桩基沉降计算例题

合集下载

《桩基沉降计算》课件

《桩基沉降计算》课件

02
桩基沉降计算理论基础
弹性力学基础
弹性力学基本方程
包括平衡方程、几何方程 和本构方程,用于描述物 体的受力、变形和应力之 间的关系。
弹性力学基本假设
连续性、均匀性、各向同 性、线性和小变形等假设 ,为弹性力学的基本前提 。
弹性力学基本概念
如应力、应变、弹性模量 等,是进行桩基沉降计算 的重要理论基础。
06
桩基沉降计算的发展趋势与 展望
发展趋势一:计算方法的改进
总结词
计算方法的改进是桩基沉降计算领域的重要发展趋势之一。
详细描述
随着数值计算理论的不断发展和计算机技术的进步,桩基沉 降计算的方法也在不断改进。新的计算方法能够更准确地模 拟桩基的沉降行为,提高计算精度和可靠性。
发展趋势二:数值模拟技术的发展
详细描述
随着人工智能和机器学习技术的快速发展, 智能化技术在桩基沉降计算中的应用逐渐成 为研究热点。通过智能化技术,可以实现自 动化建模、数据分析和预测等功能,提高计 算效率和精度,为工程实践提供更可靠的技 术支持。
感谢您的观看
THANKS
实例二:复杂桩基沉降计算
总结词
考虑多种因素,复杂模型
详细描述
介绍复杂桩基沉降计算的方法,包括考虑土层分布、地下水位、桩身材料等因素 对沉降的影响,以及如何建立复杂的数学模型进行计算。
实例三:实际工程桩基沉降计算
总结词
实际工程应用,案例分析
详细描述
通过实际工程案例,介绍桩基沉降计算的实践应用,包括数据采集、模型建立、计算过程和结果分析等步骤,以 及如何根据计算结果进行工程设计和优化。
示计算结果和数据。
软件二:Midas介绍
总结词
用户友好、易于上手、广泛使用

桩基沉降计算例题

桩基沉降计算例题

单桩、单排桩、桩中心距大于6倍桩径的疏桩基础的沉降计算例题(JGJ94-2007 5.5.14条和附录F)3.87某高层为框架-核心筒结构,基础埋深26m(7层地下室),核心筒采用桩筏基础。

外围框架采用复合桩基,基桩直径1.0 m,桩长15 m,混凝土强度等级C25,桩端持力层为卵石层,单桩承载力特征值为R a= 5200 kN ,其中端承力特征值为2080kN,梁板式筏形承台,筏板厚度h b=1.2 m,梁宽b l=2.0 m,梁高 h l=2.2 m(包括筏板厚度),承台地基土承载力特征值f ak=360kP a,土层分布:0~26 m土层平均重度=18 kN/m3;26m~27.93 m为中沙⑦1,=16.9kN/m3; 27.93m~32.33 m 为卵石⑦层,=19.8kN/m3,E S=150MP a; 32.33m~38.73m为粘土⑧层,=18.5kN/m3,E S=18Mp a; 38.73m~40.53 m为细砂⑨1层,=16.5kN/m 3,ES=75MP a; 40.53m~45.43 m为卵石⑨层,=20kN/m3,E S=150MP a; 45.43m~48.03 m为粉质粘土⑩层,=18kN/m3,E S=18MP a; 48.03m~53.13 m为细中砂⒀层,=16.5kN/m3,E S=75MP a;桩平面位置如图3—61,单柱荷载效应标准值F K=19300 kN,准永久值F=17400 kN。

试计算0±1桩的最终沉降量。

图3—61基础平面和土层剖面图解:1 按5.2.5条计算基桩所对应的承台底净面积A C:A C=(A-nA PS)/nA为1/2柱间距和悬臂边(2.5倍筏板厚度)所围成的承台计算域面积(图3-61),A=9.07.5 m=67.5㎡ ,在此承台计算域A内的桩数n=3,桩身截面积A ps=0 .785㎡,所以A C=(67.5-30.785)/3=65.14/3=21.7㎡2 按已知的梁板式筏形承台尺寸计算单桩分担的承台自重G K:G K=(67.5 1.2+92 1.0+(3.5+2)2 1.0)24.5/3 =106⨯24.5/3=866 kN(898)3 计算复合基桩的承载力特征值R ,验算单桩竖向承载力:为从表5.2.5查承台效应系数ηc ,需要s a/d和B c/l,故先计算桩距桩距/按表5.2.5 内插得:0.27考虑承台效应的复合基桩竖向承载力特征值R 及荷载应 标准组合轴心竖向力作用下,复合基桩的平均竖向力N k :52000.2736021.7520021093193003866 满足要求4 沉降计算,采用荷载效应准永久值组合.31740038666666kN 承台底土压力21.7(若根据5.5.14 条按取值:=0.27360应该说这两种取值方法都不尽合理,此处用67.6kP a ) 5 0#桩的沉降按公式(5.5.14-2、3、4、5)计算:1uzci k i ck k p σα==∑在荷载效应准永久组合作用下,桩顶的附加荷载:6666kN j Q =第j 桩总桩端阻力与桩顶荷载之比:以0# 桩为圆心、以0#桩的沉降有0.60.6159.0l m =⨯=,在此范围内有9根桩分别为1#和1`桩(n 1= =0.2);2#桩(n 2=0.25);3#、3′桩(n 3=0.44);4#、4′桩(n 4=0.41)和5#、5′桩(n 5=0.6)。

