1000 cm-1.AMINES: :Check for N-H.·Medium absorption(s) near 3400 cm-1ETHERS:Check for C-O near 1300-1000 cm-1(and absence of O-H near 3400 cm-1).4.Double bonds or aromatic rings·C=C is a weak absorption near 1650 cm-1.·Medium-to-strong absorptions in the region 1600-1450 cm-1;these often imply an aromatic ring.·Confirm the double bond or aromatic ring by consulting the C-H region;aromatic and vinyl C-H occur to the left of 3000 cm-1(aliphatic C-H occurs to the right of this value).5. Triple bonds·C≡N is a medium,sharp absorption near 2250 cm-1.·C≡C is a weak, sharp absorption near 2150 cm-1.·Check also for acetylenic ≡C-H near 3300 cm-1.6. Nitro groups·Two strong absorption at 1600-1530 cm-1 and 1390-1300 cm-1.7. Simple Hydrocarbons:V ery few peaks/simple FTIR spectrum showing only –C-H,-CH2,-CH3 vibrations (right side of the 3000 cm-1,bending vibrations appear at 1375 to 1465 cm-1).8.Halogens (F,Cl,Br,I):Fluoride 1400-1000 s; Chloride 785-540 s; Bromide,Iodide<667 s.If none of the above peaks appear:consult a book or research paper for the details of FTIR.OR go to websites www.acros.be; mMMOmolMOMmpMPMRCImRNAMsMS MTBE MW,mol wt m/zNNAD+ NADH NBONBSNCS NICSnmNMO NMP NMR NOE NOESYNRTNuobsdODORDPCCPDCPESPhpivpmPM3PMBPPAppm millimolar (millimoles per liter)molecular orbitalmoles(s);molecular (as in mol wt)methoxymethylmelting pointMøller-Plesset perturbation theorymulti-reference configurationinteractionmessenger ribonucleic acidmethylsulfonyl(mesyl)mass spectrometrymethyl tert-butyl ethermolecular weightmass-to-charge ratio (not m/e)normal (equivalents per liter)nicotinamide adenine dinucleotidereduce NADnature bond orbitalN-bromosuccinimideN-chlorosuccinimidenucleus-independent chemicalshiftnanometer(s)N-methylmorpholine-N-oxideN-methylpyrrolidonenuclear magnetic resonancenuclear Overhauser effectnuclear Overhauser effectspectroscopynatural resonance theorynucleophileobservedoptical densityoptical rotary dispersionpyridinium chlorochromatepyridinium dichromatephotoelectron spectroscopyphenylpivaloylpicometer(s)parametric method 3p-methoxybenzylpoly(phosphoric acid)part(s) per millionPPTSPriPrPTPTCpyqQSARRCMredoxrelR fRHFROESYROMPrRNArtsSARSCFSEMSETS N1S N2S N’SOMOttTTBABTBACTBAFTBSTBHPpyridinium para-toluenesulfonatepropylisopropylperturbation catalysisphase-transfer catalysispyridinequartet (spectral)quantitative structure-activityrelationshipring-closure metathesisreduction-oxidationrelativeretention factor (inchromatography)restricted Hartree-Fockrotating frame Overhauser effectspectroscopyring-opening metathesispolymerizationribosomal ribonucleic acidroom temperaturesinglet (spectrla);second(s)structure-activity relationshipself-consistent fieldscanning electron microscopy;2-trimethylsilyethoxymethylsingle electron transferunimolecular nucleophilicsubstitutionbimolecular nucleophilicsubstitutionnucleophilic substitution withallylic rearrangementsingle-occupied molecular orbitaltriplet (spectral)time;temperature in units ofdegrees Celsius (℃)absolute temperature in units ofkelvins (K)tetrabutylammonium bromidetetrabutylammonium chloridetetrabutylammonium fluoridetert-butyldimethylsilyltert-butyl hydroperoxidTCA TEAB TCNE EDDFT temp TEMPO TfTFA TFAA THF THP TIPS TLC TMAI TMEDA TMS TOFTr tRNAt RTsTS UHF UV VCD visvolv/v trichloroacetic acid etraethylammonium bromide tetracyanoethylenetime-dependent density functional theory temperature2,2,6,6-tetramethylpiperidin-1-oxyl trifluoromethanesulfonyl (triflyl) trifluoroacetic acidtrifluoroacetic anhydride tetrahydrofurantetrahydropyran-2-yltriisopropylsilylthin-layer chromatography tetrabutylammonium iodideN,N,N’,N’-tetramethyl-1,2-ethylenediamine trimethylsilyl;tetramethylsilanetime-of-flighttriphenylmethyl (trityl)transfer ribonucleic acidretention time (in chromatography)para-toluenesulfonyl (tosyl)transition stateunrestricted Hartree-Fockultravioletvibrational circular dichroismvisiblevolumevolume per unit volume。

核磁共振中常用的英文缩写和中文名称

核磁共振中常用的英文缩写和中文名称

NMR中常用的英文缩写和中文名称收集了一些NMR中常用的英文缩写,译出其中文名称,供初学者参考,不妥之处请指出,也请继续添加.相关附件NMR中常用的英文缩写和中文名称APT Attached Proton Test 质子连接实验ASIS Aromatic Solvent Induced Shift 芳香溶剂诱导位移BBDR Broad Band Double Resonance 宽带双共振BIRD Bilinear Rotation Decoupling 双线性旋转去偶(脉冲)COLOC Correlated Spectroscopy for Long Range Coupling 远程偶合相关谱COSY ( Homonuclear chemical shift ) COrrelation SpectroscopY (同核化学位移)相关谱CP Cross Polarization 交叉极化CP/MAS Cross Polarization / Magic Angle Spinning 交叉极化魔角自旋CSA Chemical Shift Anisotropy 化学位移各向异性CSCM Chemical Shift Correlation Map 化学位移相关图CW continuous wave 连续波DD Dipole-Dipole 偶极-偶极DECSY Double-quantum Echo Correlated Spectroscopy 双量子回波相关谱DEPT Distortionless Enhancement by Polarization Transfer 无畸变极化转移增强2DFTS two Dimensional FT Spectroscopy 二维傅立叶变换谱DNMR Dynamic NMR 动态NMRDNP Dynamic Nuclear Polarization 动态核极化DQ(C) Double Quantum (Coherence) 双量子(相干)DQD Digital Quadrature Detection 数字正交检测DQF Double Quantum Filter 双量子滤波DQF-COSY Double Quantum Filtered COSY 双量子滤波COSYDRDS Double Resonance Difference Spectroscopy 双共振差谱EXSY Exchange Spectroscopy 交换谱FFT Fast Fourier Transformation 快速傅立叶变换FID Free Induction Decay 自由诱导衰减H,C-COSY 1H,13C chemical-shift COrrelation SpectroscopY 1H,13C化学位移相关谱H,X-COSY 1H,X-nucleus chemical-shift COrrelation SpectroscopY 1H,X-核化学位移相关谱HETCOR Heteronuclear Correlation Spectroscopy 异核相关谱HMBC Heteronuclear Multiple-Bond Correlation 异核多键相关HMQC Heteronuclear Multiple Quantum Coherence异核多量子相干HOESY Heteronuclear Overhauser Effect Spectroscopy 异核Overhause效应谱HOHAHA Homonuclear Hartmann-Hahn spectroscopy 同核Hartmann-Hahn谱HR High Resolution 高分辨HSQC Heteronuclear Single Quantum Coherence 异核单量子相干INADEQUATE Incredible Natural Abundance Double Quantum Transfer Experiment 稀核双量子转移实验(简称双量子实验,或双量子谱)INDOR Internuclear Double Resonance 核间双共振INEPT Insensitive Nuclei Enhanced by Polarization 非灵敏核极化转移增强INVERSE H,X correlation via 1H detection 检测1H的H,X核相关IR Inversion-Recovery 反(翻)转回复JRES J-resolved spectroscopy J-分解谱LIS Lanthanide (chemical shift reagent ) Induced Shift 镧系(化学位移试剂)诱导位移LSR Lanthanide Shift Reagent 镧系位移试剂MAS Magic-Angle Spinning 魔角自旋MQ(C) Multiple-Quantum ( Coherence ) 多量子(相干)MQF Multiple-Quantum Filter 多量子滤波MQMAS Multiple-Quantum Magic-Angle Spinning 多量子魔角自旋MQS Multi Quantum Spectroscopy 多量子谱NMR Nuclear Magnetic Resonance 核磁共振NOE Nuclear Overhauser Effect 核Overhauser效应(NOE)NOESY Nuclear Overhauser Effect Spectroscopy 二维NOE谱NQR Nuclear Quadrupole Resonance 核四极共振PFG Pulsed Gradient Field 脉冲梯度场PGSE Pulsed Gradient Spin Echo 脉冲梯度自旋回波PRFT Partially Relaxed Fourier Transform 部分弛豫傅立叶变换PSD Phase-sensitive Detection 相敏检测PW Pulse Width 脉宽RCT Relayed Coherence Transfer 接力相干转移RECSY Multistep Relayed Coherence Spectroscopy 多步接力相干谱REDOR Rotational Echo Double Resonance 旋转回波双共振RELAY Relayed Correlation Spectroscopy 接力相关谱RF Radio Frequency 射频ROESY Rotating Frame Overhauser Effect Spectroscopy 旋转坐标系NOE谱ROTO ROESY-TOCSY Relay ROESY-TOCSY 接力谱SC Scalar Coupling 标量偶合SDDS Spin Decoupling Difference Spectroscopy 自旋去偶差谱SE Spin Echo 自旋回波SECSY Spin-Echo Correlated Spectroscopy自旋回波相关谱SEDOR Spin Echo Double Resonance 自旋回波双共振SEFT Spin-Echo Fourier Transform Spectroscopy (with J modulation) (J-调制)自旋回波傅立叶变换谱SELINCOR Selective Inverse Correlation 选择性反相关SELINQUATE Selective INADEQUA TE 选择性双量子(实验)SFORD Single Frequency Off-Resonance Decoupling 单频偏共振去偶SNR or S/N Signal-to-noise Ratio 信/ 燥比SQF Single-Quantum Filter 单量子滤波SR Saturation-Recovery 饱和恢复TCF Time Correlation Function 时间相关涵数TOCSY Total Correlation Spectroscopy 全(总)相关谱TORO TOCSY-ROESY Relay TOCSY-ROESY接力TQF Triple-Quantum Filter 三量子滤波WALTZ-16 A broadband decoupling sequence 宽带去偶序列WATERGATE Water suppression pulse sequence 水峰压制脉冲序列WEFT Water Eliminated Fourier Transform 水峰消除傅立叶变换ZQ(C) Zero-Quantum (Coherence) 零量子相干ZQF Zero-Quantum Filter 零量子滤波T1 Longitudinal (spin-lattice) relaxation time for MZ 纵向(自旋-晶格)弛豫时间T2 Transverse (spin-spin) relaxation time for Mxy 横向(自旋-自旋)弛豫时间tm mixing time 混合时间τc rotational correlation time 旋转相关时间。

