双曲线的几何性质2
双曲线的简单几何性质(二)
B′
25
B
9
根据下列条件,求双曲线方程: x2 y2 ⑴与双曲线 1 有共同渐近线,且过点 (3, 2 3) ; 9 16 2 2 x y 1 有公共焦点,且过点 (3 2 , 2) ⑵与双曲线 16 4
分析:这里所求的双曲线方程易知是标准方程.
这里有两种方法来思考:
法一:直接设标准方程,运用待定系数法;
C′ A′ 0 y 13 C 12 A x
B′
25
B
7
B2
. .
B2 A2
图形
. .
F1(-c,0)
F1
y
y
F2
A1 A2
O
F2(0,c)
B1
B1 F2(c,0)
F2
x
A1 O F1
x F1(0,-c)
方程 范围 对称性 顶点 离心率 渐进线
x y 1 (a b 0) 2 2 a b
由此可知, PF右
x2 y2 3. P( x0 , y0 ) 是双曲线 2 2 1 上的任意一点到右焦点 F右 (c, 0) 的距 a b2 c
min
ca.
a 常数 e : x 离和它到定直线 的距离的比是__________. a c
那么反过来满足这个条件的点的轨迹是什么呢 ? 18
(动画演示) e是表示双曲线开口大小的一个量,e 越大开口越大 (4)等轴双曲线的离心率e= ? 2 , 反过来也成立. c、 e 四个参数中,知二求二. ⑸在 a 、b 、
e 增大时,渐近线与实轴的夹角增大.
c 2 2 2 e , a b c ∵ a
5
例1 求双曲线 9y2-16x2=144的实半轴长和虚半轴长、 焦点坐标、离心率、渐进线方程.
2.2.2(二)双曲线的简单几何性质(二)
2.2.2(二)
跟踪训练 3 设 A、B 分别是双曲线xa22-yb22=1(a,b>0)的左、
右顶点,双曲线的实轴长为 4 3,焦点到渐近线的距离为 3.
(1)求此双曲线的方程;
(2)已知直线 y= 33x-2 与双曲线的右支交于 D、E 两点,
本 讲 栏
且在双曲线的右支上存在点 C,使得O→D+O→E=mO→C,求
练一练·当堂检测、目标达成落实处
2.2.2(二)
2.已知双曲线xa22-by22=1 (a>0,b>0)的左、右焦点分别为 F1、
F2,过 F2 的直线交双曲线右支于 A,B 两点.若△ABF1
是以 B 为顶点的等腰三角形,且△AF1F2,△BF1F2 的面
本 讲
积之比 S△AF1F2∶S△BF1F2=2∶1,则双曲线的离心率
本
讲
A.(x-5)2+y2=36
B.(x+5)2+y2=36
栏 目
C.(x-5)2+y2=9
D.(x+5)2+y2=9
开 关
解析 由双曲线ax22-y92=1(a>0)得渐近线方程为 y=±3ax,即
3x±ay=0,∴a=4,
∴c2=a2+9=25,∴右焦点为(5,0). 又∵b2=9,∴虚轴长 2b=6. ∴所求圆的方程为(x-5)2+y2=36.
2.2.2(二)
题型一 直线与双曲线的位置关系
例 1 已知直线 y=kx-1 与双曲线 x2-y2=1 有且仅有一个
公共点,k 为何值?
本 讲 栏
解 由yx=2-kyx2-=11, ⇒(1-k2)x2+2kx-2=0.
目 开
当 1-k2≠0 时,即 k≠±1 时,
关 ∵直线和双曲线只有一个交点,
2.3.2双曲线的简单几何性质(二))
2
作业:课本 P B 组第 4 题
62
x2 y2 1 的左焦点 F1 作倾角为 的直线与双曲线 1.过双曲线 9 16 4
192 交于 A、B 两点,则|AB|= . 7
所得弦长为
2.双曲线的两条渐进线方程为 x 2 y 0 ,且截直线 x y 3 0
4
,求点M的轨迹.
d
M
16 x 5 将上式两边平方,并化简,得9 x2- y 2 144, 16
由此得
. 4
F
x
x y 即 - 1 16 9
2
2
所以,点M的轨迹是实轴、虚轴长分别为8、6的双曲线。
变式:动点 M ( x, y) 与定点 F (c,0)(c 0) 的距离和它到定直线 a2 c c : x 的距离的比是常数 ( 1) ,求点 M 的轨迹方程. c a a 2
F1
O
A
B
F2 x
你能求出△AF1B 的周长吗?