桩基沉降计算

桩基沉降计算

即上部结构荷载327.8250.174各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz121.3 3.367 3.70622.781142019.386 3.0400014.888 2.9200010.159 2.51402 6.506 2.117 2.264088 3.4972841 4.084 1.7720.710616 1.4636722 2.586 1.4480.899928 2.3920962 1.127 1.0780.392196 1.78085640.5710.8130.397416 2.68615280.1970.4630.274224 3.05950490.1230.3040.192618 2.25993680.0970.2170.135024 1.433936240.0830.1640.346608 3.251136300.0640.1010.33408 2.50278420.0490.0650.358092 2.25498290.0360.0430.181656 1.03002210.1927530.393521.28667即上部结构荷载327.8250.174各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz1 5.395 1.4870.938731.2282620 5.269 1.471000 4.912 1.427000 4.391 1.35902 3.787 1.274 1.317876 2.1046481 3.174 1.180.5522760.974682 2.605 1.0830.90654 1.7891162 1.6910.8980.588468 1.4834964 1.0840.7390.754464 2.441656单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷附加应力计算表 μ=0.4桩侧摩阻力沿桩身线性增m = 1.2 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )桩端阻力比α单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比α桩基沉降计算m = 1.1 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )L单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)80.4030.4670.560976 3.08593690.1990.3160.311634 2.34914480.1280.2270.178176 1.500016240.0960.1710.400896 3.389904300.0670.1060.34974 2.62668420.050.0690.3654 2.393748290.0370.0460.186702 1.1018847.41187826.4691717.76993即上部结构荷载327.8250.174各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz1 2.440.9040.424560.7467040 2.4150.899000 2.3420.886000 2.2260.86602 2.0770.8380.722796 1.3843761 1.9070.8050.3318180.664932 1.7250.7680.6003 1.2687362 1.3650.6890.47502 1.1382284 1.0470.6080.728712 2.00883280.5210.4340.725232 2.86787290.2780.3120.435348 2.31940880.170.2310.23664 1.526448240.1180.1760.492768 3.489024300.0730.110.38106 2.7258420.0520.0720.380016 2.497824290.0390.0490.196794 1.1737466.13106423.8119315.7045即上部结构荷载327.8250.174各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz1 1.4020.6290.2439480.5195540 1.3940.627000 1.370.622000 1.3320.613002 1.2810.6010.4457880.9928521 1.220.5870.212280.484862m = 1.3 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比αm = 1.4 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比α2 1.150.570.40020.9416420.9990.5320.3476520.87886440.8450.4890.58812 1.61565680.5220.3830.726624 2.53086490.3180.2930.497988 2.17816280.2040.2260.283968 1.493408240.140.1770.58464 3.508848300.0820.1130.42804 2.80014420.0560.0750.409248 2.6019290.040.0520.20184 1.2456085.37033621.7923614.24629即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.9180.4720.146880.3964800.9150.4710000.9050.4690000.8890.4640000.8680.4580000.8410.4510020.810.4420.25920.7425620.7380.4210.236160.7072860.660.3970.6336 2.0008880.4690.3310.60032 2.22432140.320.2680.7168 3.15168150.220.2150.528 2.709260.1560.1730.64896 3.77832300.090.1140.432 2.8728370.060.0770.3552 2.39316370.0430.0540.25456 1.678324.8116822.654837.80456即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.6540.3720.104640.3124800.6520.3710000.6470.3700m = 1.6 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )L桩端阻力比αm = 1.5 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比α单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)00.6390.3680000.6290.3640000.6150.360020.5990.3550.191680.596420.5620.3430.179840.5762460.5190.3280.49824 1.6531280.4040.2850.51712 1.9152140.3010.2410.67424 2.83416150.2210.20.5304 2.52260.1640.1650.68224 3.6036300.0970.1130.4656 2.8476370.0640.0790.37888 2.45532370.0450.0560.2664 1.740484.4892821.054635.15831即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.4920.3030.078720.2545200.4910.3030000.4890.3020000.4850.30000.4790.2990000.4710.2960020.4620.2930.147840.4922420.4410.2850.141120.478860.4160.2750.39936 1.38680.3440.2470.44032 1.65984140.2730.2150.61152 2.5284150.2120.1840.5088 2.3184260.1640.1560.68224 3.40704300.1020.1110.4896 2.7972370.0680.0790.40256 2.45532370.0480.0570.28416 1.771564.1862419.5493232.66936即上部结构荷载792.8240.16L桩端阻力比αm = 1.8 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比αm = 1.7 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)各圆环内的桩数k Ip Is αki Ip (1-α) ki Isσz10.3860.2530.061760.2125200.3860.2530000.3840.2530000.3820.2520000.3780.250000.3740.2490020.3690.2460.118080.4132820.3560.2410.113920.4048860.340.2350.3264 1.184480.2930.2150.37504 1.4448140.2440.1920.54656 2.25792150.1980.1680.4752 2.1168260.1590.1450.66144 3.1668300.1040.1070.4992 2.6964370.070.0780.4144 2.42424370.050.0570.296 1.771563.88818.093630.25523即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.3130.2160.050080.1814400.3120.2160000.3120.2150000.310.2140000.3080.2140000.3050.2120020.3020.2110.096640.3544820.2930.2070.093760.3477660.2830.2030.27168 1.0231280.2520.1890.32256 1.27008140.2170.1710.48608 2.01096150.1820.1530.4368 1.9278260.1510.1350.62816 2.9484300.1030.1030.4944 2.5956370.0720.0770.42624 2.39316370.0520.0580.30784 1.802643.6142416.8554428.17424即上部结构荷载792.8m = 1.9 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比α240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.2590.1860.041440.1562400.2590.1860000.2590.1860000.2580.1860000.2560.1850000.2540.1840020.2520.1830.080640.3074420.2460.180.078720.302460.2390.1770.229440.8920880.2180.1670.27904 1.12224140.1920.1540.43008 1.81104150.1660.1390.3984 1.7514260.1420.1250.59072 2.73300.1010.0980.4848 2.4696370.0720.0750.42624 2.331370.0530.0570.31376 1.771563.3532815.64526.14902m = 2.0 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )桩端阻力比αL即上部结构荷载842.