九年级(上)期末数学试卷2 (2018-2019.番禺)

合集下载

广东省广州市番禺区2018-2019学年九年级上学期数学期末考试试卷

广东省广州市番禺区2018-2019学年九年级上学期数学期末考试试卷

广东省广州市番禺区2018-2019学年九年级上学期数学期末考试试卷一、选择题(共10题;共20分)1.一元二次方程是的根的是()A. B. C. D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.在⊙O中,弦AB的长为,圆心O到AB的距离为1cm,则⊙O的半径是()A. 2B. 3C.D.4.已知关于x的一元二次方程有两个不相等的实数根,则二次项系数a的取值范围是()A. B. C. 且 D. 且5.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A. (3,3)B. (4,3)C. (3,1)D. (4,1)6.某公司2018年10月份的生产成本是400万元,由于改进技术,生产成本逐月下降,12月份的生产成本是361万元。

若该公司这两月每个月生产成本的下降率都相同,则每个月生产成本的下降率是()A. 12%B. 9%C. 6%D. 5%7.一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3,随机摸出一个小球不放回,再随机摸出一个小球,两次摸出的小球标号之和为5的概率是()A. B. C. D.8.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数为()A. 60°B. 50°C. 40°D. 30°9.如图,在等边△ABC中,AB=6,点D是BC的中点,将△ABC绕点A逆时针旋转后得到△ACE,那么线段DE的长为()A. B. 6 C. D.10.如图,抛物线与x轴交于点A和B,线段AB的长为2,则k的值是()A. 3B. −3C. −4D. −5二、填空题(共6题;共6分)11.方程的解为________.12.点A(2,3)关于原点对称的坐标为________.13.用配方法将变形为,则m=________.14.将抛物线向右平移1个单位所得到抛物线的解析式是________.15.如图,要使△ABC∽△DBA,则只需要添加一个合适的条件是________.16.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC与∠ACB的平分线相较于点E,过点E作EF∥BC 交AC于点F,则EF的长为________.三、解答题(共9题;共100分)17.(1)解方程:;(2)用配方法解方程:18.如图,平面直角坐标系中,A、B、C坐标分别是(−2,4)、(0,−4)、(1,−1).将△ABC绕点O 逆时针方向旋转90°后得到△A′B′C′(1)①画出△A′B′C′,并写出A′、B′、C′的坐标;②画出△ABC关于原点O对称的△A1B1C1;(2)以O为圆心,OA为半径画圆,求扇形OA′A1.19.画出函数的图象,写出它的开口方向,对称轴和顶点,并说明当y随x的增大而增大时,x的取值范围.20.如图,D、E分别是⊙O两条半径OA、OB的中点,.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.21.有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字−1,−2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M的坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.22.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设EG=x mm,EF=y mm.(1)写出x与y的关系式;(2)用S表示矩形EGHF的面积,某同学说当矩形EGHF为正方形时S最大,这个说法正确吗?说明理由,并求出S的最大值.23.如图,已知,⊙O的半径,弦AB,CD交于点E,C为的中点,过D点的直线交AB 延长线与点F,且DF=EF.(1)如图1,试判断DF与⊙O的位置关系,并说明理由;(2)如图2,连接AC,若AC∥DF,BE= AE,求CE的长.24.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交边AB与点D,以A为圆心,AD长为半径画弧,交边AC于点E,连接CD.(1)若∠A=28°,求∠ACD的度数;(2)设BC=a,AC=b.①线段AD的长是方程的一个根吗?为什么?②若AD=EC,求的值.25.如图,已知,抛物线过点A(−2,5),过A点作x轴的平行线,交抛物线与另一点C,交y轴与点Q,点D(m,5)为线段QC上一动点(不与Q、C重合),作点Q关于直线OD的对称点P,连接PC,PD.(1)当点P落在抛物线的对称轴上时,求△OPD的面积;(2)若直线PD交x轴与点E.试探究四边形OECD能否为平行四边形?若能,求出m的值,若不能,请说明理由.(3)设点P(h,k).①求PC取最小值时k的值;②当0<m≤5时,试探究h与m之间的关系.答案解析部分一、选择题1.【答案】C【解析】【解答】解:x2+x=0x(x+1)=0x1=0,x2=-1故答案为:C.【分析】利用因式分解解一元二次方程即可得到答案。

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)

人教版2018-2019学年九年级上学期期末考试数学试题(解析版)一、单选题:(每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分). 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直; C.对角线互相平分D.对角线平分对角3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,105.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.46.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.47.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196;C.196(1+x)2=100;D.100(1+x)2=196 8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.59.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2 10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C.D.二.填空题(每题3分,共15分)11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32 (2)2x2+3x﹣1=0(用配方法)17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.参考答案与试题解析一.单选题:每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分. 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.【解答】解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.【考点】概率公式.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为5+2=7,而红球有5个,则摸出红球的概率为.故选D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,10【考点】比例线段.【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选C.5.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.4【考点】根与系数的关系.【分析】根据根与系数的关系可得x1+x2=4、x1•x2=1,将+通分后可得,再代入x1+x2=4、x1•x2=1即可求出结论.【解答】解:∵x1、x2是一元二次方程x2﹣4x+1=0的两个根,∴x1+x2=4,x1•x2=1,+===4.故选D.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.7.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196 C.196(1+x)2=100 D.100(1+x)2=196【考点】由实际问题抽象出一元二次方程.【分析】2019年的产量=2017年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2014年的产量为100(1+x),2015年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=196,故选:D.8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.5【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵CD是Rt△ABC的中线,∴CD=AB=×10=5.故选D.9.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C. D.【考点】轴对称﹣最短路线问题;菱形的性质.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,菱形ABCD中,∵AB=2,∠A=120°,∴AD=2,∠ADC=60°,过A作AE⊥CD于E,则AE=P′Q,∵AE=AD•cos60°=2×=,∴点P′到CD的距离为,∴PK+QK的最小值为.故选B.二.填空题11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有6条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,得出△ABO是等边三角形,推出AB=AO=8=D C.【解答】解:∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE 的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是24cm2.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、AC、BD,设AB=6cm,AD=8cm,∵四边形ABCD是矩形,E、F、G、H分别是四边的中点,∴HF=6cm,EG=8cm,AC=BD,EH=FG=BD,EF=HG=AC,∴四边形EFGH是菱形,∴S菱形EFGH=×FH×EG=×6×8=24cm2.故答案为24cm2.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32(2)2x2+3x﹣1=0(用配方法)【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)根据因式分解法可以解答本题;(2)根据配方法可以求得方程的解.【解答】解:(1)(x+1)(x﹣3)=32去括号,得x2﹣2x﹣3=32移项及合并同类项,得x2﹣2x﹣35=0∴(x﹣7)(x+5)=0∴x﹣7=0或x+5=0,解得,x1=7,x2=﹣5;(2)2x2+3x﹣1=0(用配方法)∴∴,∴.17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠FBC=∠AFB,又由BF是∠ABC的平分线,易证得∠ABF=∠AFB,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.【解答】(1)证明:∵BF平分∠ABC,∴∠CBF=∠AFB,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,(2)解:∵AB=6,∴AF=6,∵AF∥BC,∴△AEF∽△CEB,∴===,∴.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【考点】相似三角形的应用;中心投影.【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【考点】列表法与树状图法;概率公式.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)A,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)1+4=5;2+3=5,但组合一共有3+2+1=6,故概率为=;(3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)=.或根据题意,画表格:由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)=.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.【考点】反比例函数与一次函数的交点问题;轴对称﹣最短路线问题.【分析】(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,即可得出a,b,再把点A 坐标代入反比例函数y=,即可得出结论;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,得a=﹣1+4,1=﹣b+4,解得a=3,b=3,∴A(1,3),B(3,1);点A(1,3)代入反比例函数y=得k=3,∴反比例函数的表达式y=;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0).。

广东省广州市番禺区2018届九年级上学期期末考试数学试题(含答案word版)

广东省广州市番禺区2018届九年级上学期期末考试数学试题(含答案word版)

2017-2018学年第一学期九年级期末测试题数学科【试卷说明】1.本试卷共4页,全卷满分150分,考试时间为120分钟.考生应将答案全部填(涂)写在答题卡相应位置上,写在本试卷上无效.考试时允许使用计算器;2. 答题前考生务必将自己的姓名、准考证号等填(涂)写到答题卡的相应位置上;3. 作图必须用2B 铅笔,并请加黑加粗,描写清楚。