分析化学英文单词

分析化学英文单词

F检验,F testG检验法,Grubbs testing methodQ检验法,rejection quotient testing method t分布,t distributiont分布曲线,t distribution curvet检验,t test标准参考物质,standard reference material,SRM标准偏差,standard deviation标准试样,standard specimen标准值,certified value操作误差,procedural error对照试验,check test方法误差,methodical error精密度,precision绝对误差,absolute error可定误差,determinate error空白试验,blank test空白值,blank value临界值,critical value偶然误差,accidental error偏差,deviation平均偏差,average deviation试剂误差,agent error随机误差,random error误差,error误差传递,error propagation误差减免,error derate系统误差,systematic error显著性检验,significance test显著性水平,level of significance线性回归,linear regression相对标准偏差,relative standard deviation相对平均偏差,relative average deviation相对误差,relative error相关分析,correlation analysis校准仪器,calibrating instrument样本标准差,sample standard deviation样本平均值,sample mean仪器误差,instrumenttal error有效数字,significant figure真值,true value正态分布,Gaussian distribution正态分布曲线,curve of normal distribution 置信区间,confidence interval置信水平,confidence level置信限,confidence limi重复性,reproducibility重现性,reproduction quality准确度,accuracy自由度,degree of freedom总体标准差,population standard deviation总体平均值,population mean变色点,color transition point变色范围,colour change interval标定,standardization标准溶液,standard solution标准溶液,standard solution沉淀,precipitation沉淀滴定法,precipitation titration催化剂,catalyst滴定,titration滴定度,titer滴定方程,titration equation滴定分析法,titrimetric analysis,titrimetry滴定曲线,titration curve滴定突跃,abrupt change in titration curve滴定误差,titration error,TE滴定终点,titration end point,ep滴定终点误差,titration end point error,TE电荷平衡,charge balance电荷平衡方程,charge balance equation电极电位,electrode potential电位计,potentiometer返滴定法,back titration非水滴定法,nonaqueous titration分布系数,distribution fraction副反应,side reaction化学计量点,stoichiometric point,sp化学计量关系,stoichiometric relationship化学平衡,chemical equilibrium基准物质,primary substances,primary standard间接滴定法,indirect titration均相平衡,homogeneous equilibrium离解,dissociation浓度,concentration平衡浓度,equilibrium molarity,species molarity酸碱滴定法,acid-base titration物料平衡,material balance物质的量浓度,molar concentration,molarity 相对误差,relative error氧化还原滴定法,oxidation-reduction titration,oxidation-redox titration直接滴定法,direct titration指示剂,indicator质量平衡,mass balance质量平衡方程,mass balance equation质子平衡,proton balance质子平衡式,proton balance equation质子自递反应, autoprotolysis置换滴定法,replacement titration终点误差,end point error专用试剂,special reagent准确度,accuracy变色范围,colour change interval滴定常数,titration constant滴定曲线,titration curve滴定终点误差,titration end point error非水滴定法,nonaqueous titration酚酞,phenolphthalein,PP缓冲溶液,buffer solution混合指示剂,mixed indicator甲基橙,methyl orange,MO碱性溶剂,basic solvent两性溶剂,ampototeric solvent区分效应,differentiating effect区分性溶剂,differentiating solvent双指示剂滴定法,double indicator titration酸碱滴定法,acid-base titration酸碱指示剂,acid-base indicator酸性溶剂,acid solvent无质子溶剂,aprotic solvent指示剂常数,indicator constant质子溶剂,protonic solvent二甲酚橙,xylene orange,XO副反应系数,side reaction coefficient钙指示剂,calcon-carboxylic acid,NN 共存离子效应,the effect of coexisting metal ions金属指示剂,metal ion indicator配合物,chelate compound配位滴定法,complex-formation titration配位效应,the coordination effect酸效应,the pH effect条件稳定常数,conditional formation constant稳定常数,formation constant乙二胺四乙酸,thylenediamine tetraacetic acid波长,wavelength波数,wave number单色器,monochromator电磁波谱,electromagnetic spectrum电磁辐射,electromagnetic radiation发射光谱法,emission spectroscopy非光谱法,non-spectroscopic methods分光光度计,spectrophotometer分子光谱法,molecular spectroscopy光谱,spectrum光谱分析法,spectroscopic analysis检测器,detectors滤光器,filter频率,frequency普朗克常数,Plank constant吸收光谱法,absorption spectroscopy原子发射光谱法,atomic emission spectroscopy原子光谱法,atomic spectroscopy质量谱,mass spectrum质谱法,mass spectroscopy, MS长移,bathochromic shift短移,hypsochromic shift供电子取代基,electron donating group红移,red shift肩峰,shoulder peak减色效应(淡色效应),hypochromic effect 蓝(紫)移,blue shift末端吸收,end absorbtion谱带宽度,band width弱带,weak band生色团,chromophore透光率,transmitance,T吸电子取代基,electron with-drawing group 吸光度,absorbance吸收带,absorption band杂散光,stray light增色效应(浓色效应),hyperchromic effect 助色团,auxochrome紫外可见分光光度法,ultraviolet and visible spectrophotometry,UV-vis变形振动,deformation vibration变形振动,deformation vibration电子效应,electron effect对称伸缩振动,symmetrical stretching vibration共轭效应,conjugative effect红外光谱,infrared spectrum,IR红外光谱仪,infrared spectrophotometor红外吸收光谱法,infrared absorption spectroscopy剪式振动,scissoring vibration空间效应,steric effect面内弯曲振动,in-plane bending vibration面内摇摆,in-plane rocking面外弯曲振动,out-of-plane bending vibration 面外摇摆振动,out-of-plane wagging vibration 蜷曲振动,twisting vibration伸缩振动,stretching vibration伸缩振动,asymmetrical stretching vibration 特征频率,characteristic frequency特征吸收峰,characteristic absorption band弯曲振动,bending vibration吸收峰的强度,intensity of absorption band 相关吸收峰,correlation absorption band诱导效应,inductive effect二级光谱,second order spectrum核磁共振,nuclear magnetic resonance,NMR 化学等价,chemical equivalence化学位移,chemical shift化学位移相关谱(COSY谱),chemical shift correlation spectroscopy局部屏蔽效应,local shielding邻偶,vicinal coupling屏蔽效应,shielding扫场,swept field扫频,swept frequency碳13核磁共振谱,Carbon-13 nuclear magnetic resonance spectroscopy,13C-NMR 无畸变极化转移技术(DEPT 谱),distortionless enhancement by polarization transfer偕偶,geminal coupling选择性质子去偶法,selective proton decoupling一级光谱,first order spectrum远程偶合,long range coupling远程屏蔽效应,long range shielding effect质子核磁共振谱,proton magnetic resonance spectrum,PMR,1H-NMR非共振离子,in-resonance ion分子离子,molecular ion负离子,negative ion共振离子,resonance ion基峰,base peak均裂,homolytic cleavage离子检测器,ion detector离子源,ion source灵敏度,sensitivity能量聚焦,energy focusing频率扫描,frequency sweep碎片离子,fragment ion同位素离子,isotopic ion相对丰度,relative abundance亚稳离子,metastable ion异裂,heterolytic cleavage正离子,positive ion质量范围,mass range质量分析器,mass analyzer质量精度,mass precision质量色散,mass dispersion质谱,mass spectra中性碎片,neutral fragment重排开裂,rearrangement cleavage重排离子,rearrangement ion准分子离子,quasi-molecular ion半峰宽,peak width at half height保留时间,retention time保留体积,retention volume保留指数,retention index标准差,standard deviation薄层色谱法,thin layer chromatography,TLC薄膜色谱法,thin film chromatography超临界流体色谱法,supercritical fluid chromatography,SFC调整保留时间,adjusted retention time调整保留体积,adjusted retention volume反相,reversed phase分离度,resolution分配色谱法,partition chromatography分配系数,distribution coefficient分配系数,partition coefficient峰高,peak height峰宽,peak width峰面积,peak area高效液相色谱法,high performance liquid chromatography,HPLC固定相,stationary phase基线,baseline键合相色谱法,bonded-phase chromatography,BPC空间排阻,steric exclusion空间排阻色谱法,steric exclusion chromatography,SEC离子交换剂,ion exchanger离子交换色谱法,ion exchange chromatography,IEC理论塔板高度,height equivalent to a theoretical plate理论塔板数,theoretical plate number流动相,mobile phase毛细管电色谱,capillary electrochromatography,CEC毛细管电泳法,capillary electrophoresis,CE毛细管柱,capillary column平面色谱法,planar chromatography,plane chromatography气相色谱法,gas chromatography,GC容量因子,capacity factor色谱法,chromatography色谱图,chromatogram渗透系数,permeation coefficient死时间,dead time死体积,dead volume速率理论,rate theory塔板理论,plate theory填充柱,packed column拖尾峰,tailing peak拖尾因子,tailing factor涡流扩散,eddy diffusion吸附色谱法,adsorption chromatography洗脱,elution相对保留值,relative retention液相色谱法,liquid chromatography,LC正相,normal phase纸色谱法,paper chromatography柱色谱法,column chromatography纵向扩散,longitudinal diffusion保留指数,retention index气固色谱,gas-solid chromatography气相色谱法,gas chromatography气液色谱,gas-liquid chromatography填充型毛细管,packed capillary column载气,carrier gas载体,support反离子,counter ion反相色谱,reversed phase chromatography分配色谱法,partition chromatography固定相,stationary phase化学键合相色谱法,chemically bonded-phase chromatography极性参数,polarity parameter胶束色谱法,micellar chromatography,MC进样,injection空间排阻色谱法,steric exclusion chromatography,SEC离子交换色谱法,ion exchangechromatography,IEC流动相,mobile phase溶剂的强度和选择性,strength and selectivity of solvent色谱柱,column十八烷基硅烷键合相,octadecylsilane,ODS手性固定相,chiral stationary phase,CSP手性固定相,chiral stationary phase,CSP手性流动相添加剂,chiral mobile phase additive,CMPA手性色谱法,chiral chromatography,CC梯度,gradient填料,packing material涡流扩散,eddy diffusion吸附色谱法,adsorption chromatography线性范围,linear range液固色谱法,liquid-solid chromatography,LSC 液液色谱法,liquid-liquid chromatography,LLC 荧光检测器,fluorescence detector,FD正相色谱,normal phase chromatography紫外检测器,ultraviolet detector,UVD纵向扩散,longitudinal diffusion比移值,retardation factor薄层板,thin layer plate薄层色谱法,thin layer chromatography分离度,resolution分离数,separation number分配系数,distribution coefficient高效薄层色谱法,high performance thin layer chromatography固定相,stationary phase硅醇基,silanol活化,activation理论塔板数,number of theoretical plate平面色谱法,plane chromatography容量因子,capacity factor相对比移值,relative retardation factor仪器化薄层色谱法,instrumental thin layer chromatography原点,origin展开,development展开剂,developing solvent,developer纸色谱法,paper chromatography。

