第8章现场总线综合应用举例
现场总线技术的设计应用实例
现场总线技术的设计应用实例概述现场总线技术是工业控制系统中常见的一种通信协议,它通过将传感器、执行器与控制器连接到一个总线上,实现设备间的数据通信和控制。
本文将介绍几个现场总线技术的设计应用实例,包括Profibus、CAN总线和Modbus。
ProfibusProfibus是一种常用的工业自动化领域现场总线协议,它被广泛应用于物流自动化、工业控制和过程自动化等领域。
在物流自动化中,Profibus通信技术可以被用于连接传感器、执行器和控制器,实现自动化存储和分拣系统。
每个传感器和执行器都以从站的形式接入Profibus总线,并通过总线与控制器进行通信。
通过Profibus的高速通信和优化的数据传输机制,物流系统可以实现高效的物料搬运和分拣操作。
在工业控制领域,Profibus常被用于连接传感器、执行器和PLC(可编程逻辑控制器)。
PLC作为控制器可以通过Profibus实时监测设备状态,并根据需要发送命令和控制信号。
这种基于Profibus的控制系统可以实现复杂的工业过程控制和自动化。
CAN总线CAN(Controller Area Network)总线是一种广泛应用于汽车行业的现场总线协议,它具有高可靠性和高实时性的特点,被广泛应用于汽车电子系统和航空航天领域。
在汽车电子系统中,CAN总线被用于连接车辆的各种传感器和执行器,并与车辆的ECU(电子控制单元)进行通信。
通过CAN总线的实时数据交换,车辆的各个子系统可以协调工作,实现诸如发动机控制、车身稳定性控制和驾驶辅助系统等功能。
在航空航天领域,CAN总线常被用于飞行控制系统和航空电子设备之间的数据交换。
航空电子设备需要实时高可靠的数据传输,以确保安全和可靠的飞行。
CAN 总线的高实时性和冗余特性使其成为航空电子系统中的理想选择。
ModbusModbus是一种最为常见的串行通信协议,被广泛应用于工业自动化领域。
Modbus支持点对点和主从通信模式,适用于各种环境。
现场总线技术及其应用
增强可维护性
现场总线设备具有自诊断和远程诊断功能, 方便维护和故障排除。
优化系统性能
现场总线技术可以实现分布式控制,优化了 系统性能,提高了生产效率。
02
现场总线技术分类与特点
分类方式及标准
按照国际标准分类
分为基金会现场总线(FF)、PROFIBUS、CAN总线等。
在能源与电力领域,现场总线技术将助力实现能源的高效 利用和电力的稳定传输,提高能源利用效率。
医疗与健康领域
现场总线技术也可在医疗与健康领域发挥重要作用,如实 现医疗设备的远程监控和维护,提高医疗效率和服务质量 。
技术创新与突破建议
加强基础研究
加大对现场总线技术的基础研究 力度,推动理论创新和技术突破
PROFIBUS总线
是一种广泛应用于工业自动化领域的 现场总线技术。它支持多种传输速率 和传输距离,并具有高可靠性和实时 性。
不同现场总线技术的比较
传输速率
不同现场总线技术的传输速率 不同,需要根据实际应用需求
选择合适的传输速率。
传输距离
不同现场总线技术的传输距离 也不同,需要根据实际应用需 求选择合适的传输距离。
无线化与智能化
无线现场总线技术将逐渐普及,实现设备间无线通信,降低布线成本,提高系统灵活性。 同时,智能化现场总线技术将进一步提高设备的自适应性、自诊断能力和远程监控能力。
标准化与互操作性
现场总线技术将更加注重标准化和互操作性,以实现不同厂商设备之间的无缝集成,降低 系统维护和升级成本。
面临的挑战与问题分析
定义:现场总线是一种用于工业 自动化领域,在现场设备之间实 现通信和控制,以及与上级控制 系统进行信息交互的通信技术。
现场总线技术的应用分析
现场总线技术的应用分析在设备使用现场和设备控制之间有一个非常重要的连接就是现场总线。
现场总线技术的好坏直接影响设备的电气控制。
因此在设备的使用现场一定要采取适当的现场总线技术来应对现场的设备电气控制。
文章主要针对现场总线技术的具体应用来进行详细的阐述和分析,希望通过文章的阐述和分析能够为我国的设备电气控制方面的发展和创新贡献自己的力量。
标签:现场;总线;技术应用在设备的使用场地现场总线通常也被叫做开放式数字化方式的多点通信控制网络。
现场总线主要是作为一种串联通信系统存在的。
现场的设备控制和中控微机之间的双向连接和控制就是现场总线技术的主要应用。
现场总线在现场的应用过程中具有四个特色的通信系统。
分别是全数字化的通信系统;双向控制通信系统;多变量控制系统和多点多站。
现场的总线技术主要有五个作用。
第一个作用是现场总线技术的应用能够实现现场的通信网络的畅通;第二个作用是现场总线技术的应用能够实现现场设备之间的控制互连;第三个作用是现场总线技术的应用能够实现设备的控制相互互换操作性能;第四个作用是现场总线技术的应用能够有效的实现设备的分散模块处理;第五个作用是现场的总线技术的应用能够有效的实现设备控制方面的开放互连。
现场总线在现场的应用过程中有很多的优点,下面举例说明。
现场总线技术完全实现了现场的全部数字化通信应用;现场总线技术在应用的过程中已经完全实现了现场控制部件的全部互换;现场总线技术在设备的控制过程中能够进行分散式的控制。
现场总线在控制过程中能够一次传送多个变量信号,并且保障变量信号的保真。
在现场总线应用过程中,由于采用了最先进的设备仪表,使用了多变量的信号传送器,这样能够有效的保障测试精准度,提升控制系统的自治能力。
1 现场总线产品类型在上世纪八十年代中期,现场总线在世界范围内有了非常大的发展,欧洲的很多国家都相继推出了属于自己的现场总线产品,同时还不断推出了行业标准,但是行业标准长时间内没有一个统一的标准。
现场总线_现场总线应用实例.