一、选择题 (本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 如果2是方程230x x k -+=的一个根,则常数k 的值为(※).)A ( 1)B ( 1-)C ( 2)D ( 2-2. 下列图形中,既是轴对称图形又是中心对称图形的是(※).3.用配方法解方程0122=-+x x 时,配方结果正确的是(※). (A )2(1)2x += (B )2(1)2x -=(C )3)2(2=+x(D )3)1(2=+x4. 在反比例函数7m y x-=的图象的每一支位上,y 随x 的增大而减小, 则m 的取值范围 是(※). (A )7m >(B )7m <(C )7m =(D )7m ≠5. 如图,⊙O 的直径AB 垂直于弦CD ,∠CAB =36°, 则∠BCD 的大小是(※).)A (18︒ )B ( 36︒)C ( 54︒ )D (72︒6.关于x 的二次函数2(1)2y x =-++,下列说法正确的是(※). (A )图象的开口向上(B )图象与y 轴的交点坐标为(-1,2) (C )当1x >时,y 随x 的增大而减小(D )图象的顶点坐标是(-1,2)7. 已知二次函数22y =x +bx -的图象与x 轴的一个交点为(1,0),则它与x 轴的另一个交点坐标是(※). (A )(1,0) (B )(2,0)(C )(-2,0)(D )(-1,0)第5题第 8题8.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A′B′C ,连接AA′,若∠1=20°,则∠B 的度数是(※). (A )70︒ (B )65° (C )60° (D )55°9.如图,一个正六边形转盘被分成6个全等的正三角形,随机转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是(※). (A )12(B )13(C )14(D )1610. 如图,点A 是反比例函数2y x=(x >0)的图象上任意一点,AB x ∥轴交反比例函数3y x =-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则S ABCD 为(※). (A )2 (B )3 (C )4 (D )5二、填空题(共6题,每题3分,共18分.)11. 方程2(5)5x -=的解为 ※ .12. 抛物线2610y x x =-+的对称轴为 ※ . 13. 点(12)P -,关于原点的对称点的坐标为 ※ .14. 受益于国家支持新能源汽车发展,番禺区某汽车零部件生产企业的利润逐年提高,据统计2015年利润为2亿元,2017年利润为2.88亿元.则该企业近2年利润的年平均增长率 为 ※ .15. 一个书法兴趣小组有2名女生,3名男生,现要从这5名学生中选出2人代表小组参加比赛,则一男一女当选的概率是 ※ .16. 对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,{}min 2,3--=3-;若{}22min (1),1x x -=,则x = .三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分9分)(1)解方程:2+20x x =; (2)用配方法解方程:2630x x ++=.第10题ADCByxO 2y x= 3y x=-第9题第20题yDB A (4,2)xO18. (本小题满分9分)如图,BD 是⊙O 的切线,B 为切点,连接DO 与⊙O 交于点C ,AB 为⊙O 的直径,连接CA ,若∠D=30°,⊙O 的半径为4. (1) 求∠BAC 的大小; (2) 求图中阴影部分的面积.19.(本小题满分10分)如图,直线26y x =-与反比例函数(0)ky x x=>的图象交于点(42)A ,,与x 轴交于点B . (1)求k 的值及点B 的坐标;(2)过点B 作BD ⊥x 轴交反比例函数的图象于点D ,求点D 的坐标和ABD △的面积; (3)观察图象,写出不等式26kx x>-的解集.20.(本小题满分10分)如图,在正方形网格中,ABC △的三个顶点都在格点上,点A B C 、、的坐标分别为(24)-,、(20)-,、(41)-,,试解答下列问题:(1)画出ABC △关于原点O 对称的111A B C △;(2)平移ABC △,使点A 移到点2(02)A ,,画出平移后的 222A B C △并写出点2B 、2C 的坐标;(3)在ABC △、111A B C △、222A B C △中,222A B C △与哪个图形成中心对称?试写出其对称中心的坐标.21.(本小题满分12分)甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字-1,-2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x ,再从乙袋中随机抽取一个小球,记录标有的数字为y ,确定点M 坐标为(x ,y ). (1)用树状图或列表法列举点M 所有可能的坐标; (2)求点M (x ,y )在函数y =-x +1的图象上的概率.第19题 ABCDO 第18题22.(本小题满分12分)“国庆”期间,某电影院装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y (张)与电影票售价x (元/张)之间满足一次函数关系: 426060y x x =-+≤≤(30),x 是整数,影院每天运营成本为1600元,设影院每天的利润为w (元)(利润=票房收入-运营成本). (1)试求w 与x 之间的函数关系式;(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?23.(本小题满分12分)关于x 的方程22(21)230x k x k k --+-+=有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程的两个实数根分别为1x 2,x ,是否存在实数k ,使得12||||3x x -=?若存在,试求出k的值;若不存在,说明理由.24.(本小题满分14分)如图,AB 是⊙O 的直径,AC 是上半圆的弦,过点C 作⊙O 的切线DE 交AB 的延长线于点E ,且AD DE ⊥ 于D ,与⊙O 交于点F .(1)判断AC 是否是∠DAE 的平分线?并说明理由; (2)连接OF 与AC 交于点G ,当AG:GC=k 时,求切线CE 的长.25.(本小题满分14分)已知抛物线2+1(23)2y m x m x m =--+-()的图象与x 轴有两个公共点. (1)求m 的取值范围,写出当m 取其范围内最大整数时抛物线的解析式;(2)将(1)中所求得的抛物线记为1C ,①求1C 的顶点P 的坐标;②若当1x n ≤≤时,y 的取值范围是22y n ≤≤,求n 的值;(3)将1C 平移得到抛物线2C ,使2C 的顶点Q 落在以原点为圆心半径为5的圆上,求点P 与Q 两点间的距离最大时2C 的解析式,怎样平移1C 可以得到所求抛物线?第24题21GOEFD CBA xy123–1–212O–1–2第25题2007-2018学年第一学期九年级数学科期末测试题参考答案及评分说明一、选择题(本大题共10小题,每小题3分,满分30分)题号 1 2 3 4 5 6 7 8 9 10 分数 答案CDAABC 或者DCBBD二、填空题(共6题,每题2分,共12分)11. 1255,55x x =+=-;12. 直线3x =;13.12(,-);14. 20%; 15.35; 16.2 或者1- .三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.) 【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分. 17.(本小题满分9分)(1)解方程:2+20x x =; (2)用配方法解方程:2630x x ++=. 解:(1)因式分解得:(+2)0x x =, …………………………(2分)于是得:0x = ,+20x = , …………………………(3分)120,2x x ∴==- …………………………(5分)(2移项得:263x x +=-, …………………………(6分) 配方得:2(3)6x += …………………………(7分) 由此得:36x +=± ,于是得:1236,36x x ∴=-+=-- . …………………………(9分)【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分.18. (本小题满分9分)如图,BD 是⊙O 的切线,B 为切点,连接DO 与⊙O 交于点C ,AB 为⊙O 的直径,连接CA ,若∠D=30°,⊙O 的半径为4. (1) 求∠BAC 的大小; (2) 求图中阴影部分的面积.解:(1)∵DB 为⊙O 的切线,∴90DBA ∠=︒ ,…………………………(2分) 30D ∠=︒, 60BOC ∴∠=︒,130.2BAC BOC ∴∠=∠=︒…………………………(4分)(2)如图,过O 作OE ⊥CA 于点E , …………………………(5分)60BOC ∠=︒,120COA ∴∠=︒,…………………………(6分) 4OC OA ==,30OAE ∠=︒,22224223AE OA OE ∴=-=-= ,243CA AE == …………………………(7分)∴S 阴影=S 扇形COA ﹣S △COA =2120412433602π⨯-⨯⨯16=4 3.3π- …………(9分) EODCBAABCDO 第18题【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分.19.(本小题满分10分)如图,直线26y x =-与反比例函数(0)ky x x=>的图象交于点(42)A ,,与x 轴交于点B . (1)求k 的值及点B 的坐标;(2)过点B 作BD ⊥x 轴交反比例函数的图象于点D ,求点D 的坐标和ABD △的面积; (3)观察图象,写出不等式26kx x>-的解集. 解:(1)点(42)A ,在反比例函数(0)ky x x=>的图象上,24k∴=,解得8k =. …………………………(2分)将0y =代入26y x =-,得260x -=,解得3x =.∴点B 的坐标是(3,0). …………………………(4分)(2)反比例函数解析式为:8(0)y x x=> 将3x = 代入得83y = ,∴点D 的坐标是8,3(3). .…………………………(6分) ABD △的面积为1841.233S =⨯⨯= …………………………(7分)(3)由图象,不等式26kx x>-的解集为04x << . …………………………(10分)【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,第19题yD B A (4,2)x O第20题 宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分.20.(本小题满分10分)如图,在正方形网格中,ABC △的三个顶点都在格点上,点A B C 、、的坐标分别为(24)-,、(20)-,、(41)-,,试解答下列问题:(1)画出ABC △关于原点O 对称的111A B C △;(2)平移ABC △,使点A 移到点2(02)A ,,画出平移后的 222A B C △并写出点2B 、2C 的坐标;(3)在ABC △、111A B C △、222A B C △中,222A B C △与哪个图形成中心对称?试写出其对称中心的坐标.解:(1)如图所示. ……………(5分)(2)如图所示,点2B 的坐标为(02)-,, 点2C 的坐标为(21)--,. ……………(8分) (3)222A B C △与111A B C △成中心对称, 其对称中心为(1,1).- ……………(10分)【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评第20题阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分.21.(本小题满分12分)甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字-1,-2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x ,再从乙袋中随机抽取一个小球,记录标有的数字为y ,确定点M 坐标为(x ,y ). (1)用树状图或列表法列举点M 所有可能的坐标; (2)求点M (x ,y )在函数y =-x +1的图象上的概率.解:(1)画树状图:甲 0 1 2乙 -1 -2 0 -1 -2 0 -1 -2 0…………………………(6分)点M 的坐标共有9种等可能的结果,它们是:(0,-1),(0,-2),(0,0),(1, -1),(1,-2),(1,0),(2,-1),(2,-2),(2,0);…………………………(8分)(2)点M (x ,y )在直线y =-x +1的图象上的点有:(1,0),(2,-1),…………………………(10分)所以点M (x ,y )在直线y =-x +1的图象上的概率为92. …………(12分)【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分.22.(本小题满分12分)“国庆”期间,某电影院装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y (张)与电影票售价x (元/张)之间满足一次函数关系: 426060y x x =-+≤≤(30),x 是整数,影院每天运营成本为1600元,设影院每天的利润为w (元)(利润=票房收入-运营成本). (1)试求w 与x 之间的函数关系式;(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?解:(1)由题意:w 42601600x x =-+⋅-(), …………………………(4分)得w 与x 之间的函数关系式为:2w 4260160060x x x =-+-≤≤(30). …………………………(6分)(2)22w 42601600=4(65)1600x x x x =-+--+-,2=4(32.5)+2625x -+. …………………………(8分)x 是整数, 60x ≤≤30,∴ 当=32x 或33时,w 取得最大值,最大值为2624. ……………………(10分)价格低更能吸引顾客,定价32更好.答:影城将电影票售价定为32元/张时,每天获利最大,最大利润是2624元.…………………………(12分)【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一学习资料律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分.23.(本小题满分12分)关于x 的方程22(21)230x k x k k --+-+=有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程的两个实数根分别为1x 2,x ,是否存在实数k ,使得12||||3x x -=?若存在,试求出k 的值;若不存在,说明理由.解:(1)∵原一元二次方程有两个不相等的实数根. ……………………(1分)∴ 22=(21)4(23)0k k k ∆---+>, ……………………(3分)得:114110,.4k k ->∴>……………………(4分) (2)由一元二次方程的求根公式得:122141121411,.22k k k k x x -+----== ……………………(6分)11,210,41104k k k >∴->-> , 10.x ∴> ……………………(7分)又12x x ⋅= 2223=1)20k k k -+-+>(,20x ∴> . ……………………(9分)当12||||3x x -=时,有123x x -=,即2141121411411= 3.22k k k k k -+-----=-74113,.2k k ∴-=∴= ……………………(11分)∴ 存在实数7=2k ,,使得12||||3x x -=. ……………………(12分)【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发学习资料生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分.24.(本小题满分14分)如图,AB 是⊙O 的直径,AC 是上半圆的弦,过点C 作⊙O 的切线DE 交AB 的延长线于点E ,且AD DE ⊥ 于D ,与⊙O 交于点F .(1)判断AC 是否是∠DAE 的平分线?并说明理由; (2)连接OF 与AC 交于点G ,当AG=GC=k 时,求BE 的长.解:(1)AC 是∠DAE 的平分线. ………………(1分)证明:连接OC FC 、 .∵DE 是⊙O 的切线,∴OC ⊥DE ,. ………………(2分) ∵AD ⊥DE ,∴∠ADC =∠OCE=90︒,∴AD ∥OC ,. ………………(3分) ∴∠2=∠ACO ,∵OA =OC ,∴∠1=∠ACO , .………(4分) ∴∠1=∠2,∴AC 是∠DAE 的平分线. ………………(5分) (2)∵AG CG ==k ,OA OC = ∴AC OG ⊥ ,即AG OF ⊥.又∠1=∠2,∴ AFG AOG ∠=∠ , ∴,AF AO = ………………(6分) 又AO OF =,AF AO OF ∴==.∴△AOF 是等边三角形,60DAO AOF ∴∠=∠=︒ ,130∴∠=︒,60COE ∠=︒ . ………………(7分)又∠OCE=90︒,30E ∠=︒ . ………………(8分) 设⊙O 的半径为r ,在t R AOG 中,1=30∠︒,12OG r ∴=. 又,AG k = 由勾股定理有:222AG OG AO +=,2222r k r ⎛⎫∴+= ⎪⎝⎭, 解之得:233r k =,43.3AB k ∴= ………………(11分) 同理,在t R ADC 中,2,AC k =2=30∠︒,1,2DC AC k ∴==得3.AD k = 在t R ADE 中,30,223.E AE AD k ∠=︒∴== ………………(13分)42233 3.33BE AE AB ∴=-=-= ………………(14分) 【评卷说明】(同24题)25.(本小题满分14分)已知抛物线2+1(23)2y m x m x m =--+-()的图象与x 轴有两个公共点. (1)求m 的取值范围,写出当m 取其范围内最大整数时抛物线的解析式;第24题21GO EFD CBA xy123–1–212O–1–2第25题学习资料(2)将(1)中所求得的抛物线记为1C ,①求1C 的顶点P 的坐标;②若当1x n ≤≤时,y 的取值范围是22y n ≤≤,求n 的值;(3)将1C 平移得到抛物线2C ,使2C 的顶点Q 落在以原点为圆心半径为5的圆上,求点P 与Q 两点间的距离最大时2C 的解析式,怎样平移1C 可以得到所求抛物线?解:(1)由题意可得:()()2+10,234+120.m m m m ≠⎧⎪⎨---->⎡⎤⎪⎣⎦⎩() ………………(2分)解得:17,8m <且1m ≠-. 当m 取最大整数时,其值为2,此时函数解析式为:23y x x =-. ………………( 4分) (2)由221133()612y x x x =-=+-,顶点P 的坐标为11612(,-). ………………( 6分) ∴当16x >时,y 随x 的增大而增大. ………………( 7分) ∵当1x n ≤≤时,y 的取值范围是223y n n ≤≤-,∴235n n n -=, ……………( 8分) ∴2n =或0n =(舍去).∴2n =. ………………( 9分) (3)由弦的性质,当线段PQ 经过圆心O 时,P Q 、距离最大,此时点Q 位于第二象限.………………( 10分)由11(0,0),(,)612O P -可求得直线PO 的解析式为:12y x =-, ………………(11分) 设(,)Q h k ,Q 在直线12y x =-上,12k h ∴=- ,圆O 半径为5,22()52h h ∴+-=,解之得1h =(舍去), 或者1h =-(舍去).故12k =-. ………………(12分)∴2C 的解析式为:()213+12y x =+. ………………(13分)将抛物线记为1C 向左平移76,再向上平移712即可得到抛物线记为2C .………………(14分)。