hh相关谱原理

hh相关谱原理

hh相关谱原理
在化合物结构确证时,我们通常会用到核磁共振谱图来判断各个元素之间的关系。

谱图的种类很多,下面简单地介绍各种类型的谱图。

氢谱:通过图中质子的化学位移、偶合常数推测化合物所具有的结构单元。

碳谱:通过图中碳的化学位移、偶合常数推测化合物中关于碳的结构单元。

DEPT谱:(Distortionless Enhancement by Polarization Transfer),又称为无畸变极化转移技术,是一种碳谱核磁共振谱中的一种检测技术,主要用于区分碳谱图中的伯碳、仲碳、叔碳和季碳。

二维谱:将NMR提供的信息,如化学位移和偶合常数,氢化学位移和碳化学位移等在二维平面上展开绘制成的图谱,二维谱分为同核化学位移相关谱和异核位移相关谱。

常见的二维谱
H-H COSY:在氢-氢相关谱上的横轴耦合纵轴均设定成为氢的化学位移,两个坐标轴上则画有通常的一维谱,相互偶合的氢核给出交叉峰。

NOESY:(nuclear overhauser effect spectroscopy),空间相近的氢核的关系1H-1H NOESY谱图类似于COSY谱,若两核间有NOE 相关,谱图中出现交叉峰。