2 | AF2 | 8 3
课堂练习: 1.到定点的距离与到定直线的距离之比等于 log23 的点的轨迹是( C ) (A)圆 (B)椭圆 (C)双曲线 (D)抛物线 2.点 P 与两定点 F1(-a,0)、F2(a,0)(a>0)的 连线的斜率乘积为常数 k,当点 P 的轨迹是离心 率为 2 的双曲线时,k 的值为( A ) (A)3 (B) 3 (C)± 3 (D)4 2 2 x y 1 上的点 P 到双曲线的右 3.如果双曲线 64 36 6.4 焦点的距离是 8, 那么 P 到右准线的距离是_____, 19.2 P 到左准线的距离是________.
双曲线的简单几何性质(二)
当直线与双曲线的渐进线平行时 , 把直 线方程代入双曲线方程 , 得到的是一次方程 , 根本得不到一元二次方程 , 当然也就没有所 谓的判别式了 。
结论:判别式依然可以判断直线与双曲线的 位置关系 !
判断直线与双曲线位置关系的操作程序 把直线方程代入双曲线方程
得到一元一次方程
直线与双曲线的 渐进线平行
相切
[2] l : y 4 x 1 , c : x2 y2 1 相 交
3
9 16
试一下:判别式情况如何?
一般情况的研究
显然,这条直线与双曲线的渐进线是平行的, 也就是相交.把直线方程代入双曲线方程,看 看判别式如何?
l : y b x m ,c: x2 y2 1
a
a2 b2
根本就没有判别式 !
Δ>0
直线与双曲线相交(两个交点)
Δ=0
直线与双曲线相切
Δ<0
直线与双曲线相离
注:
①相交两点:
△>0
直线与双曲线只
同侧:x1 x2>0 异侧: x1 x2 <0 相交一点: 直线与渐进线平行
有一个交点是直 线与双曲线相切 的必要不充分 条 件!
②相切一点: △=0
特别注意直线与双 曲线的位置关系中:
③相 离: △<0
一解不一定相切, 相交不一定两解, 两解不一定同支。
判断下列直线与双曲线的位置关系:
[1] l : y 4 x 1,c : x2 y2 1; 相交(一个交点)
5
25 16
[2] l : y 5 x 1,c : x2 y2 1. 相离
4
25 16
题型一:直线与双曲线的位置关系
为三角形的三边。解决与这个三角形有关的问题,要充分 利用双曲线的定义和三角形的边角关系、正弦定理、余弦 定理。
2.2.2双曲线的简单几何性质
b y=±- ax
a y=±- bx
半轴长
离心率 a,b,c的关系
半实轴长为a, 半虚轴长为b. c e a c2=b2+a2
例3 求双曲线9y2–16x2=144的实半轴长和虚半轴长、焦点坐标、 离心率及渐进线方程.
例4 双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋 转所成的曲面,它的最小半径为12m,上口半径为13m,下口 半径为25m,高为55m,试选择适当的坐标系,求出此双曲线 的方程。
4.渐近线:
b 0 ,即y=±- ax
y
B2 A1
O
当a=b时,双曲线叫做等轴双曲线。 5.离心率: 双曲线的焦距与实轴长的比 称为双曲线的离心率,
c 用e表示,即 e a
a
B1
A2
b
x
[1]离心率的取值范围:e>1
[2]离心率对双曲线形状的影响:
渐近线与双曲 线永不相交
e越大,c就越大,从而b就越大,双曲线就开口越阔。
(3)焦点为(0, 6),(0, -6),且过点(0, 4)
2.2.2 椭圆的简单几何性质
x y - 2 =1 2 a b
1.范围: 两直线x=±a的外侧 2.对称性:
A1
O
2
2
y
B2
a
B1
A2
b
x
双曲线是轴对称图形,也是中心对称图形。坐 标轴是它的对称轴,坐标原点是它的对称中心。 双曲线的对称中心叫双曲线的中心。 3.顶点: A1(-a,0),A2(a,0)叫做双曲线的顶点。 线段A1A2叫做双曲线的实轴,ห้องสมุดไป่ตู้B1B2 叫做双曲线 的虚轴。它们的长分别为2a和2b。
F(±c,0)
2.3.2双曲线的几何性质2
B2
O
A1
B1
A2
F2
x
线围成一个矩形 图2.2 7 .