2018-2019学年广东省广州市番禺区九年级(上)期末数学试卷-普通用卷

2018-2019学年广东省广州市番禺区九年级(上)期末数学试卷-普通用卷

2018-2019学年广东省广州市番禺区九年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.一元二次方程是x2+x=0的根的是()A. ,B. ,C. ,D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.在⊙O中,弦AB的长为2cm,圆心O到AB的距离为1cm,则⊙O的半径是()A. 2B. 3C.D.4.已知关于x的一元二次方程ax2-2x-1=0有两个不相等的实数根,则二次项系数a的取值范围是()A. B. C. 且 D. 且5.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A. B. C. D.6.某公司2018年10月份的生产成本是400万元,由于改进技术,生产成本逐月下降,12月份的生产成本是361万元.若该公司这两月每个月生产成本的下降率都相同,则每个月生产成本的下降率是()A. B. C. D.7.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,然后放回,再随机摸出一个小球,两次摸出的小球标号的和为5的概率是()A. B. C. D.8.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.B.C.D.9.如图,在等边△ABC中,AB=6,点D是BC的中点,将△ABD绕点A逆时针旋转后得到△ACE,那么线段DE的长为()A.B. 6C.D.10.如图,抛物线y=-x2+4x+k与x轴交于点A和B,线段AB的长为2,则k的值是()A. 3B.C.D.二、填空题(本大题共6小题,共18.0分)11.方程(x-5)2=4的解为______.12.点(2,3)关于原点对称的点的坐标是______.13.用配方法将x2-8x-1=0变形为(x-4)2=m,则m=______.14.将抛物线y=(x-1)2向右平移1个单位所得到抛物线的解析式是______.15.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是______(填一个即可)16.如图,在△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为______.三、计算题(本大题共2小题,共21.0分)17.(1)解方程:x(x-2)+x-2=0;(2)用配方法解方程:x2-10x+22=018.有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,乙袋中装有3个完全相同的小球,分别标有数字-1,-2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=-x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.四、解答题(本大题共7小题,共81.0分)19.如图,平面直角坐标系中,A、B、C坐标分别是(-2,4)、(0,-4)、(1,-1).将△ABC绕点O逆时针方向旋转90°后得到△A′B′C′(1)画出△A′B′C′,并写出A′、B′、C′的坐标;(2)画出△ABC关于原点O对称的△A1B1C1;(3)以O为圆心,OA为半径画圆,求扇形OA′A1的面积.20.画出函数y=(x-6)2+3的图象,写出它的开口方向,对称轴和顶点,并说明当y随x的增大而增大时,x的取值范围.21.如图,D、E分别是⊙O两条半径OA、OB的中点,=.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.22.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设EG=xmm,EF=ymm.(1)写出x与y的关系式;(2)用S表示矩形EGHF的面积,某同学说当矩形EGHF为正方形时S最大,这个说法正确吗?说明理由,并求出S的最大值.23.如图1,⊙O的半径r=,弦AB、CD交于点E,C为弧AB的中点,过D点的直线交AB延长线于点F,且DF=EF.(1)试判断DF与⊙O的位置关系,并说明理由;(2)如图2,连接AC,若AC∥DF,BE=AE,求CE的长.24.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交边AB与点D,以A为圆心,AD长为半径画弧,交边AC于点E,连接CD.(1)若∠A=28°,求∠ACD的度数;(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax-b2=0的一个根吗?为什么?②若AD=EC,求的值.25.如图,已知,抛物线y=ax2-2x过点A(-2,5),过A点作x轴的平行线,交抛物线与另一点C,交y轴与点Q,点D(m,5)为线段QC上一动点(不与Q、C重合),作点Q关于直线OD的对称点P,连接PC,PD.(1)当点P落在抛物线的对称轴上时,求△OPD的面积;(2)若直线PD交x轴与点E.试探究四边形OECD能否为平行四边形?若能,求出m的值,若不能,请说明理由.(3)设点P(h,k).①求PC取最小值时k的值;②当0<m≤5时,试探究h与m之间的关系.答案和解析1.【答案】C【解析】解:∵x2+x=0,∴x(x+1)=0,则x=0或x+1=0,解得:x1=0,x2=-1,故选:C.方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.2.【答案】B【解析】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:B.根据轴对称图形与中心对称图形的概念进行判断即可.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】A【解析】解:过点O作OD⊥AB于点D,连接OA,∵AB=2cm,OD⊥AB,∴AD=AB=×2=cm,在Rt△AOD中,OA==2(cm),故选:A.过点O作OD⊥AB于点D,连接OA,根据垂径定理求出AD,根据勾股定理计算即可.本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键4.【答案】D【解析】解:∵一元二次方程ax2-2x-1=0有两个不相等的实数根,∴△=(-2)2-4×a×(-1)>0,且a≠0,解得:a>-1且a≠0,故选:D.由关于x的一元二次方程ax2-2x-1=0有两个不相等的实数根,即可得判别式△>0且二次项系数a≠0,继而可求得a的范围.此题考查了一元二次方程根的判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得△>0.5.【答案】A【解析】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选:A.利用位似图形的性质结合两图形的位似比进而得出C点坐标.此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.6.【答案】D【解析】解:设每个月生产成本的下降率为x,根据题意得:400(1-x)2=361,解得:x1=0.05=5%,x2=1.95(舍去).故选:D.设每个月生产成本的下降率为x,根据该公司10月份及12月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.【答案】B【解析】解:根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号的和为5的有2种,∴两次摸出的小球标号的和为5的概率是,故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号和5为的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.8.【答案】B【解析】解:在△OCB中,OB=OC(⊙O的半径),∴∠OBC=∠0CB(等边对等角);∵∠OCB=40°,∠C0B=180°-∠OBC-∠0CB,∴∠COB=100°;又∵∠A=∠C0B(同弧所对的圆周角是所对的圆心角的一半),∴∠A=50°,故选:B.在等腰三角形OCB中,求得两个底角∠OBC、∠0CB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.本题考查了圆周角定理:同弧所对的圆周角是所对的圆心角的一半.解题时,借用了等腰三角形的两个底角相等和三角形的内角和定理.9.【答案】C【解析】解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠BAC=60°,∵BC=DC=3,∴AD⊥BC,∴AD==3∵△ABD绕点A逆时针旋转后得到△ACE,∴∠BAD=∠CAE,AD=AE,∴∠DAE=∠BAC=60°,∴△ADE是等边三角形,∴DE=AD=3,故选:C.由等边△ABC中,AB=6,D是BC的中点,根据三线合一的性质与勾股定理,可求得AD的长为3,又由将△ABD绕点A逆时针旋转得△ACE,易得△ADE是等边三角形,继而求得答案.此题考查了旋转的性质,等边三角形的判定与性质.勾股定理等知识,解题的关键是证明△ADE是等边三角形.10.【答案】B【解析】解:∵抛物线的对称轴为直线=-=2,而AB=2,∴A(1,0),B(3,0),把A(1,0)代入y=-x2+4x+k得-1+4+k=0,解得k=-3.故选:B.根据二次函数的性质得到抛物线的对称轴为直线x=2,再根据点A、B关于直线x=2对称得到A(1,0),B(3,0),然后把A点坐标代入y=-x2+4x+k得-1+4+k=0,最后解关于k的方程即可.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.11.【答案】x1=7,x2=3【解析】解:(x-5)2=4,开方得:x-5=±2,解得:x1=7,x2=3,故答案为x1=7,x2=3.方程两边开方,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.12.【答案】(-2,-3)【解析】解:根据平面内关于原点对称的点,横坐标与纵坐标都互为相反数,故点(2,3)关于原点对称的点的坐标是(-2,-3),故答案为:(-2,-3).根据平面内关于原点对称的点,横坐标与纵坐标都互为相反数,结合题意易得答案.本题考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.13.【答案】17【解析】解:x2-8x-1=0,移项得:x2-8x=1,配方得:x2-8x+16=17,即(x-4)2=17.所以m=17.故答案为17.将方程的常数项移到右边,两边都加上16,左边化为完全平方式,右边合并即可得到结果.此题考查了解一元二次方程-配方法,用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.14.【答案】y=(x-2)2【解析】解:将抛物线y=(x-1)2向右平移1个单位所得到抛物线的解析式是:y=(x-1-1)2,即y=(x-2)2.故答案是:y=(x-2)2.根据“上加下减,左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.15.【答案】∠C=∠BAD【解析】解:∵∠B=∠B(公共角),∴可添加:∠C=∠BAD.此时可利用两角法证明△ABC与△DBA相似.故答案可为:∠C=∠BAD.根据相似三角形的判定:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似,进行添加即可.本题考查了相似三角形的判定,注意掌握相似三角形判定的三种方法,本题答案不唯一.16.【答案】【解析】解:过E作EG∥AB,交AC于G,则∠BAE=∠AEG,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠CAE=∠AEG,∴AG=EG,同理可得,EF=CF,∵AB∥GE,BC∥EF,∴∠BAC=∠EGF,∠BCA=∠EFG,∴△ABC∽△GEF,∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=AB:BC:AC=3:4:5,设EG=3k=AG,则EF=4k=CF,FG=5k,∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=4k=.故答案为:.过E作EG∥AB,交AC于G,易得AG=EG,EF=CF,依据△ABC∽△GEF,即可得到EG:EF:GF=3:4:5,故设EG=3k=AG,则EF=4k=CF,FG=5k,根据AC=10,可得3k+5k+4k=10,即k=,进而得出EF=4k=.本题主要考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及造等腰三角形.17.【答案】解:(1)∵x(x-2)+x-2=0,∴(x-2)(x+1)=0,则x-2=0或x+1=0,解得:x1=2,x2=-1;(2)∵x2-10x+22=0,∴x2-10x+25-3=0,则x2-10x+25=3,即(x-5)2=3,∴x-5=±,∴x=5±,即x1=5+,x2=5-.【解析】(1)方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.(2)利用配方法的步骤求解可得.此题考查了解一元二次方程-因式分解法和配方法,熟练掌握因式分解和配方的方法是解本题的关键.18.【答案】解:(1)画树状图:共有9种等可能的结果数,它们是:(0,-1),(0,-2),(0,0),(1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0);(2)在直线y=-x+1的图象上的点有:(1,0),(2,-1),所以点M(x,y)在函数y=-x+1的图象上的概率=;(3)在⊙O上的点有(0,-2),(2,0),在⊙O外的点有(1,-2),(2,-1),(2,-2),所以过点M(x,y)能作⊙O的切线的点有5个,所以过点M(x,y)能作⊙O的切线的概率=.【解析】(1)用树状图法展示所有9种等可能的结果数;(2)根据一次函数图象上点的坐标特征,从9个点中找出满足条件的点,然后根据概率公式计算;(3)利用点与圆的位置关系找出圆上的点和圆外的点,由于过这些点可作⊙O 的切线,则可计算出过点M(x,y)能作⊙O的切线的概率.求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了一次函数图象上点的坐标特征和切线的性质.19.【答案】解:(1)如图所示,△A′B′C′即为所求,A′(4,-2)、B′(4,0)、C′(1,1);(2)如图所示,△A1B1C1即为所求;(3)由勾股定理,可得A'O2=20,∴扇形OA′A1的面积==5π.【解析】(1)依据△ABC绕点O逆时针方向旋转90°后得到△A′B′C′,进行画图即可;(2)依据中心对称的性质,即可得到△ABC关于原点O对称的△A1B1C1;(3)依据扇形的面积计算公式进行计算即可.此题主要考查了旋转变换作图以及扇形的面积,正确得出三角形对应点的位置长是解题的关键.20.【答案】解:函数y=(x-6)2+3的图象如图所示:抛物线的开口向上,对称轴为直线x=6,顶点坐标为(6,3),当x>6时,y随x的增大而增大.画出二次函数的图象,结合图象可得其函数性质.此题考查了二次函数的性质与图象,考查了根据函数解析式得出顶点坐标,对称轴,开口方向;还考查了增减性和数形结合思想的应用.21.【答案】(1)证明:连接OC,∵=,∴∠COA=∠COB,∵D、E分别是⊙O两条半径OA、OB的中点,∴OD=OE,在△COD和△COE中,,∴△COD≌△COE(SAS)∴CD=CE;(2)解:连接AC,∵∠AOB=120°,∴∠AOC=60°,又OA=OC,∴△AOC为等边三角形,∵点D是OA的中点,∴CD⊥OA,OD=OA=x,在Rt△COD中,CD=OD•tan∠COD=x,∴四边形ODCE的面积为y=×OD×CD×2=x2.【解析】(1)连接OC,根据圆心角、弧、弦的关系定理得到∠COA=∠COB,证明△COD≌△COE,根据全等三角形的性质证明;(2)连接AC,根据全等三角形的判定定理得到△AOC为等边三角形,根据正切的定义求出CD,根据三角形的面积公式计算即可.本题考查的是圆心角、弧、弦的关系定理,全等三角形的判定和性质,等边三角形的性质,掌握圆心角、弧、弦的关系定理,全等三角形的判定定理和性质定理是同角的关键.22.【答案】解:(1)易得四边形EGDK为矩形,则KD=EG=x,∴AK=AD-DK=80-x,∴△AEF∽△ABC,∴=,即=,∴y=-x+120(0<x<80);(2)这个同学的说法错误.理由如下:S=xy=-x2+120x=-(x-40)2+2400,当x=40时,S有最大值2400,此时y=-×40+120=60,即矩形EGHF的长为60mm,宽为40mm时,矩形EGHF的面积最大,最大值为2400mm2,此时矩形不为正方形,所以这个同学的说法错误.【解析】(1)证明△AEF∽△ABC,利用相似比得到=,从而得到y与x的关系式;(2)计算矩形的面积S=xy=-x2+120x,则S=-(x-40)2+2400,根据二次函数的性质得到当x=40时,S有最大值2400,由于y=60,此时矩形不为正方形,所以这个同学的说法错误.本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,用相似三角形对应边的比相等的性质求相应线段的长.也考查了二次函数的性质和矩形的性质.23.【答案】证明:(1)如图1,连接OC、OD;∵C为弧AB的中点,∴OC⊥AB,∠OCE+∠AEC=90°;∴DF=EF,∴∠FDE=∠FED=∠AEC;∵OA=OC,∴∠OCE=∠ODC,∴∠ODC+∠CDF=90°,即OD⊥DF,∴DF与⊙O相切.(2)如图2,连接OA、OC;由(1)知OC⊥AB,∴AH=BH;∵AC∥DF,∴∠ACD=∠CDF;而EF=DF,设AE=5λ,则BE=3λ,∴AH=4λ,HE=λ,AC=AE=5λ;∴由勾股定理得:CH=3λ;CE2=CH2+HE2=9λ2+λ2,∴CE=;在直角△AOH中,由勾股定理得:AO2=AH2+OH2,即r2=(r-3λ)2+(4λ)2,解得:λ===2,∴CE=2.【解析】(1)如图,作辅助线;证明∠ODC+∠CDF=90°,即可解决问题.(2)如图,作辅助线;证明OH⊥AB,AH=4λ,此为解题的关键性结论;证明CE=;列出方程r2=(r-3λ)2+(4λ)2,求出λ===2,即可解决问题.该题主要考查了圆的切线的判定及其性质的应用问题;解题的关键是作辅助线;灵活运用有关定理来分析、解答.24.【答案】解:(1)∵∠ACB=90°,∠A=28°,∴∠B=62°,∵BD=BC,∴∠BCD=∠BDC=59°,∴∠ACD=90°-∠BCD=31°;(2)①由勾股定理得,AB=,∴,解方程x2+2ax-b2=0得,x=,∴线段AD的长是方程x2+2ax-b2=0的一个根;②∵AD=AE,∴AE=EC=,由勾股定理得,a2+b2=,整理得,.【解析】(2)①根据勾股定理求出AD,利用求根公式解方程,比较即可;②根据勾股定理列出算式,计算即可.本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.25.【答案】(1)把点A(-2,5)代入抛物线y=ax2-2x,得5=4a+4,∴a=,∴y=x2-2x∴对称轴为x=4,C(10,5),当点P落在抛物线的对称轴上时,如图1,记作P',∴OM=4,OP'=OQ=5,DP'=DQ=m,∴P'M=3,P'N=5-3=2,在Rt△DPN中,m2=22+(4-m)2,解得m=,∴△OP'D的面积=△OQD的面积=.(2)∵AC∥OE,∴当DC=OE时,四边形OECD为平行四边形,∵∠DOE=∠ODQ=∠ODP,∴DE=OE=CD=10-m,∴E(10-m,0),∵D(m,5),∴ED2=(10-2m)2+52=(10-m)2,解得m=或m=5(舍去),∴m=.(3)①∵OP=OQ=5,OC=5,∴当O,P,C在一条直线上时,PC最小,如图2,此时,点P记作P''此时PC=P''C=5-5,由△DPC''∽△EPO,得,解得k=.②如图3,连接QP,作PH⊥QC于H,则QP⊥OD,∴∠HQP=90°-∠OQP=∠QOD,∵OQ=5,QD,∴QP=∴cos∠HQP=cos∠QOD,即,∴h与m之间的关系为.【解析】(1)把点A(-2,5)代入抛物线y=ax2-2x求得表达式,由折叠可得OP=OQ=5,DP=DQ=m,然后在Rt△DPN中,利用勾股定理求得m,进而得出△OPD的面积;(2)当DC=OE时,四边形OECD为平行四边形,再证明OE=DE,求得点E的坐标,然后用两点之间距离公式建立方程,即可求得m的值;(3)①当O,P,C在一条直线上时,PC最小,由△DPC∽△EPO,利用相似三角形对应高的比等于相似比建立关系,进而求得k的值;②连接QP,作PH⊥QC于H,则QP⊥OD,可证明∠HQP=∠QOD,即cos∠HQP=cos∠QOD,根据锐角三角函数的定义可得出h与m之间的关系.本题考查了待定系数法,平行四边形,相似三角形,锐角三角函数定义及方程思想,解题时要会利用数形结合的思想把代数和几何图形结合起来,利用方程,相似手段来解决问题.。

广州市2018届九年级上期末考试数学试题含答案

广州市2018届九年级上期末考试数学试题含答案

九年级数学第一部分选择题(共30分)一、选择题(本题有十个小题,每小题三分,满分30分,下面每小题给出的四个选项中,只有一个是正确的。)1.下列图形是中心对称而不是轴对称的图形是( )2.下列事件是必然事件的是( )A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《今日在线》C.射击运动员射击一次,命中十环D.方程x²-x=0必有实数根3.对于二次函数y=(x-1)²+2的图像,下列说法正确的是( )A.开口向下B.对称轴是x=-1C.顶点坐标是(1,2)D.与x轴有两个交点k经过点(2,3),则该函数的图像一定不经过( )4.若函数的图像y=xA.(1,6)B.(-1,6) c.(2,-3) D.(3,-2)5.Rt ABC中,∠C=90º,AC=8cm,BC=6cm,以点C为圆心,5cm为半径的圆与直线AB 的位置关系是( )A.相切B.相交C.相离D.无法确定6.下列一元二次方程中,两个实数根之和为1的是( )A.x²+x+2=0B.x²+x-2=0C.x²-x+2=0D.x²-x-2=07.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式( )A.16(1+2x)=25B.25(1-2x)=16C.25(1-x)²=16D.16(1+x)²=258. 如图,已知CD为圆O的直径,过点D的弦DE平行于半径OA,若角D=50º,则角C 的度数是( )A.50ºB.25ºC.30ºD.40ºa与函数y=-ax²+a在同一直角坐标系的大致图像可能是( ) 9.已知a≠0,函数y=x10.把一副三角板如图放置其中∠ACB=∠DEC=90º,∠A=40º,∠D=30º,斜边AB=4,CD=5,把三角板DCE绕点C顺时针旋转15º得到三角形D1CE (如图二),此时AB与CD1交于点O,则线段AD1的长度为( )2 D.4A.13B.5C. 2第二部分非选择题(共120分)二、填空题(本题有六个小题,每小题三分,共18分)11. 如图,在△ABC中∠BAC=60º,将△ABC绕着点A顺时针旋转20º后,得到△ADE,则∠BAE=12.已知方程x²+mx+3=0的一个根是1,则它另一个根是13. 袋中装有六个黑球和n个白球,经过若干次试验发现,若从中任摸一个球,恰好是,白球个数大约是白球的概率为1414.如图,已知圆锥的母线长为2,高所在直线与母线的夹角为30º,则圆锥的侧面积 为15.如图 点P(1,2)在反比例函数的图像上,当x<1时,y 的取值范围是16. 如图是二次函数 y=ax²+bx+c 图像的一部分,图像过点A(-3,0),对称轴为直线 x=-1,给出以下五个结论:①abc<0; ②b²-4ac>0; ③4b+c<0;④若B(25-,y 1),C(21-y 2),y 1,y 2为函数图像上的两点, 则y1>y2; ⑤当-3≤x≤1时,y≥0;其中正确的结论是(填写代表正确结论的序号)三.解答题 (本题有9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤)17.(本题满分9分)(1).解方程:x²-8x+1=0 ;(2).若方程x²-4x-5=0的两根分别为x 1,x 2,求x 1²+x 2²的值;18.(本题满分9分)如图,若等腰三角形 ABC 中AB=AC ,O 是底边 BC 的中点,圆O与腰AB相切于点D,求证:AC与圆O相切19.(本题满分10分)如图,△AOB的三个顶点都在网格的格点上,网格中的每个小正方形的边长均为一个长度单位,以点O建立平面直角坐标系,若△AOB绕点O逆时针旋转90º后,得到△A1OB1(A和A1是对应点)(1)写出点A1,B1的坐标;(2)求旋转过程中边OB扫过的面积(结果保留π);20.(本题满分10分)摸球活动:在一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机摸取一个小球,然后放回,再随机摸出一个小球,此活动回答以下问题(1)求“两次取的小球标号相同”这个事件的概率;(2)设计一个概率为21的事件,并说明理由;21.(本题满分12分)北方某水果商店从南方购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在北方市场上的销售量为 y(吨),销售价 x( 万元)之间的函数关系为y=-x+2.6(1)当每吨销售价为多少万元时,销售利润为 0.96万元?(2)填空 当每吨销售价为 万元时,可得最大利润为 万元。22.本题满分12分如图,已知点D 在双曲线y=x20(x 大于零) 的图像上,以D 为圆心的圆D 与y 轴相切于点C (0,4),与x 轴交于A 、B 两点(1)求点D 的坐标;(2)求点A 和点B 的坐标;23.(本题满分12分) 如图,已知二次函数 y=ax²+bx+c 的图像过点A(2,0 ),B(0,-1) 和C(4,5),与x 轴的另一个交点为D 。(1)求该二次函数的解析式;(2)求三角形BDC 的面积;24. (本题满分14分)如图,过点 A(1,0)作x 轴的垂线,交反比例函数 y=xk (x 大于零)的图象交于点M , 已知三角形AOM 的面积为3。