3. 工作方式
采用主从方式:
智能节点为主设备,发出Polling命令; 热流计为从设备,响应命令后传送数据。
4. 桥接节点的约定命令格式
占据3个字节:
1 2 3 命令码(“P”的ASCII码) 流水号(自动递增) 回车符(用ASCII码表示)
4. 热流计的数据帧定义
共提供21字节的数据,分别表示为:
接收数据
unsigned short InBuffer[21]; //定义接收缓冲区
void ReceiveData() //ReceiveData为接收数据的函数 { io_in(serial_in, InBuffer, 21); }
7. 保证数据准确性的措施
(1) 计算校验和的程序 short GetCheckSum(void) { short i, Result; Result = 0; //结果先清零 for(i = 0; I < 20; I++) Result += InBuffer[I]; return Result; }
智能节点 1 RS-232 接口
智能节点 2 RS-232 接口
......
智能节点 n RS-232 接口
热流计 1
热流计 2
热流计 n
各组成单元的功能
热流计用来采集从现场来的温度、压力、流量、 热量等现场信号,这些现场信号经过标度变换 和模/数转换后,可以在仪表面板上通过LED 显示出来;另外,提供有RS-232通信接口的热 流计,可以将各现场物理量发送出去。 PC机实现集中监视和管理。 PCNSS网络接口卡作为网络与PC的桥梁。 智能节点架设热流计与LON网络的桥梁。
2.节点安装的完整过程
现场总线的通信原理与应用
现场总线的通信原理与应用1. 现场总线概述现场总线(Fieldbus)是工业自动化中常用的一种通信网络技术,它用于实现各种设备之间的通信与控制。
现场总线可以连接传感器、执行器、控制器等设备,将它们连接起来构成一个整个系统,并提供数据传输和控制命令的功能。
2. 现场总线的通信原理现场总线的通信原理是基于分布式控制系统(DCS)的概念,它采用集中式控制与分散式执行的方式来实现设备的通信和控制。
具体的通信原理如下:2.1 主从通信方式现场总线采用主从通信方式,其中总线主设备负责发送命令和接收数据,而从设备负责接收命令和发送数据。
这种方式使得总线能够灵活地控制设备,实现实时监测和控制。
2.2 数据传输方式现场总线的数据传输方式分为循环传输和报告传输两种。
循环传输是主设备周期性地向从设备发送数据,而报告传输是从设备在需要时向主设备发送数据。
2.3 数据帧格式现场总线的数据帧格式由头部、数据区和尾部组成。
头部包含地址信息和命令信息,数据区是实际的数据内容,尾部用于校验数据的完整性。
3. 现场总线的应用现场总线广泛应用于工业自动化领域,主要用于以下方面:3.1 数据采集与监测现场总线可以连接传感器,实时采集各种数据并传输到控制中心。
控制中心可以对数据进行监测和分析,从而实现对工艺过程的全面控制和调节。
3.2 控制与执行现场总线可以连接执行器,实现对设备的远程控制。
通过总线可以发送控制命令,实现对设备的启动、停止和调节等操作。
3.3 故障诊断与维护现场总线可以实时监测设备的运行状态,并将故障信息传输到控制中心。
控制中心可以通过总线对设备进行诊断和维护,提高故障的及时修复。
3.4 系统集成与扩展现场总线可以连接不同类型和厂家的设备,实现系统的集成和扩展。
通过总线可以将不同设备连接起来,构成一个完整的工业自动化系统。
4. 总结现场总线作为一种常用的工业自动化通信网络技术,具有灵活、可靠性高的特点。
它通过主从通信方式、循环传输和报告传输的数据传输方式,实现了设备之间的实时通信和控制。
现场总线技术及其应用
01
现场总线技术的应用领域
工业自动化
总结词
现场总线技术在工业自动化领域的应用非常广泛,它 简化了工业控制系统的结构,提高了控制精度和可靠 性,降低了设备和系统的维护成本。
详细描述
现场总线技术最初是为了满足工业生产现场的需求而 发展起来的。在工业自动化领域,现场总线技术被广 泛应用于各种生产设备之间的通信和控制系统,如数 控机床、机器人、温度控制器等。通过现场总线技术 ,这些设备可以相互连接并进行数据交换,从而实现 更加精确和可靠的生产控制。此外,现场总线技术还 可以用于工业生产现场的远程监控和管理,使得管理 人员可以随时了解生产现场的情况,及时发现并解决 问题。
现场总线技术及其应用
汇报人: 日期:
contents
目录