与COSY谱不同在于,NOESY揭示的是质子与质子间在空间的相互接近关系,而无法测量核间距的大小。

可推测分子的立体结构。

HMQC:(C-H COSY),C和H直接相关谱1JCH,归属直接相连的碳氢关系。

能给出一键C-H连接问题,而不能解决碳与季碳相连的问题,或隔碳相连的问题。

HMBC:(远程C-H COSY),C和H远程相关谱,2JCH,3JCH,相隔2个键或3个键的碳氢关系。

NMR中常用的英文缩写和中文名称

NMR中常用的英文缩写和中文名称

NMR中常用的英文缩写和中文名称1、APT Attached Proton Test2、质子连接实验ASIS Aromatic Solvent Induced Shift 芳香溶剂诱导位移3、BBDR Broad Band Double Resonance 宽带双共振4、BIRD Bilinear Rotation Decoupling 双线性旋转去偶(脉冲)5、COLOC Correlated Spectroscopy for Long Range Coupling 远程偶合相关谱6、COSY ( Homonuclear chemical shift ) COrrelation SpectroscopY (同核化学位移)相关谱7、CP Cross Polarization 交叉极化8、CP/MAS Cross Polarization / Magic Angle Spinning 交叉极化魔角自旋9、CSA Chemical Shift Anisotropy 化学位移各向异性10、CSCM Chemical Shift Correlation Map 化学位移相关图11、CW continuous wave 连续波12、DD Dipole-Dipole 偶极-偶极13、DECSY Double-quantum Echo Correlated Spectroscopy 双量子回波相关谱14、DEPT Distortionless Enhancement by Polarization Transfer 无畸变极化转移增强15、2DFTS two Dimensional FT Spectroscopy 二维傅立叶变换谱16、DNMR Dynamic NMR 动态NMR17、DNP Dynamic Nuclear Polarization 动态核极化18、DQ(C) Double Quantum (Coherence) 双量子(相干)19、DQD Digital Quadrature Detection 数字正交检测20、DQF Double Quantum Filter 双量子滤波DQF-COSY21、Double Quantum Filtered COSY 双量子滤波COSY22、DRDS Double Resonance Difference Spectroscopy 双共振差谱23、EXSY Exchange Spectroscopy 交换谱24、FFT Fast Fourier Transformation 快速傅立叶变换25、FID Free Induction Decay 自由诱导衰减26、H,C-COSY 1H,13C chemical-shift COrrelation SpectroscopY 1H,13C化学位移相关谱27、H,X-COSY 1H,X-nucleus chemical-shift COrrelation SpectroscopY 1H,X-核化学位移相关谱28、HETCOR Heteronuclear Correlation Spectroscopy 异核相关谱29、HMBC Heteronuclear Multiple-Bond Correlation 异核多键相关30、HMQC Heteronuclear Multiple Quantum Coherence 异核多量子相干31、HOESY Heteronuclear Overhauser Effect Spectroscopy 异核Overhause效应谱32、HOHAHA Homonuclear Hartmann-Hahn spectroscopy 同核Hartmann-Hahn 谱33、HR High Resolution 高分辨34、HSQC Heteronuclear Single Quantum Coherence 异核单量子相干35、INADEQUATE Incredible Natural Abundance Double Quantum Transfer Experiment 稀核双量子转移实验(简称双量子实验,或双量子谱)36、INDOR Internuclear Double Resonance 核间双共振37、INEPT Insensitive Nuclei Enhanced by Polarization 非灵敏核极化转移增强38、INVERSE H,X correlation via 1H detection 检测1H的H,X核相关39、IR Inversion-Recovery 反(翻)转回复40、JRES J-resolved spectroscopy J-分解谱41、LIS Lanthanide (chemical shift reagent ) Induced Shift 镧系(化学位移试剂)诱导位移42、LSR Lanthanide Shift Reagent 镧系位移试剂43、MAS Magic-Angle Spinning 魔角自旋44、MQ(C) Multiple-Quantum ( Coherence ) 多量子(相干)45、MQF Multiple-Quantum Filter 多量子滤波46、MQMAS Multiple-Quantum Magic-Angle Spinning 多量子魔角自旋47、MQS Multi Quantum Spectroscopy 多量子谱48、NMR Nuclear Magnetic Resonance 核磁共振49、NOE Nuclear Overhauser Effect 核Overhauser效应(NOE)50、NOESY Nuclear Overhauser Effect Spectroscopy 二维NOE谱51、NQR Nuclear Quadrupole Resonance 核四极共振52、PFG Pulsed Gradient Field 脉冲梯度场53、PGSE Pulsed Gradient Spin Echo 脉冲梯度自旋回波54、PRFT Partially Relaxed Fourier Transform 部分弛豫傅立叶变换55、PSD Phase-sensitive Detection 相敏检测56、PW Pulse Width 脉宽57、RCT Relayed Coherence Transfer 接力相干转移58、MRECSY Multistep Relayed Coherence Spectroscopy 多步接力相干谱59、REDOR Rotational Echo Double Resonance 旋转回波双共振60、RELAY Relayed Correlation Spectroscopy 接力相关谱61、RF Radio Frequency 射频62、ROESY Rotating Frame Overhauser Effect Spectroscopy 旋转坐标系NOE谱63、ROTO ROESY-TOCSY Relay ROESY-TOCSY 接力谱64、SC Scalar Coupling 标量偶合65、SDDS Spin Decoupling Difference Spectroscopy 自旋去偶差谱66、SE Spin Echo 自旋回波67、SECSY Spin-Echo Correlated Spectroscopy 自旋回波相关谱68、SEDOR Spin Echo Double Resonance 自旋回波双共振69、SEFT Spin-Echo Fourier Transform Spectroscopy (with J modulation) (J-调制)自旋回波傅立叶变换谱70、SELINCOR Selective Inverse Correlation 选择性反相关71、SELINQUATE Selective INADEQUATE 选择性双量子(实验)72、SFORD Single Frequency Off-Resonance Decoupling 单频偏共振去偶73、SNR or S/N Signal-to-noise Ratio 信 / 燥比74、SQF Single-Quantum Filter 单量子滤波75、SR Saturation-Recovery 饱和恢复76、TCF Time Correlation Function 时间相关涵数77、TOCSY Total Correlation Spectroscopy 全(总)相关谱78、TORO TOCSY-ROESY Relay TOCSY-ROESY 接力79、TQF Triple-Quantum Filter 三量子滤波80、WALTZ-16 A broadband decoupling sequence 宽带去偶序列81、WATERGATE Water suppression pulse sequence 水峰压制脉冲序列82、WEFT Water Eliminated Fourier Transform 水峰消除傅立叶变换83、ZQ(C) Zero-Quantum (Coherence) 零量子相干84、ZQF Zero-Quantum Filter 零量子滤波85、T1 Longitudinal (spin-lattice) relaxation time for MZ 纵向(自旋-晶格)弛豫时间86、T2 Transverse (spin-spin) relaxation time for Mxy 横向(自旋-自旋)弛豫时间87、tm mixing time 混合时间88、τc rotational correlation time 旋转相关时间。

NMR中常用的英文缩写

NMR中常用的英文缩写
HETCOR
Heteronuclear Correlation Spectroscopy异核相关谱
HMBC
Heteronuclear Multiple-Bond Correlation异核多键相关
HMQC
Heteronuclear Multiple Quantum Coherence异核多量子相干
HOESY
DNMR
Dynamic NMR动态NMR
DNP
Dynamic Nuclear Polarization动态核极化
DQ(பைடு நூலகம்)
Double Quantum (Coherence)双量子(相干)
DQD
Digital Quadrature Detection数字正交检测
DQF
Double Quantum Filter双量子滤波
LSR
Lanthanide Shift Reagent镧系位移试剂
MAS
Magic-Angle Spinning魔角自旋
MQ(C)
Multiple-Quantum ( Coherence )多量子(相干)
MQF
Multiple-Quantum Filter多量子滤波
MQMAS
Multiple-Quantum Magic-Angle Spinning多量子魔角自旋
MQS
Multi Quantum Spectroscopy多量子谱
NMR
Nuclear Magnetic Resonance核磁共振
NOE
Nuclear Overhauser Effect核Overhauser效应(NOE)
NOESY
Nuclear Overhauser Effect Spectroscopy二维NOE谱

第三节 碳核磁共振(13C-NMR)

第三节 碳核磁共振(13C-NMR)
N S N S C13 N C13 1 1.11 1 1 3 1 1 H N H 4 99.98 5800 6000
3 3
即场强相同的情况下,13C核的灵敏度是1H核的 六千分之一,因此,用CW-NMR法不能测13C核。这 也是13C-NMR的发展落后与1H-NMR的原因。 实际上,13C-NMR法发展的历史就是一个不断 克服低灵敏度的历史。 3.提高灵敏度的方法 A.提高磁场强度:随科学技术的进步在不断进行。 B.增加样品中13C核的浓度: 增加样品浓度: 受溶剂溶解度的限制; 用大口径样品管: 在1H谱中用5mm,13C中用 8、10、15mm
一、13C-NMR的发展历史 1957年,瑞典人首先观察到13C-NMR信号; 60年代发现了宽带去偶和付立叶变换技术; 70年代引入脉冲付立叶变换技术和计算机,使 13C-NMR真正进入实用阶段,并在突飞猛进的发展, 成为鉴定有机化合物结构最强有力的手段之一。 目前,NMR领域有两方面显著进展: 硬件方面:H0增强,从 60→90→250→360→750-900MHz 软件方面:二维核磁共振、三维核磁共振; 有了这两方面的进展,直接应用NMR法即可 以确定分子量在5000以下的化合物的结构。
2.远程偶合:间隔2根键以上的偶合 有2JCH(50-60Hz) 、3JCH(10Hz以下),13C 信号将进一步裂分,形成更为复杂的图形。
六、常见13C-NMR谱的类型及其特征 1.噪音去偶谱(COM) 全氢去偶或13C(1H)宽带去偶(BBD) 在读取13C的FID信号期间,用覆盖所有1H 核共振频率的宽频电磁辐射照射1H核,以消 除所有1H核对相关13C核的偶合影响,大大提 高灵敏度.
富集的13C样品: 用13C合成,成本太 高,一般不用。 C.进行光谱累加:对同一样品进行多次扫 描,用计算机进行累加(CAT)。 D.质子去偶法:消除1H与13C之间的偶合, 使13C峰不分裂,不等价C只有一个峰;此 外,由于NOE效应,信号强度可增加3倍。 E.PFT法:脉冲付立叶变换法是提高灵敏度 的最好方法,也是目前13C-NMR获取的最 主要方法。

核磁碳谱教案(1)

核磁碳谱教案(1)