广东省广州市番禺区2018届九年级上学期期末考试数学试题(解析版)

广东省广州市番禺区2018届九年级上学期期末考试数学试题(解析版)

广东省广州市番禺区2018届九年级上学期期末考试数学试题满分150分,考试时间为120分钟一、选择题(本大题共10小题,每小题3分,满分30分)1. 如果2是方程的一个根,则常数的值为().A. 1B. -1C. 2D. -2【答案】C【解析】把代入原方程得:,解得.故选C.2. 下列图形中,既是轴对称图形又是中心对称图形的是().A. B. C. D.【答案】D【解析】试题分析:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.点睛:此题考查中心对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3. 用配方法解方程时,配方结果正确的是().A. B. C. D.【答案】A【解析】试题分析:x2+2x-1=0,x2+2x=1,x2+2x+1=2,(x+1)2=2.故选A.点睛:此题考查了解一元二次方程-配方法,利用此方法解方程时,首先将方程二次项系数化为1,常数项移至等号右边,然后两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为非负常数,开方转化为两个一元一次方程来求解.4. 在反比例函数的图象的每一支曲线上,随的增大而减小, 则的取值范围是()A. B. C. D.【答案】A【解析】试题分析:∵反比例函数的图象的每一支曲线上,y随x的增大而减小,∴m-7>0,解得:m>7.故选A.点睛:本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.5. 如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A. 18°B. 36°C. 54°D. 72°【答案】B【解析】试题分析:∵AB是直径,AB⊥CD,∴∠BCD=∠CAB=36°,故选B.6. 关于的二次函数,下列说法正确的是()A. 图象的开口向上B. 图象与轴的交点坐标为(0,2)C. 当时,随的增大而减小D. 图象的顶点坐标是(-1,2)【答案】C【解析】试题分析:A、∵a=-1<0,∴函数的开口向下,故此选项错误;B、当x=0,y=1,∴图象与y轴的交点坐标为:(0,1),故此选项错误;D、这个函数的顶点是(1,2),故此选项错误.故选C.点睛:此题主要考查了二次函数的开口方向,对称轴,顶点坐标及增减性,熟练利用其性质是解题关键.7. 已知二次函数的图象与轴的一个交点为(1,0),则它与轴的另一个交点坐标是()A. (1,0)B. (2,0)C. (-2,0)D. (-1,0)【答案】C【解析】试题分析:把x=1,y=0代入y=x2+bx-2得:0=1+b-2,∴b=1,∴对称轴为x==,∴x==,∴x2=-2,它与x轴的另一个交点坐标是(-2,0).点睛:题考查了二次函数与x轴交点的问题,要求交点坐标既可解一元二次方程也可用公式x=.8. 如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是().A. B. 65° C. 60° D. 55°【答案】B【解析】试题分析:根据旋转图形可以得到△ACA′为等腰直角三角形,根据∠1的度数可以求出∠CA′B′=25°,从而得到∠CAB=25°,所以∠B=90°-25°=65°考点:旋转图形的性质视频9. 如图,一个正六边形转盘被分成6个全等的正三角形,随机转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是().A. B. C. D.【答案】B【解析】试题分析:概率的计算公式为:P(A)=A所含样本点数/总体所含样本点数,根据题意得出概率. 10. 如图,点是反比例函数(>0)的图象上任意一点,轴交反比例函数的图象于点,以为边作平行四边形ABCD ,其中、在轴上,则S平行四边形ABCD=()A. 2B. 3C. 4D. 5【答案】D【解析】试题分析:设A的纵坐标是a,则B的纵坐标也是a.把y=a代入y=得,a=,则x=,即A的横坐标是,同理可得:B的横坐标是:.则CD=AB=-()=.则S□ABCD=×a=5.故选D.点睛:本题考查了是反比例函数与平行四边形的综合题,理解A、B的纵坐标是同一个值,表示出AB的长度是关键.二.填空题(共6题,每题3分,共18分.)11. 方程的解为____.【答案】【解析】试题分析:(x-5)2=5,直接开平方得:x-5=±,∴x1=5+,x2=5-.故答案为x1=5+,x2=5-.12. 抛物线的对称轴为____.【答案】直线【解析】试题分析:抛物线y=x2-6x+10的对称轴为:x===3,故答案为:x=3.点睛:主要考查了求抛物线的对称轴和顶点坐标的方法.通常有两种方法:(1)公式法:y=ax2+bx+c的顶点坐标为(,),对称轴是x=;(2)配方法:将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.13. 点关于原点的对称点的坐标为____.【答案】【解析】试题分析:点P(-1,2)关于原点的对称点的坐标为(1,-2),故答案为(1,-2).点睛:此题主要考查了关于原点对称的点的坐标特点,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).14. 受益于国家支持新能源汽车发展,番禺区某汽车零部件生产企业的利润逐年提高,据统计2015年利润为2亿元,2017年利润为2.88亿元.则该企业近2年利润的年平均增长率为_______.【答案】【解析】试题分析:设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2 (不合题意,舍去).即:这两年该企业年利润平均增长率为20%.故答案为:20%.点睛:此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.15. 一个书法兴趣小组有2名女生,3名男生,现要从这5名学生中选出2人代表小组参加比赛,则一男一女当选的概率是____.【答案】【解析】试题分析:列表得:由图可知总有20种等可能性结果,其中抽到一男一女的情况有12种,所以抽到一男一女的概率为P(一男一女)==.故答案为:.16. 对于实数,,我们用符号表示,两数中较小的数,如,=,若,则x=_______.【答案】2或-1【解析】试题分析:∵min{(x-1)2,x2}=1,当x=0.5时,x2=(x-1)2,不可能得出最小值为1,∴当x>0.5时,(x-1)2<x2,则(x-1)2=1,x-1=±1,x-1=1或x-1=-1,解得:x1=2,x2=0(不合题意,舍去),当x<0.5时,(x-1)2>x2,则x2=1,解得:x1=1(不合题意,舍去),x2=-1,综上所述:x的值为:2或-1.故答案为:2或-1.三、解答题(本大题共9小题,满分102分)17. (1)解方程:; (2)用配方法解方程:.【答案】(1);(2)【解析】试题分析:(1)方程左边提出公因式x,利用提公因式法解答;(2)把常数项移至等号右边,方程两边都加上一次项系数一半的平方,使左边成为一个完全平方式,然后再开方求解.试题解析:解:(1)因式分解得:,于是得:,,;(2)移项得:,配方得:,由此得:,于是得:.点睛:本题主要考查了一元二次方程的解法,常用的解法有公式法、配方法、因式分解法,正确的选择方法是解决(1)的关键,熟悉配方法的一般步骤是解决(2)的关键.18. 如图,BD是⊙O的切线,B为切点,连接DO与⊙O交于点C,AB为⊙O的直径,连接CA,若∠D=30°,⊙O的半径为4.(1) 求∠BAC的大小;(2) 求图中阴影部分的面积.【答案】(1)30°;(2)【解析】试题分析:(1)先由切线的性质得出∠DBA=90°,根据直角三角形的两锐角互余求出∠BOC=60°,然后根据同弧所对的圆周角是圆心角的一半即可得出答案;(2)由条件可求得∠COA的度数,过O作OE⊥CA于点E,则可求得OE的长和CA的长,再利用S=S阴影-S△COA可求得答案.扇形COA试题解析:解:(1)∵DB为⊙O的切线,∴,∵∴;(2)如图,过O作OE⊥CA于点E,∵∴∵∴OE=2,∴,,∴阴影=扇形COA﹣△COA=点睛:本题主要考查切线的性质和扇形面积的计算,求得扇形COA和△COA的面积是解题的关键.19. 如图,直线与反比例函数的图象交于点,与轴交于点.(1)求的值及点的坐标;(2)过点作轴交反比例函数的图象于点,求点D的坐标和的面积;(3)观察图象,写出当x>0时不等式的解集.【答案】(1)k=8,(3,0);(2),;(3) .【解析】试题分析:(1)把点A的坐标代入反比例函数解析式中即可求出k值,再令直线y=2x-6中y=0求出x的值,即可得出点B的坐标;(2)根据BD⊥x轴可知B与D的横坐标相同,将B点的横坐标代入反比例函数解析式即可得出D点的坐标;求出BD的长和点A到BD的距离,根据三角形的面积公式即可得出答案;(3)根据图象求出双曲线在直线上方时自变量的取值范围即可.试题解析:解:(1)点在反比例函数的图象上,,解得.将代入,得,解得.点的坐标是(3,0).(2)反比例函数解析式为:将代入得,点的坐标是.∴BD=,点A到BD的距离为4-3=1,的面积为(3)观察两函数图象可发现:当0<x<4时,反比例函数图象在一次例函数图象的上方,∴x>0时不等式的解集为0<x<4.20. 如图,在正方形网格中,的三个顶点都在格点上,点的坐标分别为、、,试解答下列问题:(1)画出关于原点对称的;(2)平移,使点移到点,画出平移后的并写出点、的坐标;(3)在、、中,与哪个图形成中心对称?试写出其对称中心的坐标.【答案】(1)见解析;(2),;(3),【解析】试题分析:(1)分别作出点A、B、C关于原点O的对称点A1、B1、C1,连接A1、B1、C1即可得到△ABC关于原点O对称的△A1B1C1;(2)根据平移的性质,作出平移后△A2B2C2,并写出点B2、C2的坐标即可;(3)△A2B2C2中与△△A1B1C1中心对称,连接A2A1,B2B1,C2C1,三条线段恰好经过点D,则点D即为中心对称点.试题解析:解:(1)如图所示.(2)如图所示,点的坐标为,点的坐标为.(3)与成中心对称,其对称中心为D点睛:本题考查了中心对称和平移作图,根据中心对称和平移的性质找出对称点和平移后的点是解决此题的关键.21. 甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字-1,-2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=-x+1的图象上的概率.【答案】(1)见解析;(2)【解析】试题分析:(1)根据题意可得,x有三种等可能取值,即0,1,2;在每个取值下面,y都有三种等可能取值即:-1,-2,0,所以M点坐标共有9种等可能情况,分别是(0,-1),(0,-2),(0,0),(1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0);(2)在上面这些9种等可能坐标中,有两个点的坐标即(1,0),(2,-1),在函数y=-x+1的图象上,故点M(x,y)在函数y=-x+1的图象上的概率P=.........................考点:1.求随机事件的概率;2.概率与一次函数综合题.22. “国庆”期间,某电影院装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价(元/张)之间满足一次函数关系:,是整数,影院每天运营成本为1600元,设影院每天的利润为w(元)(利润=票房收入运营成本).(1)试求w与之间的函数关系式;(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?【答案】(1);(2)32元,最大利润是2624元.【解析】试题分析:(1)根据“利润=票房收入-运营成本”可得函数解析式;(2)将函数解析式配方成顶点式,由30≤x≤60,且x是整数结合二次函数的性质求解可得.试题解析:解:(1)由题意:,得w与之间的函数关系式为:.(2),.是整数, ,当或33时,w取得最大值,最大值为2624.价格低更能吸引顾客,定价32更好.答:影城将电影票售价定为32元/张时,每天获利最大,最大利润是2624元.点睛:本题是二次函数的应用,解题的关键是得出函数解析式,并熟练掌握二次函数的性质.23. 关于的方程有两个不相等的实数根.(1)求实数的取值范围;(2)设方程的两个实数根分别为,是否存在实数k,使得?若存在,试求出的值;若不存在,说明理由.【答案】(1),(2)存在,理由见解析.【解析】试题分析:(1)由方程有两个不相等的实数根知△>0,列出关于k的不等式求解可得;(2)利用求根公式求出方程的两个根,根据(1)中k的范围判断出x1>0,由韦达定理知x1x2=k2-2k+3=(k-1)2+2>0,进而得出x2>0,然后把x1、x2的值代入计算即可得出k 的值.试题解析:解:(1)∵原一元二次方程有两个不相等的实数根,,得:;(2)由一元二次方程的求根公式得:,,又,当时,有,即存在实数,使得.点睛:本题主要考查根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.24. 如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,且于D,与⊙O交于点F.(1)判断AC是否是∠DAE的平分线?并说明理由;(2)连接OF与AC交于点G,当AG=GC=1时,求切线的长.【答案】(1)AC是∠DAE的平分线,理由见解析;(2).【解析】试题分析:(1)连接OC,根据切线的性质可得OC⊥DE,又AD⊥DE,得出AD∥OC,根据圆的半径相等得出∠1=∠OCA,再由平行线的性质得出∠2=∠OCA,等量代换即可得出结论;(2)先证明△AOF是等边三角形,进而得出∠DAO=60°,由(1)中结论可得∠1=30°,根据直角三角形的两锐角互余可得∠E=30°,所以∠1=∠E,根据等角对等边得出CE=AC,即可得到答案.试题解析:解:(1)AC是∠DAE的平分线.证明:连接.∵DE是⊙O的切线,∴OC⊥DE,.∵AD⊥DE,∴∠ADC=∠OCE=,∴AD∥OC,.∴∠2=∠ACO,∵OA=OC,∴∠1=∠ACO,∴∠1=∠2,∴AC是∠DAE的平分线.(2)∵=1 ,∴,即.又∠1=∠2,, ∴又,∴△是等边三角形,,,.又∠ADE=,∴ .∴CE=AC=AG+CG=2.点睛:本题考查切线的性质、垂径定理、等边三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.25. 已知抛物线的图象与轴有两个公共点.(1)求的取值范围,写出当取其范围内最大整数时抛物线的解析式;(2)将(1)中所求得的抛物线记为,①求的顶点的坐标;②若当时,的取值范围是,求的值;(3)将平移得到抛物线,使的顶点落在以原点为圆心半径为的圆上,求点与两点间的距离最大时的解析式,怎样平移可以得到所求抛物线?【答案】(1);(2) ①,②1;(3)的解析式为.将抛物线记为向左平移,再向上平移即可得到抛物线.【解析】试题分析:(1)函数图形与x轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m 的不等式组,从而可求得m的取值范围;(2)①把(1)中求得的函数解析式改为顶点式,即可得出顶点P的坐标;②先求得抛物线的对称轴,当1≤x≤n时,函数图象位于对称轴的右侧,y随x的增大而增大,当x=n时,y 有最大值2n,然后将x=n,y=2n代入求解即可;(3)由弦的性质可得当PQ经过圆心时,PQ有最大值,此时Q点位于第二象限.根据点P、O的坐标,求得直线OP的解析式,设出点Q的坐标,根据点Q在直线PO上,以及点Q到原点的距离是即可求出点Q 的坐标,进而得出C2的解析式,得出C2如何由C1平移得到.试题解析:解:(1)由题意可得:,解得:且当取最大整数时,其值为2,此时函数解析式为:.(2)①由,顶点的坐标为.②抛物线C1的对称轴为,∴当时,随的增大而增大.∵当时,的取值范围是,∴,∴或(舍去).∴.(3)由弦的性质,当线段经过圆心时,距离最大,此时点位于第二象限.由,可求得直线的解析式为:,设,PQ在直线上,,圆半径为,,解之得(舍去)或者,故.∴的解析式为:.将抛物线记为向左平移再向上平移即可得到抛物线记为.点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用一元二次方程根的判别式,二次函数的图象和性质,勾股定理的应用,待定系数法求一次函数的解析式,找出PQ取得最大值的条件是解题的关键.。