• 现场总线技术概述 • 现场总线技术的体系结构 • 现场总线技术的通信协议 • 现场总线技术的应用领域 • 现场总线技术的展望与发展趋势 • 现场总线技术应用案例分析
01
现场总线技术概述
定义和特点
定义
现场总线是一种用于工业自动化领域的数据通信协议,它允许设备之间进行数字通信,以实现设备间 的数据交换和控制操作。
01
现场总线技术的体系结构
物理层
物理层的定义
物理层是现场总线技术的最底层 ,负责在通信设备之间传输原始 比特流,涉及机械、电气、定时
和同步等方面。
物理层的特性
物理层具有规范化的物理设备接 口,如电缆、连接器、终端电阻 等,并规定了通信设备的电气特
性,如电压、电流等。
物理层的关键技术
物理层的关键技术包括信号编码 、同步和传输技术等,以保证信
网络安全问题
随着现场总线技术的广泛应用,网络安全问题也变得越来 越重要。需要采取有效的措施来确保数据的安全性和可靠 性。
现场总线技术及其应用
案例三:城市交通信号控制系统应用
总结词
利用现场总线技术实现城市交通信号的智能控制,提高 交通流畅度和安全性。
详细描述
在城市交通管理中,采用现场总线技术构建交通信号控 制系统,实现各个路口信号灯的实时通信和控制。通过 实时数据采集和智能算法,优化信号灯的配时方案,提 高交通流畅度和安全性,缓解城市交通拥堵问题。
在工业自动化领域,常见的现场总线 技术包括PROFIBUS、Modbus、 EtherNet/IP等。
智能建筑
智能建筑是现场总线技术的另一个重 要应用领域。通过现场总线,可以实 现建筑物内各种设备(如照明、空调 、安防等)的集中控制和管理,提高 建筑物的能源利用效率和舒适度。
VS
在智能建筑领域,常见的现场总线技 术包括LonWorks、CAN等。
智能交通系统
智能交通系统是现场总线技术的重要应用方 向之一。通过现场总线,可以实现交通信号 灯、监控摄像头等交通设施的集中控制和数 据传输,提高交通效率和安全性。
在智能交通系统领域,常见的现场总线技术 包括FlexRay、TTCAN等。
医疗设备
医疗设备是现场总线技术的重要应用 领域之一。通过现场总线,可以实现 医疗设备的集中控制和数据传输,提 高医疗设备的可靠性和安全性。
02
现场总线技术种类
PROFIBUS
德国标准总线
PROFIBUS是一种用于工业自动化的现场总线标准,由德国标准委员会制定。它 支持多种通信协议,广泛应用于制造业、过程控制和楼宇自动化等领域。
CAN总线
控制器局域网
CAN总线是一种用于汽车和工业自动化领域的现场总线标准。它支持分布式实时控制,具有高可靠性和灵活性,广泛应用于 汽车电子、智能交通和工业自动化等领域。
现场总线的原理与应用
现场总线的原理与应用1. 引言现场总线(Fieldbus)是指用于工业自动化领域的数字通信总线技术,广泛应用于工厂自动化控制系统中。
现场总线连接了各种感应器、执行器和控制设备,实现数据传输、实时控制和监测功能。
本文将介绍现场总线的原理和应用。
2. 现场总线的原理现场总线通过将数据进行数字化和通信,实现了系统的联网和集成化。
其原理主要包括以下几个方面:2.1 数据传输方式现场总线采用异步传输方式进行数据的传输,每个节点都具有唯一的地址。
数据传输可以是双向的,节点可以发送和接收数据。
现场总线支持点对点或多点通信方式,节点之间可以直接进行数据交互。
2.2 数据传输协议现场总线使用特定的数据传输协议,确保数据的可靠传输和完整性。
常见的现场总线协议包括Profibus、Foundation Fieldbus、Modbus等。
这些协议定义了数据的格式、传输速率、校验等参数。
2.3 总线拓扑结构现场总线可以采用不同的拓扑结构,常见的有星型、环型、总线型等。
选择合适的拓扑结构可以根据系统需求和通信距离来确定。
拓扑结构的选择影响了总线的可靠性和性能。
3. 现场总线的应用现场总线在工业自动化领域有广泛的应用,以下列举了一些常见的应用场景:3.1 工厂自动化控制系统现场总线可以应用于工厂自动化控制系统中,连接和控制各种设备,如传感器、执行器、PLC等。
通过现场总线,可以实现实时数据的采集、设备的控制和监测,提高工厂的自动化程度和生产效率。
3.2 智能建筑系统现场总线可以用于智能建筑系统中,连接和控制照明、空调、安防等设备。
通过现场总线,可以实现对设备的集中控制和监测,提高建筑的能耗管理和智能化水平。
3.3 交通信号控制系统现场总线可以用于交通信号控制系统中,连接和控制交通信号灯、指示器等设备。
通过现场总线,可以实现实时的信号控制和交通流量的监测,提高交通效率和安全性。