图2 . 2 7 b 直线的方程是 y x. a 2 2 x y 双曲线 2 2 1的各支向处延伸时 , 与这两 a b 条直线逐渐接近, 我们把这两条直线叫做
双曲线的渐近线 .
也就是说, 双曲线与它的 渐近线无限接近 但永远不相交 , .
作业:P41 习题 7、10
§ . 3. 2 双曲线的几何性质(2) 2
学习目标:
了解双曲线的渐近线和离心率
自学指导:
1.双曲线的渐近线是什么样的线?有几条? 2.如何画双曲线的草图? 3.双曲线的离心率与椭圆的有什么不同? 它 主要描述双曲线的什么特征? 自学检测:P41 练习 3
4 渐近线
信息技术应用
y
如图 , 经过 A1 , A2 作y轴的平 行线 x a, 经过 B1 , B2 作 x 轴的平行线 y b,四条直 矩形的两条对角线 所在的
x a x a b b 或 y x y x a a b b y x y x a a
y2 x2 2 1(a 0, b 0) 2 a b
y a y a b b 或 y x y x a a b b y x y x a a
y x 例1:求双曲线 2 2 1的离心率和 . 3 渐近线方程 4
2
2
例题2 :已知双曲线的中心在原 , 焦点在y轴上, 点 4 焦距为 , 离心率为 , 求双曲线的方程 16 . 3
双曲线的两个标准方程的几何性质与特征比较 焦点的位置 标准方程 范围
2.3.2双曲线的简单几何性质(二)()
a a2 解:∵点 M ( x, y) 到定直线 : x 的距离 d x , c c
MF ( x c ) y ,
2 2
MF c ∴ , 依题意 d a
c ①, a
令 c 2 a 2 b2 ,方程②化为
x2 y2 1② 方程①两边平方化简整理得 2 2 2 c a a 2 2
x y 0; a b
反之 , 若已知双曲线的渐近线 方程是
x y x y ± 0, 则可设双曲线方程为 2 2 l a b a b 若已知双曲线的渐近线 方程是 2 2 2 2 ax ± 0, 则可设双曲线方程为 a x b y l by
x2 y 2 x2 y 2 2 1与 2 2 l 2 a b a b
30°的直线交双曲线于A,B两点,求|AB|
分析:求弦长问题有两种方法: 法一:如果交点坐标易求,可直接 用两点间距离公式代入求弦长; 法二:但有时为了简化计算,常设 而不求,运用韦达定理来处理.
法一:设直线AB的方程为 y
3 ( x 3) 3
y
F1
O
B A
F2 x
9 2 3 (3, 2 3),( , ) 与双曲线方程联立得A、B的坐标为 5 5
双曲线的简单几何性质(二)
复习与回顾
方程 图形
o x
x2 y2 2 1(a , b 0) 2 a b
y
x2 y2 2 2 1(a , b 0) b a
y o x
顶点
对称 范围 焦点 离心率 渐近线
(±a , 0 ) ( 0, ±a ) x 轴、y 轴、原点 ( 原点是双曲线的中心 ) |x|≥a |y|≥a (±c , 0 )
高二数学双曲线的简单几何性质2
x2 y2 x2 y2 双曲线 2 2 1的渐进线为 2 2 0 a b a b
y
b y x a
O
x
y b x a
a2 点 M ( x,y )与定点F (c, 0)的距离和它到定直线 l:x 的 例1、 c c 距离的比是常数 (c a 0),求点M的轨迹 . a y l 解: 设 d是点M到直线l的距离,则 d .M | MF | c d a
x2 y 2 例3、已知双曲线 2 - 2 1(a 0, b 0)的焦点F ( )F2 (c,0), 1 c,0 a b | PF P( x0 , y0 )是双曲线右支上任意点 ,求证: 1 | a ex0 ,
| PF2 | a ex0 其中e为双曲线的离心率.
a2 证明: 双曲线的左准线为 x c
.