2018-2019学年九年级(上)期末数学试卷(有答案和解析)

2018-2019学年九年级(上)期末数学试卷(有答案和解析)

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列图形是我们日常生活中经常看到的一些标志,则其中是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1B.﹣2C.﹣1D.23.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.任意一个六边形的外角和等于720°C.同时掷两枚质地均匀的骰子,两个骰子的点数相同D.367个同学参加一个集会,他们中至少有两个同学的生日是同月同日4.如图,在⊙O中,M是弦CD的中点,EM⊥CD,若CD=4cm,EM=6cm,则⊙O的半径为()A.5B.3C.D.45.抛物线y=x2﹣4x+6的顶点坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)6.已知方程x2+2018x﹣3=0的两根分别为α和β,则代数式α2+αβ+2018α的值为()A.1B.0C.2018D.﹣20187.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于()A.30°B.25°C.15°D.10°8.如图,在⊙O的内接四边形ABCD中,∠A=80°,∠OBC=60°,则∠ODC的度数为()A.40°B.50°C.60°D.30°9.已知a、b是等腰三角形的两边,且a、b满足a2+b2+29=10a+4b,则△ABC的周长为()A.14B.12C.9或12D.10或1410.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴为直线l,则下列结论:①abc>0;②a+b+c >0;③a+c>0;④a+b>0,正确的是()A.①②④B.②④C.①③D.①④二、填空题(8小题,每小题4分,共32分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.抛物线y=x2的对称轴是直线.13.一元二次方程x(x﹣2)=x﹣2的根是.14.小明和他的哥哥、姐姐共3人站成一排,小明与哥哥相邻的概率是.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为cm.16.已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.17.某校规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽度的三条小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是.18.已知二次函数y=ax2+bx﹣2自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y﹣1>0成立的x的取值范围是.三、解答题:(7个小题,共78分)19.(8分)解方程(1)x2﹣2x﹣48=0.(2)2x2﹣4x=﹣1.20.(10分)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.21.(12分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4)、B(1,2)、C(5,3)(1)将△ABC平移,使得点A的对应点A1的坐标为(﹣2,4),在如图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2、B2的坐标;(3)求△A2B2C1的面积.22.(12分)传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?23.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是⊙O的切线;(2)若CF=2,DF=4,求⊙O的半径.24.(12分)一年一度的“春节”即将到来,某超市购进一批价格为每千克3元的桔子,根据市场预测,该种桔子每千克售价4元时,每天能售出500千克,并且售价每上涨0.1元,其销售量将减少10千克,物价部门规定,该种桔子的售价不能超过进价的200%,请你利用所学知识帮助超市给这种桔子定价,使得超市每天销售这种桔子的利润为800元.25.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合选项即可得出答案.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】此题考查了中心对称的知识,解答本题一定要熟练中心对称的定义,关键是寻找中心对称点,要注意和轴对称区分开来.2.【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;B、任意一个六边形的外角和等于720°是不可能事件;C、任同时掷两枚质地均匀的骰子,两个骰子的点数相同是随机事件;D、367个同学参加一个集会,他们中至少有两个同学的生日是同月同日是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】如图,连接OC.设⊙O的半径为r.首先证明EN经过圆心O,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OC.设⊙O的半径为r.∵CM=DM=2cm,EM⊥CD,∵EM经过圆心O,在Rt△COM中,∵OC2=OM2+CM2,∴r2=22+(6﹣r)2,∴r=,故选:C.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.【分析】已知抛物线的一般式,利用配方法转化为顶点式,直接写成顶点坐标.【解答】解:∵y=x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2,∴抛物线y=x2﹣4x+6的顶点坐标为(2,2).故选:C.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k);此题还考查了配方法求顶点式.6.【分析】由根与系数的关系得到α+β=﹣2018,将其代入整理后的代数式求值.【解答】解:依题意得:αβ=﹣3,α+β=﹣2018,α2+2018α﹣3=0,所以α2+αβ+2018α=α(α+β)+2018α=﹣2018α+2018α=0.故选:B.【点评】考查了根与系数的关系,一元二次方程的解的定义,解题的巧妙之处在于将所求的代数式转化为α(α+β)+2018α的形式,然后代入求值.7.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.【解答】解:∵C′C∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB'C'的位置,∴AC=AC′,∠CAC′=∠BAB′,∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴∠BAB′=40°,∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.8.【分析】在四边形OBCD中,利用四边形内角和定理即可解决问题.【解答】解:∵∠A=80°,∴∠C=180°﹣80°=100°,∠BOD=2∠A=160°,∴∠ODC=360°﹣160°﹣60°﹣100°=40°,故选:A.【点评】本题考查圆内接四边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【分析】利用配方法分别求出a、b,根据三角形三边关系、等腰三角形的概念计算.【解答】解:a2+b2+29=10a+4b,a2﹣10a+25+b2﹣4b+4=0,(a﹣5)2+(b﹣2)2=0,a﹣5=0,b﹣2=0,解得,a=5,b=2,∵2、2、5不能组成三角形,∴这个等腰三角形的周长为:5+5+2=12,故选:B.【点评】本题考查的是配方法、非负数的性质、等腰三角形的性质以及三角形三边关系,掌握配方法、完全平方公式是解题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.【解答】解:①抛物线的对称轴位于y轴的右侧,则a、b异号,即ab<0.抛物线与y轴交于负半轴,则c<0.所以abc>0.故正确;②如图所示,当x=1时,y<0,即a+b+c<0,故错误;③由图可知,当x=﹣1时,y=0,即a﹣b+c=0,x=1时,y<0,即a+b+c<0,所以a+a+c+c<0.所以2a+2c<0.所以a+c<0.故错误;④由图可知,当x=﹣1时,y=0,即a﹣b+c=0.当x=2时,y>0,即4a+2b+c>0,所以4a+2b+b﹣a>0,所以3a+3b>0.所以a+b>0.故正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.二、填空题(8小题,每小题4分,共32分)11.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【分析】直接利用y=ax2图象的性质得出其对称轴.【解答】解:抛物线y=x2的对称轴是直线y轴或(x=0).故答案为:y轴或(x=0).【点评】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键.13.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.14.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,哥哥为B,姐姐为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的哥哥相邻的概率是=,故答案为:.【点评】此题考查的是用树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【解答】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为:16.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,根据矩形的面积公式结合草坪部分的总面积为112m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,依题意,得:(16﹣x)(9﹣2x)=112.整理,得:2x2﹣41x+32=0.故答案为:2x2﹣41x+32=0.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=1的自变量x 的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣1时,y=1,∴x=3时,y=1,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣1>0成立的x取值范围是x<﹣1或x>3,故答案为:x<﹣1或x>3.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.三、解答题:(7个小题,共78分)19.【分析】(1)直接利用十字相乘法分解因式解方程即可;(2)直接利用配方法将原式变形,进而解方程即可.【解答】解:(1)x2﹣2x﹣48=0(x+6)(x﹣8)=0,解得:x1=﹣6,x2=8;(2)2x2﹣4x=﹣1(x2﹣2x)=﹣(x﹣1)2=,则x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题主要考查了十字相乘法、配方法解方程,正确分解因式是解题关键.20.【分析】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【解答】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)由点A及其对应点A1的位置得出平移方向和距离,再将点B和点C分别按此方式平移得出其对应点,继而首尾顺次连接即可得;(2)由旋转的性质作出变换后的对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,其中A2的坐标为(﹣1,1)、B2的坐标为(1,﹣1);(3)△A2B2C1的面积为2×4﹣×2×2﹣×1×2﹣×1×4=3.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.22.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为;(2)列表如下:由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的半径为3.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.24.【分析】设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合售价不能超过进价的200%即可确定x的值,此题得解.【解答】解:设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,依题意,得:(x﹣3)(500﹣10×)=800,整理,得:x2﹣12x+35=0,解得:x1=5,x2=7.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每千克桔子的定价为5元时,每天的利润为800元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【解答】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)【点评】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标.。

2018-2019学年九年级上学期期末数学试题(解析版)

2018-2019学年九年级上学期期末数学试题(解析版)

2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。

2018-2019学年九年级(上)期末数学试卷(含解析)

2018-2019学年九年级(上)期末数学试卷(含解析)

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣12.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣15.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.16.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.610.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣1【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q 的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【分析】根据二次函数的顶点式方程可地直接写出其顶点坐标.【解答】解:∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2),故选:D.【点评】本题主要考查二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物找y=2x2向左平移4个单位所得直线解析式为:y=2(x+4)2;再向下平移1个单位为:y=2(x+4)2﹣1.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.1【分析】根据中心对称图形的概念判断即可.【解答】解:矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,根据圆周角定理解答.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°,故选:A.【点评】本题考查的是切线的性质,圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、任意画一个三角形,其内角和为180°是必然事件;B、经过有交通信号的路口,遇到红灯是随机事件;C、太阳从东方升起是必然事件;D、任意一个五边形的外角和等于540°是不可能事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.10.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π【分析】根据勾股定理得到AC,然后根据扇形的面积公式即可得到结论.【解答】解:∵∠AB⊥OB,AB=2,OB=4,∴OA=2,∴边AB扫过的面积=﹣=π,故选:C.【点评】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.【分析】先把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得到满足条件的m的值为﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,利用根与系数的关系得到0+t=,然后求出t即可.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.【分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣1),∴当y=0时,0=(x﹣3)(x﹣1),解得,x1=3,x2=1,∵3﹣1=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2,故答案为:2.【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为20cm.【分析】作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理计算即可.【解答】解:作OC⊥AB于C,连接OA,则AC=AB=20,在Rt△OAC中,OC==20(cm)故答案为:20.【点评】本题考查的是垂径定理和勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为4.【分析】作DE⊥x轴于点E,易证△OAB≌△EDA,求得A、B的坐标,根据全等三角形的性质可以求得D的坐标,从而利用待定系数法求得反比例函数的解析式,即可求解.【解答】解:作DE⊥x轴于点E.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAE=90°,又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠DAE=∠OBA,在△OAB和△EDA中,∵,∴△OAB≌△EDA(AAS),∴AE=OB=3,DE=OA=1,故D的坐标是(4,1),代入y=得:k=4,故答案为:4.【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得D的坐标是关键.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故答案为:4.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解本题的关键.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.【分析】由切线的性质可知∠ODE=90°,纵坐标OD∥AE即可解决问题;【解答】证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点评】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【分析】如果设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意即可得出方程.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x).根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点评】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【分析】(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点评】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.【分析】(1)连接OD,根据角平分线的定义得到∠ACD=∠BCD,根据圆周角定理,等腰三角形的定义证明;(2)作AE⊥CD于E,根据等腰直角三角形的性质求出AD,根据勾股定理求出AE、CE,DE,结合图形计算,得到答案.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC【分析】(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,=×2×5=5.∴S△ABC【点评】此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到OC⊥AB,OC平分∠ACB,求得∠AOD=∠COE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到四边形CDOE的面积=△AOC的面积,根据三角形的面积公式即可得到结论;(3)当四边形CDFE是正方形时,其面积最大,根据正方形的面积公式即可得到结论.【解答】解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.【点评】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,连接OC构造全等三角形是解题的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)由点A,B的坐标,利用待定系数法可求出抛物线的解析式;(2)利用一次函数图象上点的坐标特征可得出点C,D的坐标,进而可得出0<m<4,由点P的横坐标为m可得出点P,E的坐标,进而可得出PE=﹣m2+m+2,再利用二次函数的性质即可解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况考虑,由平行四边形的性质(对角线互相平分)结合点P,C,D的坐标可求出点Q的坐标,此题得解.【解答】解:(1)将A(﹣1,0),B(5,0)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵直线y=﹣x+3与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,3),点D的坐标为(4,0),∴0<m<4.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+4m+5),点E的坐标为(m,﹣m+3),∴PE=﹣m2+4m+5﹣(﹣m+3)=﹣m2+m+2=﹣(m﹣)2+.∵﹣1<0,0<<4,∴当m=时,PE最长.(3)由(2)可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+4﹣0,+0﹣3),即(,);②以PC为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+0﹣4,+3﹣0),即(﹣,);③以CD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(0+4﹣,3+0﹣),即(,﹣).综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为(,)、(﹣,)或(,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线的解析式;(2)利用二次函数的性质解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况,利用平行四边形的性质求出点Q的坐标.。

2018-2019学年上 学期期末考试九年级数学试题(含答案)

2018-2019学年上 学期期末考试九年级数学试题(含答案)