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.2190.1630.035040.1369200.2190.1630000.2190.1630000.2180.1630000.2170.1620000.2160.1610020.2140.1610.068480.2704820.210.1590.06720.2671260.2050.1560.19680.7862480.190.1480.24320.99456140.1710.1380.38304 1.62288150.1510.1270.3624 1.6002260.1320.1150.54912 2.5116300.0980.0930.4704 2.3436370.0720.0730.42624 2.26884370.0530.0560.31376 1.740483.1156814.5429225.83797即上部结构荷载842.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1880.1440.030080.1209600.1880.1440000.1880.1440000.1880.1440000.1870.1430000.1860.1430020.1850.1420.05920.2385620.1820.1410.058240.2368860.1780.1390.170880.70056m = 2.2 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )取长期效应作用下的单桩平均附加荷载)表 μ=0.4线性增长分布单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比αm = 2.1 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比α降计算80.1670.1330.213760.89376140.1530.1250.34272 1.47150.1380.1160.3312 1.4616260.1220.1070.50752 2.33688300.0940.0870.4512 2.1924370.0710.070.42032 2.1756370.0540.0550.31968 1.70942.904813.536624.05697即上部结构荷载842.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1640.1290.026240.1083600.1640.1290000.1640.1280000.1630.1280000.1630.1280000.1620.1280020.1610.1270.051520.2133620.1590.1260.050880.2116860.1570.1250.150720.6380.1480.120.189440.8064140.1370.1140.30688 1.34064150.1250.1060.3 1.3356260.1130.0990.47008 2.16216300.0890.0820.4272 2.0664370.0690.0670.40848 2.08236370.0530.0540.31376 1.678322.695212.6352822.43147即上部结构荷载842.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1440.1160.023040.0974400.1440.1150000.1440.1150000.1440.1150000.1430.1150000.1430.11500单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比αm = 2.4 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )L桩端阻力比αm = 2.3 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)20.1420.1140.045440.1915220.1410.1140.045120.1915260.1390.1120.133440.5644880.1320.1090.168960.73248140.1240.1040.27776 1.22304150.1140.0980.2736 1.2348260.1040.0910.43264 1.98744300.0840.0780.4032 1.9656370.0670.0640.39664 1.98912370.0520.0520.30784 1.616162.5076811.793620.92555即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1280.1040.020480.0873600.1280.1040000.1280.1040000.1280.1040000.1270.1040000.1270.1040020.1260.1030.040320.1730420.1250.1030.040.1730460.1240.1020.119040.5140880.1190.0990.152320.66528140.1120.0950.25088 1.1172150.1040.090.2496 1.134260.0960.0840.39936 1.83456300.080.0730.384 1.8396370.0640.0610.37888 1.89588370.0510.0510.30192 1.585082.336811.0191218.38294即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1150.0950.01840.079800.1150.0950000.1150.09500单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)桩端阻力比αm = 2.6 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )L桩端阻力比αm = 2.5 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L00.1140.0950000.1140.0950000.1140.0940020.1130.0940.036160.1579220.1120.0940.035840.1579260.1110.0930.106560.4687280.1070.090.136960.6048140.1020.0870.22848 1.02312150.0960.0830.2304 1.0458260.0890.0780.37024 1.70352300.0750.0690.36 1.7388370.0620.0580.36704 1.80264370.050.0490.296 1.522922.1860810.3059617.19391即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1030.0870.016480.0730800.1030.0870000.1030.0870000.1030.0860000.1030.0860000.1030.0860020.1020.0860.032640.1444820.1020.0860.032640.1444860.1010.0850.096960.428480.0970.0830.124160.55776140.0930.080.208320.9408150.0880.0770.21120.9702260.0820.0730.34112 1.59432300.0710.0640.3408 1.6128370.0590.0580.34928 1.80264370.0490.0470.29008 1.460762.043689.7297216.20478即上部结构荷载792.8240.16桩端阻力比αm = 2.8 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)LL桩端阻力比αm = 2.7 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)各圆环内的桩数k Ip Is αki Ip (1-α) ki Isσz10.0940.080.015040.067200.0940.080000.0940.080000.0930.0790000.0930.080000.0930.0790020.0930.0790.029760.1327220.0920.0790.029440.1327260.0910.0780.087360.3931280.0890.0760.113920.51072140.0850.0740.19040.87024150.0810.0710.19440.8946260.0770.0680.32032 1.48512300.0670.0610.3216 1.5372370.0560.0530.33152 1.64724370.0470.0450.27824 1.39861.9129.0694815.11479即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.0850.0730.01360.0613200.0850.0730000.0850.0730000.0850.0730000.0850.0730000.0850.0730020.0850.0730.02720.1226420.0840.0730.026880.1226460.0840.0720.080640.3628880.0810.0710.103680.47712140.0790.0690.176960.81144150.0750.0660.180.8316260.0710.0630.29536 1.37592300.0630.0570.3024 1.4364370.0540.050.31968 1.554370.0460.0440.27232 1.367521.798728.5234814.20736即上部结构荷载792.8单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比αm = 2.9 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.0780.0680.012480.0571200.0780.0680000.0780.0680000.0780.0680000.0780.0680000.0780.0680020.0780.0670.024960.1125620.0770.0670.024640.1125660.0770.0670.073920.3376880.0750.0650.0960.4368140.0730.0640.163520.75264150.070.0620.1680.7812260.0660.0590.27456 1.28856300.0590.0540.2832 1.3608370.0510.0480.30192 1.49184370.0440.0420.26048 1.305361.683688.0371213.3796桩端阻力比αm = 3.0 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )L。

