数学(三选二)

合集下载

人教版(2019)数学选择性必修二 4_3_2等比数列的前n项和公式(1)课件

人教版(2019)数学选择性必修二 4_3_2等比数列的前n项和公式(1)课件

(3)能否根据首项、公比与项数求出等比数列的前n项和?
课前小测
1.判断正误(正确的打“√”,错误的打“×”)
(1)求等比数列{an}的前n项和时可直接套用公式Sn=
✓ q=1时不成立
1 1−
1−
来求. ( × )
(2)等比数列的前n项和公式可以简写成Sn=-Aqn+A(q≠1). ( √ )
方程思想与整体思想在数列中的具体应用.
2.在解决与前n项和有关的问题时,首先要对公比q=1或
q≠1进行判断,若两种情况都有可能,则要分类讨论.
跟踪训练
1.已知数列{an}是首项为a1,公比为q的等比数列,
其前n项和为Sn,且有5S2=4S4,求公比q的值.
当q=1时
由5S2=4S4知10a1=16a1,则a1=0,不合题意,故q≠1.
A.-2
B.1
C.-2或1
D.2或-1
✓ 当q=1时,S3=3a1=3,符合题意;
✓ 当q≠1时,S3=1+q+q2=3,解得q=-2.
1
4.已知等比数列的首项为-1,前n项和为Sn,若q=-
2
31
10
则 =________.
32
5
10
5

−1 1− 10
1−

=1 + 5
=1 +
=1 −
1−
2
n
(3)1+x+x +…+x =
1−
✓ q=1时不成立
.( × )
3
2.已知等比数列{an}的公比q=2,前n项和为Sn,则
2
A.3
3
✓ =
2
B.4
1 1−23
1−2

中科大考博辅导班:2019中科大数学科学学院考博难度解析及经验分享

中科大考博辅导班:2019中科大数学科学学院考博难度解析及经验分享

中科大考博辅导班:2019中科大数学科学学院考博难度解析及经验分享中国科学院大学2019年博士研究生招生统一实行网上报名。

报考者须符合《中国科学院大学2019年招收攻读博士学位研究生简章》规定的报考条件。

考生在报考前请联系所报考的研究所(指招收博士生的中科院各研究院、所、中心、园、台、站)或校部相关院系,了解具体的报考规定。

下面是启道考博辅导班整理的关于中国科学技术大学数学科学学院考博相关内容。

一、院系简介数学科学学院的前身数学系于1958年由著名数学家华罗庚教授亲自主持创办并任首任系主任,关肇直、吴文俊、冯康、龚昇、王元、万哲先、陆启铿、石钟慈、林群、张景中、陈希孺等一大批知名专家曾在此任教。

2011年5月,数学科学学院正式挂牌成立,首任院长为马志明院士。

本院为首批全国理科人才培养基地、中国科学院博士生重点培养基地、长江学者特聘岗位设置学科,并获得首批数学一级学科博士学位授予权(涵盖数学所有博士点),2007年获首批一级重点学科,是教育部985、211工程、中科院知识创新工程建设学科。

为吸引高水平的学者来我院讲学,学校为本院设立了“华罗庚大师讲席”及“吴文俊大师讲席”。

二、招生信息中国科学技术大学数学科学学院博士招生专业有1个:070100数学研究方向:随机分析与数理金融.计算机辅助几何设计.计算机图形学.应用逼近论、并行计算.组合优化.李代数及相关理论.微分几何.可积系统与子流形.几何分析.Ads/ds 空间的几何.可积系统.代数表示论.微分几何.非线性演化方程.可积系统.一维动力系统.材料科学与结构分析的计算方法研究.计算机辅助几何设计.计算机图形学.应用逼近.密码学.李代数及相关理.组合数学.信息安全.编码理论.无穷维系统控制.复杂系统控制及系统可靠.几何拓扑.拓扑量子场.动力系统.遍历理论.拓扑.图论.代数组合.偏微分方程.几何分析.亚纯函数值分布相关理论.一维动力系统.计算机辅助几何设计.计算机图形学.应用逼近论.生物数学.抛物方程动力学.应用分析.计算机图形学.图像处理.微分几何.离散几何分析.偏微分方程.几何分析.大范围分析.极值组合.图论.概率方法.组合优化.偏微分方程.算术代数几何.代数数论.函数空间与算子理论.Clifford分析.哈密尔顿系统.动力系统.遍历理论.拓扑学.一维动力系统.代数几何.微分方程动力系统.生物数学.几何分析.微分几何.代数群与量子群.算术代数几何.概率论与随机分析.偏微分方程数值方法.数据科学.最优化计算方.计算几何(三维打印的优化设计).黎曼几何.动力系统.遍历理论.拓扑学.代数表示论.量子群与张量范畴.弦理论.共形场.最优化计算方法.随机优化.偏微分方程数值方法理论及应用.李代数与量子群.随机分析.微分几何.几何分析.组合设计与编码.宇宙学.偏微分方程数值解.可积系统三、报考条件(1)中华人民共和国公民;拥护中国共产党的领导,愿意为祖国社会主义现代化建设服务;品德良好,遵纪守法,学风端正,无任何考试作弊、学术剽窃及其它违法违纪行为;(2)身体健康状况符合我校规定的体检要求,心理正常;(3)申请者原则上应来自国内重点院校或所在高校学习专业为重点学科;(4)专业基础好、科研能力强,在某一领域或某些方面有特殊学术专长及突出学术成果;(5)对学术研究有浓厚的兴趣,有较强的创新意识、创新能力和专业能力;(6)申请者的学位必须符合下述条件之一:应届硕士毕业生须在博士入学前取得硕士学位;或已获得硕士或博士学位;在境外获得学位的考生,须凭教育部留学服务中心的认证书报名;(7)具有较强的语言能力,外语(限本单位招生专业目录中公布的语种)水平较高。

七(上)期中数学试卷(三选二版)

七(上)期中数学试卷(三选二版)

13-14学年七年级上学期数学期中考试(满分:100分,时间90分钟) 得分一、选择题(每小题3分,共27分)1.某天上午6:00长江水位为90.4米,到上午11:30分水位上涨了5.3米,到下午6:00水位下跌了0.9米。

到下午6:00水位为( )米。

A 、86B 、94.8C 、95.8D 、96.62、若a=3,b=-2,则2a b +的值为…….( )A 、-7B 、 7C 、1D 、-13、下面各对数中互为相反数的是…….( )A 、︳-3 ︳与︳3 ︳B 、-3与-︳3 ︳C 、3与-︳-3 ︳D 、3与-(-3)4、下列说法正确的是………………….( )A 、0.810有三个有效数字B 、3.2万精确到十分位C 、2.073精确到百分位D 、20000只有一个有效数字5、某市2011年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 …………………………….( )A 、-10℃B 、-6℃C 、6℃D 、10℃ 6.下列各组的两个单项式为同类项的是( )A .abc 与7abB .6n m 2与-32nmC .323y x 与和532y xD .x 与y 7. 下面计算正确的是………………….( ) A 、2255x x -= B 、235347a a a +=C 、22x x +=D 、10.502ab ab -+=8、练习本每本0.6元,铅笔每支0.9元,a 本练习本和b 支铅笔共值( )A 、0.6a+0.9bB 、(0.6a+0.9b)元C 、0.9a+0.6bD 、(0.9a+0.6b)元9、如果a,b 互为相反数,x,y 互为倒数,则5(a+b )-4xy 的值是( ) A 、9 B 、1 C 、-4 D 、O二、填空题(每小题2分,共18分)10、 -3的倒数是 .11、 2的相反数是 .12. 据不完全统计,2010年F1上海分站赛给上海带来的经济收入将达到360 000 000美元,用科学记数法可表示为 美元。