第一章核磁共振碳谱(二部分)3.1 概述3.1.1 核磁共振碳谱的优点1) 碳原子构成有机化合物的骨架,掌握有关碳原子的信息在有机物结构鉴定中具有重要意义。

从这个角度来看,碳谱(13C —NMR spectra)的重要性大于氢谱。

有机化合物结构中含多少种碳原子?有那几种碳原子(C、CH、CH2、CH3)从氢谱不能得到直接的信息,碳谱则不受影响。

有些官能团不含氢,但含碳:—C≡N、—C≡C—、>C=O、>C=C=C<、—N=C=O、—N=C=S ......。

而从碳谱可以得到直接信息。

2) 常见有机化合物氢谱的δ值很少超过10ppm,而其碳谱的变化范围则可超过δ200。

由于碳谱的化学位移变化范围比氢谱大近20倍,化合物结构上的细微变化可望在碳谱上得到反映。

分子量在三四百以内的有机化合物,若分子不对称,原则上可期待每个碳原子有其可分辨的δ值。

若去掉碳、氢原子之间的耦合,在上述条件下,每个碳原子对应一条尖锐、分离的谱线。

但对氢谱而言,由于化学位移差距小,加之偶合作用产生的谱线分裂,经常出现谱线的重叠而难以解析。

3) 碳谱的DEPT法,可以直接区分伯、仲、叔、季碳原子(C、CH、CH2、CH3)。

4) 碳原子的弛豫时间较长,能被准确测定,有有助于对碳原子进行指认和结构推导。

3.1.2测定碳谱的困难上面叙述了碳谱的优点。

这些优点虽早为人们所认识或估计,但碳谱的发展相对于氢谱约晚20年。

这是因为13C核的γ仅约为H的1/4 ,13C核的天然丰度也仅约为H的1/100,因而灵敏度很低。

早期13C核磁共振的研究,都采用富集13C的样品。

在脉冲—傅里叶变换核磁共振波谱仪问市之后,碳谱才能用于常规分析,各种研究才蓬勃开展。

3.1.3 13C—NMR谱图最常见的碳谱采用全去耦方法,每一种化学等价的碳原子只有一条谱线。

原来被氢偶合分裂的几条谱线并为一条,谱线强度增加。

在去耦的同时,有NOE效应(NOE—nuclear Overhauser effect),信号更为增强。

巨噬细胞极化英文

巨噬细胞极化英文

巨噬细胞极化英文Macrophage PolarizationMacrophages are a critical component of the immune system and play a crucial role in regulating both immune responses and inflammation. These cells are versatile, exhibiting remarkable plasticity and adaptability in response to various environmental cues. One of the defining features of macrophages is their ability to undergo polarization, a process that determines their functional phenotype and dictates their role in immune regulation and tissue homeostasis. Macrophage polarization refers to the process by which macrophages adopt distinct phenotypes, specifically the classically activated (M1) and alternatively activated (M2) phenotypes.M1 macrophages, also known as pro-inflammatory macrophages, are primarily induced in response to microbial infections and pro-inflammatory stimuli such as lipopolysaccharides (LPS) and interferon-gamma (IFNγ). These macrophages produce various pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). They also generate reactive oxygen species (ROS) and nitric oxide (NO) through the production of inducible nitric oxide synthase (iNOS). M1 macrophages possess robust phagocytic activity, enabling them to effectively eliminate pathogens. Additionally, they promote the recruitment and activation of other immune cells, further enhancing the inflammatory response.On the other hand, M2 macrophages, also referred to as anti-inflammatory macrophages, are stimulated by interleukin-4 (IL-4) and interleukin-13 (IL-13), among other factors. M2 macrophages exhibit distinct properties that promote tissue repair, remodeling, and immune regulation. These macrophages produce anti-inflammatory cytokines such as interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β). They are involved in the clearance of apoptotic cells, tissue remodeling processes, and the resolution of inflammation. M2 macrophages also have high expression of scavenger receptors, such as CD206, which enable them to contribute to tissue repair and to the resolution of inflammation.The polarization of macrophages is governed by a complex interplay of various signaling pathways and transcriptional factors. Key signaling pathways involved in macrophage polarization include the nuclear factor-kappa B (NF-κB), interferon regulatory factors (IRFs), and signal transducer and activator of transcription (STAT) pathways. These pathways are activated by distinct cytokines and signaling molecules, which act as polarizing stimuli. For instance,toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), leading to the activation of NF-κB signaling and subsequent M1 macrophage polarization.Transcription factors, such as interferon regulatory factor 5 (IRF5) and peroxisome proliferator-activated receptor gamma (PPARγ), also play crucial roles in macrophage polarization. Specifically, IRF5 promotes M1 polarization by driving the expression of pro-inflammatory cytokines, whereas PPARγ facilitates M2 polarization by inducing the expression of anti-inflammatory mediators. Additionally, microRNAs, epigenetic modifications, andmetabolic reprogramming contribute to the regulation of macrophage polarization.The dysregulation of macrophage polarization has been implicated in various diseases, including chronic inflammatory diseases, cancer, and metabolic disorders. In diseases characterized by excessive inflammation and impaired tissue repair, an imbalance between M1 and M2 macrophage populations often occurs. Therapeutic approaches aimed at modulating macrophage polarization offer promising avenuesfor the treatment of these diseases. Strategies such as promoting the conversion of M1 to M2 macrophages or targeting specific signaling pathways could help restore tissue homeostasis and regulate immune responses.In conclusion, macrophage polarization is a dynamic and finely regulated process that determines the functional phenotype of macrophages. M1 macrophages exhibit pro-inflammatory properties and are involved in pathogen clearance, while M2 macrophages display anti-inflammatory characteristics and contribute to tissue repair and immune regulation. Elucidating the molecular mechanisms underlying macrophage polarization will not only deepen our understanding of immune regulation and inflammation but also open up new therapeutic opportunities for the treatment of a wide range of diseases.。

耦合常数计算方法核磁氢谱_概述说明以及解释

耦合常数计算方法核磁氢谱_概述说明以及解释

耦合常数计算方法核磁氢谱概述说明以及解释1. 引言1.1 概述核磁共振(Nuclear Magnetic Resonance, NMR)是一种重要的分析技术,可用于研究物质的结构和性质。

其中,核磁氢谱是最为常见和广泛应用的一种NMR 谱图。

在核磁氢谱中,耦合常数是评估分子中化学键之间相互作用的重要参数。

本篇长文将详细讨论耦合常数在核磁氢谱中的意义、计算方法以及测定技术。

1.2 文章结构本文可以分为五个主要部分:第一部分为引言,主要概述了文章的背景和目标。

第二部分将介绍核磁氢谱的基本原理,包括核磁共振现象简介、氢谱中的耦合常数概念以及耦合常数与分子结构之间的关系。

第三部分将综述耦合常数计算方法,包括初等耦合常数计算方法、密度泛函理论在计算中的应用以及量子力学方法在计算中的应用。

第四部分将探讨实验测定耦合常数的方法和技术,包括J-Modulation实验技术简介、COSY和NOESY实验技术在耦合常数测定中的应用,以及其他实验方法和技术的综述。

最后一部分将是结论与展望,总结本文的重要结果,回顾相关研究的进展,并探讨未来发展的趋势。

1.3 目的本文旨在全面介绍核磁氢谱中耦合常数的计算方法和测定技术。

通过对耦合常数概念的阐述,我们能够深入了解它与分子结构之间的关系。

同时,我们也将详细讨论不同计算方法和实验技术对于耦合常数的评估和测定过程中所起到的作用。

最后,我们将总结相关内容并展望未来在这一领域中可能出现的新发展。

以上就是引言部分内容,请根据需要进行修改和补充。

2. 核磁氢谱的基本原理:2.1 核磁共振现象简介核磁共振(NMR)是一种常用于分析化学和生物化学中的方法。

它利用核自旋的性质研究物质的结构、动力学和相互作用等方面。

在核磁共振实验中,样品置于一个外加强磁场下,并通过向这个强磁场施加射频脉冲来激发样品内部的核自旋。

2.2 氢谱中的耦合常数概念在氢谱学中,耦合常数是指两个或多个相邻氢原子间相互作用导致峰分裂现象的定量度量值。

解释动态核磁共振的物理原理及应用

解释动态核磁共振的物理原理及应用

解释动态核磁共振的物理原理及应用动态核磁共振(Dynamic Nuclear Polarization,DNP)是一种在核磁共振成像技术(Magnetic Resonance Imaging, MRI)中的新兴技术,它能够提高MRI图像的分辨率和对比度。