土力学基础设计例题

土力学基础设计例题

基础设计计算案例题2. 某沉箱码头为一条形基础,在抛石基床底面处的有效受压宽度Be ˊ =12m,墙前基础底面以上边载的标准值为q k =18kPa,抛石基床底面以下地基土的指标标准值为:内摩擦角k ϕ=30º,粘聚力c k =0,天然重度γ=19kN/m 3·抛石基床底面合力与垂线间夹角δˊ=11.3º。

不考虑波浪力的作用,按《港口工程地基规范》(1T7250-98 )算得的地基极限承载力的竖向分力标准值最接近下列哪一个数值?(k ϕ=30º时,承载力系数N γB =8.862, N qB =12.245)(A) 7560.5kN/m ; (B) 7850.4kN/m ;(C) 8387.5kN/m ;(D) 8523.7kN/m 。

1. 某建筑物基础底面尺寸为3m×4m ,基础理深d =1.5m ,拟建场地地下水位距地表1.0m ,地基土分布:第一层为填土,层厚为1米,γ=18.0kN/m 3;第二层为粉质粘土,层厚为5米,γ=19.0kN/m 3,φk =22º,C k =16kPa ;第三层为淤泥质粘土,层厚为6米,γ=17.0kN/m 3,φk =11º,C k =10kPa ;。

按《地基基础设计规范》(GB50007-2002)的理论公式计算基础持力层地基承载力特征值f a ,其值最接近下列哪一个数值?(A) 184kPa ; (B) 191kPa ;(C) 199 kPa ;(D) 223kPa 。

3. 某建筑物的箱形基础宽9m ,长20m ,埋深d =5m ,地下水位距地表2.0m ,地基土分布:第一层为填土,层厚为1.5米,γ=18.0kN/m 3;第二层为粘土,层厚为10米,水位以上γ=18.5kN/m 3、水位以下γ=19.5kN/m 3,L I =0.73,e =0.83由载荷试验确定的粘土持力层承载力特征值f ak =190kPa 。

YJK沉降计算的使用要点及案例

YJK沉降计算的使用要点及案例

YJK 基础沉降计算的使用要点及案例1 沉降计算的有关规范规定(1)沉降验算的规范规定问题1:哪些需要验算沉降《建筑地基基础设计规范》第 3.0.2 条规定“设计等级为甲级、乙级的建筑物,均应按地基变形设计”,并规定六类情形下的丙类建筑物,“仍应作变形验算”。

是否需要进行基础沉降验算,软件不自动判断,由用户根据上述规范条件判断。

问题2:建筑物沉降验算满足要求的判断标准所谓地基变形验算,即要求地基的变形计算值在允许的范围内:∆≤[∆] (1)式中:[∆]—地基的允许变形值,按《建筑地基基础设计规范》5.3.4 条取值。

《地基规范》表5.3.4 给出了建筑物的地基变形允许值,控制指标包括沉降量、沉降差、倾斜、局部倾斜。

《桩基规范》表5.5.4 给出了建筑桩基沉降变形允许值,控制指标包括沉降量、沉降差、倾斜、局部倾斜。

YJK 基础软件统一给出所有基础的沉降验算结果,见下图:沉降量应查看沉降等值线图,软件以等值线加数值的方式给出所有基础的沉降量计算结果。

注意两点:1)桩沉降是包括了土沉降及桩身压缩的总值;2)考虑土回弹再压缩情况(一般是基础埋深超过5 米情况),沉降总值要查看【沉降+回弹再压缩变形等值线图】。

E 倾斜指基础倾斜方向两端点的沉降差与其距离的比值;局部倾斜指砌体承重结构沿纵向 6m ~10m 内基础两点的沉降差与其距离的比值。

所以对于沉降差、倾斜、局部倾斜结果,用户可以通过软件的【两点沉降差】来自行检查。

(2)沉降计算方法的规范规定 《地基规范》第 5.3.5 条计算地基变形时,地基内的应力分布,可采用各向同性均质线性变形体理论。

其最终变形量可按下式进行计算:np - -s = ψ s ,= ψ ∑(z αi - z αi -1) s si i -1i =1 Esi式中:s ——地基最终变形量(mm);s′——按分层总和法计算出的地基变形量(mm);ψs ——沉降计算经验系数,根据地区沉降观测资料及经验确定,无地区经验时可根据变形计算深度范围内压缩模量的当量值(E s )、基底附加压力按表 5.3.5 取值;n ——地基变形计算深度范围内所划分的土层数(图 5.3.5); p 0——相应于作用的准永久组合时基础底面处的附加压力(kPa);E si ——基础底面下第 i 层土的压缩模量(MPa),应取土的自重压力至土的自重压力与附加压力之和的压力段计算;z i 、z i-1——基础底面至第 i 层土、第 i-1 层土底面的距离(m);a i 、a i-1——基础底面计算点至第 i 层土、第 i-1 层土底面范围内平均附加应力系数,可按本规范附录 K 采用。

附录R:桩基础最终沉降量计算

附录R:桩基础最终沉降量计算

附录R 桩基础最终沉降量计算R.0.1 桩基础最终沉降量的计算采用单向压缩分层总和法:∑∑==∆=mj n i isj ij i j p jE h s 11,,,σψ (R.0.1)式中:s ——桩基最终计算沉降量(mm);m ——桩端平面以下压缩层范围内土层总数;E sj,i ——桩端平面下第j 层土第i 个分层在自重应力至自重应力加附加应力作用段的压缩模量(MPa);n j ——桩端平面下第j 层土的计算分层数;Δh j,i ——桩端平面下第j 层土的第i 个分层厚度(m);σj,i ——桩端平面下第j 层土第i 个分层的竖向附加应力(kPa),可分别按本附录第R.0.2条或第R.0.4条的规定计算;ψp ——桩基沉降计算经验系数,各地区应根据当地的工程实测资料统计对比确定。

R.0.2 采用实体深基础计算桩基础最终沉降量时,采用单向压缩分层总和法按本规范第5.3.5条~第5.3.8条的有关公式计算。

R.0.3 本规范公式(5.3.5)中附加压力计算,应为桩底平面处的附加压力。

实体基础的支承面积可按图R.0.3采用。

实体深基础桩基沉降计算经验系数ψps 应根据地区桩基础沉降观测资料及经验统计确定。

在不具备条件时,ψps 值可按表R.0.3选用。

注:表内数值可以内插。

图R.0.3 实体深基础的底面积R.0.4 采用明德林应力公式方法进行桩基础沉降计算时,应符合下列规定:1,采用明德林应力公式计算地基中的某点的竖向附加应力值时,可将各根桩在该点所产生的附加应力,逐根叠加按下式计算:()∑=+=nk k zs k zp i j 1,,,σσσ (R.0.4-1)式中:σzp,k ——第k 根桩的端阻力在深度z 处产生的应力(kPa):σzs,k ——第k 根桩的侧摩阻力在深度z 处产生的应力(kPa)。