高中数学选择性必修三 6 3 2 二项式系数的性质

高中数学选择性必修三 6 3 2 二项式系数的性质

(3)由(2)知中间两项系数绝对值相等, 又∵第 6 项系数为负,第 7 项系数为正,故项的系数最大的项为 T7=C611x5y6,项的系数 最小的项为 T6=-C511x6y5.
(4)展开式中,二项式系数的和为 C011+C111+C211+…+C1111=211. (5)令 x=y=1,得展开式中各项系数的和为 C011-C111+C211-…-C1111=(1-1)11=0.
∴a0+a2+a4+a6+a8=12×(28+48)=32 896. (3)由于(1-3x)8=C08+C18×(-3x)+C28×(-3x)2+…+C88×(-3x)8=a0+a1x+a2x2+… +a8x8,
故a0,a2,a4,a6,a8>0,a1,a3,a5,a7<0, ∴|a0|+|a1|+|a2|+…+|a8|=a0-a1+a2-a3+…+a8=48=65 536.
解 令x=1,得: (2×1-1)5=a0+a1+a2+a3+a4+a5, ∴a0+a1+a2+a3+a4+a5=1.
【迁移1】 (变换所求)例2条件不变,求|a0|+|a1|+|a2|+|a3|+|a4|+|a5|. 解 ∵(2x-1)5的展开式中偶数项的系数为负值, ∴|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=a0-a1+a2-a3+a4-a5. 令x=-1,得: [2×(-1)-1]5=-a0+a1-a2+a3-a4+a5, 即a0-a1+a2-a3+a4-a5=-(-3)5=35, ∴|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=35=243.
3.二项展开式项的系数是先增后减的.
(× )
提示 二项式系数是随n的增加先增后减的,二项展开式项的系数和a,b的系
数有关.
[微训练]

高中数学选择性必修二 4 3 2(第1课时)等比数列的前n项和 教案

高中数学选择性必修二 4 3 2(第1课时)等比数列的前n项和 教案

4.3.2(第1课时)等比数列的前n项和教学设计
国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒……依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.
已知一千颗麦粒的质量约为40g,据查,2016——2017年度世界小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.。

新人教版高中数学选修三第二单元《随机变量及其分布》测试题(答案解析)(5)

新人教版高中数学选修三第二单元《随机变量及其分布》测试题(答案解析)(5)