与传统的MRI技术比较起来,DNP技术能够以更加高效的方式增强信号,提高磁共振信号的强度。

本文将对动态核磁共振的物理原理及应用进行解释。

一、核磁共振成像技术的工作原理核磁共振成像技术是一种利用核自旋共振现象来形成图像的技术。

在磁场作用下,原子核会发生共振现象。

通过在核处加反向时变磁场,可以让原子核释放出能量。

此时,这些能量就可以被测量,进而用于成像。

二、动态核磁共振的物理原理动态核磁共振技术是利用极低温下的材料以及强制极化的原子核来增强MRI信号的强度。

其主要原理是通过极化合物在极低温下和极低体积内,使其能够获得更多的信号增益。

通过极化效应的加强,可以更精确地检测到原子核的位置和状态。

三、动态核磁共振的应用1、磁共振成像中的应用动态核磁共振技术作为一种非常现代化的成像技术,已经在医学领域中使用多年。

它可以用于MRI成像,特别是用于对人体的内在器官和组织进行精确的成像,可以更加清晰地进行手术、治疗和诊断。

2、生命科学领域中的应用动态核磁共振技术可以用于研究蛋白质的结构和功能,杂质分布和材料的热力学行为等问题,这些都有着非常重要的生命科学方面的意义。

3、材料科学领域中的应用动态核磁共振技术可以对于复杂材料的有效性和安全性进行控制,可以更好地检测出不良的材料漏洞,改善材料使用的可靠性和性能。

四、本文总结动态核磁共振是一种新兴的核磁共振成像技术,它可以更好地增强MRI的信号强度,提高MRI图像的分辨率和对比度。

DNP技术主要是通过强制极化的方式,让原子核在极低温下获得更多的信号增益。

动态核磁共振技术在生命科学和材料科学等领域具有广泛的应用,被认为是未来的一个重要基础研究方向。

核磁共振的原理

核磁共振的原理

核磁共振的原理1. 简介核磁共振(Nuclear Magnetic Resonance, NMR)是一种基于原子核磁矩的物理现象的研究方法。

它通过对样品中的核磁共振信号进行检测和分析,可以获得样品所含核素的信息,包括结构、化学环境和动力学等方面的信息。

核磁共振在化学、生物学、物理学等领域都有广泛的应用,被认为是一种非常强大的分析工具。

2. 核磁共振的基本原理核磁共振是基于原子核内部具有自旋的性质而产生的。

原子核内的带电粒子(质子、中子)都具有自旋角动量,这使得它们就像是一个微小的带电磁铁。

当置于外磁场中时,核磁矩将朝向外磁场方向对齐或反对齐。

外磁场的存在使得核磁矩有两个能量状态,即朝向与反向磁场的状态,两个状态之间的能量差称为能级间隔。

核磁共振的原理在于,外加弱射频(RF)场的作用下,可以使处于低能级的核磁矩跃迁到高能级,形成共振吸收。

核磁共振信号的产生是基于这种能级跃迁的原理。

3. 核磁共振仪的基本结构核磁共振仪是进行核磁共振实验的主要设备,它的基本结构如下:•磁体:负责产生外磁场,通常为超导磁体,提供强大而稳定的磁场。

•射频系统:产生射频脉冲场,用于激发和检测核磁共振信号。

•梯度线圈:提供梯度磁场,用于在空间上创造磁场非均匀性,实现空间解析度。

•探测线圈:用于探测样品中的核磁共振信号,将其转化为电信号。

核磁共振仪通常采用磁体产生强大的恒定外磁场,并通过射频系统在样品中产生一个既稳定又均匀的弱射频场,从而实现核磁共振信号的产生和检测。

4. 核磁共振信号的产生和检测核磁共振信号的产生是通过控制样品中的核磁矩的磁矩方向和能级分布来实现的。

当样品中的核磁矩受到射频场作用时,会发生能级跃迁并产生共振吸收现象。

核磁共振信号的检测是通过接收样品中产生的共振信号并将其转换为电信号来实现的。

探测线圈的设计和放置位置非常重要,它可以增强信号的灵敏度和空间分辨率。

对于固体样品,由于核磁共振信号强度较弱且容易受到外界干扰,常常采用多种技术和方法来增强信号的强度和稳定性,如动态核极化(Dynamic Nuclear Polarization, DNP)和魔角旋转(Magic Angle Spinning, MAS)等。