2,第k 根桩的端阻力在深度z 处产生的应力可按下式计算;k p k zp I l Q,2,ασ=(R.0.4-2)式中:Q ——相应于作用的准永久组合时,轴心竖向力作用下单桩的附加荷载(kN);由桩端阻力Q p 和桩侧摩阻力Q s 共同承担,且Q p =αQ ,α是桩端阻力比;桩的端阻力假定为集中力,桩侧摩阻力可假定为沿桩身均匀分布和沿桩身线性增长分布两种形式组成,其值分别为βQ 和(1-α-β)Q ,如图R.0.4所示; l ——桩长(m);I p,k ——应力影响系数,可用对明德林应力公式进行积分的方式推导得出。

桩基沉降计算例题

桩基沉降计算例题

桩基沉降计算例题假设需要计算一个桥梁的单桩基础沉降,其桥墩直径为2m,桥墩高度为20m,桩长为30m,桩径为0.5m。

已知桩侧土壤的面积重为18kN/m,桩端土壤的面积重为19kN/m,黏聚力为15kPa,内摩擦角为28°。

该桩基础的承载力为5000kN,同时考虑桩身侧阻和底部端阻的影响。

解题步骤如下:1. 计算桩顶荷载:单桩基础的承载力为5000kN,由于桥墩直径为2m,因此桩顶荷载可以通过荷载面积计算得出:A = πd/4 = 3.14 × 2/4 = 3.14mq = 5000kN / 3.14m = 1592.36kN/m2. 计算桩身侧阻力和底部端阻力:桩身侧阻力可通过以下公式计算:Rf = Ks × Ap ×σv其中,Ks为侧阻系数,Ap为桩身侧面积,σv为有效应力桩底端阻力可通过以下公式计算:Rb = Kp × Ab ×σp其中,Kp为桩底阻力系数,Ab为桩底面积,σp为桩端土壤的有效应力根据国标规定,该桥梁的侧阻系数Ks为0.6,底部阻力系数Kp 为9.5。

同时考虑到桩身直径较小,因此可以假设桩顶承受的荷载全部由桩身侧阻和底部端阻共同承担,则有:Rf + Rb = qA将Rf和Rb代入上述公式可得:Rf = (qA - KpAbσp) / (1 + KsAp/Ab)3. 计算桩身平均侧阻力:桩身平均侧阻力可通过下式计算:fa = Rf / Lp其中,Lp为桩长4. 计算桩端沉降:桩端沉降可通过以下公式计算:Δs = Q / Es + ∑faAi / Es + qbAh / Eh其中,Q为桩顶荷载,Es为桩的弹性模量,∑faAi为桩身平均侧阻力的合力乘以桩身长度,qbAh为桩底端阻力乘以底部面积并除以底部土壤的弹性模量Eh。

将已知参数代入上述公式计算得:Δs = 1592.36kN/m / 10000MPa + (0.6 ×π× 30m × 15kPa) / 10000MPa + (9.5 ×π/4 × 0.5 × 19kN/m) / 3000MPa= 0.159m5. 校核桩身侧阻和底部端阻是否满足要求:桩身侧阻力和底部端阻力应该满足以下公式:Rf <= Ksf ×σv × ApRb <= Kpb ×σp × Ab根据国标规定,侧阻安全系数Ksf取1.5,底部阻力安全系数Kpb取2。

桩基承载力计算

桩基承载力计算

第一个算例-桩基承载力及沉降计算算例简图(规范桩基例题)工程地质地层参数单桩竖向承载力设计值计算本工程采用C30级,φ.6米×22米混凝土灌注桩,桩周长为1.88米,截面积为.28平方米;1. 按规范第6.2.6条按桩身结构强度确定桩竖向承载力设计值: 灌注桩:R d ≤0.60f c A p =2544.69kN ;2. 按规范第6.2.4条按地基土对桩的支承力确定桩竖向承载力设计值: 桩侧总极限摩阻力标准值: R sk =U p Σf si l I =830.32kN ; 桩端极限阻力标准值:R pk =f p A P =197.92kN ; 则桩端阻比:ρp =R pk /(R sk +R pk )=0.1925;由端阻比按规范表6.4.2-2插值得分项系数 γs =1.784,γp =1.114; 故单桩竖向承载力设计值: R d =R sk /γs +R pk /γp =643.1kN ;综合1、2的计算,单桩竖向承载力设计值设计值可取为643.1kN 。

桩基最终沉降量及竖向承载力计算 一、 工程概况:本工程拟采用桩基,承台埋深1.2米,地下水位-0.7米,承台总面积为A =136.58平方米;桩长为22米,桩截面边长(桩径)为0.6米,总桩数为181根;上部结构荷载设计值为F d =99000kN ,上部结构荷载准永久值为78636.26kN ,底层附加荷载设计值为0kN ,底层附加荷载准永久值为0kN 。

本工程无地下室。

二、 单桩基本计算参数的确定: 根据前述单桩承载力计算:单桩承载力设计值(用户调整系数为1)取为:R d =643.1kN ; 单桩扣除水浮力后自重标准值G pk =93.31kN ; 端阻力R p =197.92kN ,侧阻力R s =830.32kN ; 单桩端阻比α= R p /(R p +R s )=0.1925;三、最终沉降量计算:1.计算点座标(默认值为群桩形心,AutoCAD-WCS座标系,否则为用户指定):X c = 45312.29,Yc= 57120.9;2.单桩沉降计算Q取准永久值效应作用下的单桩平均附加荷载(计入单桩Gpk):经计算群桩顶部附加荷载准永久值效应组合值Fl=78950.39kN;故Q=Fl /n+Gpk=78950.39/181+93.31=529.5kN;3.压缩层厚度计算:按Mindlin解,考虑桩侧摩阻力为线性增加(Geddes积分解)模式:⑴地基中应力计算一览表:应力计算式:桩尖以下深度z(m) 土中附加应力(kPa)自重应力(kPa)应力比.0 175.75 182.70 0.9621.0 81.65 191.40 0.4272.0 65.99 200.10 0.3303.0 63.48 208.80 0.3044.0 61.24 217.50 0.2825.0 58.61 226.20 0.2596.0 55.81 234.90 0.2387.0 53.02 243.60 0.2188.0 50.33 252.60 0.1999.0 47.77 261.60 0.18310.0 45.35 270.60 0.16811.0 43.08 279.60 0.15412.0 40.96 288.60 0.14213.0 38.97 297.60 0.13114.0 37.10 306.60 0.12115.0 35.36 315.60 0.11216.0 33.73 324.60 0.10417.0 32.19 333.60 0.097⑵根据以上计算表搜索压缩层厚度:当桩以下16.52米时:自重应力为329.29kPa,附加应力为32.91kPa,应力比为0.100,故压缩层厚度16.52米。