一、选择题1.红外线自动测温门能有效避免测温者与被测温者的近距离接触,降低潜在的病毒感染风险.为防控新冠肺炎,某厂生产的红外线自动测温门,其测量体温误差服从正态分布()20.1,0.3N ,从已经生产出的测温门中随机取出一件,则其测量体温误差在区间()0.4,0.7内的概率为( )(附:若随机变量ξ服从正态分布()2,Nμσ,则()68.27%P μσξμσ-<<+=,()2295.45%P μσξμσ-<<+=)A .31.74%B .27.18%C .13.59%D .4.56%2.假定男女出生率相等,某个家庭有两个小孩,已知该家庭至少有一个女孩,则两个小孩都是女孩的概率是( ) A .12B .13C .14D .163.已知随机变量X 的取值为1,2,3,若()136P X ==,()53E X =,则()D X =( ) A .19 B .39 C .59 D .794.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为4x y +>,事件B 为x y ≠,则概率()|P B A =( )A .45B .56C .1315D .2155.条件:p 将1,2,3,4四个数字随机填入如图四个方格中,每个方格填一个数字,但数字可以重复使用.记方格A 中的数字为1x ,方格B 中的数字为2x ;命题1若p ,则()()1122E x E x =,且()()()1212E x x E x E x +=+;命题2若P ,则()()1124D x D x =,且()()()1212D x x D x D x +=+( )A .命题1是真命题,命题2是假命题B .命题1和命题2都是假命题C .命题1是假命题,命题2是真命题D .命题1和命题2都是真命题6.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A .8225B .12C .38D .347.一个盒子装有4件产品,其中有3件一等品,1件二等品.从中不放回的取两次,每次取出一件.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”.则()|P B A =( )A .34B .13C .23D .128.已知离散型随机变量X 的分布列如下:由此可以得到期望()E X 与方差()D X 分别为( ) A .() 1.4E X =,()0.2D X = B .()0.44E X =,() 1.4D X = C .() 1.4E X =,()0.44D X =D .()0.44E X =,()0.2D X =9.已知某随机变量X 的概率密度函数为0,0,(),0,x x P x e x -≤⎧=⎨>⎩则随机变量X 落在区间(1,3)内在概率为( )A .21e e +B .231e e-C .2e e -D .2e e +10.把一枚骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为( ) A .14B .13C .12D .111.2018年6月18日,是我国的传统节日“端午节”.这天,小明的妈妈煮了5个粽子,其中两个腊肉馅,三个豆沙馅.小明随机抽取出两个粽子,若已知小明取到的两个粽子为同一种馅,则这两个粽子都为腊肉馅的概率为( ) A .14B .34C .110D .31012.已知某次数学考试的成绩服从正态分布2(102,4)N ,则114分以上的成绩所占的百分比为( )(附()0.6826P X μσμσ-<≤+=,(22)0.9544P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<+=≤)A .0.3%B .0.23%C .0.13%D .1.3%二、填空题13.已知随机变量X 服从正态分布()23,N σ,若()130.3P X <≤=,则()5P X ≥=______.14.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是________.15.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率(A |B)P 等于______.16.随机变量ξ的取值为0,1,2,若()104P ξ==,()1E ξ=,则()D ξ=______. 17.已知1 000名考生的某次成绩X 近似服从正态分布2(530,50)N ,则成绩在630分以上的考生人数约为_______.(注:正态总体2(,)N μσ)在区间(,),(2,2),(3,3)μσμσμσμσμσμσ-+-+-+内取值的概率分别为0.683,0.954,0.997) 18.设随机变量()()10,1,910XN P X a ≤<=,其中1419a =⎰,则()11P X ≥=__________.三、解答题19.上饶市正在创建全国文明城市,我们简称创文.全国文明城市是极具价值的无形资产和重要城市品牌.创文期间,将有创文检查人员到学校随机找学生进行提问,被提问者之间回答问题相互独立、互不影响.对每位学生提问时,创文检查人员将从规定的5个问题中随机抽取2个问题进行提问.某日,创文检查人员来到A 校,随机找了三名同学甲、乙、丙进行提问,其中甲只能答对这规定5个问题中的3个,乙能答对其中的4个,而丙能全部答对这5个问题.计一个问题答对加10分,答错不扣分,最终三人得分相加,满分60分,达到50分以上(含50分)时该学校为优秀. (1)求甲、乙两位同学共答对2个问题的概率;(2)设随机变量X 表示甲、乙、丙三位同学共答对的问题总数,求X 的分布列及数学期望,并求出A 校为优秀的概率.20.为迎接2020年国庆节的到来,某电视台举办爱国知识问答竞赛,每个人随机抽取五个问题依次回答,回答每个问题相互独立.若答对一题可以上升两个等级,回答错误可以上升一个等级,最后看哪位选手的等级高即可获胜.甲答对每个问题的概率为13,答错的概率为23. (1)若甲回答完5个问题后,甲上的台阶等级数为X ,求X 的分布列及数学期望; (2)若甲在回答过程中出现在第()2i i ≥个等级的概率为i P ,证明:{}1i i P P --为等比数列.21.某校拟举办“成语大赛”,高一(1)班的甲、乙两名同学在本班参加“成语大赛”选拔测试,在相同的测试条件下,两人5次测试的成绩(单位:分)的茎叶图如图所示.(1)你认为选派谁参赛更好?并说明理由;(2)若从甲、乙两人5次的成绩中各随机抽取1次进行分析,设抽到的2次成绩中,90分以上的次数为X ,求随机变量X 的分布列和数学期望()E X .22.魔方,又叫鲁比克方块,最早是由匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授于1974 年发明的.魔方与华容道、独立钻石棋一起被国外智力专家并称为智力游戏界的三大不可思议,而魔方受欢迎的程度更是智力游戏界的奇迹.通常意义下的魔方,即指三阶魔方,为333⨯⨯的正方体结构,由26个色块组成.常规竞速玩法是将魔方打乱,然后在最短的时间内复原.截至2020年,三阶魔方还原官方世界纪录是由中国的杜宇生在2018年11月24日于芜湖赛打破的纪录,单次3.475秒.(1)某魔方爱好者进行一段时间的魔方还原训练,每天魔方还原的平均速度y (秒) 与训练天数x (天)有关,经统计得到如下数据:x (天)1 234 5 6 7y (秒)99 99 45 323024 21现用y a x=+作为回归方程类型,请利用表中数据,求出该回归方程,并预测该魔方爱好者经过长期训练后最终每天魔方还原的平均速度y 约为多少秒(精确到1) ?参考数据(其中1i iz x =)71i ii z y =∑z72217i i zz =-⨯∑184.50.37 0.55对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线ˆˆˆva u β=+的斜率和截距的最小二乘估计公式分别为:1221ˆˆˆ,ni i i nii u vnuv av u unu ββ==-==--∑∑.(2)现有一个复原好的三阶魔方,白面朝上,只可以扭动最外侧的六个表面.某人按规定将魔方随机扭动两次,每次均顺时针转动90︒,记顶面白色色块的个数为X,求X的分E X.布列及数学期望()23.某市有两家共享单车公司,在市场上分别投放了黄、蓝两种颜色的单车,已知黄、蓝两种颜色单车的投放比例为1:2.监管部门为了解两种颜色单车的质量,决定从市场中随机抽取5辆单车进行体验,若每辆单车被抽取的可能性相同.(1)求抽取的5辆单车中有3辆是蓝色单车的概率;(2)在骑行体验过程中,发现蓝色单车存在一定质量问题,监管部门决定从市场中随机抽取一辆送技术部门作进一步抽样检测并规定若抽到的是蓝色单车,则抽样结束,若抽取的是黄色单车,则将其放回市场中,并继续从市场中随机抽取下一辆单车,并规定抽样的次数最多不超过4次.在抽样结束时,已取到的黄色单车数量用ξ表示,求ξ的分布列及数学期望.24.2020年5月1日起,北京市实行生活垃圾分类,分类标准为厨余垃圾、可回收物、有害垃圾和其它垃圾四类. 生活垃圾中有一部分可以回收利用,回收1吨废纸可再造出0.8吨好纸,降低造纸的污染排放,节省造纸能源消耗.某环保小组调查了北京市房山区某垃圾处理场2020年6月至12月生活垃圾回收情况,其中可回收物中废纸和塑料品的回收量(单位:吨)的折线图如图:(Ⅰ)现从2020年6月至12月中随机选取1个月,求该垃圾处理厂可回收物中废纸和塑料品的回收量均超过4.0吨的概率;(Ⅱ)从2020年6月至12月中任意选取2个月,记X为选取的这2个月中回收的废纸可再造好纸超过3.0吨的月份的个数. 求X的分布列及数学期望;(Ⅲ)假设2021年1月该垃圾处理场可回收物中塑料品的回收量为a吨. 当a为何值时,自2020年6月至2021年1月该垃圾处理场可回收物中塑料品的回收量的方差最小.(只需写出结论,不需证明)(注:方差()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 为1x ,2x ,…… n x 的平均数)25.假设有3箱同种型号零件,里面分别装有50件、30件、40件,而且一等品分别有20件、12件和24件,现在任取一箱,从中不放回地先后取出两个零件,试求:(1)先取出的零件是一等品的概率; (2)两次取出的零件均为一等品的概率.26.为研究一种新药的耐受性,要对白鼠进行连续给药后观察是否出现F 症状的试验,该试验的设计为:对参加试验的每只白鼠每天给药一次,连续给药四天为一个给药周期,试验共进行三个周期.假设每只白鼠给药后当天出现F 症状的概率均为13,且每次给药后是否出现F 症状与上次给药无关.(1)从试验开始,若某只白鼠连续出现2次F 症状即对其终止试验,求一只白鼠至少能参加一个给药周期的概率;(2)若在一个给药周期中某只白鼠至少出现3次F 症状,则在这个给药周期后,对其终止试验,设一只白鼠参加的给药周期数为X ,求X 的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知0.1,0.3μσ==,结合题意得出(0.20.4)68.27%P ξ-<<=,(0.50.7)95.45%P ξ-<<=,再由()(0.50.7)(0.20.4)0.40.72P P P ξξξ-<<--<<<<=,即可得出答案.