3.4 水处理控制系统现场总线可以应用于水处理控制系统中,连接和控制水泵、阀门等设备。
现场总线控制系统应用实例
现场总线控制系统应用实例一、引言现场总线控制系统是一种基于计算机网络技术的自动化控制系统,它通过将各种现场设备与控制系统连接起来,实现数据传输和控制指令的交互。
它广泛应用于工业生产、楼宇自动化、交通运输等领域,提高了生产效率和自动化程度。
本文将以几个实际应用案例为例,介绍现场总线控制系统在不同领域的应用情况。
二、工业生产领域1. 汽车制造工厂汽车制造工厂是一个典型的工业生产场景,其中各种机械设备、传感器和执行器需要进行数据交互和控制。
现场总线控制系统在汽车制造工厂中的应用可以实现设备的远程监控和控制,提高生产线的自动化程度和生产效率。
例如,通过现场总线系统可以实时监测机械设备的运行状态和温度,及时采取措施防止故障发生。
同时,通过控制指令可以远程控制设备的启停和调整参数,提高生产线的灵活性和适应性。
2. 石油化工厂石油化工厂是一个复杂的工业生产场景,涉及到各种化工设备、管道和控制系统。
现场总线控制系统在石油化工厂中的应用可以实现设备的集中监控和控制,提高生产过程的安全性和稳定性。
例如,通过现场总线系统可以实时监测管道的压力和流量,及时发现异常情况并采取措施。
同时,通过控制指令可以远程控制设备的开关和调整工艺参数,提高生产效率和产品质量。
三、楼宇自动化领域1. 商业综合体商业综合体是一个集购物、娱乐、办公于一体的大型建筑群,其中涉及到多个子系统的控制和管理。
现场总线控制系统在商业综合体中的应用可以实现各个子系统的集中控制和监测,提高楼宇设施的管理效率和能源利用率。
例如,通过现场总线系统可以实时监测楼宇的温度、湿度和照明情况,根据需求自动调整空调和照明设备的工作状态,节约能源并提供舒适的室内环境。
2. 医院建筑医院是一个复杂的建筑群,涉及到多个科室、楼层和设备的控制和管理。
现场总线控制系统在医院建筑中的应用可以实现科室设备的集中控制和监测,提高医院的运行效率和服务质量。
例如,通过现场总线系统可以实时监测病房的温度和湿度,自动调整空调设备的工作状态,提供舒适的病房环境。
现场总线及其应用技术
现场总线及其应用技术一、引言现场总线(Fieldbus)是指在工业自动化控制系统中,用于连接现场设备的一种通信总线技术。
它通过集成控制器和现场设备之间的数据交换,实现工业自动化系统的控制与监测。
本文将介绍现场总线的基本概念、工作原理以及在实际应用中的一些技术。
二、现场总线的基本概念现场总线是一种将传感器、执行器等现场设备与控制器相连的通信系统。
它能够提供双向通信、实时数据传输和分布式控制等功能,极大地简化了工业自动化系统的布线和维护工作。
常见的现场总线包括Profibus、Modbus、CAN等。
三、现场总线的工作原理现场总线的工作原理可以简单描述为以下几个步骤:1. 传感器或执行器将采集到的数据通过现场总线发送给控制器。
2. 控制器接收到数据后,进行处理并发送相应的控制指令给现场设备。
3. 现场设备接收到控制指令后,执行相应的动作,并将执行结果反馈给控制器。
四、现场总线的应用技术1. 实时性技术现场总线要求具有较高的实时性,能够在短时间内完成数据的传输和处理。
为了提高实时性,现场总线采用了一系列技术,如时间触发、通信速率调整和数据压缩等。
2. 安全性技术现场总线在工业自动化系统中承担着重要的控制和监测任务,因此安全性是其应用中的重要考虑因素。
现场总线采用了多种安全技术,如数据加密、身份认证和访问控制等,保障系统的安全运行。
3. 故障诊断技术现场总线能够实时监测现场设备的状态,并提供故障诊断功能。
通过采集设备的运行数据和故障信息,现场总线可以及时判断设备的工作状态,并进行故障定位和排除。
4. 网络管理技术现场总线通常由多个设备组成一个网络,因此需要进行网络管理。
网络管理技术包括网络拓扑结构的设计、数据包的路由和转发、网络性能的监测和调优等,保证网络的稳定和可靠运行。
5. 数据采集与处理技术现场总线能够实时采集大量的数据,并进行处理和分析。
数据采集与处理技术包括数据采样、滤波、数据压缩和数据存储等,为后续的控制和决策提供可靠的数据支持。
现场总线技术的应用
现场总线技术的应用现场总线是应用在生产现场、在微处理器测控设备之间实现双向串行多节点数字通信的系统,也被称为开放式、数字式多点通信的底层网络。
20世纪80年代中期,随着工业电器微处理器技术和网络技术的发展,DCS系统4~20mA的模拟量传输方式逐渐被数字网络传输方式所取代,现场总线控制系统(Fieldbus C ontrol System,FCS),迅速发展并在自动化领域得到广泛应用。