2018—2019学年九年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.(3分)下面左侧几何体的左视图是()A.B.C.D.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.505.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣36.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.18.(5分)x2﹣8x+12=0.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.(3分)下面左侧几何体的左视图是()A.B.C.D.【解答】解:从左面看,是一个长方形.故选C.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.【解答】解:∵=2,∴a=2b,∴==3.故选A.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50【解答】解:根据题意得=0.4,解得:n=30,故选:B.5.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣3【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选B.6.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=950.故选:D.7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=【解答】解:由题意可得:y==.故选:C.8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=60°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选A9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等【解答】解:A、二次函数y=(x+1)2﹣3的顶点坐标是(﹣1,﹣3),错误;B、将二次函数y=x2的图象向上平移2个单位,得到二次函数y=x2+2的图象,错误;C、菱形的对角线互相垂直且平分,错误;D、平面内,两条平行线间的距离处处相等,正确;故选D10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m【解答】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴=、=,即=、=,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长边长1m.故选:A.11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.【解答】解:∵一次函数y=ax+c的图象经过一三四象限,∴a>0,c<0,故二次函数y=ax2+x+c的图象开口向上,对称轴在y轴左边,交y轴于负半轴,故选:C.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选B.二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.【解答】解:∵共有3张卡片,卡片的正面分别标上数字﹣1,0,﹣2,卡片上的数字为负数的有2张,∴卡片上的数字为负数的概率为;故答案为:.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是x=﹣.【解答】解:y=﹣(x﹣1)(x+2)=﹣(x2+x﹣2)=﹣(x+)2+,∴二次函数y=﹣(x﹣1)(x+2)的对称轴为x=﹣,故答案为:x=﹣.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为4.【解答】解:∵点A在曲线y=(x>0)上,AB⊥x轴,AB=1,∴AB×OB=3,∴OB=3,∵CD垂直平分AO,∴OC=AC,∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4,故答案为:4.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.【解答】解:作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=A D=6,∴OA=OB=6,∵OB=3OE,∴OE=2,EB=4,∵∠EBH=∠BEH=45°,∴EH=BH=2,∴AH=AB﹣BH=4,∵∠ADG+∠DAF=90°,∠DAF+∠EAH=90°,∴∠ADG=∠EAH,∵∠DAG=∠AHE,∴△DAG∽△AHE,∴=,∴=,∴AG=3,∴GH=AH﹣AG=,在Rt△EGH中,EG==.故答案为.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.【解答】解:原式=1﹣3+2+3=3.18.(5分)x2﹣8x+12=0.【解答】解:x2﹣8x+12=0,分解因式得(x﹣6)(x﹣2)=0,∴x﹣6=0,x﹣2=0,解方程得:x1=6,x2=2,∴方程的解是x1=6,x2=2.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.【解答】解:(1)画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球都是白色的有2种情况,∴随机从袋中摸出两个球,都是白色的概率是:=.(2)根据题意,得:=,解得:a=5,经检验a=5是原方程的根,故a=5.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CF,∴△CGE≌△FCG(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书300﹣10x本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为:300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.【解答】解:(1)如图1,过点C作CE⊥x轴于E,∴∠CEO=90°,∵∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵点C在反比例函数图象上,∴k=2×2=4,∴反比例函数解析式为y=,(2)如图2,过点D作DG⊥x轴于G,交BC于F,∵CB∥x轴,∴GF⊥CB,∵OA=4,由(1)知,OC=CE=2,∴AE=EC=2,∴∠ECA=45°,∠OCA=90°,∵OC∥AB,∴∠BAC=∠OCA=90°,∴AD⊥AC,∵A(4,0),AB∥OC,∴直线AB的解析式为y=x﹣4①,∵反比例函数解析式为y=②,联立①②解得,或(舍),∴D(2+2,2﹣2),∴AG=DG=2﹣2,∴AD=DG=4﹣2,∴DF=2﹣(2﹣2)=4﹣2,∴AD=DF,∵AD⊥AC,DF⊥CB,∴点D是∠ACB的角平分线上,即:CD平分∠ACB;(3)存在,∵点C(2,2),∴直线OC的解析式为y=x,OC=2,∵D(2+2,2﹣2),∴CD=2﹣2Ⅰ、如图3,当点P在点C右侧时,即:点P的横坐标大于2,∵S△POC=S△COD,∴设CD的中点为M,∴M(+2,),过点M作MP∥OC交双曲线于P,∴直线PM的解析式为y=x﹣2③,∵反比例函数解析式为y=④,联立③④解得,或(舍),∴P(+1,﹣1);Ⅱ、当点P'在点C左侧时,即:点P'的横坐标大于0而小于2,设点M关于OC的对称点为M',M'(m,n),∴=2,=2,∴m=2﹣,n=4﹣,∴M'(2﹣,4﹣),∵P'M'∥OC,∴直线P'M'的解析式为y=x+2⑤,联立④⑤解得,或(舍),∴P'(﹣1,+1).即:点P的坐标为(﹣1,+1)或P(+1,﹣1).23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【解答】解:(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=﹣,∴y=﹣(x+2)(x﹣4)或y=﹣x2+x+4或y=﹣(x﹣1)2+.(2)如图1中,作PE⊥x轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=﹣x+4,设P(n,﹣n2+n+4),则F(n,﹣n+4),∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,∴m==﹣(n﹣2)2+,∵﹣<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2﹣1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=kx+1中,得到k=,∴直线DP的解析式为y=x+1,可得D(0,1),E(﹣,0),由△DOE∽△QOD可得=,∴OD2=OE•OQ,∴1=•OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4﹣1),即N(,3)b、如图2﹣2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=x+1,PQ⊥PD,∴直线PQ的解析式为y=﹣x+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1﹣4),即N(6,﹣3).②当DP是对角线时,设Q(x,0),则QD2=x2+1,QP2=(x﹣2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴x2+1+(x﹣2)2+16=13,整理得x2﹣2x+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,﹣3).。

2018-2019学年番禺区九年级上学期数学期末考(无答案)

2018-2019学年番禺区九年级上学期数学期末考(无答案)

2018学年番禺区九年级(上)数学科期末测试题一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 一元二次方程是02=+x x 的根的是( )A .1,021==x xB .1,121-==x xC .1,021-==x xD .121-==x x2. 下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3. 在⊙O 中,弦AB 的长为cm 32,圆心O 到AB 的距离为1cm ,则⊙O 的半径是( )A .2 cmB .3 cmC .3 cmD .2 cm4. 已知关于x 的一元二次方程0122=--x ax 有两个不相等的实数根,则二次项系数a的取值范围是( ) A .1->aB .2->aC .1>a 且0≠aD .1->a 且0≠a5. 如图,线段AB 两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的21后得到线段CD ,则端点C 的坐标为( )A .(3,3)B .(4,3)C .(3,1)D .(4,1)6. 某公司2018年10月份的生产成本是400万元,由于改进技术,生产成本逐月下降,12月份的生产成本是361万元。

若该公司这两月每个月生产成本的下降率都相同,则每个月生产成本的下降率是( ) A .12%B .9%C .6%D .5%7. 一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3,随机摸出一个小球不放回,再随机摸出一个小球,两次摸出的小球标号之和为5的概率是( ) A .61 B .92 C .31 D .21 8. 如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的度数为( )A .60°B .50°C .40°D .30°9. 如图,在等边△ABC 中,AB =6,点D 是BC 的中点,将△ABD 绕点A 逆时针旋转后得到△ACE ,那么线段DE 的长为( )A .32B .6C .33D .2410. 如图,抛物线k x x y ++-=42与x 轴交于点A 和B ,线段AB 的长为2,则k 的值是( )A .3B .−3C .−4D .−5二、填空题(本大题共6小题,每小题3分,满分18分.) 11. 方程4)5(2=-x 的解为 .12. 点A (2,3)关于原点对称的坐标为 .13. 用配方法将0182=--x x 变形为m x =-2)4(,则m = .14. 将抛物线2)1(-=x y 向右平移1个单位所得到抛物线的解析式是 . 15. 如图,要使△ABC ∽△DBA ,则只需要添加一个合适的条件是 .(填一个即可)16. 如图,在Rt △ABC 中,∠ABC =90°,AB =6,BC =8,∠BAC 与∠ACB 的平分线相较于点E ,过点E 作EF ∥BC 交AC 于点F ,则EF 的长为 .三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分9分)(1)解方程:02)2(=-+-x x x ; (2)用配方法解方程:022102=+-x x18. (本小题满分9分)如图,平面直角坐标系中,A 、B 、C 坐标分别是(−2,4)、(0,−4)、(1,−1).将△ABC 绕点O 逆时针方向旋转90°后得到△A ′B ′C ′(1)画出△A ′B ′C ′,并写出A ′、B ′、C ′的坐标; (2)画出△ABC 关于原点O 对称的△A 1B 1C 1;(3)以O 为圆心,OA 为半径画圆,求扇形OA ′A 1的面积.画出函数3)6(212+-=x y 的图象,写出它的开口方向,对称轴和顶点,并说明当y 随x 的增大而增大时,x 的取值范围.20. (本小题满分10分)如图,D 、E 分别是⊙O 两条半径OA 、OB 的中点, .(1)求证:CD =CE .(2)若∠AOB =120°,OA =x ,四边形ODCE 的面积为y ,求y 与x 的函数关系式.21. (本小题满分12分)有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字−1,−2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x ,再从乙袋中随机抽取一个小球,记录标有的数字为y ,确定点M 的坐标为(x ,y ).(1)用树状图或列表法列举点M 所有可能的坐标; (2)求点M (x ,y )在函数1+-=x y 的图象上的概率;(3)在平面直角坐标系xOy 中,⊙O 的半径是2,求过点M (x ,y )能作⊙O 的切线的概率.如图,一块材料的形状是锐角三角形ABC ,边BC =120mm ,高AD =80mm ,把它加工成矩形零件,使矩形的一边在BC 上,其余两个顶点分别在AB 、AC 上,设EG =x mm ,EF =y mm .(1)写出x 与y 的关系式;(2)用S 表示矩形EGHF 的面积,某同学说当矩形EGHF 为正方形时S 最大,这个说法正确吗?说明理由,并求出S 的最大值.23. (本小题满分12分)如图,已知,⊙O 的半径325r ,弦AB ,CD 交于点E ,C 为的中点,过D 点的直线交AB 延长线与点F ,且DF =EF .(1)如图①,试判断DF 与⊙O 的位置关系,并说明理由; (2)如图②,连接AC ,若AC ∥DF ,BE =53AE ,求CE 的长.如图,在△ABC 中,∠ACB =90°,以点B 为圆心,BC 长为半径画弧,交边AB 与点D ,以A 为圆心,AD 长为半径画弧,交边AC 于点E ,连接CD . (1)若∠A =28°,求∠ACD 的度数; (2)设BC =a ,AC =b . ①线段AD 的长是方程0222=-+b ax x 的一个根吗?为什么?②若AD =EC ,求ba的值.如图,已知,抛物线x ax y 22-=过点A (−2,5),过A 点作x 轴的平行线,交抛物线与另一点C ,交y 轴与点Q ,点D (m ,5)为线段QC 上一动点(不与Q 、C 重合),作点Q 关于直线OD 的对称点P ,连接PC ,PD .(1)当点P 落在抛物线的对称轴上时,求△OPD 的面积;(2)若直线PD 交x 轴与点E .试探究四边形OECD 能否为平行四边形?若能,求出m 的值,若不能,请说明理由. (3)设点P (h ,k ).①求PC 取最小值时k 的值;②当0<m ≤5时,试探究h 与m 之间的关系.。