【详解】由题意可知0.1,0.3μσ==则(0.20.4)68.27%P ξ-<<=,(0.50.7)95.45%P ξ-<<= 即()(0.50.7)(0.20.4)95.45%68.27%0.40.713.59%22P P P ξξξ-<<--<<-<<===故选:C 【点睛】本题主要考查了利用正态分布对称性求概率,属于中档题.2.B解析:B【分析】记事件A 为“至少有一个女孩”,事件B 为“另一个也是女孩”,分别求出A 、B 的结果个数,问题是求在事件A 发生的情况下,事件B 发生的概率,即求(|)P B A ,由条件概率公式求解即可. 【详解】解:一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}.记事件A 为“至少有一个女孩”,事件B 为“另一个也是女孩”,则{A =(男,女),(女,男),(女,女)},{B =(男,女),(女,男),(女,女)},{AB =(女,女)}.于是可知3()4P A =,1()4P AB =. 问题是求在事件A 发生的情况下,事件B 发生的概率,即求(|)P B A ,由条件概率公式,得()114334P B A ==.故选:B . 【点睛】本题的考点是条件概率与独立事件,主要考查条件概率的计算公式:()()()P AB P B A P A =,等可能事件的概率的求解公式:()mP M n=(其中n 为试验的所有结果,m 为基本事件的结果).3.C解析:C 【分析】设(1)P X p ==,(2)P X q ==,则由1(3)6P X ==,5()3E X =,列出方程组,求出p ,q ,即可求得()D X .【详解】设(1)P X p ==,(2)P X q ==,1563()23E X p q =++⨯=——①,又161p q ++=——② 由①②得,12p =,13q =,222111()(1)(25555333(9))2336D X ∴=-+-+-=故选:C. 【点睛】本题考查离散型随机变量的方差的求法,考查离散型随机变量的分布列、数学期望的求法等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.4.C解析:C 【分析】分别得到所有基本事件总数、4x y +>的基本事件个数、满足4x y +>且x y ≠的基本事件个数,根据古典概型概率公式计算可得()P AB 和()P A ;由条件概率公式计算可得结果. 【详解】先后抛掷骰子两次,正面朝上所得点数(),x y 的基本事件共有6636⨯=个 则4x y +≤的有()1,1、()1,2、()2,1、()2,2、()1,3、()3,1,共6个基本事件4x y ∴+>的基本事件共有36630-=个,其中x y =的有()3,3、()4,4、()5,5、()6,6,共4个∴满足4x y +>且x y ≠的基本事件个数为30426-=个()26133618P AB ∴==,()30153618P A == ()()()131318151518P AB P B A P A ∴=== 故选:C【点睛】本题考查条件概率的计算问题,涉及到古典概型概率问题的求解;关键是能够准确计算基本事件总数和满足题意的基本事件的个数.5.D解析:D 【分析】方格A 中的数字为1x ,方格B 中的数字为2x ;由题意可知:所填入的数字1x 与2x 相互独立.再利用数学期望的性质及其方差的性质即可得出. 【详解】方格A 中的数字为1x ,方格B 中的数字为2x ;由题意可知:所填入的数字1x 与2x 相互独立.命题1若p ,则由数学期望的性质可得:()()1122E x E x =,且()()()1212E x x E x E x +=+;命题2若P ,则由方差的性质可得:()()1124D x D x =,且()()()1212D x x D x D x +=+.因此命题1,2都正确. 故选:D. 【点睛】本题考查数学期望的性质及其方差的性质,考查逻辑推理能力和运算求解能力.6.C解析:C 【分析】利用条件概率公式,即可求得结论. 【详解】该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110, ∵设A 事件为下雨,B 事件为刮风,由题意得,P (A )415=,P (AB )110=, 则P (B |A )()()13104815P AB P A ===, 故选C . 【点睛】本题考查概率的计算,考查条件概率,考查学生的计算能力,属于基础题.7.C解析:C 【分析】利用古典概型概率公式计算出()P AB 和()P A ,然后利用条件概率公式可计算出结果. 【详解】事件:AB 前两次取到的都是一等品,由古典概型的概率公式得()232412A P AB A ==,由古典概型的概率公式得()34P A =,由条件概率公式得()()()142233P AB P B A P A ==⨯=, 故选C. 【点睛】本题考查条件概率公式求概率,解题时要弄清楚各事件之间的关系,关键在于灵活利用条件概率公式计算,考查运算求解能力,属于中等题.8.C解析:C 【分析】由离散型随机变量X 的分布列的性质求出x =0.1,由此能求得结果 【详解】由x +4x +5x =1得x =0.1, E(X)=0×0.1+1×0.4+2×0.5=1.4,D(X)=(0-1.4)2×0.1+(1-1.4)2×0.4+(2-1.4)2×0.5=0.44. 故选C 【点睛】本题主要考查了离散型随机变量的分布列的性质,由已知先求出x 的值,然后运用公式求得期望和方差,属于基础题.9.B解析:B 【分析】求概率密度函数在(1,3)的积分,求得概率. 【详解】由随机变量X 的概率密度函数的意义得3233111d xx e P e x ee---==-=⎰,故选B . 【点睛】随机变量X 的概率密度函数在某区间上的定积分就是随机变量X 在这一区间上概率.10.C解析:C 【解析】分析:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,利用古典概型概率公式求出()(),P A P AB 的值,由条件概率公式可得结果. 详解:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,()()31111,62224P A P AB ===⨯=, ()()()114|122P AB P B A P A ===,∴在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为12,故选C. 点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用,同时注意区分独立事件同时发生的概率与条件概率的区别与联系.11.A解析:A 【解析】分析:设事件A =“取到的两个为同一种馅”,事件B =“取到的两个都是腊肉馅”,求出22223241,10101010C C C P A P AB +====(),() ,利用()()|P AB P B A P A =(),可得结论. 详解:设事件A =“取到的两个为同一种馅”,事件B =“取到的两个都是腊肉馅馅”,由题意,22223241,10101010C C C P A P AB +====(),(),()()1|.4P AB P B A P A ∴==() 故选A .点睛:本题考查条件概率,考查学生的计算能力,正确运用公式是关键.12.C解析:C 【解析】分析:先求出u,σ,再根据(33)0.9974P X μσμσ-<≤+=和正态分布曲线求114分以上的成绩所占的百分比.详解:由题得u=102,4,σ=3114.u σ∴+= 因为(33)0.9974P X μσμσ-<≤+=,所以10.9974(114=0.00130.13%2P X ->==). 故答案为C.点睛:(1)本题主要考查正态分布曲线和概率的计算,意在考查学生对这些知识的掌握水平和数形结合思想方法.(2)利用正态分布曲线求概率时,要画图数形结合分析,不要死记硬背公式.二、填空题13.02【分析】根据随机变量X 服从正态分布可知正态曲线的对称轴是利用对称性可得结果【详解】随机变量服X 从正态分布正态曲线的对称轴是故答案为:02【点睛】本题考查了正态分布考查了计算能力属于一般题目解析:0.2 【分析】根据随机变量X 服从正态分布2(3),δN ,可知正态曲线的对称轴是3x =,利用对称性,可得结果. 【详解】随机变量服X 从正态分布2(3),δN ,正态曲线的对称轴是3x =(35)(13)0.3≤<=<≤=P X P X ,(5)0.5(35)0.2>=-≤<=P X P X故答案为:0.2 【点睛】本题考查了正态分布,考查了计算能力,属于一般题目.14.【分析】利用列举法求出已知这个家庭有一个是女孩的条件下基本事件总数n=3这时另一个也是女孩包含的基本事件个数m=1由此能求出已知这个家庭有一个是女孩的条件下这时另一个也是女孩的概率【详解】一个家庭有解析:13【分析】利用列举法求出已知这个家庭有一个是女孩的条件下,基本事件总数n =3,这时另一个也是女孩包含的基本事件个数m =1,由此能求出已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率. 【详解】一个家庭有两个小孩,假设生男生女是等可能的, 基本事件有: {男,男},{男,女},{女,男},{女,女}, 已知这个家庭有一个女孩的条件下,基本事件总数n =3 , 这时另一个也是女孩包含的基本事件个数m =1,∴已知这个家庭有一个女孩的条件下,这时另一个也是女孩的概率是13m p n ==, 故答案为:13【点睛】本题主要考查了条件概率,可以列举在某条件发生的情况下,所有事件的个数及所研究事件的个数,利用古典概型求解,属于中档题.15.【分析】本题利用条件概率公式求解【详解】至少出现一个5点的情况有:至少出现一个5点的情况下三个点数之和等于15有一下两类:①恰好一个5点则另两个点数只能是4和6共有;②恰好出现两个5点则另一个点数也 解析:113【分析】本题利用条件概率公式()(|)()n AB P A B n B =求解. 【详解】至少出现一个5点的情况有:336591-=,至少出现一个5点的情况下,三个点数之和等于15有一下两类:①恰好一个5点,则另两个点数只能是4和6,共有11326C C ⨯=;②恰好出现两个5点,则另一个点数也只能是5点,共有1种情况.()611(|)()9113n AB P A B n B +∴===, 故答案为:113. 【点睛】本题考查条件概率的公式,需要求出基本事件的个数,运用正难则反的思想.16.【分析】根据计算得到再计算得到答案【详解】则;故故答案为:【点睛】本题考查了方差的计算意在考查学生的计算能力 解析:12【分析】根据()()3124P P ξξ=+==,()()()1221P E P ξξξ=+===计算得到 ()()111,224P P ξξ====,再计算()D ξ得到答案.