第4章__桩基础-3(4-7)

第4章__桩基础-3(4-7)

预制桩、钢桩
灌注桩
序 号
地基土类别
m (MN/m 4 )
相应单桩在地 面 处水平位移 (mm)
m (MN/m 4 )
相应单桩在 地 面处水平 位移 (mm)
1
淤泥、淤泥质土,饱和湿陷性黄土
2-4.5
10
2.5-6
6-12
流塑 (I L > 1) 、软塑 (0.75 < I L ≤
4.5-6.0
10
2 1) 状粘性土, e > 0.9 粉土,松散粉细 砂,松散填土
身不发生破坏。
24
(2)弹性桩
2.5< h <4时为半刚性桩。h ≥ 4 时为柔性桩。半刚性桩
和柔性桩统称为弹性桩。
• 在水平荷载作用下桩身发生挠曲变形, 桩的下段可视为嵌固于土中而不能转 动,随着水平荷载的增大,桩周土的 屈服区逐步向下扩展,桩身最大弯矩 截面也因上部土抗力减小而向下部转 移,
• 半刚性桩的桩身Байду номын сангаас移曲线只出现一个 位移零点
8
4.5 桩的负摩擦问题
一、 产生负摩擦的条件和原因
在桩顶竖向荷载作用下,当桩相对于桩侧 土体向下位移时,土对桩产生的向上作用 的摩阻力,称为正摩阻力。
当桩侧土体因某种原因而下沉,且其下 沉量大于桩的沉降(即桩侧土体相对于桩 向下位移)时,土对桩产生的向下作用 的摩阻力,称为负摩阻力。
9
产生负摩阻力的情况
• 为了简化,可根据桩顶荷载H0、M0及桩的变形
系数a计算如下系数:
• 由得系相数应的CI从换表算4深—度7查
h z
• 则桩身最大变 弯矩的深度为:
zmax

h

37

YJK沉降计算的使用要点及案例

YJK沉降计算的使用要点及案例
围内压缩模量的当量值(Es)、基底附加压力按表 5.3.5 取值;
n——地基变形计算深度范围内所划分的土层数(图 5.3.5); p0——相应于作用的准永久组合时基础底面处的附加压力(kPa);
Esi——基础底面下第 i 层土的压缩模量(MPa), 应取土的自重压力至土的自重压力与附加压力之和的压力 段计算; zi、zi-1——基础底面至第 i 层土、第 i-1 层土底面的距离(m); ai、ai-1——基础底面计算点至第 i 层土、第 i-1 层土底面范围内平均附加应力系数,可按本规范附录 K 采用。 从《地基规范》第 5.3.5 条总结沉降计算的基本要点: 1) 地基内的应力分布, 可采用各向同性均质线性变形体理论。 即 “弹性半无限体地基模型” 的 Boussinesq 解计算表面力(地梁、独基、筏板单元)引起的应力分布和 Mindlin 解计算空间任意力(桩侧阻力和桩端阻 力)引起的应力分布; 2)按分层总和法计算出地基变形量,并引入沉降计算经验系数,对分层总和法的结果进行修正; 3)地质资料参数中影响沉降结果的最重要指标是土的压缩模量(MPa),应取土的自重压力至土的自重 压力与附加压力之和的压力段计算。
沉降量应查看沉降等值线图,软件以等值线加数值的方式给出所有基础的沉降量计算结果。注意两点: 1)桩沉降是包括了土沉降及桩身压缩的总值;2)考虑土回弹再压缩情况(一般是基础埋深超过 5 米情况) , 沉降总值要查看【沉降+回弹再压缩变形等值线图】 。
第三篇 YJK 基础设计软件常见问题解答
倾斜指基础倾斜方向两端点的沉降差与其距离的比值; 局部倾斜指砌体承重结构沿纵向 6m~10m 内基 础两点的沉降差与其距离的比值。所以对于沉降差、倾斜、局部倾斜结果,用户可以通过软件的【两点沉 降差】来自行检查。

桩基础课程设计

桩基础课程设计

目录一、桩基础设计题目 (1)二、桩的初步确定 (2)三、确定单桩竖向承载力 (3)四、确定桩数及布桩 (4)五、基桩承载力验算 (6)六、承台计算 (8)七、桩身结构强度计算及配筋 (12)八、桩顶位移验算 (13)九、绘制桩基础施工详图 (13)主要参考资料 (14)一、桩基础设计题目1.1 设计内容桩基础设计:桩基持力层;桩型;承台埋深;桩数;承台尺寸;桩身砼强度及配筋;承台砼强度及配筋;绘制桩身及承台配筋图。

1.2 设计资料某二级建筑物采用桩基础,作用在桩基承台顶部的荷载:k F =7460+500KN ,k M =840+800m KN ⋅,k H =250+750KN ,相应于荷载效应基本组合时作用于柱低的荷载设计值为:F=1.35k F =10746KN, M=1.35k M =2214m KN ⋅,H=1.35k H =1350KN ,柱的截面尺寸为mm mm 800600⨯,土层分布及物理力学指标情况见下表。