FCS既是一个开放式通信网络,又是一种全分布式控制系统。
它作为智能设备的联系纽带,把挂在总线上作为网络节点的智能设备连接为网络系统,并进一步构成自动化系统,实现基本的控制、计算、参数设置、报警、显示、监控及系统管理等综合自动化功能。
在FCS中,各种部件用通信网络连接起来,数据传输采用总线方式,系统信号的传输完全数字化。
系统内不存在严格意义上的主控部件,资源共享,各智能化部件可以不依赖计算机而独立运行。
FCS完全淘汰了4~20mA的模拟量传输方式,减少了大量的现场敷线;FCS 的控制调节过程在现场部件,有效地提高了系统控制的实时性和可靠性,并避免了系统因主机故障而陷入瘫痪。
ISO国际标准化组织在ISO IEC7498标准中的OSI参考模型定义了网络互联的7层框架,详细规定了每一层的功能,以实现开放性系统环境中的互联性、互操作性与应用的可移植性。
考虑到工业生产现场大量的智能化装置零散地分布在一个较大的范围内,而单个节点面向控制的信息量不大,但实时性、快速性要求较高,为减少中间环节,满足实时性要求及降低工业网络的成本,现场总线采用的通信模型大都在OSI参考模型的基础上进行了不同程度的简化。
它采用OSI模型中的3个典型层:物理层、数据链路层和应用层,省去了3~6层,具有结构简单、执行协作简单、成本低等优点,同时满足工业现场应用的性能要求(如图1所示)。
通过一致性与互操作性测试,满足现场总线技术要求的不同制造商的产品即可实现在同一总线上的互联,为用户的系统集成带来极大的好处。
现场总线应用实例
LOGO
PB卡底座接线
4.冗余PB 卡和冗余DP 段
LOGO
PB卡底座接线
� PB卡底座接线
1. 冗余PB 卡和单DP 段
LOGO
PB卡底座接线
� PB卡底座接线
2.单PB 卡和单DP 段 3.冗余PB 卡和单DP 总线1(终端匹 配器安装于模件底座内) 4.冗余PB 卡和冗余DP 段
LOGO
FDT软件的使用
� PBDTM
PBDTM是PB 卡的管理软件,用于对PB 卡进行从站配置 和管理。
GDZS PB
GDZS PB PORT
对应一对PB 卡,主 要用于为PB 卡配置 从站信息和端口信息 。
对应一个PB 卡的一 个端口,通过GDZS PB PORT 可以以 DPV1 协议方式连接 并管理从站设备。
• FDT软件 怎么用呢?
LOGO
LOGO
1 2
●3
4
目录
PB卡底座接线 FDT软件的使用 卡件布置图的配置 通讯故障分析
LOGO
卡件布置图的配置
� PB 卡控制算法
PBM
PBM为主站模块算法, 与PB卡对应,主要包 括PB卡状态、从站设 备状态、PB卡切换命 令。
PBS
PBS模块为从站模块 算法,与从站对应, 主要包括从站设备实 时数据的输入和输出 、从站的诊断信息等 。
改回来。
LOGO
通讯故障分析
● 案例四:numatic的阀岛箱,就地通讯正常,PB卡没有问题 ,gsd也用的对,但是自检画面上显示通讯故障。
� FDT中,在gsd中选模块时,必须先添加输出模块,再添加输入模块。 坚决不能先添加输入模块,再添加输出模块,否则会导致通讯故障。
第8章 现场总线技术应用综合举例
第8章现场总线技术应用综合举例第8章现场总线技术应用综合举例8.1使用现场总线技术应考虑的几个问题8.2现场总线技术应用综合举例8.1使用现场总线技术应考虑的几个问题8.1.1为什么要选用现场总线技术1.时代及技术进步的要求2.实现彻底分散控制,提高系统可靠性的要求3.提高整个系统信息化水平,实现真正的管控一体化的要求4.大幅度节约系统成本的要求(1)系统总体造价的大幅度降低(2)安装费用大幅度降低(3)维护费用大幅度降低8.1.2现场总线技术最适合什么场合使用1.行业选择2.系统规模和分布3.系统类型8.1使用现场总线技术应考虑的几个问题4.系统功能要求8.1.3选择什么样的现场总线技术1.根据具体应用情况选择相应的现场总线技术2.这种现场总线技术的先进性如何3.这种现场总线技术的市场占有率如何4.这种现场总线在我国的市场占有率如何5.技术支持能否跟上8.1.4如何设计现场总线控制系统1.前期准备工作(1)总体选择1)现场总线类型大体上可根据上一小节的标准来选择现场总线类型。
8.1使用现场总线技术应考虑的几个问题2)是否有冗余要求对有冗余要求的控制系统,应选择具有冗余功能的电源、主站、从站、耦合器、光缆等设备。
3)是否有本质安全要求在一些特定的场合,有时要求满足本质安全,这时不论是选择耦合器、从站设备,还是选择电缆,都必须选择那些经过认证的产品,最好按照FISCO的要求来设计本质安全区域的现场总线网段。