【详解】()104P ξ==,则()()3124P P ξξ=+==;()()()1221P E P ξξξ=+===故()()111,224P P ξξ====.()()()()22211111011214242D ξ=-+-+-=故答案为:12【点睛】本题考查了方差的计算,意在考查学生的计算能力.17.23【分析】根据正态分布的对称性求得成绩在分以上的概率为进而可求得成绩在分以上的考生人数得到答案【详解】由题意某次成绩X 近似服从正态分布即所以在区间的概率为所以成绩在分以上的概率为则成绩在分以上的考解析:23 【分析】根据正态分布的对称性,求得成绩在630分以上的概率为0.023,进而可求得成绩在630分以上的考生人数,得到答案. 【详解】由题意,某次成绩X 近似服从正态分布2(530,50)N ,即530,50μσ==,所以在区间(430,630)的概率为0.954, 所以成绩在630分以上的概率为10.9540.0232-=,则成绩在630分以上的考生人数约为10000.02323⨯=人. 【点睛】本题主要考查了正态分布的性质的应用,以及3σ原则的应用,其中解答中熟记正态分布的对称性,合理应用是解答的关键,着重考查了推理与运算能力,属于基础题.18.【解析】分析:随机变量根据曲线的对称性得到根据概率的性质得到结果详解:由题意所以因为随机变量所以曲线关于对称所以点睛:本题主要考查了正态分布曲线的特点及曲线所表示的意义其中利用正态分布曲线的对称性是解析:16【解析】分析:随机变量()10,1X N ~,根据曲线的对称性得到()()1190.5(910)P X P X P X ≥=≤=-≤<,根据概率的性质得到结果.详解:由题意1144191|3a ===,所以1(910)3P X ≤<=, 因为随机变量()10,1X N ~,所以曲线关于10x =对称, 所以()()11190.5(910)6P X P X P X ≥=≤=-≤<=. 点睛:本题主要考查了正态分布曲线的特点及曲线所表示的意义,其中利用正态分布曲线的对称性是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.三、解答题19.(1)310;(2)分布列见解析,期望值245,3350. 【分析】(1)首先事件甲、乙两位同学共答对2个问题,分为两人各答对1题,或是乙答对2题,再求互斥事件和的概率;(2)由条件可知3,4,5,6X =,再根据随机变量对应的事件,分别求概率,再列出分布列,并计算数学期望,根据分布列,列出该学校为优秀的概率. 【详解】(1)记“甲、乙两位同学共答对2题”为事件A ,则()()111122324124225310C C C C C C P M C ⋅⋅⋅+⋅==(2)由题意可知随机变量X 的可能取值为3、4、5、6,()()211224153251325C C C C P X C ⋅⋅⋅===()()3410P X P M ===()()211211223415324532512525C C C C C C C C P X C ⋅⋅⋅+⋅⋅⋅===()()2223453259650C C C P X C ⋅⋅===所以,随机变量X 的分布列如下表所示:13129243456251025505EX =⨯+⨯+⨯+⨯= A 校为优秀的概率()()1293356255050P X P X =+==+=. 【点睛】关键点点睛:本题的关键是分清随机变量代表的事件,其中容易错的是乙同学会5题中的四个题,所以两个题,至少会一题. 20.(1)分布列答案见解析,数学期望:203;(2)证明见解析. 【分析】(1)首先确定X 的所有可能取值5,6,7,8,9,10X =,根据概率公式分别求出对应发生的概率,列出分布列,即可求出数学期望;(2)根据已知的关系,求出1i P +与i P ,1i P -的关系式112133i i i P P P +-=+,再通过化简和等比数列的定义求解即可. 【详解】解:(1)依题意可得,5,6,7,8,9,10X =,55552232(5)33243P X C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,4445212180(6)53333243P X C ⎛⎫⎛⎫⎛⎫===⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 32352180(7)33243P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()23252140833243P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()4152110933243P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()50511103243P X C ⎛⎫=== ⎪⎝⎭, 则X 的分布列如表所示.()56789102432432432432432433E X =⨯+⨯+⨯+⨯+⨯+⨯=. (2)处于第1i 个等级有两种情况: 由第i 等级到第1i等级,其概率为23i P ; 由第1i -等级到第1i 等级,其概率为113i P -;所以112133i i i P P P +-=+,所以()1113i i i i P P P P +--=--,即1113i i i i P P P P +--=--. 所以数列{}1i i P P --为等比数列. 【点睛】本题考查概率公式、随机变量的分布列及数学期望,考查运算求解能力、数据处理能力,考查数学运算、逻辑推理核心素养.其中第二问解题的关键在于寻找1i P +与i P ,1i P -的关系式,即:()1121233i i i P P P i +-=+≥,进而根据等比数列的定义证明. 21.(1)选派乙参赛更好,理由见解析;(2)分布列见解析,()25E X =. 【分析】(1)计算出甲、乙两人5次测试的成绩的平均分与方差,由此可得出结论;(2)由题意可知,随机变量X 的取值有0、1、2,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,进而可计算得出()E X . 【详解】(1)甲5次测试成绩的平均分为555876889236955x ++++==甲,方差为22222213693693693693695704555876889255555525s ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦甲,乙5次测试成绩的平均分为658287859541455x ++++==乙,方差为22222214144144144144142444658285879555555525s ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦乙,所以,x x <甲乙,22s s >甲乙,因此,选派乙参赛更好;(2)由题意可知,随机变量X 的可能取值有0、1、2,()24160525P X ⎛⎫=== ⎪⎝⎭,()148125525P X ==⨯⨯=,()2112525P X ⎛⎫=== ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:因此,()0122525255E X =⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.22.(1)100ˆ13y x=+,每天魔方还原的平均速度y 约为13秒;(2)分布列见解析,509. 【分析】(1)利用题设中的数据清除y 的平均值,进而可以求出ˆb的值和ˆa 的值,即可求解; (2)写出随机变量X 的可能取值,求出对应的概率,得出分布列,利用期望的公式,即可求解. 【详解】(1)由题意,根据表格中的数据,可得99994532302421507y ++++++==,可得7172217184.570.375055ˆ1000.550.557i ii i i z y z ybz z==-⋅-⨯⨯====-∑∑,所以501000.3713a y bz =-=-⨯=,因此y 关于x 的回归方程为:100ˆ13yx=+, 所以最终每天魔方还原的平均速度y 约为13秒 (2)由题意,可得随机变量X 的取值为3,4,6,9,可得141(3)669A P X ===⨯,1422(4)669A P X ⨯===⨯,()111142241205(6)66369A A A A P X ++====⨯,11221(9)669A A P X ⨯===⨯, 所以X 的分布列为所以()346999999E X =⨯+⨯+⨯+⨯=. 【点睛】求随机变量X 的期望与方差的方法及步骤: 理解随机变量X 的意义,写出X 可能的全部值; 求X 取每个值对应的概率,写出随机变量的分布列; 由期望和方差的计算公式,求得数学期望()(),E X D X ;若随机变量X 的分布列为特殊分布列(如:两点分布、二项分布、超几何分布),可利用特殊分布列的期望和方差的公式求解. 23.(1)80243;(2)分布列答案见解析,数学期望:4081. 【分析】(1)利用独立重复试验的概率公式可求得所求事件的概率;(2)由题可知,随机变量ξ的可能取值有0、1、2、3、4,计算出随机变量ξ在不同取值下的概率,由此可得出随机变量ξ的分布列和期望. 【详解】(1)因为随机地抽取一辆单车是蓝色单车的概率为23,用X 表示“抽取的5辆单车中蓝色单车的个数”,则X 服从二项分布,即2~5,3X B ⎛⎫ ⎪⎝⎭, 所以抽取的5辆单车中有3辆是蓝色单车的概率为3235218033243C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭; (2)随机变量ξ的可能取值为:0、1、2、3、4.()203p ξ==,()1221339p ξ==⨯=,()212223327p ξ⎛⎫==⨯= ⎪⎝⎭, ()312233381p ξ⎛⎫==⨯= ⎪⎝⎭,()4114381p ξ⎛⎫=== ⎪⎝⎭.所以ξ的分布列如下表所示:()012343927818181E ξ=⨯+⨯+⨯+⨯+⨯=.【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率. 24.(Ⅰ)17;(Ⅱ)分布列见解析,67;(Ⅲ) 4.4a =. 【分析】(Ⅰ)这是一个古典概型,共有7个月,该垃圾处理厂可回收物中废纸和塑料品的回收量均超过4.0吨的只有8月份,然后代入公式求解.(Ⅱ)先得到6月至12月回收的废纸可再造好纸超过3.0吨的月份有:7月、8月、10月,共3个月,则X 的所有可能取值为0,1,2,再分别求得相应的概率,列出分布列,再求期望.(Ⅲ)根据添加的新数a 等于原几个数的平均值时,方差最小求解. 【详解】(Ⅰ)记“该垃圾处理厂可回收物中废纸和塑料品的回收量均超过4.0吨”为事件A 由题意,只有8月份的可回收物中废纸和塑料品的回收量均超过4.0吨 所以1()7P A =. (Ⅱ)因为回收利用1吨废纸可再造出0.8吨好纸。