中药化学名词解释

中药化学名词解释

第一章总论1.有效成分:具有生物活性或能起防病作用的化学成分称有效成分。

2.有效部位:在中药化学中,常将含有一种主要有效成分或一组结构相近的有效成分的提取分离部位称为有效部位。

3.溶剂提取法:根据被提取成分的溶解性能,选用合适的溶剂和方法将有效成分从药材中溶解出来的方法。

4.相似相溶原则:极性成分易溶于极性溶剂;非极性成分易溶于非极性溶剂。

5.浸渍法:将药材粗粉装入适宜容器中,加入适量溶剂(多用水和乙醇)浸泡提取的方法。

6.煎煮法:将药材饮片(或粗粉)置适当容器中,加水加热煮沸,将所需成分提出来的方法。

7.渗漉法:将药材粗粉用适当溶剂湿润膨胀后(多用乙醇),装入渗漉筒中从上边添加溶剂,从下口收集流出液的方法。

8.回流提取法:用有机溶剂加热提取,在提取器上安装一冷凝管,使溶剂蒸气冷凝后又回流到烧瓶中,进行反复提取的方法。

9.连续回流提取法:用有机溶剂加热提取,在提取器上安装一索氏提取器或连续回流装置,使溶剂蒸气冷凝后又回流到烧瓶中,进行反复提取的方法。

10.水蒸气蒸馏法:含挥发性成分的药材与水一起蒸馏或通入水蒸气蒸馏,收集挥发性成分和水的混合馏出液体的方法。

11.超临界流体萃取法:是一种集提取和分离于一体,又基本上不用有机溶剂的新技术。

12.酸碱溶剂法:利用混合物中各组分酸碱性的不同而进行分离的方法。

13.溶剂分配法:是利用混合物中各组分在两组溶剂中的分配系数不同而达到分离的方法。

14.分级沉淀法:在混合物水溶液中加入与该溶液能互溶的溶剂,改变混合物组份溶液中某些成分的溶解度,使其从溶液中析出来的方法。

15.专属试剂沉淀法:某些试剂能选择性地沉淀某类成分的方法。

16.盐析法:在水提取液中加入无机盐(如氯化钠)达到一定浓度时,使水溶性较小的成分沉淀析出,而与水溶性较大的成分分离的方法。

17.分馏法:是利用混合物中各成分的沸点的不同而进行分离的方法。

18.膜分离法:利用天然或人工合成的高分子膜,以外加压力或化学位差为推动力,对混合物溶液中的化学成分进行分离、分级、提纯和富集的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :n u c l -t h /0601075v 1 24 J a n 2006Testing nuclear forces by polarization transfer coefficients in d (−→p ,−→p )d and d (−→p ,−→d )p reactions at E lab p =22.7MeVH.Wita l a 1,J.Golak 1,R.Skibi´n ski 1,W.Gl¨o ckle 2,A.Nogga 3,E.Epelbaum 4,H.Kamada 5,A.Kievsky 6,M.Viviani 61M.Smoluchowski Institute of Physics,Jagiellonian University,PL-30059Krak´o w,Poland 2Institut f¨u r Theoretische Physik II,Ruhr-Universit¨a t Bochum,D-44780Bochum,Germany3Institut f¨u r Kernphysik,Forschungszentrum J¨u lich,D-52425J¨u lich,Germany4Jefferson Laboratory,Theory Division,Newport News,VA 23606,USA5Department of Physics,Faculty of Engineering,Kyushu Institute of Technology,1-1Sensuicho,Tobata,Kitakyushu 804-8550,Japan6Istituto Nazionale di Fisica Nucleare,Via Buonarroti 2,I-56100Pisa,Italy(February 9,2008)Abstract The proton to proton polarization transfer coefficients K x ′x ,K y ′y ,K x ′z and the proton to deuteron polarization transfer coefficients K x ′x ,K y ′y ,K x ′z ,K y ′z ′x ,K z ′z ′y ,K y ′z ′z ,K x ′z ′y and K x ′x ′−y ′y ′y have been measured in d (−→p ,−→p )d and d (−→p ,−→d )p reactions at E lab p =22.7MeV,respectively.The data have been compared to predictions of modern nuclear forces obtained by solving the three-nucleon Faddeev equations in momentum space.Realistic (semi)phe-nomenological nucleon-nucleon potentials combined with model three-nucleon forces and modern chiral nuclear forces have been used.The AV18,CD Bonn,Nijm I and II nucleon-nucleon interactions have been applied alone or com-bined with the Tucson-Melbourne 99three-nucleon force,adjusted separately for each potential to reproduce the triton binding energy.For the AV18poten-tial also the Urbana IX three-nucleon force have been used.In addition chiralNN potentials in the next-to-leading-order and chiral two-and three-nucleonforces in the next-to-next-to-leading-order have been applied.Only whenthree-nucleon forces are included a satisfactory description of all data results.For the chiral approach the restriction to the forces in the next-to-leading or-der is insufficient.Only when going over to the next-to-next-to-leading orderone gets a satisfactory description of the data,similar to the one obtainedwith the (semi)phenomenological forces.21.45.+v,24.70.+s,25.10.+s,25.40.LwTypeset using REVT E XI.INTRODUCTIONA rich set of observables provided by three-nucleon(3N)reactions can be used to test modern nuclear forces.Presently there are two theoretical approaches to construct them. In the traditional approach the nucleon-nucleon(NN)potentials are derived in the frame-work of the meson-exchange picture alone or mixed with phenomenological assumptions.By adjusting parameters so called realistic,high precision interactions such as the phenomeno-logical AV18[1]potential and the meson-theoretical CD Bonn[2]together with Nijm I and II[3]potentials are obtained.They provide a very good description of NN data below about350MeV nucleon laboratory energy.All these potentials have in common that they fit the large set of NN data withχ2per datum close to one,indicating essentially phase equivalence.In a more modern framework of chiral effectivefield theory,nuclear forces are linked to the underlying strong interaction between quarks and gluons.They are derived from the most general effective Lagrangian for pions and nucleons,which is consistent with the spontaneously broken approximate chiral symmetry of QCD,using chiral perturbation the-ory(χPT)[4].TheχPT approach gives a deeper understanding of nuclear forces than the traditional approach and allows to construct three–and more–nucleon forces consis-tent with the NN interactions[5–7].In practice,various contributions to the nuclear force in theχPT framework are organized in terms of the expansion in Q/Λ,where Q is the soft scale corresponding to the nucleon external momenta and the pion mass andΛis the hard scale associated with the chiral symmetry breaking scale or an ultraviolet cut–off.At present,the two–nucleon system has been studied up to next–to–next–to–next–to–leading order(NNNLO)in the chiral expansion[7,8].At this order,the two–nucleon force receives the contributions from one–pion exchange,two–pion exchange at the two–loop level as well as three–pion exchange,which turn out to be numerically irrelevant.In addition,one has to take into account all possible short–range contact interactions with up to four derivatives and the appropriate isospin–breaking effects.In the three–and more–nucleon sectors,the calculations have so far only been performed up to next–to–next–to–leading order(NNLO) [7].In this work,we will show the results corresponding to the latest version of the chiral NN forces introduced in references[9,8]and based on the spectral function regularization scheme[10].Recent studies of few-nucleon bound states and of3N reactions provided numerous in-dications that three-nucleon forces(3NFs)form an important component of the potential energy of three interacting nucleons[11–16].In the traditional approach they are accounted for by adding model3NFs,such as e.g.the2π-exchange Tucson-Melbourne(TM)[17] or Urbana IX[18]interactions,with parameters adjusted to reproduce the experimental triton binding energy.Such a simple treatment allows to cure some of the discrepancies between data and theory[19–25].In the approach based onχPT nonvanishing3NFs appear in the next-to-next-to-leading order(NNLO)of the chiral expansion.In addition to the 2π-exchange term two other topologies appear.One of them corresponds to a contact inter-action of three nucleons and the second to a contact interaction of two nucleons exchanging in addition one pion with the third nucleon.The two free parameters of these two terms are adjusted byfitting two independent3N observables(e.g.the triton binding and the nd doublet scattering length).The quality of the description of the3N observables is thensimilar in both approaches [26].The study of the details of the 3NF’s is a lively topic of present day few-nucleon system studies.In the present paper we would like to analyze the proton to proton and the proton to deuteron spin transfer coefficients measured in d (−→p ,−→p )d and d (−→p ,−→d )p reactions,respec-tively,at E lab p =22.7MeV [27–29].The existing data for polarization transfer coefficients in elastic nucleon-deuteron (Nd)scattering are restricted to few experiments in the pd system (E lab p =10MeV [30],E lab p =19MeV [31],E lab p =250MeV [23],E lab d =270MeV [32])andto one measurement in the nd system (E lab p =19MeV [33]).After a short description of thetheoretical calculations in Section II in section III we show the data and compare them to different theoretical predictions.The summary and conclusions follow in Section IV.II.CALCULATIONSIn this work we will employ two different methods to solve the nucleon-deuteron scatter-ing problem.Our first scheme is based on Faddeev equations.The nucleon-deuteron elastic scattering with neutron and protons interacting through a NN potential V and through a 3NF V 4is described in terms of a breakup operator T satisfying the Faddeev-type integral equation [34,15,35]T =tP +(1+tG 0)V (1)4(1+P )+tP G 0T +(1+tG 0)V (1)4(1+P )G 0T.(1)The two-nucleon (2N)t-matrix t results from the interaction V through the Lippmann-Schwinger equation.The permutation operator P =P 12P 23+P 13P 23is given in terms of the transposition P ij which interchanges nucleons i and j and G 0is the free 3N propagator.Finally the operator V (1)4appearing in Eq.(1)is part of the full 3NF V 4=V (1)4+V (2)4+V (3)4and is symmetric under exchange of nucleons 2and 3.For instance,in the case of the π−πexchange 3NF such a decomposition corresponds to the three possible choices of the nucleon which undergoes off-shell π−N scattering.It is understood that the operator T acts on the incoming state |φ>=| q 0>|φd >which describes the free nucleon-deuteron motion with relative momentum q 0and the deuteron wave function |φd >.The physical picture underlying Eq.(1)is revealed after iteration which leads to a multiple scattering series for T.The elastic Nd scattering transition operator U is given in terms of T by [34,15,35]U =P G −10+P T +V (1)4(1+P )+V (1)4(1+P )G 0T.(2)We solve Eq.(1)in momentum space using a partial wave decomposition for each total angular momentum J and parity of the 3N system.To achieve converged results a sufficiently high number of partial waves have been used.Calculations with and without 3NF were performed including all 3N partial wave states with total two-body angular momenta up to j =5.In the case when the 3NF is switched-offEq.(1)is solved for J up to 25/2.When the shorter ranged 3NF is also active it is sufficient to go up to J ≤13/2only.In all calculations we neglect the total isospin T =3/2contribution in the 1S 0state and use in this state a np form of the NN interaction.Such a restriction to the np force for the 1S 0state does not have a significant effect on the polarization transfer coefficients.The second scheme is based on the Kohn Variational principle,the S–matrix elements corresponding to a3N scattering state with total angular momentum J can be obtained as the stationary point of the functional[J S SS′LL′]=J S SS′LL′+i Ψ−LSJ|H−E|Ψ+L′S′J .(3) The wave functionΨ+LSJ describes a3N scattering state in which asymptotically an ingoing nucleon is approaching the deuteron in a relative angular momentum L and total spin S. The parity of the state is given by(−1)L.The wave function is expanded,using a partial wave decomposition,in terms of the pair correlated hyperspherical harmonic(PHH)basis as described in Ref.