地下水位离地表1.0m ,基桩水平承载力特征值h R =60KN ,试设计此桩基础。

(建议采用方形变截面承台,承台顶部高1.5m ,承台边缘高1.0m,基桩采用钢筋砼预制桩,其截面尺寸为:mm mm 450450⨯,采用第6层土为软弱下卧层,其地基承载力特征值ak f =126kpa )表1-2-1土层分布及物理力学指标表二、桩的初步确定2.1 计算各土层地基承载力根据比贯入阻力计算地基承载力的公式:0269.0104.0+=s ak p f ,使用范围为Mpa p Mpa s 63.0≤≤,公式来源:勘测规范(TJ21-77)。

各层土计算地基承载力如表2-1-1所示表2-1-1地基承载力计算表2.2 工程地质条件评价① 褐黄色粉质黏土,处于中密、湿状态,可塑,厚度不大,不宜作为桩基础持力层;② 灰色淤泥质粉质黏土,处于稍密、软塑状态,流塑,抗剪强度低,不宜作为基础持力层;③ 灰色淤泥质黏土,含水量高,孔隙比大,抗剪强度低,属于高压缩性土,不宜作为基础持力层;④ 灰~褐色粉质黏土,含水量高,处于稍密、软塑状态,具有一定的承载力,可作为基础持力层;⑤草绿色粉质黏土,含水量较低,孔隙比较小,处于可塑状态,承载力较高,可作为基础持力层;⑥ 灰色粉质黏土,处于很湿,稍密、软塑状态,属软弱土层。

土木工程师-专业知识(岩土)-深基础-4.6桩基沉降计算

土木工程师-专业知识(岩土)-深基础-4.6桩基沉降计算

土木工程师-专业知识(岩土)-深基础-4.6桩基沉降计算[单选题]1.关于《建筑桩基技术规范》(JGJ 94—2008)中等效沉降系数说法正确的是()。

[2009年真题]A.群桩基(江南博哥)础按(明德林)附加应力计算的沉降量与按等代墩基(布奈斯克)附加应力计算的沉降量之比B.群桩沉降量与单桩沉降量之比C.实测沉降量与计算沉降量之比D.桩顶沉降量与桩端沉降量之比正确答案:A参考解析:根据《建筑桩基技术规范》(JGJ 94—2008)第2.1.16条规定,桩基等效沉降系数是指弹性半无限体中群桩基础按Mindlin(明德林)解计算沉降量ωM与按等代墩基Boussinesq(布辛奈斯克)解计算沉降量ωB之比,用以反映Mindlin解应力分布对计算沉降的影响。

[单选题]2.依据《建筑桩基技术规范》(JGJ 94—2008),正、反循环灌注桩灌注混凝土前,对端承桩和摩擦桩,孔底沉渣的控制指标正确的是()。

[2009年真题]A.端承型≤50mm;摩擦型≤200mmB.端承型≤50mm;摩擦型≤100mmC.端承型≤100mm;摩擦型≤50mmD.端承型≤100mm;摩擦型≤100mm正确答案:B参考解析:根据《建筑桩基技术规范》(JGJ 94—2008)第6.3.9条规定,钻孔达到设计深度,灌注混凝土之前孔底沉渣厚度指标应符合下列规定:端承型桩≤50mm,摩擦型桩≤100mm,抗拔、抗水平力桩≤200mm。

[单选题]3.根据《建筑桩基技术规范》(JGJ 94—2008)的相关规定,下列关于灌注桩配筋的要求中正确的是()。

[2009年真题]A.抗拔桩的配筋长度应为桩长的2/3B.摩擦桩的配筋应为桩长的1/2C.受负摩阻力作用的基桩,桩身配筋长度应穿过软弱层并进入稳定土层D.受压桩主筋不应少于6Φ6正确答案:C参考解析:ABC三项,根据《建筑桩基技术规范》(JGJ 94—2008)第4.1.1条第2款规定,配筋长度应符合下列规定:①端承型桩和位于坡地、岸边的基桩应沿桩身等截面或变截面通长配筋;②摩擦型灌注桩配筋长度不应小于2/3桩长,当受水平荷载时,配筋长度尚不宜小于4.0/α(α为桩的水平变形系数);③对于受地震作用的基桩,桩身配筋长度应穿过可液化土层和软弱土层,进入稳定土层的深度不应小于本规范第3.4.6条规定的深度;④受负摩阻力的桩、因先成桩后开挖基坑而随地基土回弹的桩,其配筋长度应穿过软弱土层并进入稳定土层,进入的深度不应小于2~3倍桩身直径;⑤专用抗拔桩及因地震作用、冻胀或膨胀力作用而受拔力的桩,应等截面或变截面通长配筋。

中风化桩沉降计算书

中风化桩沉降计算书

中风化桩沉降计算书
中风化桩沉降计算是针对桩基工程中的一个重要问题,涉及到土力学、地基工程等多个学科知识。

在进行中风化桩沉降计算时,需要考虑以下几个方面:
首先,需要对桩基的设计参数进行充分的了解。

这包括桩的类型、直径、长度、材质等参数,以及桩周围土壤的力学性质,如土的抗压强度、内摩擦角等。

这些参数对于沉降计算具有重要影响。

其次,需要考虑桩基与土壤之间的相互作用。

中风化桩的沉降计算需要考虑桩与土壤之间的相互作用,包括桩身的承载能力、土壤的变形特性等。

这些相互作用对于沉降计算具有重要的影响。

另外,需要考虑桩基工程的实际情况。

在进行中风化桩沉降计算时,需要考虑桩基工程的实际情况,包括地质环境、地下水位、荷载情况等因素,这些因素都会对沉降计算产生影响。

最后,需要选择合适的计算方法。

中风化桩沉降计算可以采用不同的方法,如经验公式法、有限元法等。

需要根据具体情况选择合适的计算方法,并进行合理的计算。

综上所述,中风化桩沉降计算涉及到多个方面的知识,需要充分考虑桩基设计参数、桩与土壤的相互作用、实际工程情况以及合适的计算方法。

只有全面考虑这些因素,才能得到准确可靠的沉降计算结果。

注册岩土案例计算常用公式(第3章 桩基础)