考研数学考试规律与必考题型:高数、线代、概率论

考研数学考试规律与必考题型:高数、线代、概率论

考研数学考试规律与必考题型:高数、线代、概率论一、高等数学的命题规律高等数学是考研数学最灵活的一个模块,并且分值比较高,数一、数三试题占56%,数二试题占78%,因此我们必须引起高度重视。

结合10年真题,求函数极限、一元函数求导数与极值、多元函数求偏导与极值、求不定积分、求定积分、求二重积分都是高频题型,这些常规题型学员一定要非常熟练的掌握。

有这样一句话,正确的理解了极限,高数的学习就成功了一半,同时,它们也是非常重要的考点,平均每年直接考查所占的分值在10分左右,极限的计算有9种方法:四则运算、等价无穷小的替换、洛必达法则、两个重要的极限、单侧极限、单调有界定理、夹逼准则、泰勒定理、定积分的定义(包括二重积分)。

二重积分问题对于数二、数三的考生来说是每年必考的内容,考查的方式理论知识我们都知道的,无外乎就是直角坐标变换、极坐标变换、交换积分次序、利用奇偶性等进行计算,方法固定。

每年的出题点就是变换积分次序和被积函数,考生只需要掌握解决二重积分的计算方法,如果考生细心的话,也会发现,二重积分的计算量还是蛮大的,跨考教育数学教研室田宏老师告诉大家这就需要考生结合一定量的练习解决计算的问题。

微分方程经常以综合题目的形式考查。

微分方程数一、二考查无外乎就是那几种方程的的计算方法、几何应用、物理应用等,而数三考查的就少一点,考查几种简单方程的计算方法与几何应用。

微分方程是数二每年必考的问题,多为几何应用、积分等问题,需要考生分析题干写出方程并求出解。

而幂级数问题则是数三必考的问题,此类问题考查收敛区间、幂级数展开与求和问题,理论知识不难,但是需要考生绝对的细心和耐心,因为计算量真的很大。

对数一来说,三重积分、曲线积分、曲面积分大题肯定是必考的,这一部分是考生不喜欢、头疼的章节,但是,题目虽难,方法就那些,很固定,掌握了方。

高中数学选择性必修二 4 3 等比数列(精讲)(含答案)

高中数学选择性必修二 4 3 等比数列(精讲)(含答案)