4)系统实时性的要求一般情况下现场总线控制系统都能满足工业现场的实时性要求,但对一些快速联锁控制、高精度闭环控制和运动控制系统来说,就必须选择能实现高精度和高速的等时同步控制的系统了,比如实时以太网控制系统。
(2)系统控制点数的确定(3)主站选择8.1使用现场总线技术应考虑的几个问题(4)从站选择(5)系统软件选择(6)电缆类型选择(7)系统分析、诊断工具的选择2.系统设计和调试(1)控制系统设计(2)系统调试8.2现场总线技术应用综合举例8.2.1烟厂制丝线现场总线控制系统1.工艺流程图8-1制丝生产线工艺流程图8.2现场总线技术应用综合举例(1)叶片处理段(2)叶丝处理段(3)原梗及梗丝处理段(4)干冰烟丝膨胀处理段(5)掺配混丝段2.系统功能(1)工作方式和控制功能(2)监控功能(3)数据管理及处理功能(4)信息管理功能(5)扩展功能3.系统总体集成8.2现场总线技术应用综合举例说明:并不是所有的DP网络中都有PA网段、AS-i网段。
现场总线在国内电厂的应用
现场总线在国内电厂的应用现场总线是指在工业自动化控制系统中,将现场的各种传感器、执行器、控制器等设备通过数字信号进行网络连接,实现设备之间的实时通信和数据交换的技术和手段。
在国内电厂中,现场总线已经广泛应用,为电厂的自动化控制和管理带来了很大的便捷。
电厂是一个大型的工业生产系统,主要由燃料供给系统、锅炉系统、汽轮机系统、辅机系统、配电系统、控制系统等多个子系统构成。
这些子系统都有各自的控制任务和控制设备,需要进行连接和控制。
在传统的电厂控制系统中,不同的设备通过独立的接口和信号线连接,因此会出现大量的信号线和箱体,给电厂的维护和管理带来了很大的困难。
而现场总线技术的应用则可以解决这些问题。
1、信号处理和控制现场总线是一个高速、实时的数字通信网络,可以连接所有的控制设备和传感器。
在电厂中,通过现场总线连接的控制设备和传感器可以大大减少通信线路的数量,节省空间和费用。
此外,现场总线还可以实时采集传感器的数据,并将数据传输到控制器进行信号处理和控制。
这样可以大大提高电厂的响应速度和效率,增强控制系统的稳定性和可靠性。
2、设备诊断和故障诊断现场总线技术还可以实现对电厂设备的在线监测和故障诊断。
通过连接传感器和控制设备,可以在设备出现故障或预警信号时及时进行诊断和维修。
通过现场总线技术实现的在线监测,可以将设备的状态信息和故障信息传输到监控系统,进行数据分析和诊断。
这样可以及时发现和解决设备故障,提高电厂的生产效率。
3、数据交换和数据共享现场总线技术还可以实现电厂内各个子系统之间的数据交换和数据共享。
通过连接不同的控制设备和传感器,可以实现不同子系统之间的数据交换和共享,从而提高电厂生产过程控制的效率和精度。
此外,在电厂的特殊环境下,采用现场总线技术传输数据,也可以大大提高数据传输的稳定性和可靠性。
除了在控制系统中的应用外,现场总线技术还可以应用于电厂管理。
在电厂管理中,现场总线技术可以减少人工操作,提高电厂管理的精度和效率。
现场总线技术与应用
现场总线技术与应用现场总线技术与应用现场总线是应用生产现场、在微机化测控设备之间实现双向数字通信系统,是开放式、数字化、多点通信的低层控制网络。
现场总线是在20世纪年代中期发展起来的。
现场总线技术是将专用的微处理器植入传统的测控仪表,使其具备了数字计算和通信能力,采用连接简单的双绞线、同轴电缆、光纤等作为总线,按照公开、规范的通信协议,在位于现场的多个微机化测控仪表之间、远程监控计算机之间实现数据共享,形成适应现场实际需要的控制系统。
它的出现改变了以往采用电流、电压模拟信号进行测控信号变化慢,信号传输抗干扰能力差的缺点,也改变了集中式控制可能造成的全线瘫痪的局面。
由于微处理器的使用,使得现场总线有了较高的测控能力,提高了信号的测控和传输精度,同时丰富了控制信息内容,为远程传送创造了条件。
现场总线适应了工业控制系统向分散化、网络化、智能化发展的方向,一出现便成为全球工业自动化技术的热点,受到全世界的普通遍关注。
现场总线导致了传统控制系统结构的变革,形成了新型的网络集成式全分布控制系统--现场总线控制系统FCS(Fieldbus Control System)。
一、现场总线的特点现场总线系统打破了传统模拟控制系统采用的一对一的设备连线模式,而采用了总线通信方式,因而控制功能可不依赖控制室计算机直接在现场完成,实现了系统的分散控制,现场总线控制系统与传统的控制系统结构对经如图1所示。