2019-2020学年广东省广州市番禺区九年级(上)期末数学试卷

2019-2020学年广东省广州市番禺区九年级(上)期末数学试卷

2019-2020学年广东省广州市番禺区九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,满分30分在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)一元二次方程2210x x --=的根是( ) A .11x =,22x =B .11x =-,22x =-C .112x =+,212x =-D .113x =+,213x =-2.(3分)下列图形是中心对称图形的是( )A .B .C .D .3.(3分)如图,O e 是ABC ∆的外接圆,100BOC ∠=︒,则A ∠的度数为( )A .40︒B .50︒C .80︒D .100︒4.(3分)抛物线223y x x =-+的顶点坐标是( ) A .(1,3)B .(1,3)-C .(1,2)D .(1,2)-5.(3分)如图,线段AB 两个端点的坐标分别为(6,6)A ,(8,2)B ,以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则线段CD 的长为( )A .2B 3C .3D 56.(3分)若一元二次方程29304kx x --=有实数根,则实数k 的取值范围是( ) A .1k =-B .1k -…且0k ≠C .1k >-且0k ≠D .1k -…且0k ≠7.(3分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是2-,1-,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是( ) A .14B .13C .12D .348.(3分)如图,在O e 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若27AB =,1CD =,则BE 的长是( )A .5B .6C .7D .89.(3分)若点(1,0)A -为抛物线23(1)y x c =--+图象上一点,则当0y …时,x 的取值范围是( ) A .13x -<<B .1x <-或3x >C .13x -剟D .1x -…或3x …10.(3分)如图,Rt ABC ∆中,9AB =,6BC =,90B ∠=︒,将ABC ∆折叠,使A 点与BC 的中点D 重合,折痕为PQ ,则PQD ∆的面积为( )A 11133B .152C 1372D .7511二、填空题(共6题,每题3分,共18分) 11.(3分)方程(1)(3)0x x --=的解为 .12.(3分)点(2,3)A -关于原点对称的点的坐标是 .13.(3分)如图,已知O e 的半径是2,点A 、B 、C 在O e 上,若四边形OABC 为菱形,则图中阴影部分面积为 .14.(3分)将抛物线2y x =先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的解析式 .15.(3分)若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是 .16.(3分)如图,将矩形ABCD 绕点A 旋转至矩形AB C D '''位置,此时AC 的中点恰好与D 点重合,AB '交CD 于点E ,若3AB cm =,则线段EB '的长为 .三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17.(9分)(1)解方程:(3)3x x x -=-; (2)用配方法解方程:21060x x -+=18.(9分)在如图网格图中,每个小正方形的边长均为1个单位,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =.(1)试在图中作出ABC ∆以A 为旋转中心,沿顺时针方向旋转90︒后的图形△11AB C ; (2)若点B 的坐标为(3,5)-,试在图中画出直角坐标系,并直接写出A 、C 两点的坐标; (3)根据(2)的坐标系作出与ABC ∆关于原点对称的图形△222A B C ,并直接写出点2A 、2B 、2C 的坐标.19.(10分)画出抛物线21(1)52y x =--+的图象(要求列表,描点),回答下列问题:(1)写出它的开口方向,对称轴和顶点坐标; (2)当y 随x 的增大而增大时,写出x 的取值范围;(3)若抛物线与x 轴的左交点1(x ,0)满足11n x n +剟,(n 为整数),试写出n 的值. 20.(10分)如图,已知O e 为Rt ABC ∆的内切圆,切点分别为D ,E ,F ,且90C ∠=︒,13AB =,12BC =.(1)求BF 的长; (2)求O e 的半径r .21.(12分)端午节是我国传统佳节,互赠粽子是端午节的一种习俗.小唐买了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,他从中随机拿出两个送给同学小何.(1)请用树状图或列表的方法列出小何得到的两个粽子的所有可能结果;(2)计算小何得到的两个粽子都是肉馅粽子的概率.22.(12分)如图,点E ,F ,G ,H 分别位于边长为a 的正方形ABCD 的四条边上,四边形EFGH 也是正方形,AG x =,正方形EFGH 的面积为y . (1)当2a =,3y =时,求x 的值;(2)当x 为何值时,y 的值最小?最小值是多少?23.(12分)如图,在ABC ∆中,点O 在边AC 上,O e 与ABC ∆的边BC ,AB 分别相切于C ,D 两点,与边AC 交于E 点,弦CF 与AB 平行,与DO 的延长线交于M 点.(1)求证:点M 是CF 的中点; (2)若E 是¶DF 的中点,BC a =, ①求¶DF的弧长; ②求AEOE的值.24.(14分)在ABC ∆中,P 为边AB 上一点. (1)如图1,若ACP B ∠=∠,求证:2AC AP AB =g ; (2)若M 为CP 的中点,2AC =.①如图2,若PBM ACP ∠=∠,3AB =,求BP 的长;②如图3,若45ABC ∠=︒,60A BMP ∠=∠=︒,直接写出BP 的长.25.(14分)在平面直角坐标系中,已知抛物线214y x kx c =++的图象经过点(0,1)C ,当2x =时,函数有最小值. (1)求抛物线的解析式;(2)直线l y ⊥轴,垂足坐标为(0,1)-,抛物线的对称轴与直线l 交于点A .在x 轴上有一点B ,且2AB l 上求异于点A 的一点Q ,使点Q 在ABC ∆的外接圆上; (3)点(,)P a b 为抛物线上一动点,点M 为坐标系中一定点,若点P 到直线l 的距离始终等于线段PM 的长,求定点M 的坐标.2019-2020学年广东省广州市番禺区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)一元二次方程2210x x --=的根是( ) A .11x =,22x =B .11x =-,22x =-C .112x =+,212x =-D .113x =+,213x =-【解答】解:1a =Q ,2b =-,1c =-,∴△2(2)41(1)80=--⨯⨯-=>,则222122x ±==±, 即112x =+,212x =-, 故选:C .2.(3分)下列图形是中心对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,不是中心对称图形,不合题意;B 、是中心对称图形,符合题意;C 、不是中心对称图形,不合题意;D 、是轴对称图形,不是中心对称图形,不合题意.故选:B .3.(3分)如图,O e 是ABC ∆的外接圆,100BOC ∠=︒,则A ∠的度数为( )A .40︒B .50︒C .80︒D .100︒【解答】解:O Q e 是ABC ∆的外接圆,100BOC ∠=︒,10502A B C ∴∠=∠=︒.故选:B .4.(3分)抛物线223y x x =-+的顶点坐标是( ) A .(1,3) B .(1,3)-C .(1,2)D .(1,2)-【解答】解:2223(1)2y x x x =-+=-+Q ,∴顶点坐标为(1,2),故选:C .5.(3分)如图,线段AB 两个端点的坐标分别为(6,6)A ,(8,2)B ,以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则线段CD 的长为( )A .2B 3C .3D 5【解答】解:(6,6)A Q ,(8,2)B ,224225AB ∴=+=,Q 以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD , ∴线段CD 的长为:12552⨯= 故选:D .6.(3分)若一元二次方程29304kx x --=有实数根,则实数k 的取值范围是( ) A .1k =-B .1k -…且0k ≠C .1k >-且0k ≠D .1k -…且0k ≠【解答】解:由题意可知:△990k =+…, 1k ∴-…, 0k ≠Q ,1k ∴-…且0k ≠,故选:B .7.(3分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是2-,1-,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是( ) A .14B .13C .12D .34【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为41123=, 故选:B .8.(3分)如图,在O e 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若27AB =,1CD =,则BE 的长是( )A .5B .6C .7D .8【解答】解:Q 半径OC 垂直于弦AB ,172AD DB AB ∴==在Rt AOD ∆中,222()OA OC CD AD =-+,即222(1)(7)OA OA =-+, 解得,4OA =3OD OC CD ∴=-=, AO OE =Q ,AD DB =, 26BE OD ∴==,故选:B .9.(3分)若点(1,0)A -为抛物线23(1)y x c =--+图象上一点,则当0y …时,x 的取值范围是( ) A .13x -<<B .1x <-或3x >C .13x -剟D .1x -…或3x …【解答】解:Q 点(1,0)A -为抛物线23(1)y x c =--+图象上一点,203(11)c ∴=---+,得12c =, 23(1)12y x ∴=--+, 当0y =时,11x =-,23x =,∴当0y …时,x 的取值范围是13x -剟, 故选:C .10.(3分)如图,Rt ABC ∆中,9AB =,6BC =,90B ∠=︒,将ABC ∆折叠,使A 点与BC 的中点D 重合,折痕为PQ ,则PQD ∆的面积为( )A .11133B .152C .1372D .7511【解答】解:过点D 作DN AC ⊥于N ,Q 点D 是BC 中点,3BD ∴=,Q 将ABC ∆折叠, AQ QD ∴=,AP PD =,9AB =Q ,6BC =,90B ∠=︒,228136313AC AB BC ∴=++=sinDN AB C CD AC ∠==Q ,DN ∴=, cosCN BC C CD AC ∠===QCN ∴=,AN ∴=, 222PD PN DN =+Q ,2281)13AP AP ∴=-+,AP ∴=, 222QD DB QB =+Q , 22(9)9AQ AQ ∴=-+, 5AQ ∴=,sin HQ BCA AQ AC ∠==Q ,HQ ∴==PQD ∴∆Q 的面积APQ =∆的面积175211==, 故选:D .二、填空题(共6题,每题3分,共18分)11.(3分)方程(1)(3)0x x --=的解为 13x =,21x = . 【解答】解:(1)(3)0x x --=Q ,10x ∴-=或30x -=,解得13x =,21x =, 故答案为:13x =,21x =.12.(3分)点(2,3)A -关于原点对称的点的坐标是 (2,3)- . 【解答】解:根据两个点关于原点对称,∴点(2,3)P -关于原点对称的点的坐标是(2,3)-;故答案为(2,3)-.13.(3分)如图,已知O e 的半径是2,点A 、B 、C 在O e 上,若四边形OABC 为菱形,则图中阴影部分面积为4233π- .【解答】解:连接OB 和AC 交于点D ,如图所示:Q 圆的半径为2,2OB OA OC ∴===,又四边形OABC 是菱形,OB AC ∴⊥,112OD OB ==,在Rt COD ∆中利用勾股定理可知:22213CD =-=,223AC CD ==3sin CD COD OC ∠==Q , 60COD ∴∠=︒,2120AOC COD ∠=∠=︒,112232322ABCO S OB AC ∴=⨯=⨯⨯菱形,120443603AOC S ππ⋅⨯==扇形, 则图中阴影部分面积为4233AOC ABCO S S π-=-扇形菱形 故答案为:4233π- 14.(3分)将抛物线2y x =先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的解析式 2(1)2y x =-+ .【解答】解:抛物线2y x =的顶点坐标为(0,0),点(0,0)先向右平移1个单位长度,再向上平移2个单位长度所得对应点的坐标为(1,2), 所以新抛物线的解析式为2(1)2y x =-+ 故答案为2(1)2y x =-+.15.(3分)若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是56. 【解答】解:由题意作出树状图如下:一共有36种情况,“两枚骰子朝上的点数互不相同”有30种, 所以,305366P ==. 故答案为:56. 16.(3分)如图,将矩形ABCD 绕点A 旋转至矩形AB C D '''位置,此时AC 的中点恰好与D 点重合,AB '交CD 于点E ,若3AB cm =,则线段EB '的长为 1cm .【解答】解:由旋转的性质可知:AC AC '=,D Q 为AC '的中点,12AD AC ∴=, ABCD Q 是矩形, AD CD ∴⊥, 30ACD ∴∠=︒, //AB CD Q , 30CAB ∴∠=︒,30C AB CAB ''∴∠=∠=︒,30EAC ∴∠=︒, 30DAE ∴∠=︒, 3AB CD cm ==Q ,3AD ∴==, 1AE cm ∴=, 2AE cm ∴=,3AB AB cm '==Q , 321EB cm '∴=-=.故答案为:1cm .三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17.(9分)(1)解方程:(3)3x x x -=-; (2)用配方法解方程:21060x x -+= 【解答】解:(1)(3)3x x x -=-Q , (3)(3)0x x x ∴---=,则(3)(1)0x x --=,30x ∴-=或10x -=,解得3x =或1x =;(2)21060x x -+=Q , 2106x x ∴-=-,则21025625x x -+=-+,即2(5)19x -=,5x ∴-=则5x =±18.(9分)在如图网格图中,每个小正方形的边长均为1个单位,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =.(1)试在图中作出ABC ∆以A 为旋转中心,沿顺时针方向旋转90︒后的图形△11AB C ; (2)若点B 的坐标为(3,5)-,试在图中画出直角坐标系,并直接写出A 、C 两点的坐标; (3)根据(2)的坐标系作出与ABC ∆关于原点对称的图形△222A B C ,并直接写出点2A 、2B 、2C 的坐标.【解答】解:(1)如图,△11AB C 为所作;(2)如图,A 点坐标为(0,1),C 点的坐标为(3,1)-;(3)如图,△222A B C 为所作,点2A 、2B 、2C 的坐标为(0,1)-,(3,5)-,(3,1)-.19.(10分)画出抛物线21(1)52y x =--+的图象(要求列表,描点),回答下列问题:(1)写出它的开口方向,对称轴和顶点坐标;(2)当y 随x 的增大而增大时,写出x 的取值范围;(3)若抛物线与x 轴的左交点1(x ,0)满足11n x n +剟,(n 为整数),试写出n 的值. 【解答】解:列表:描点、连线(1)由图象可知,该抛物线开口向上,对称轴是直线1x =,顶点坐标为(1,5); (2)当y 随x 的增大而增大时,x 的取值范围是1x <; (3)当0y =时,210(1)52x =--+,解得,1101x =,2101x =,则该抛物线与x 轴的左交点为(101-,0), 31012-<<-Q ,11n x n +剟,(n 为整数), 3n ∴=-.20.(10分)如图,已知O e 为Rt ABC ∆的内切圆,切点分别为D ,E ,F ,且90C ∠=︒,13AB =,12BC =.(1)求BF 的长; (2)求O e 的半径r .【解答】解:(1)在Rt ABC ∆中,90C ∠=︒Q ,13AB =,12BC =,222213125AC AB BC ∴=-=-=,O Q e 为Rt ABC ∆的内切圆,切点分别为D ,E ,F ,BD BF ∴=,AD AE =,CF CE =,设BF BD x ==,则13AD AE x ==-,12CFCE x =-,5AE EC +=Q , 13125x x ∴-+-=, 10x ∴=, 10BF ∴=.(2)连接OE ,OF ,OE AC ⊥Q ,OF BC ⊥, 90OEC C OFC ∴∠=∠=∠=︒,∴四边形OECF 是矩形,12102OE CF BC BF ∴==-=-=.即2r =.21.(12分)端午节是我国传统佳节,互赠粽子是端午节的一种习俗.小唐买了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,他从中随机拿出两个送给同学小何.(1)请用树状图或列表的方法列出小何得到的两个粽子的所有可能结果; (2)计算小何得到的两个粽子都是肉馅粽子的概率.【解答】解:(1)肉粽记为A 、红枣粽子记为B 、豆沙粽子记为C ,由题意可得,(2)由(1)可得,小何得到的两个粽子都是肉馅的概率是:21126=. 22.(12分)如图,点E ,F ,G ,H 分别位于边长为a 的正方形ABCD 的四条边上,四边形EFGH 也是正方形,AG x =,正方形EFGH 的面积为y . (1)当2a =,3y =时,求x 的值;(2)当x 为何值时,y 的值最小?最小值是多少?【解答】解:设正方形ABCD 的边长为a ,AE x =,则BE a x =-, Q 四边形EFGH 是正方形,EH EF ∴=,90HEF ∠=︒, 90AEH BEF ∴∠+∠=︒, 90AEH AHE ∠+∠=︒Q ,AHE BEF ∴∠=∠,在AHE ∆和BEF ∆中,90A B AHE BEF EH EF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AHE BEF AAS ∴∆≅∆,同理可证AHE BEF CFG DHG ∆≅∆≅∆≅∆,AE BF CG DH x ∴====,AH BE CF DG a x ====-2222222()22EF BE BF a x x x ax a ∴=+=-+=-+,∴正方形EFGH 的面积22222y EF x ax a ==-+,当2a =,3y =时,22443x x -+=, 解得:222x ±=;(2)222211222()22y x ax a x a a =-+=-+Q ,即:当12x a =(即E 在AB 边上的中点)时,正方形EFGH 的面积最小,最小的面积为212a .23.(12分)如图,在ABC ∆中,点O 在边AC 上,O e 与ABC ∆的边BC ,AB 分别相切于C ,D 两点,与边AC 交于E 点,弦CF 与AB 平行,与DO 的延长线交于M 点.(1)求证:点M 是CF 的中点; (2)若E 是¶DF 的中点,BC a =, ①求¶DF的弧长; ②求AEOE的值.【解答】证明:(1)O Q e 与ABC ∆的边BC ,AB 分别相切于C ,D 两点,90ACB ODB ∴∠=∠=︒, //CF AB Q ,90OMF ODB ∴∠=∠=︒,OM CF ∴⊥,且OM 过圆心O ,∴点M 是CF 的中点;(2)①连接CD ,DF ,OF ,O Q e 与ABC ∆的边BC ,AB 分别相切于C ,D 两点, BD BC ∴=,E Q 是¶DF 的中点, ∴¶¶EDEF =, DCE FCE ∴∠=∠, //AB CF Q ,A ECF ACD ∴∠=∠=∠, AD CD ∴=,90A B ∠+∠=︒Q ,90ACD BCD ∠+∠=︒, B BCD ∴∠=∠,BD CD ∴=,且BD BC =, BD BC CD ∴==, BCD ∴∆是等边三角形, 60B ∴∠=︒,30A ECF ACD ∴∠=︒=∠=∠, 60DCF ∴∠=︒, 120DOF ∴∠=︒, BC a =Q ,30A ∠=︒, 2AB a ∴=,3AC a =,AD a ∴=,A A ∠=∠Q ,90ADO ACB ∠=∠=︒,ADO ACB ∴∆∆∽, ∴DO AD BC AC =,∴3DO a a= 3DO a ∴=, ∴¶DF 的弧长3120233180a a ππ︒⨯⨯==︒;②30A ∠=︒Q ,OD AB ⊥,232AO DO a ∴==, 2333AE AO OE a a a ∴=-=-=, ∴1AE OE=. 24.(14分)在ABC ∆中,P 为边AB 上一点.(1)如图1,若ACP B ∠=∠,求证:2AC AP AB =g ;(2)若M 为CP 的中点,2AC =.①如图2,若PBM ACP ∠=∠,3AB =,求BP 的长;②如图3,若45ABC ∠=︒,60A BMP ∠=∠=︒,直接写出BP 的长.【解答】解:(1)ACP B ∠=∠Q ,A A ∠=∠,ACP ABC ∴∆∆∽,∴AC AB AP AC=, 2AC AP AB ∴=g ;(2)①取AP 在中点G ,连接MG ,设AG x =,则PG x =,3BG x =-, M Q 是PC 的中点,//MG AC ∴,BGM A ∴∠=∠,ACP PBM ∠=∠Q ,APC GMB ∴∆∆∽, ∴AP AC GM BG=, 即2213x x =-,x ∴=, 3AB =Q ,3AP ∴=PB ∴=②过C 作CH AB ⊥于H ,延长AB 到E ,使BE BP =, 设BP x =.45ABC ∠=︒Q ,60A ∠=︒,CH ∴=HE x =,222)CE x =+Q ,PB BE =Q ,PM CM =,//BM CE ∴,60PMB PCE A ∴∠=∠=︒=∠,E E ∠=∠Q ,ECP EAC ∴∆∆∽, ∴CE AE EP CE=, 2CE EP EA ∴=g ,2332(1)x x x ∴+++=,1x ∴=,71PB ∴=-.25.(14分)在平面直角坐标系中,已知抛物线214y x kx c =++的图象经过点(0,1)C ,当2x =时,函数有最小值.(1)求抛物线的解析式;(2)直线l y ⊥轴,垂足坐标为(0,1)-,抛物线的对称轴与直线l 交于点A .在x 轴上有一点B ,且2AB l 上求异于点A 的一点Q ,使点Q 在ABC ∆的外接圆上;(3)点(,)P a b 为抛物线上一动点,点M 为坐标系中一定点,若点P 到直线l 的距离始终等于线段PM 的长,求定点M 的坐标.【解答】解:(1)Q 图象经过点(0,1)C , 1c ∴=,Q 对称轴2x =,1k ∴=-,∴抛物线解析式为2114y x x =-+; (2)由题意可知(2,1)A -,设(,0)B t ,2AB =Q ,2(2)12t ∴-+=,1t ∴=或3t =,(1,0)B ∴或(3,0)B ,(1,0)B Q 时,A 、B 、C 三点共线,舍去,(3,0)B ∴,AC ∴=BC =90BAC ∴∠=︒,ABC ∴∆为直角三角形,BC 为外接圆的直径,外接圆的圆心为BC 的中点3(2,1)2,半径为, 设(,1)Q x -,则有22231()(1)22x -++=, 1x ∴=或2x =(舍去), (1,1)Q ∴-;(3)设顶点(,)M m n ,(,)P a b Q 为抛物线上一动点,2114b a a ∴=-+, P Q 到直线l 的距离等于PM ,222()()(1)m a n b b ∴-+-=+, ∴2221(222)(23)02n a n m a m n n -+-+++--=, a Q 为任意值上述等式均成立, ∴1022220n n m -⎧=⎪⎨⎪+-=⎩,∴12n m =⎧⎨=⎩, 此时22230m n n +--=,∴定点(2,1)M .。