4.3 等比数列考点一 等比数列基本量计算【例1】(1)(2020·四川仁寿一中开学考试)在等比数列{}n a 中,126a a +=,33a =,则公比q 的值为( )A .12-B .12-或1 C .-1D .12-或-1 (2)(2020·哈密市第十五中学月考)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16B .8C .4D .2(3)(2020·四川省内江市第六中学开学考试(理))等比数列{}n a 的前n 项和131n n S a -=⋅+,则a =( )A .-1B .3C .-3D .1【答案】(1)B (2)C (3)C【解析】(1)由题意112163a a q a q +=⎧⎨=⎩,解得131a q =⎧⎨=⎩或11212a q =⎧⎪⎨=-⎪⎩.故选:B .【答案】C(2)设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .(3)因为数列是等比数列故满足2213a a a ,111a S a ==+ ,232,6.a a a a ==代入2213a a a 得到 3.a =- 故答案选C .【一隅三反】1.(2020·石嘴山市第三中学月考)已知{}n a 是等比数列,a 1=2,a 4=14,则公比q =( ) A .12-B .-2C .2D .12【答案】D【解析】∵{}n a 是等比数列,∴34111428a q a ===,∴12q =.故选:D .2.(2020·黑龙江工农·鹤岗一中高一期末(文))已知数列{}n a 满足112n n a a +=,若48a =,则1a 等于 A .1 B .2C .64D .128【答案】C【解析】因为数列{}n a 满足112n n a a +=,所以该数列是以12为公比的等比数列,又48a =,所以188a =,即164a =;故选C.3.(2020·合肥市第十一中学高二开学考试)各项都是正数的等比数列{}n a 中,2311,,2a a a 成等差数列,则公比q 的值为( )AB.12CD【答案】B【解析】由题得2231211112,,102a a a a q a a q q q ⨯=+∴=+∴--=,所以q = 因为{}n a 是各项都是正数的等比数列,所以0q >,所以2q =.故选:B4.(2020·全国高二月考(文))已知各项均为正数的等比数列{}n a ,且13213,,22a a a 成等差数列,则4567a a a a ++的值是( ) A . B .16C .D .19【答案】D【解析】各项均为正数的等比数列{}n a 的公比设为q ,则q >0, 由13213,,22a a a 成等差数列,可得31232a a a =+,即211132a q a a q =+, 所以2230q q --=,解得3q =或1q =-(舍),所以34344511565623267111119a a a q a q q q q a a a q a q q q q q q ++++======++++.故选:D. 5.(2020·贵州省思南中学月考)设正项等比数列{}n a 的前n 项和为n S ,10103020102(21)0S S S -++=,则公比q 等于( ) A .12B .13C .14D .2【答案】A【解析】因为10103020102(21)0S S S -++=,所以()()103020201020S S S S ---=所以302010201012S S S S -=-,即102122301011122012a a a q a a a +++==+++ 因为0n a >,所以12q =故选:A 考点二 等比数列中项性质【例2】(1)(2020·自贡市田家炳中学开学考试)等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a +++=( )A .12B .10C .8D .32log 5+(2)(2020·河南高二月考)在等比数列{}n a 中,若1358a a a =,则42a a =( ) A .2B .4C .2±D .4±【答案】(1)B (2)B【解析】(1)由等比数列的性质可得:564756218a a a a a a +==,所以569a a =.1102938479a a a a a a a a ====⋯=则()5313231031103log log log log 5log 910a a a a a +++===故选B.(2)由等比中项的性质可得313538a a a a ==,解得32a =,因此,2224324a a a ===.故选:B.【一隅三反】1.(2020·安徽滁州·期末)在等比数列{}n a 中,315,a a 是方程2680x x -+=的根,则1179a a a = A. B .2 C .1 D .2-【答案】A【解析】由题得3153156,8a a a a +=⎧⎨=⎩所以211798a a a ==,因为3153156080a a a a +=>⎧⎨=>⎩,所以315990,0,0,a a a a >>∴>∴=所以1179a a a==故答案为A 2.(2019·福建高三学业考试)若三个数1,2,m 成等比数列,则实数m =( )A .8B .4C .3D .2【答案】B【解析】因为1,2,m 为等比数列,故212m=即4m =,故选:B. 3.(2020·宁夏二模(理))已知实数1,,9m 成等比数列,则椭圆221x y m+=的离心率为A B .2 C 或2 D .2【答案】A【解析】∵1,m ,9构成一个等比数列,∴m 2=1×9,则m=±3.当m=3时,圆锥曲线2x m +y 2=1;当m=﹣3时,圆锥曲线2x m +y 2=1.故选A . 考点三 等比数列的前n 项和性质【例3】(2020·赣榆智贤中学月考)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12= A .40 B .60 C .32 D .50【答案】B【解析】由等比数列的性质可知,数列S 3,S 6−S 3,S 9−S 6,S 12−S 9是等比数列,即数列4,8,S 9−S 6,S 12−S 9是等比数列,因此S 12=4+8+16+32=60,选B . 【一隅三反】1.(2020·赣榆智贤中学月考)已知{}n a 是各项都为正数的等比数列,n S 是它的前n 项和,若47S =,821S =,则16S =( ) A .48 B .90C .105D .106【答案】C【解析】由等比数列的性质得4841281612,,,S S S S S S S ---成等比数列,所以1216127,14,21,S S S --成等比数列,所以121216162128,49,4956,105S S S S -=∴=∴-=∴=.故选:C2.(2020·渝中·重庆巴蜀中学高一期中)等比数列{} n a 的前n 项和为n S ,若63:3:1S S =,则93:S S =( ) A .4:1 B .6:1C .7:1D .9:1【答案】C【解析】因为数列{} n a 为等比数列,则3S ,63S S -,96S S -成等比数列, 设3S m =,则63S m =,则632S S m-=,故633S S S -=96632S S S S -=-,所以964S S m -=,得到97S m =,所以937S S =.故选:C. 3.(2020·眉山市彭山区第一中学高二开学考试)若等比数列{a n }的前n 项和为S n ,且S 5=10,S 10=30,则S 20=( ) A .80 B .120C .150D .180【答案】C【解析】因为数列{}n a 是等比数列,故可得510515102015,,,S S S S S S S ---依然成等比数列, 因为51010,30S S ==,故可得10520S S -=,故该数列的首项为10,公比为2,故可得()420101215012S-==-.故选:C .4.(2020·运城市景胜中学高二开学考试)设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( )A .12B .24C .30D .32【答案】D【解析】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q qq++=++=++==.故选:D.考点四 等比数列的单调性【例4】(2020·上海市青浦高级中学高一期末)已知数列{}n a 满足156a =,()*11133n n a a n N +=+∈. (1)求证:数列12n a ⎧⎫-⎨⎬⎩⎭是等比数列; (2)求数列{}n a 的通项公式.【答案】(1)证明见解析;(2)1123n na =+. 【解析】(1)()*11133n n a a n N +=+∈,111111111132332362111132222n n n n n n n n a a a a a a a a +⎛⎫-+---⎪⎝⎭∴====----, 因此,数列12n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)由于115112623a -=-=,所以,数列12n a ⎧⎫-⎨⎬⎩⎭是以13为首项,以13为公比的等比数列,111112333n n na -⎛⎫∴-=⨯=⎪⎝⎭,因此,1123n n a =+. 【一隅三反】1.(2020·湖北高一期末)已知{}n a 为等比数列,13527a a a =,246278a a a =,以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是( ) A .4 B .5C .6D .7【答案】A【解析】{}n a 为等比数列,3135327a a a a ==,32464278a a a a ==, 33a ∴=,432a =,4312a q a ∴==,112a =,543·14a a q ==<. 故{}n a 是一个减数列,前4项都大于1,从第五项开始小于1, 以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是4, 故选:A .2.(2020·四川成都·高一期末(文))已知单调递减的等比数列{}n a 中,10a >,则该数列的公比q 的取值范围是( ) A .1q = B .0q < C .1q > D .01q <<【答案】D【解析】因为等比数列{}n a 单调递减,所以0q >,()11111110nn n n n a a a q a qa q q --+-=-=-<,因为10a >,所以()110n q q --<,又因为1n ≥,所以10,10n qq ->-<,所以01q <<,故选:D3.(2020·河北桃城·衡水中学高三月考(理))若{}n a 是公比为(0)q q ≠的等比数列,记n S 为{}n a 的前n 项和,则下列说法正确的是( ) A .若{}n a 是递增数列,则10,0a q << B .若{}n a 是递减数列,则10,01a q ><< C .若0q >,则4652S S S +>D .若1n nb a =,则{}n b 是等比数列 【答案】D【解析】A 选项中,12,3a q ==,满足{}n a 单调递增,故A 错误; B 选项中,11,2a q =-=,满足{}n a 单调递减,故B 错误;C 选项中,若111,2a q ==,则656554,a a S S S S <-<-,故C 错误; D 选项中,111(0)n n n n b a q b a q++==≠,所以{}n b 是等比数列.故D 正确. 故选:D.4.(2020·宁夏兴庆·银川一中期末)设等比数列{}n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论: ①01q <<;②9910110a a ->;③100T 的值是n T 中最大的;④使1n T >成立的最大自然数n 等于198 其中正确的结论是( )A .①③B .①④C .②③D .②④【答案】B 【解析】①9910010a a ->,219711a q ∴>,9821()1q a q ∴>.11a >,0q ∴>.又99100101a a -<-,991a ∴>,且1001a <.01q ∴<<,即①正确;②299101100100·01a a a a ⎧=⎨<<⎩,9910101a a ∴<<,即9910110a a -<,故②错误; ③由于10099100T T a =,而10001a <<,故有10099T T <,故③错误;④中9919812198119821979910099100()()()()1T a a a a a a a a a a a =⋯=⋯=>,199121991199219899101100()()()1T a a a a a a a a a a =⋯=⋯<,故④正确.∴正确的为①④,故选:B .考点五 证明判断等比数列【例5】(2020·黑龙江省哈尔滨市双城区兆麟中学)已知正项数列{}n a 的前n 项和为n S ,若数列13log n a ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是公差为1-的等差数列,且22a +是13,a a 等差中项.(1)证明数列{}n a 等比数列;(2)求数列{}n a 的通项公式.【答案】(1)证明见解析(2)13-=n n a【解析】(1)因为数列13log n a ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是公差为1-的等差数列,所以11133log log 1n n a a +-=-, 故113log 1n n a a +=-,所以13n n a a +=,所以数列{}n a 是公比为3的等比数列.(2)因为22a +是13,a a 的等差中项,所以()21322a a a +=+,所以()1112329a a a +=+,解得11a =,数列{}n a 的通项公式为-13n n a =.【一隅三反】1.(2020·玉龙纳西族自治县田家炳民族中学高一月考)数列0,0,0,...,0,...( )A .既不是等差数列又不是等比数列B .是等比数列但不是等差数列C .既是等差数列又是等比数列D .是等差数列但不是等比数列【答案】D【解析】数列0,0,0,...,0,...是无穷数列,从第二项开始起,每一项与它前一项的差都等于常数0,符合等差数列的定义,所以数列0,0,0,...,0,...是等差数列,根据等比数列的定义可知,等比数列中不含有为0的项,所以数列0,0,0,...,0,...不是等比数列,故选D. 2.(2020·山东省泰安第二中学高三月考)已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( )A .1{}na B .22log ()n a C .1{}n n a a ++ D .12{}n n n a a a ++++【答案】AD 【解析】1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列,1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,由等比数列的定义知1{}n a 和12{}n n n a a a ++++都是等比数列. 故选AD .3.(2020·浙江金华·期中)已知数列{}n a 满足11a =,()121n n na n a +=+.设n n a b n=. (1)证明:数列{}n b 为等比数列; (2)求{}n a 的通项公式.【答案】(1)详见解析;(2)12n n a n -=⋅. 【解析】(1)()121n n na n a +=+,n n a b n =,由条件可得121n n a a n n +=+,即12n n b b +=,又111b a ==, 所以{}n b 是首项为1,公比为2的等比数列. (2)由(1)可得12n n b -=,12n n a n -=,所以12n n a n -=⋅.。

高考数学三选二试题

高考数学三选二试题

2009年高考福建卷21.本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。

作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中(1)(本小题满分7分) 选修4-2:矩阵与变换已知矩阵2311M -⎛⎫=⎪-⎝⎭所对应的线性变换把点A(x , y )变成点A ‘(13 , 5),试求M 的逆矩阵及点A 的坐标(2)(本小题满分7分) 选修4-4:坐标系与参数方程已知直线l :34120x y +-=与圆C :12cos 22sin x y θθ=-+⎧⎨=+⎩ (θ为参数),试判断它们的公共点个数(3)(本小题满分7分) 选修4-5:不等式选讲 解不等式:|21|||1x x -<+2010年高考福建卷21.本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题做答,满分14分。

如果多做,则按所做的前两题计分。

作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。

(1)(本小题满分7分)选修4-2:矩阵与变换 已知矩阵M=11a b ⎛⎫⎪⎝⎭,20c N d ⎛⎫= ⎪⎝⎭,且2020MN ⎛⎫= ⎪-⎝⎭, (Ⅰ)求实数,,,a b c d 的值;(Ⅱ)求直线3y x =在矩阵M 所对应的线性变换下的像的方程。

(2)(本小题满分7分)选修4-4:坐标系与参数方程在直角坐标系xoy 中,直线l的参数方程为3,2x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)。