注册岩土案例计算常用公式(第3章 桩基础)

第3章 桩基础3.1 负摩阻力及其引起的下拉荷载的计算1)符合下列条件之一的桩基,当桩周土层产生的沉降超过基桩的沉降时,在计算基桩承载力时应计入桩侧负摩阻力:a 、桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层时;b 、桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括填土)时;c 、由于降低地下水位,使桩周土中有效应力增大,并产生显著压缩沉降时。

2)桩周土沉降可能引起桩侧负摩阻力时,应根据工程具体情况考虑负摩阻力对桩基承载力和沉降的影响;当缺乏可参照的工程经验时,可按下列规定验算: 1、对于摩擦型基桩可取桩身计算中性点以上侧阻力为零,并可按下式验算基桩承载力:k a N R ≤ (3.1—1)式中,k N ——荷载效应标准组合轴心竖向力作用下,基桩或复合基桩的平均竖 向力(kN );a R ——单桩竖向承载力特征值(kN ).b 、对于端承型基桩除应满足式(3。

1—1)的要求外,尚应考虑负摩阻力引起基桩的下拉荷载ng Q ,并可按下式验算基桩承载力:nk g a N Q R +≤ (3。

1—2)c 、当土层不均匀或建筑物对不均匀沉降较敏感时,尚应将负摩阻力引起的下拉荷载计入附加荷载验算桩基沉降。

注:本条中基桩的竖向承载力特征值a R 只计中性点以下部分侧阻值及端阻值。

表3.1-1 中性点深度n l注:10,n l l -—分别为自桩顶算起的中性点深度和桩周软弱土层下限深度;2桩穿过自重湿陷性黄土时,n l 可按表列值增大10%(持力层为基岩除外); 3当桩周土层固结与桩基固结沉降同时完成时,取0n l =;4当桩周土层计算沉降量小于20mm 时,n l 应按表列值乘以0.4-0.8折减。

nsi ni i q ξσ=⋅' (3.1-3)当填土、自重湿陷性黄土湿陷、欠固结土层产生固结和地下水降低时:i i γσσ'='当地面分布大面积荷载时:i i p γσσ'=+'1112i i m m i i m z z γσγγ-='=⋅∆+⋅∆∑ (3。

沉降计算例题(试题学习)

沉降计算例题(试题学习)

地基沉降量计算地基变形在其表面形成的垂直变形量称为建筑物的沉降量。

在外荷载作用下地基土层被压缩达到稳定时基础底面的沉降量称为地基最终沉降量。

一、分层总和法计算地基最终沉降量计算地基的最终沉降量,目前最常用的就是分层总和法。

(一)基本原理该方法只考虑地基的垂向变形,没有考虑侧向变形,地基的变形同室内侧限压缩试验中的情况基本一致,属一维压缩问题。

地基的最终沉降量可用室内压缩试验确定的参数(e i、E s、a)进行计算,有:变换后得:或式中:S--地基最终沉降量(mm);e--地基受荷前(自重应力作用下)的孔隙比;1e--地基受荷(自重与附加应力作用下)沉降稳定后的孔隙比;2H--土层的厚度。

计算沉降量时,在地基可能受荷变形的压缩层范围内,根据土的特性、应力状态以及地下水位进行分层。

然后按式(4-9)或(4-10)计算各分层的沉降量S。

最后将各分层的沉降量总和起来即为地基的最终沉降量:i(二)计算步骤1)划分土层如图4-7所示,各天然土层界面和地下水位必须作为分层界面;各分层厚度必须满足H i≤0.4B(B为基底宽度)。

2)计算基底附加压力p03)计算各分层界面的自重应力σsz和附加应力σz;并绘制应力分布曲线。

4)确定压缩层厚度满足σz=0.2σsz的深度点可作为压缩层的下限;对于软土则应满足σz=0.1σsz;对一般建筑物可按下式计算z n=B(2.5-0.4ln B)。

5)计算各分层加载前后的平均垂直应力p=σsz; p2=σsz+σz16)按各分层的p1和p2在e-p曲线上查取相应的孔隙比或确定a、E s等其它压缩性指标7)根据不同的压缩性指标,选用公式(4-9)、(4-10)计算各分层的沉降量Si8)按公式(4-11)计算总沉降量S。

分层总和法的具体计算过程可参例题4-1。

例题4-1已知柱下单独方形基础,基础底面尺寸为2.5×2.5m,埋深2m,作用于基础上(设计地面标高处)的轴向荷载N=1250kN,有关地基勘察资料与基础剖面详见下图。

单桩 排桩基础沉降计算

单桩 排桩基础沉降计算

单桩、单
排桩、疏
桩基础沉
降计算
桩直径d:1000mm
桩类型:摩擦桩
单桩极限承
7000KN
载力R:
荷载准永久
组合桩顶的
7000KN
附加荷载
Q:
桩长L:15m
桩身混凝土
36000N/mm2
弹性模量
Ec:
桩身截面面
0.785m2
积Aps:
L/d:15.0
桩身压缩系
0.667
数ξe:
桩身压缩
2.5mm
Se:
水平影响范
2
围内的基桩
数m:
承台效应系
0.15
数:
承台底地基
1633Kpa
承载力特征
值fak:
承台底均布
245Kpa
压力Pck:
承台长度
9m
L:
承台宽度
7.5m
B:
极限总端阻
1885Mpa
力:
总桩端阻力
0.27
与桩顶荷载
之比α:
沉降计算经
1.00
验系数ψ:
后注浆等修
1
正系数:
1、承台底
地基土不分
担荷载的桩

由基桩引起
17.2mm
的沉降Sp:
总沉降S:19.7mm
附加应力σz+σzc:137.49 2、承台底
地基土分担
自重应力0.2σc:193.56荷载的复合
桩基
沉降计算长
OK
度Zn判断:由基桩引起
35.3mm
的沉降Sp:
总沉降S:37.8mm
土层沉降计算表格
Mpa Mpa。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档