O
.
x
F
a2 右焦点F2 (c, 0),对应的右准线方程是 x ; c a2 左焦点F1 (c, 0)对应的左准线方程是x . c
y x 双曲线 2 2 1中 : a b a2 上焦点F2 (0, c),对应的上准线方程是 y ; c
a2 下焦点F1 (0 , c)对应的下准线方程是 y . c
点 M 的轨迹是实轴、虚轴长 分别为2a、 2b的双曲线.
双曲线的第二定义:
动点 M 与一个定点F的距离和它到一条定直线l的距离的比 c 是常数 e (e 1),则这个点的轨迹是双曲线. a
“三定”: 定点是焦点;定直线是准线;
l' y
l d .M
定值是离心率.
F’
x2 y 2 双曲线 2 2 1中 : a b
双曲线的简单几何性质2 课件高二上学期数学人教A版(2019)选择性必修第一册
的距离的比是常数
结论:点 M ( x , y ) 与定点 F (c , 0 ) (c 0 ) 的距离和它到定直线 : x
c
c c
( 1),则点 M 的轨迹是一条双曲线.
a a
其中定点 F ( c , 0) 是双曲线的一个焦点,
c
a2
定直线 : x
是对应于焦点 F (c , 0) 的一条准线, 常数 是双曲线的离心率 e .
(5)若直线 = + 与双曲线 − =4两支各有一个公共点,求的取值范围.
直线与双曲线的位置关系
2
2
x
y
例 2.已知过双曲线
1 的右焦点 F2 ,倾斜角为 30 的直线交双曲线于 A, B 两
3
6
点,求 AB 和 F1AB的面积 .
归纳:求弦长问题的两种解决方法
(1)联立方程组,解出直线与圆锥曲线的交点,再利用两点距离公式来求解;
1
1
x 1即y x
2
2
y
2
M
2
1
x2 y 2
把y x 代入
1得
2
4
2
9
x 2 2 x 0其中 5 0 直线 l 与双曲线没有交点与所设矛盾
4
以 N (1 ,1 ) 为弦的中点的直线不存 在 .
2
o
..N
2
2
x
直线与双曲线的位置关系
常数 e
a
的比是__________.
那么反过来满足这个条件的点的轨迹是什么呢?
2
2
双曲线 的性质
a2
例 4. 动点 M ( x , y ) 与定点 F ( c , 0)(c 0)的距离 和它 到定 直线 : x
2.3.2 双曲线的简单几何性质 2
(2)直线的方程: y=±-x a
x
渐渐接近但永不相交
x a
2 2
-
y b
2 2
= 1
•
y
N Q B2 A1 O M
5.离心率
(1)概念:焦距与实轴长之比
c (2)定义式: e=-
b A2 a
B1
a
x
(3)范围: e>1 (c>a) (4)双曲线的形状与e的关系
k = b a = c - a a
第二章 圆锥曲线与方程
2.3.2 双曲线的简单几何性质
一.复习引入
• 1.双曲线的定义是怎样的?
• 2.双曲线的标准方程是怎样的?
x a
2y a
2 2
-
x b
2 2
= 1
• 思考回顾 椭圆的简单几何性质 ? ①范围; ②对称性; ③顶点; ④离心率等 回想:我们是怎样研究上述性质的?
x a
2
2
-
y b
2 2
= 1
k=
b a
=
c - a a
2
2
=
e - 1
2
即:e越大,渐近线斜率越大,其开口越阔.
例1 求双曲线 9 y 16 x 144 的实半轴长,虚半轴长,
2 2
焦点坐标,离心率.渐近线方程。 解:把方程化为标准方程: 可得:实半轴长 a=4 虚半轴长 b=3 半焦距 c= 4 2 32 5 焦点坐标是 (0,-5),(0,5) 离心率
2 2
=
e - 1
2
即:e越大,渐近线斜率越大, 其开口越阔.
y
L!