1、增强了现场级的信息采集能力现场总线可从现场设备获取大量丰富信息,能够很好地满足工厂自动化乃至CIMS系统的信息集成要求。
现场总线是数字化的通信网络,它不单纯取代4~20mA 信号,还可实现设备状态、故障和参数信息传送。
系统除完成远程控制,还可完成远程参数化工作。
2、开放式、互操作性、互换性、可集成性不同厂家产品只要使用同一种总线标准,就具有互操作性、互换性,因此设备具有很好的可集成性。
系统为开放式,允许其他厂商将自己专长的控制技术,如控制算法、工艺方法、配方等集成到通用控制系统中,因此,市场上将有许多面向行业特点的监控制系统。
现场总线综述及应用实例
现场总线技术综述一.概述现场总线控制系统技术是20 世纪80 年代中期在国际上发展起来的一种崭新的工业控制技术。
现场总线控制系统(FCS)的出现引起了传统的PLC和DCS控制系统基本结构的革命性变化。
现场总线系统技术极大地简化了传统控制系统繁琐且技术含量较低的布线工作量,使其系统检测和控制单元的分布更趋合理。
更重要的是从原来的面向设备选择控制和通信设备转变成为基于网络选择设备。
尤其是20世纪90 年代现场总线控制系统技术逐渐进入中国以来,结合Internet 和Intranet 的迅猛发展,现场总线控制系统技术越来越显示出其传统控制系统无可替代的优越性。
现场总线控制系统技术已成为工业控制领域中的一个热点。
1.现场总线的特点现场总线技术实际上是采用串行数据传输和连接方式代替传统的并联信号传输和连接方式的方法,它依次实现了控制层和现场总线设备层之间的数据传输,同时在保证传输实时性的情况下实现信息的可靠性和开放性。
一般的现场总线具有以下几个特点:(1)布线简单(2)开放性(3)实时性(4)可靠性2.现场总线的优点由于现场总线以上的特点,特别是现场总线系统结构的简化,使控制系统的设计,安装,投运到正常生产运行以及检修维护,都体现出优越性。
1.节省硬件数量与投资,2.节省安装费用3.节省维护开销4.用户具有高度的系统集成主动权5.提高了系统的准确性与可靠性3.现场总线的应用领域目前现场总线技术的应用主要集中在冶金、电力、水处理、乳品饮料、烟草、水泥、石化、矿山以及OEM用户等各个行业,同时还有道路无人监控、楼宇自动化、智能家居等新技术领域。
二.现场总线的标准1.IEC61158的制定1984年IEC提出现场总线国际标准的草案。
1993年才通过了物理层的标准IEC1158-2,并且在数据链路层的投票过程中几经反复。
发展61158现场总线的本意是“排他的和联合的”,各自独立的“现场总线”将给用户带来许多头疼的技术问题,牺牲的是用户的利益。
现场总线_现场总线应用实例共30页
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
现场总线_现场总线应用实例
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即Fra bibliotek延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使用现场总线技术要考虑的几个问题
组成和设计FCS的方法
系统控制点数的确定 主站选择
➢ 主站模板 ➢ 大中型PLC ➢ PAC 从站选择 ➢ 从站数量的选择 ➢ 类型选择 ➢ 老系统改造中旧设备的继续使用
Your Success is Our Goal
8.1 8.1.1 8.1.2 8.1.3
Your Success is Our Goal
8.1 8.1.1 8.1.2 8.1.3
8.18.41.4 8.2
8.2.1 8.2.2 8.2.3 8.3 8.3.1 8.3.2
使用现场总线技术要考虑的几个问题
组成和设计FCS的方法
控制系统设计 ➢ 硬件系统设计
✓ 硬件配置 ✓ 电气柜装配 ✓ 现场设计
现场总线技术应用综合举例
XU QIYI
QFNU-ZDH
8.1 8.1.1 8.1.2 8.1.3 8.1.4
8.2 8.2.1 8.2.2 8.2.3
8.3 8.3.1 8.3.2
本章内容
使用现场总线技术要考虑的几个问题 常用产品介绍 综合举例
Your Success is Our Goal
8.83.3 8.3.1 8.3.2
现场总线技术应用综合举例 烟厂大型制丝险种使用现场总线技术的例子 具体DP网络
Your Success is Our Goal
8.1 8.1.1 8.1.2 8.1.3 8.1.4
8.2 8.2.1 8.2.2 8.2.3