[25].As in the Faddeev scheme,states up to J=25/2have been considered.In our Faddeev calculations the Coulomb interaction between two protons is totally neglected.A measurement of the neutron to neutron polarization transfer coefficients K y′y in neutron-deuteron(nd)elastic scattering[33]and their comparison to the corresponding pd data[31]shows that effects caused by the Coulomb force for this coefficient are non-negligible.These effects have been studied on a few polarization transfer coefficients[36] as well as in other polarization observables[25]using the Kohn variational principle in conjunction with the PHH basis.In these calculations the Coulomb force between the two protons has been considered without approximations and the results confirm sizable Coulomb-force effects in the energy range considered here.Therefore to remove possible Coulomb-force effects for the studied polarization transfer coefficients we proceed in the following ing the PHH expansion we evaluate the studied polarization transfer coefficients without and with Coulomb force and employ the AV18NN interaction.This is displayed in Figs.1-3.In this manner we read offthe shifts caused by the pp Coulomb force.Then we generate“nd”data by applying those shifts to our pd data.For the studied polarization transfers the Coulomb force effects are restricted mostly to forward angles and to the region aroundθcm≈120o.For the proton to proton spin transfer coefficient K x′x they are of minor importance whereas for K y′y and K x′z the Coulomb force effects change significantly the magnitude of these coefficients aroundθcm≈120o(see Fig.1).For the proton to vector-deuteron spin transfers Coulomb force effects are rather small with exception of very forward angles,where they decrease significantly the magnitude(see Fig.2).For K x′z also some effects are seen aroundθcm≈120o.In case of the proton to tensor-deuteron transfersshown in Fig.3only K y′z′x (in the steep slope),K x′z′yand K y′z′zexhibit large Coulomb forceeffects in the region of cm angles aroundθcm≈120o.In the followingfigures we include both,the pd and“nd”data.III.RESULTSIn Figs.4-6we show our data and compare them to theoretical predictions based on (semi)phenomenological NN potentials alone or combined with the TM99[37]or Urbana IX[18]3NFs,which have been obtained in the Faddeev approach,where we are able to em-ploy also non-local interactions.The corresponding comparison for chiral forces is presented in parison with experiment always means the Coulomb corrected“nd”data.For the traditional approach based on high quality(semi)phenomenological interactions, we have taken the NN potentials AV18,CDBonn,Nijm I and II and combined each of themwith the2π-exchange TM993NF,adjusting the cut-offparameter of TM99individually to get the experimental triton binding energy.The resulting cut-offs for these potentials are respectively5.215,4.856,5.120and5.072(in units of the pion mass mπ).From the predictions of these potentials alone or combined with the TM993NF two bands,light and dark,respectively,were formed and shown in Figs.4-6.For the proton to proton spin transfer coefficients(see Fig.4)the effects of the Coulomb interaction are located in the region of c.m.angles aroundθcm≈120o.In that region the differential cross section has its minimum.They are significant only for K y′y and K x′z and are practically negligible for K x′x.The realistic potentials alone provide a good description only of K x′x and fail to reproduce the data for K y′y and K x′z,especially aroundθcm≈120o. Including the TM993NF,and in case of AV18also Urbana IX,changes only slightly the predictons for K x′x.For K y′y and K x′z the effects of these3NFs are significant in the region of c.m.angles aroundθcm≈120o and their inclusion leads to a good description of the data.For the corresponding proton to deuteron spin transfer coefficients(K x′x,K y′y and K x′z-see Fig.5)effects of the Coulomb force are practically negligible at angles where data exist and they are seen only for K x′z.For these observables also effects of the TM99and Urbana IX 3NFs are small and the realistic NN potentials alone or combined with these3NFs provide quite good description of the data.For the proton to tensor-deuteron spin transfer coefficients the Coulomb forces are sig-nificant for K y′z′x ,K x′z′y,and K y′z′z(see Fig.6).In case of K z′z′yand K x′x′−y′y′y(see Fig.6)they are negligible at angles where data exist.For these two coefficients also the effects of the TM99and Urbana IX3NFs are small and the NN potentials alone provide a gooddescription of data.This is similar for K y′z′x .For K x′z′yand K y′z′zthe effects of these3NFsare nonnegligible,especially in the region of angles aroundθcm≈120o.While for K x′z′y theinclusion of the TM99or Urbana IX3NFs improves the description of the data,in case ofK y′z′z it shifts the theory away from the data points.Based on the chiral interactions we show in Figs.7-9two bands of predictions based on forces derived in NLO and NNLO.Each band is based onfive predictions obtained with different cut-offcombinations:(450,500),(600,500),(550,600),(450,700),and(600,700)(see [7]for more details).The results for the chiral NN potentials in NLO are shown by the light band.In NNLO thefirst time nonzero contributions from chiral three-nucleon interactions arise and the predictions based on the full chiral Hamiltonian in NNLO are shown by the dark band.It is clearly seen that the restriction to NLO only is quite insufficient even at low energy of our experiment.The predictions based on the chiral NN potential obtained in this low order are far away from the data.At NNLO one could show the NN force predictions alone.We refrain from doing that since this is ambiguous.As is well known unitarily transformed2N forces,which do not affect two nucleon observables,lead to different results in the3N system [38].It is only the complete3N Hamiltonian which provides unambiguous results for the3N observables.Since the chiral approach systematically improves the nuclear force description with increasing order and provides strong internal links between2N forces and forces beyond, we deviate here from the usual presentation exhibiting3N force effects separately.This was done above in the standard approach since anyhow there is no internal consistency between NN and3N forces.Now a view on Figs.7-9shows that the full NNLO predictions lead to a quite good description as the traditional approach including3N forces.The exception areK y′y for the proton to proton transfer,where the chiral approach differs from the data andK y′z′z for the proton to deuteron transfer,where it leads to an agreement with the data.Inthe standard approach it is opposite.It will be of great interest to see the outcome for NNNLO,where the NN forces have already been worked out[8].At that order there contribute a whole host of parameter free 3NFs includingfirst relativistic effects.IV.SUMMARY AND CONCLUSIONSWe presented new data for spin transfer coefficients in elastic pd scattering,both for the proton to proton and for the proton to deuteron transfers.They have been measured using a polarized proton beam with energy E lab p=22.7MeV.The data have been corrected for Coulomb force effects using our theoretical framework of a hyperspherical expansion. This leads to“nd”data to which we compare our theory.In some cases the Coulomb force effects are quite significant,especially atθcm≈120o,where the differential cross section has its minimum.The theoretical predictions are obtained by solving the3N Faddeev equations with two different dynamical inputs.One is the standard approach of so called high precision NN forces supplemented by the TM99and Urbana IX3NF.The other is an effectivefield theory approach constrained by chiral symmetry.In thefirst case where the forces have mostly phenomenological character we show NN force prediction separately in addition to the results obtained by adding the3NFs.The inclusion of3NFs clearly improves the description and the comparison with the data is quite successful.In case of the approach based on the chiral nuclear forces NLO is quite insufficient,but at NNLO the combined dynamics of NN and3N forces does essentially equally well as the standard approach.Exceptions are the spin transfer coefficients K y′y from proton to proton and K y′z′z from proton to deuteron.Thefirst is well described in the standard approach but not the second one.Just the opposite is true in the chiral approach.ACKNOWLEDGMENTSThis work has been supported by the Polish Committee for Scientific Research under Grant no.2P03B00825and by the U.S.Department of Energy Contract No.DE-AC05-84ER40150under which the Southeastern Universities Research Association(SURA)op-erates the Thomas Jefferson Accelerator Facility.The numerical calculations have been performed on the IBM Regatta p690+of the NIC in J¨u lich,Germany.REFERENCES[1]R.B.Wiringa,V.G.J.Stoks,R.Schiavilla,Phys.Rev.C51,38(1995).[2]R.Machleidt,F.Sammarruca,and Y.Song,Phys.Rev.C53,R1483(1996).[3]V.G.J.Stoks,R.A.M.Klomp,C.P.F.Terheggen,J.J.de Swart,Phys.Rev.C49,2950(1994).[4]S.Weinberg,Nucl.Phys.B363,3(1991).[5]U.van Kolck,Phys.Rev.C49,2932(1994).[6]E.Epelbaoum,W.Gl¨o ckle,U.-G.Meißner,Nucl.Phys.A637,107(1998).[7]D.R.Entem,R.Machleidt,Phys.Rev.C68,041001(2003).[8]E.Epelbaum,W.Gl¨o ckle,Ulf-G.Meißner,Nucl.Phys.A747,362(2005).[9]E.Epelbaum,W.Gl¨o ckle,U.-G.Meißner,Eur.Phys.J.A19,401(2004).[10]E.Epelbaum,W.Gl¨o ckle,U.-G.Meißner,Eur.Phys.J.A19,125(2004).[11]J.L.Friar et al.,Phys.Lett.B311,4(1993).[12]A.Nogga,D.H¨u ber,H.Kamada,and W.Gl¨o ckle,Phys.Lett.B409,19(1997).[13]S.C.Pieper,V.R.Pandharipande,R.B.Wiringa,and J.Carlson,Phys.Rev.C64,014001(2001).[14]H.Wita l a,W.Gl¨o ckle,D.H¨u ber,J.Golak,and H.Kamada,Phys.Rev.Lett.81,1183(1998).[15]W.Gl¨o ckle,H.Wita l a,D.H¨u ber,H.Kamada,J.Golak,Phys.Rep.274,107(1996).[16]A.Nogga et al.,Phys.Rev.C67,034004(2003)[17]S.A.Coon et al.,Nucl.Phys.A317,242(1979);S.A.Coon and W.Gl¨o ckle,Phys.Rev.C23,1790(1981).[18]B.S.Pudliner et al.,Phys.Rev.C56,1720(1997).[19]K.Sekiguchi et al.,Phys.Rev.C65,034003(2002).[20]H.Wita l a et al.,Phys.Rev.C63,024007(2001).[21]W.P.Abfalterer et al.,Phys.Rev.Lett.81,57(1998).[22]H.Wita l a et al.,Phys.Rev.C59,3035(1999).[23]K.Hatanaka et al.,Phys.Rev.C66,044002(2002).[24]R.V.Cadman et al.,Phys.Rev.Lett.86,967(2001).[25]A.Kievsky,M.Viviani and S.Rosati,Phys.Rev.C64,024002(2001)[26]E.Epelbaum et al.,Phys.Rev.C66,064001(2002).[27]A.Glombik et al.,AIP Conference Proceedings334on Few Body Problems in Physics,Williamsburg1994,ed.F.Gross,(AIP Press,New York,1995)p.486.[28]W.Kretschmer,private communication.[29]W.Kretschmer et al.,AIP Conference Proc.339(1995)335(Polarization Phenomenain Nuclear Physics,Bloomington,1994).[30]F.Sperisen et al.,Nucl.Phys.C A422,81(1984).[31]L.Sydow et al.,Few-Body Systems25,133(1998).[32]K.Sekiguchi et al.,Phys.Rev.C70,014001(2004).[33]P.Hempen et al.,Phys.Rev.C57,837(1998).[34]H.Wita l a,T.Cornelius and W.Gl¨o ckle,Few-Body Syst.3,123(1988).[35]D.H¨u ber,H.Kamada,H.Wita l a,and W.Gl¨o ckle,Acta Phys.Pol.B28,1677(1997).[36]A.Kievsky,S.Rosati and M.Viviani,Phys.Rev.C64,041001(R)[37]S.A.Coon and H.K.Han,Few-Body Syst.30,131(2001).[38]W.N.Polyzou,W.Gl¨o ckle,Few-Body Syst.9,97(1990).。

相关文档
最新文档