y
B
图形
A1
02 教学设计_双曲线的几何性质(第2课时_)(2)
2.6.2 双曲线的几何性质(2)本节课选自《2019人教B 版高中数学选择性必修第一册》第二章《平面解析几何》,本节课主要学习双曲线的几何性质学生在已掌握双曲线的定义及标准方程之后,反过来利用双曲线的标准方程研究其几何性质。
它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。
坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分重点:双曲线的渐近线、离心率等几何性质; 难点:双曲线的离心率的意义及算法多媒体x≤-a 或x≥a y ∈R y≤-a 或y≥a x ∈Rc 2=a 2+b 2(c>a>0,c>b>0)二、典例解析例1双曲线方程为x 2a2-y2=1,其中a>0,双曲线的渐近线与圆(x-2)2+y2=1相切,则双曲线的离心率为()A.2√33B.√3 C.√2 D.√32解析:根据题意,可以求得双曲线的渐近线的方程为x±ay=0,而圆(x-2)2+y2=1的圆心为(2,0),半径为1,结合题意有|2±0|√1+a2=1,结合a>0的条件,求得a=√3,所以c=√3+1=2,所以有e=2√3=2√33,故选A.答案:A例2 已知F1,F2是双曲线x 2a2−y2b2=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于点B,A,若△ABF2为等边三角形,则双曲线的离心率为()A.√7B.4C.2√33D.√3解析:因为△ABF2为等边三角形,所以|AB|=|BF2|=|AF2|,因为A为双曲线右支上一点,所以|F1A|-|F2A|=|F1A|-|AB|=|F1B|=2a,9b 2-4a 24,得b a =43(负值舍去). ∴该双曲线的离心率e =c a =1+⎝ ⎛⎭⎪⎫b a 2=1+⎝ ⎛⎭⎪⎫432=53.] 5.过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.2+3 [如图,F 1,F 2为双曲线C 的左,右焦点,将点P 的横坐标2a代入x 2a 2-y 2b 2=1中,得y 2=3b 2, 不妨令点P 的坐标为(2a ,-3b ), 此时kPF 2=3b c -2a =b a, 得到c =(2+3)a ,即双曲线C 的离心率e =ca=2+ 3.6.设F 为双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ|=|OF|,则C 的离心率为( ) A.√2B.√3C.2D. √5解析:如图,设PQ 与x 轴交于点A ,由对称性可知PQ ⊥x 轴. ∵|PQ|=|OF|=c ,∴|P A|=c2.这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,得到类似的结论。
《解析几何》第14讲 双曲线的几何性质(2)
研究双曲线几何性质时的两个注意点: (1)实半轴、虚半轴所构成的直角三角形是值得关注的一个 重点; c (2)由于 e= 是一个比值,故只需根据条件得到关于 a,b,c a 的一个关系式,利用 b2=c2- a2 消去 b,然后变形即可求 e, 并注意 e>1.
例题2. 求下列双曲线的渐近线.
x y ① 1 16 9
2
2
2
y x ② 1 18 32
x y 16 9
2
2
2
x2 y2 训练 2:求与双曲线 - =1 有共同的渐近线, 9 16 且经过点 M(-3,2 3)的双曲线方程.
变式2.已知双曲线的渐近线是 x±2y=0 , 并且双曲线过点M (4,
第14讲 双曲线的几何性质再探究
再探究(一):焦点三角形
A m n
A
m
F1
n F2
F1
F2
顶点坐标
A1(-a,0),A2(a,0)
A1(0,-a),A2(0,a)
焦点坐标
性 质 渐近线 离心率
(±c,0) (0,±c) b a y x y x a b c (1,+∞) e=________ ,e∈___________ a
3) ,求双曲线方程.