8.3 8.38.13.1 8.3.2
PROFIBUS和AS-i常用产品介绍
DP常用产品
Siemens公司 ➢ 主站 ➢ 从站
BECKHOFF公司 ➢ 主站 ➢ 从站
WAGO ➢ 主站 ➢ 从站
软件产品 诊断工具
Your Success is Our Goal
8.1 8.1.1 8.1.2 8.1.3 8.1.4
8.2 8.2.1
8.1 8.18.1 .1 8.1.2 8.1.3 8.1.4
8.2 8.2.1 8.2.2 8.2.3
8.3 8.3.1 8.3.2
使用现场总线技术要考虑的几个问题 选用现场总线技术的原因
时代及技术进步的要求 彻底分散控制,提高系统的可靠性 提高整个系统的智能化水平 大幅度节约系统成本的要求
➢ 系统的总体造价、安装费用、维护费用
Your Success is Our Goal
8.1 8.1.1
8.18.21.2 8.1.3 8.1.4
8.2 8.2.1 8.2.2 8.2.3
8.3 8.3.1 8.3.2
使用现场总线技术要考虑的几个问题
现场总线技术最适合使用的场合
不同的控制技术手段都有其最适合使用的场合
8.18.41.4 8.2
8.2.1 8.2.2 8.2.3 8.3 8.3.1 8.3.2
使用现场总线技术要考虑的几个问题
组成和设计FCS的方法
系统软件的选择 ➢ 系统软件 ➢ 系统应用软件 ➢ 编程软件
电缆类型的选择 ➢ 不同总线使用不同的电缆 ➢ 不同场合使用不同的电缆 ➢ 正规的产品
系统分析、诊断工具的选择
8.28.32.3 8.3
8.3.1 8.3.2
PROFIBUS和AS-i常用产品介绍
AS-i常用产品
ifm公司
➢ 主站 ➢ 从站
B+F公司 Siemens公司
Your Success is Our Goal
8.1 8.1.1 8.1.2 8.1.3 8.1.4
8.2 8.2.1 8.2.2 8.2.3
➢ 软件系统设计
✓ 软件系统选择 ✓ 系统组态 ✓ HMI ✓ 主站控制程序 ✓ 从站控制程序
系统调试 ➢ 模拟调试 ➢ 现场调试
Your Success is Our Goal
8.1 8.1.1 8.1.2 8.1.3 8.1.4
8.2 8.28.12.1 8.2.2 8.2.3
8.3 8.3.1 8.3.2
使用现场总线技术要考虑的几个问题 现场总线技术最适合使用的场合
行业选择 系统规模和分布 系统类型 系统功能要求
Your Success is Our Goal
8.1 8.1.1 8.1.2
8.18.31.3 8.1.4
8.2 8.2.1 8.2.2 8.2.3
8.3 8.3.1 8.3.2
➢ PLC:开关量多、控制逻辑复杂 ➢ IPC :模拟量为主的中小系统 ➢ DCS:大型过程控制系统 ➢ 单片机、嵌入式系统:智能电子
Your Success is Our Goal
8.1 8.1.1
8.18.21.2 8.1.3 8.1.4
8.2 8.2.1 8.2.2 8.2.3
8.3 8.3.1 8.3.2
使用现场总线技术要考虑的几个问题
组成和设计FCS的方法
总体选择
➢ 现场总线类型 ➢ 是否有冗余要求? ➢ 是否有本质安全要求? ➢ 系统实时性的要求
Your Success is Our Goal
8.1 8.1.1 8.1.2 8.1.3
8.18.41.4 8.2
8.2.1 8.2.2 8.2.3 8.3 8.3.1 8.3.2
烟厂制丝线
● 现场总线技术的应 用
Your Success is Our Goal
8.3 举例
8.1 8.1.1 8.1.2 8.1.3 8.1.4
8.2 8.2.1 8.2.2 8.2.3
8.3 8.3.1 8.3.2
切梗丝机现场总线控制系统
● 现场总线技术的应 用
使用现场总线技术要考虑的几个问题
选择什么样的现场总线技术?
根据具体的应用情况选择; 该现场总线技术的先进性? 市场占有率? 在我国的应用情况; 技术支持
Your Success is Our 8.1.3
8.18.41.4 8.2
8.2.1 8.2.2 8.2.3 8.3 8.3.1 8.3.2
8.28.2 .2 8.2.3
8.3 8.3.1 8.3.2
PROFIBUS和AS-i常用产品介绍
PA常用产品
E+H公司
➢ 所有的仪器仪表都能提供PA接口 ➢ 性能好 ➢ 软件产品
Your Success is Our Goal
8.1 8.1.1 8.1.2 8.1.3 8.1.4
8.2 8.2.1 8.2.2