2023-2024学年广东省广州市番禺区九年级(上)期末数学试卷+答案解析

2023-2024学年广东省广州市番禺区九年级(上)期末数学试卷+答案解析

2023-2024学年广东省广州市番禺区九年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是()A. B.C.D.2.将抛物线向上平移2个单位,得到抛物线的解析式是()A.B.C.D.3.古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为()A. B.C.D.5.如图,正方形ABCD 内接于,点P 在上,则的度数为()A.B.C.D.6.用配方法将方程变形为,则m 的值是()A. B.4 C. D.87.平面直角坐标系中,点A的坐标为,将线段OA绕原点O顺时针旋转得到,则点的坐标是()A. B. C. D.8.一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,投掷此骰子,朝上面的点数为奇数的概率是()A. B. C. D.9.如图,的内切圆与BC,CA,AB分别相切于点D,E,F,若的半径为r,,则的值和的大小分别为()A.2r,B.0,C.2r,D.0,10.抛物线是常数,经过,,三点,且在下列四个结论中:①;②;③当时,若点在该抛物线上,则;④若关于x 的一元二次方程有两个相等的实数根,则,其正确结论的序号是()A.②③④B.①②④C.①②③D.①③④二、填空题:本题共6小题,每小题3分,共18分。

11.一元二次方程的解是.12.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加______13.关于x的方程的一根为1,则另一根为______.14.如图,已知正方形ABCD的边长为3,E为CD边上一点,以点A为中心,把顺时针旋转,得,连接,则的长等于______.15.如图,转盘中四个扇形的面积都相等,任意转动这个转盘2次,当转盘停止转动时,指针2次都落在灰色区域的概率是______.16.如图,在▱ABCD中,,,,垂足为H,以点A为圆心,AH长为半径画弧,与AB,AC,AD分别交于点E,F,若用扇形AEF围成一个圆锥的侧面,记这个圆锥底面圆的半径为;用扇形AHG围成另一个圆锥的侧面,记这个圆锥底面圆的半径为,则______结果保留根号三、解答题:本题共9小题,共72分。

番禺九年级期末考数学试卷

番禺九年级期末考数学试卷

考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列各数中,是实数的是()A. √-1B. √4C. √-9D. √02. 已知函数f(x) = 2x - 3,则f(-1)的值为()A. -5B. -1C. 1D. 53. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 梯形4. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 5C. 5x - 2 = 0D. 4x + 1 = 05. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^26. 下列函数中,是奇函数的是()A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x^47. 下列不等式中,正确的是()A. 2x > 4B. 3x < 6C. 4x ≥ 8D. 5x ≤ 108. 已知一元二次方程x^2 - 5x + 6 = 0,则其判别式Δ的值为()A. 9B. 25C. 36D. 499. 下列各数中,是正数的是()A. -2B. 0C. 1D. -110. 下列各式中,正确的是()A. a^2 = b^2B. a^2 = b^2 + 1C. a^2 = b^2 - 1D. a^2 = b^2 + 2二、填空题(每题3分,共30分)11. 已知a = 3,b = -2,则a + b的值为______。

12. 若x^2 - 5x + 6 = 0,则x的值为______。

13. 若f(x) = 2x + 3,则f(2)的值为______。

14. 下列图形中,中心对称图形是______。

15. 若一个长方形的长为5cm,宽为3cm,则其面积为______cm^2。

番禺初三期末数学试卷

番禺初三期末数学试卷

一、选择题(每题5分,共30分)1. 下列各数中,不是有理数的是()A. 2.5B. -3C. 0D. π2. 下列运算正确的是()A. (-3)² = -9B. (-2)³ = -8C. (-1)⁴ = 1D. (-2)⁴ = 163. 已知一元二次方程x² - 5x + 6 = 0,则其判别式Δ为()A. 1B. 5C. 4D. 94. 在等腰三角形ABC中,AB = AC,且∠BAC = 60°,则∠ABC的度数为()A. 60°B. 75°C. 30°D. 45°5. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x²D. y = 2x³二、填空题(每题5分,共25分)6. 若a = -3,b = 4,则a² - 2ab + b² = ________。

7. 一元二次方程x² - 5x + 6 = 0的解为 ________。

8. 在直角坐标系中,点P(2,-3)关于x轴的对称点坐标为 ________。

9. 若等腰三角形底边长为6,腰长为8,则其周长为 ________。

10. 已知一次函数y = kx + b,其中k ≠ 0,若k < 0,则函数图象在()A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限三、解答题(每题10分,共40分)11. (10分)已知一元二次方程x² - 4x + 3 = 0,求:(1)该方程的解;(2)若x₁和x₂是该方程的两个根,求x₁ + x₂和x₁x₂的值。

12. (10分)在等边三角形ABC中,AB = AC = BC = 10,求∠BAC的正弦值。

13. (10分)已知一次函数y = kx + b的图象经过点A(2,3)和点B(-1,-1),求该函数的解析式。

番禺区初三数学期末试卷

番禺区初三数学期末试卷

一、选择题(每题5分,共50分)1. 下列各数中,不是有理数的是()A. √9B. -3/4C. πD. 0.1010010001…2. 若x + 2 = 5,则x = ()A. 3B. 2C. 4D. -33. 下列各数中,绝对值最大的是()A. -5B. -3C. 2D. 14. 若a > b,且c > 0,则下列不等式中成立的是()A. ac < bcB. ac > bcC. ac < -bcD. ac > -bc5. 下列函数中,是二次函数的是()A. y = x^2 + 2x + 1B. y = x^2 + 2C. y = x^3 + 2x + 1D. y = 2x + 16. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)7. 下列各式中,正确的是()A. a^2 = aB. (a + b)^2 = a^2 + b^2C. (a - b)^2 = a^2 - b^2D. (a + b)^2 = a^2 + 2ab + b^28. 若x^2 - 5x + 6 = 0,则x的值为()A. 2 或 3B. 1 或 4C. 2 或 -3D. 1 或 -49. 下列各数中,能被3整除的是()A. 56B. 63C. 78D. 8410. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 等腰三角形D. 以上都是二、填空题(每题5分,共50分)1. 若a = -3,b = 2,则a + b = ________,a - b = ________,ab = ________。

2. 若x^2 - 4x + 3 = 0,则x的值为 ________。

3. 在直角坐标系中,点B(4,-2)关于x轴的对称点是 ________。

4. 下列函数中,y = kx + b是一次函数,则k ≠ ________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上册 期末试题2
2018-2019学年广东省广州市番禺区九年级(上)期末数学试卷
一、选择题(本大题共10小题,每小题3分) 1.一元二次方程是x 2+x=0的根的是( ) A .x 1=0,x 2=1 B .x 1=1,x 2=-1 C .x 1=0,x 2=-1 D .x 1=x 2=-1
2.下列图形中,既是轴对称图形又是中心对称图形的是( )
A .
B .
C .
D .
3.在⊙O 中,弦AB 的长为23cm ,圆心O 到AB 的距离为1cm ,则⊙O 的半径是( ) A .2
B .3
C .3
D .2
4.已知关于x 的一元二次方程ax 2-2x-1=0有两个不相等的实数根,则二次项系数a 的取值范围是( ) A .a >1 B .a >-2
C .a >1且a≠0
D .a >-1且a≠0
5.如图,线段AB 两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的
2
1
后得到线段CD ,则端点C 的坐标为( )
A.(3,3)
B.(4,3)
C.3,1)
D.(4,1)
6.某公司2018年10月份的生产成本是400万元,由于改进技术,生产成本逐月下降,12月份的生产成本是361万元.若该公司这两月每个月生产成本的下降率都相同,则每个月生产成本的下降率是( ) A .12% B .9% C .6% D .5% 7.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,然后放回,再随机摸出一个小球,两次摸出的小球标号的和为5的概率是( ) A .
61 B .92 C .31 D .2
1
8.如图,⊙O 是△ABC 的外接圆,∠OCB=40°,则∠A 的度数等于( ) A .60° B .50° C .40° D .30°
9.如图,在等边△ABC 中,AB=6,点D 是BC 的中点,将△ABD 绕点A 逆时针旋转后得到△ACE ,那么线段DE 的长为( ) A .23 B .6
C .33
D .4
2
10.如图,抛物线y=-x 2+4x+k 与x 轴交于点A 和B ,线段AB 的长为2,则k 的值是( ) A .3 B .-3 C .-4 D .
-5
二、填空题(本大题共6小题,每小题3分,满分18分.)
11.方程(x-5)2=4的解为 .
12.点(2,3)关于原点对称的点的坐标是 .
13.用配方法将x 2-8x-1=0变形为(x-4)2=m ,则m= .
14.将抛物线y=(x-1)2向右平移1个单位所得到抛物线的解析式是 .
15、如图,要使△ABC 与
△DBA
相似,则只需添加一个适当的条件是 .(填一个即可)
16.如图,在△ABC 中,∠ABC =90°,AB=6,BC=8,∠BAC ,∠ACB 的平分线相交于点E ,过点E 作EF∥BC 交AC 于点F ,则EF 的长为 .
三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤.) 17.(1)解方程:
x (x-2)+x-2=0;
(2)用配方法解方程:x 2-10x+22=0
18.如图,平面直角坐标系中,A 、B 、C 坐标分别是(-2,-4)、(0,-4)、(1,-1).将△ABC 绕点O 逆时针方向旋转90°后得到△A′B′C′
(1)画出△A′B′C′,并写出A′、B′、C′的坐标; (2)画出△ABC 关于原点O 对称的△A 1B 1C
1;
(3)以O 为圆心,OA 为半径画圆,求扇形OA′A 1的面积.
.画出函数y=
2
1

x-6)2+3的图象,写出它的开口方向,对称轴和顶点,并说明当y 随x 的增大而增大时,x 的取值范围.
20.如图,D 、E 分别是⊙O 两条半径OA 、OB 的中点,

(1)求证:CD=CE .

2
)若∠AOB=120°,OA=x ,四边形ODCE 的面积为y ,求y 与x 的函数关系式.
21.有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,乙袋中装有3个完全相同的小球,分别标有数字-1,-2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x ,再从乙袋中随机抽取一个小球,记录标有的数字为y ,确定点M 坐标为(x ,y ).
(1)用树状图或列表法列举点M 所有可能的坐标; (2)求点M (x ,y )在函数y=-x+1的图象上的概率; (3)在平面直角坐标系xOy 中,⊙O 的半径是2,求过点M (x ,y )能作⊙O 的切线的概率.
22.如图,一块材料的形状是锐角三角形ABC ,边BC=120mm ,高AD=80mm ,把它加工成矩形零件,使矩形的一边在BC 上,其余两个顶点分别在AB 、AC 上,设EG=xmm ,EF=ymm . (1)写出x 与y 的关系式;
(2)用S 表示矩形EGHF 的面积,某同学说当矩形EGHF 为正方形时S 最大,这个说法正确吗?说明理由,并求出S 的最大值.
23.如图1,⊙O 的半径r=
3
25
,弦AB 、CD 交于点E ,C 为弧AB 的中点,过D 点的直线交AB 延长线于点F ,且DF=EF .
(1)试判断DF 与⊙O 的位置关系,并说明理由; (2)如图2,连接AC ,若AC ∥DF ,BE=5
3
AE ,求CE 的长.
24.如图,在△ABC 中,∠ACB=90°,以点B 为圆心,BC 长为半径画弧,交边AB 与点D ,以A 为圆心,AD 长为半径画弧,交边AC 于点E ,连接CD . (1)若∠A=28°,求∠ACD 的度数; (2)设BC=a ,AC=b .
①线段AD 的长是方程x 2+2ax-b 2=0的一个根吗?为什么?
②若AD=EC ,求
b
a
的值.
25.如图,已知,抛物线y=ax2-2x过点A(-2,5),过A点作x轴的平行线,交抛物线与另一点C,交y 轴与点Q,点D(m,5)为线段QC上一动点(不与Q、C重合),作点Q关于直线OD的对称点P,连接PC,PD.
(1)当点P落在抛物线的对称轴上时,求△OPD的面积;
(2)若直线PD交x轴与点E.试探究四边形OECD 能否为平行四边形?若能,求出m的值,若不能,请说明理由.
(3)设点P(h,k).
①求PC取最小值时k的值;
②当0<m≤5时,试探究h与m之间的关系.。

相关文档
最新文档