x2 y2 例题 3.若双曲线 2- 2=1 的离心率为 3,则其渐近线方程为 a b A.y=± 2x B.y=± 2x 1 2 C.y=± x D.y=± x 2 2
x2 y2 训பைடு நூலகம் 3. 已知双曲线 2- =1 的右焦点为(3,0), a 5 则该双曲线的离心率等于( ) 3 14 3 2 3 4 A. B. C. D. 14 4 2 3
,则
6
10
双曲线简单的几何性质2
§2.2.1双曲线简单的几何性质 ( 第2课时)[自学目标]:掌握双曲线的定义,标准方程,几何性质,并运用有关性质解决实际问题。
[重点]:直线与双曲线问题。
[难点]:相关弦长、中点问题。
[教材助读]:1、直线与双曲线位置关系代数法:由直线方程与双曲线的方程联立消去y 得到关于x 的方程.(1)△ 0 ⇔直线与双曲线有两个公共点; (2)△ 0 ⇔直线与双曲线有一个公共点; (3)△ 0 ⇔直线与双曲线无公共点.1、若设直线与双曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入双曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”。
2、若直线b kx y l +=:与双曲线相交与A 、B 两点,),(),,2211y x B y x A (则 弦长221221)()(y y x x AB -+-= 221221)()(kx kx x x -+-= 2121x x k -+=2122124)(1x x x x k -++=[预习自测]1、已知双曲线方程为1422=-yx ,过P (1,0)的直线L 与双曲线只有一个公共点,则L 的条数共有( )A .4条B .3条C .2条D .1条2、过点(2,-2)且与双曲线x 22-y 2=1有公共渐近线的双曲线方程是( )A.y 22-x 24=1B.x 24-y 22=1C.y 24-x 22=1D.x 22-y 24 3、双曲线13622=-y x的渐近线与圆)0()3(222>=+-r r y x 相切,则r 等于( )A 、3B 、2C 、3D 、6 4、已知不论b 取何实数,直线y=k x +b 与双曲线1222=-y x 总有公共点,试求实数k 的取值范围.请你将预习中未能解决的问题和有疑惑的问题写下来,带课堂上与老师和同学探究解决。
双曲线的几何性质
双曲线的几何性质
双曲线是二次曲线的一种,其几何性质如下:
1. 双曲线有两个分支,分布在两侧于中心对称的轴线上。
轴线与曲线没有交点。
2. 双曲线的两个分支无限延伸,没有端点。
两个分支之间的距离称为双曲线的焦距,记作2c。
3. 双曲线具有对称性质,即关于x轴、y轴及原点对称。
4. 双曲线的两个分支与其对称轴之间的距离称为双曲线的半轴长,记作a。
半轴长的大小决定了双曲线的形状。
5. 双曲线具有渐近线性质,即两个分支无限接近于直线,称为双曲线的渐近线。
渐近线的方程为y = ±(a/c)x。
6. 双曲线与椭圆和抛物线不同,它没有顶点或焦点。
7. 双曲线的离心率(eccentricity)为大于1的实数,其值决定了曲线的形状。
离心率越大,曲线越扁平。
8. 双曲线的方程一般形式为Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E、F为实数,且满足
B^2 - 4AC < 0,且A和C异号。
这些性质描述了双曲线的形状、对称性、渐近线以及与其他曲线的区别。
双曲线在几何学、物理学和工程学等领域中有广泛的应用。
高三数学双曲线的简单几何性质2
课 题:8.4双曲线的简单几何性质 (二)教学目的:1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质 2.掌握等轴双曲线,共轭双曲线等概念3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题4.通过教学使同学们运用坐标法解决问题的能力得到进一步巩固和提高,“应用数学”的意识等到进一步锻炼的培养 教学重点:双曲线的渐近线、离心率教学难点:渐近线几何意义的证明,离心率与双曲线形状的关系 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程:一、复习引入: 1.范围、对称性由标准方程12222=-by a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心 2.顶点 顶点:()0,),0,(21a A a A -特殊点:()b B b B -,0),,0(21实轴:21A A 长为2a, a 叫做半实轴长虚轴:21B B 长为2b ,b 叫做虚半轴长双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异3.渐近线过双曲线12222=-by a x 的两顶点21,A A ,作Y 轴的平行线a x ±=,经过21,B B 作X 轴的平行线b y ±=,四条直线围成一个矩形 矩形的两条对角线所在直线方程是x a b y ±=(0=±bya x ),这两条直线就是双曲线的渐近线 4.等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率=e等轴双曲线可以设为:)0(22≠=-λλy x ,当0>λ时交点在x 轴,当0<λ时焦点在y 轴上5.共渐近线的双曲线系如果已知一双曲线的渐近线方程为x a b y ±=)0(>±=k x kakb,那么此双曲线方程就一定是:)0(1)()(2222>±=-k kb y ka x 或写成λ=-2222b y a x 6.双曲线的草图具体做法是:画出双曲线的渐近线,先确定双曲线的顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限从渐近线下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线二、讲解新课: 7.离心率概念:双曲线的焦距与实轴长的比aca c e ==22,叫做双曲线的离心率 范围:1>e双曲线形状与e 的关系:1122222-=-=-==e ac a a c a b k , 因此e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.双曲线的定义是怎样的?
2.双曲线的标准方程是怎样的?
x2 y2 1
a2 b2
y2 x2 1
a2 b2
2020/3/14
12
O
.L x A
方程
x2
a2 +
by22= 1
B1
(a>b>0)
范围 直线x= + a,和y=+b所围成的矩形里
对称性 关于X轴、Y轴、原点都对称。
顶点 A(a,0) A(1-a,0),B(0,b),B1(0,-b) c
离心率 e= a (0<e<1)
准线2020/3/14
y
. B.
A1 o A x B1
y
N Q
M
B2
A1
b A2
Oa
B1
2020/3/14
5.离心率
(1)概念:焦距与实轴长之比
(2)定义式: ea=-c
x (3)范围: e>1 (c>a) (4)双曲线的形状与e的关系
k b c2 a2 e2 1
a
a
即:e越大,渐进线斜率越大,
其开口越阔.
6
y
L!
.
B
图形
A1
a2 b2
又因c=4,故可列方程组求出a,b的值.
2020/3/14
10
三.课堂练习:
课本113页练习: 1②④,2
四.小结:
1.双曲线的几何性质: ①范围; ②对称 性; ③顶点; ④渐进线; ⑤离心率
2.几何性质的应用 五.作业:
课本P114页 2②④,3,4
2020/3/14
11
一.复习引入
(1)渐进线的确定:矩形的对角线
a
x (2)直线的方程: y=±-x
(3)推理证明:
b
双曲线方程可变为
yb a
1
a2 x2
当x 时,方程近似变为
x2 y2
1
a b 2
2
2020/点无
a
限接近直线 y= b x
5
a
一.双曲线的简单几何性质
x2 y2 1
a b 2
2
2020/3/14
对称中心叫双曲线的中心
3
一.双曲线的简单几何性质
y
N QM
B2
1.范围: 两直线x=±a的外侧 2. 对称性:关于x轴, y轴,原点
对称;原点是双曲线的对称中心; 对称中心叫双曲线的中心
A1 O
b a
A2
B1
x
3.顶点::
(1)双曲线与x轴的两个交A1
课题:
2020/3/14
1
思考回顾 椭圆的简单几何性质 ?
①范围; ②对称性; ③顶点; ④离心率等
双曲线是否具有类似的性质呢?
2020/3/14
2
一、双曲线的简单几何性质
y
N QM
B2
A1 O
b a
A2
B1
1.范围:
两直线x=±a的外侧
x2.对称性:
关于x轴, y轴,原点对称
原点是双曲线的对称中心
x2 a2
y2 b2
1
k b
c2 a2
e2 1
aa
即:e越大,渐进线斜率越大,其开口越阔.
2020/3/14
8
二.应用举例:
例1.求双曲线9y2– 16x2 =144的实半轴与虚 半轴长,焦点坐标,离心率及渐进线方程.
解:把方程化成标准方程: -y2 - -x2 =1 16 25
(-a,0),
A (a,0)叫双曲线的顶点
2
(2)实轴:线段A1A2 实轴长:2a
x2 y2 1
a b 2
2
2020/3/14
虚轴:线段B1 B2 虚轴长:2b
4
一.双曲线的简单几何性质
y
N Q
M
B2
A1
b A2
Oa
B1
1.范围:
2.对称性:
3.顶点: 实轴,虚轴,a,b的几何意义
4.渐进线:
7
一.双曲线的简单几何性质
1.范围:2.对称性:3.顶点: 实轴,虚轴
y
N QM
4.渐进线: (1)渐进线的确定:对角线
B2
a
(2)直线的方程: y=±-x
A1 O
baA2
(3)推理证明:
b
c
B1 5.离心率: (1)概念: (2)定义式: e=a-
(3)范围: e>1 (4)双曲线的形状与e的关系
故 实半轴长a=4,虚半轴长b=3
________
∴ c=√16+9 =5.
∴ e=-5
4
故 渐进线方程为:y=±-34 x
2020/3/14
9
五,二.应用举例:
例2.求一渐进线为3x+4y=0,一个焦点为(4,0) 的双曲线的标准方程.
分析:因焦点在x轴上,故其标准方程可
知为:
x 2 y 2 1 其渐进线方程可知