在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρθ=。

(Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为, 求|PA|+|PB|。

(3)(本小题满分7分)选修4-5:不等式选讲 已知函数()||f x x a =-。

新课程新教材高中数学选择性必修3:二项分布

新课程新教材高中数学选择性必修3:二项分布

均值和方差分别为
n
n
D( X ) ( X k E( X ))2 pk X k 2 pk E( X )2
E( X ) 0 (1 p)2 1 2 p(1 p) 2 p2 2 p , k0
k 0
D( X ) 02 (1 p)2 12 2 p(1 p) 22 p2 (2 p)2 2 p(1 p) 。
3、定义二项分布的:一般地,在 n 重伯努利试验中,设每次试验中事件 A 发生 的概率为 p(0 p 1) ,用 X 表示事件 A 发生的次数,则 X 的分布列为
P( X k) Ckn pk (1 p)nk,k 0,1,…,n.
如果随机变量 X 的分布列具有上式的形式,则称随机变量 X 服从二项分布 (binominal distribution),记作 X B(n, p) 。
(1)当 n 1时, X 服从两点分布,分布列为 P(X 0) 1 p , P(X 1) p ,
均值和方差分别为 E( X ) p , D(X ) p(1 p) 。
(2)当 n 2 时, X 分布列为
P(X 0) (1 p)2 , P(X 1) 2 p(1 p) , P( X 2) p2 ,
则 X B(3, 0.6) 。甲最终获胜的概率为
p1
P(X
2) P(X
3)
C
2 3
0.6
2
0.4
C
3 3
0.6
3
0.648

追问 1 若 3 局 2 胜制,实际比赛中如果谁先赢 2 局就不再比第3 局,这与
二项分布计算中设赛满 3 局矛盾吗?
情形一 情形二 情形三
第1 局 甲赢 甲赢 甲输
第2局 甲赢 甲输 甲赢
它们只包含两个可能结果,要么“发生”要么“不发生”。 1、定义伯努利试验:只包含两种可能结果的试验。

高中数学选择性必修三 专题02二项式定理(含答案)高二数学下学期期中专项复习

高中数学选择性必修三 专题02二项式定理(含答案)高二数学下学期期中专项复习

专题02二项式定理一、单选题1.(2020·吐鲁番市高昌区第二中学高二期末)101x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为( ) A .第5项 B .第5项或第6项 C .第6项D .不存在【答案】C 【详解】解:根据题意,101()x x +展开式中的通项为10102110101()()()r r r rr r T C x C x x--+==, 令1020r -=,可得=5r ;则其常数项为第516+=项; 故选C .2.(2021·全国高二课时练习)在521x x ⎛⎫+- ⎪⎝⎭的展开式中,2x 项的系数为( )A .50-B .30-C .30D .50【答案】B 【详解】521x x ⎛⎫+- ⎪⎝⎭表示5个因式21x x ⎛⎫+- ⎪⎝⎭的乘积,在这5个因式中,有2个因式都选x -,其余的3个因式都选1,相乘可得含2x 的项; 或者有3个因式选x -,有1个因式选1x,1个因式选1,相乘可得含2x 的项, 故2x 项的系数为()231552230C C C +-⋅⋅=-, 故选B .3.(2020·江苏高一期中)二项式43123nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( ) A .8 B .7C .6D .5【答案】B 【详解】由43123nx x ⎛⎫- ⎪⎝⎭得:展开式的通项为471123rn r r n rr n T C x--+⎛⎫=- ⎪⎝⎭, 令470n r -=, 据题意此方程有解,74r n ∴=, 当4r =时,n 最小为7,故选:B.4.(2021·山东济宁市·高三一模)若()52mx m⎫-∈⎪⎭R 的展开式中5x 的系数是80,则实数m =( ) A .2- B .1-C .1D .2【答案】A 【详解】二项式展开式的通项为()()552552215r rrrr r r T C m C mx x--+-=-=,令55522r -=,得3r =, 则()33554580T m C x x =-=,所以()33580m C -=,解得2m =-.故选:A5.(2020·山东枣庄市·高二期末)若()712x ax x ⎛⎫+- ⎪⎝⎭展开式的常数项等于280- ,则a =( )A .3-B .2-C .2D .3【答案】C 【详解】解:71ax x ⎛⎫- ⎪⎝⎭展开式的通项公式为:()()7271771kkkk kk k T C ax C a x x --+⎛⎫=-=- ⎪⎝⎭,所以当3k =时,1x项的系数为:()337C a -, 71ax x ⎛⎫- ⎪⎝⎭的展开式无常数项,所以()712x ax x ⎛⎫+- ⎪⎝⎭展开式的常数项为:()337280C a -=-,解得:2a =故选:C.6.(2021·贵州高三开学考试(理))已知二项式1nx x ⎛⎫- ⎪⎝⎭的展开式中,第二项和第四项的二项式系数相等,则n =( ) A .6 B .5 C .4 D .3【答案】C 【详解】因为二项式展开式中第二项和第四项的二项式系数相等, 所以31n n C C =, 所以4n =, 故选:C7.(2021·湖北黄冈市·高二期末)已知二项式()21nx -的展开式中仅有第4项的二项式系数最大,则展开式中3x 项的系数为( ) A .-80 B .80 C .-160 D .-120【答案】C 【详解】解:因为二项式()21nx -的展开式中仅有第4项的二项式系数最大,所以6n =,所以()621x -的展开式的通项为()()61621rrrr T C x -+=-,令6r 3-=,得3r =,故()()333331621160T C x x +=-=-,故展开式中3x 的系数为160- 故选:C8.(2020·安徽省太和第一中学高二月考(理))已知7280128(2)(1)(1)(1)x x a a x a x a x -=+-+-+⋯⋯+-,则56a a +=( )A .14-B .0C .14D .28-【答案】B 【详解】解:由题知,7280128(2)(1)(1)(1)x x a a x a x a x -=+-+-+⋯⋯+-,且()()77(2)1111x x x x -=-+--⎡⎤⎡⎤⎣⎦⎣⎦,则()()235457711114a C C =⋅-+⋅⋅-=-, ()()126567711114a C C =⋅-+⋅⋅-=,所以5614140a a +=-+=. 故选:B.9.(多选)(2021·全国高三其他模拟)已知7270127(12)x a a x a x a x -=+++⋅⋅⋅+,则( ) A .01a = B .3280a =-C .1272a a a ++⋅⋅⋅+=-D .127277a a a ++⋅⋅⋅+=- 【答案】ABC 【详解】因为7270127(12)x a a x a x a x -=+++⋅⋅⋅+ 令0x =,得01a =,故选项A 正确; 令1x =,得01271a a a a -=+++⋅⋅⋅+, 所以1272a a a ++⋅⋅⋅+=-,故选项C 正确;易知该二项展开式的通项 7177C 1(2)(2)C r r r r r rr T x x -+=-=-,所以3337(2)C 280a =-=-,故选项B 正确;对7270127(12)x a a x a x a x -=+++⋅⋅⋅+两边同时求导,得6612714(12)27x a a x a x --=++⋅⋅⋅+, 令1x =,得1272714a a a ++⋅⋅⋅+=-,故选项D 错误. 故选::ABC10.(多选)(2021·全国高二课时练习)(多选题)若二项式6(x+展开式中的常数项为15,则实数m 的值可能为( ) A .1B .-1C .2D .-2【答案】AB 【详解】二项式6x⎛⎝展开式的通项为,661rr r r C x T -+=3626rr r x m C -=,令3602r -=,得4r =, 常数项为44615C m =,41m =,得1m =±,故答案为±1.故选:AB11.(多选)(2020·江苏宿迁市·宿迁中学高二期中)对于()()N na b n *+∈展开式的二项式系数下列结论正确的是( )A .m n m n n C C -=B .11m m mn n n C C C -++=C .当n 为偶数时,012...2n n n n n n C C C C ++++=D .012...2n nn n n n C C C C ++++= 【答案】ABCD 【详解】解:选项A :由组合数的运算直接可得m n mn n C C -=,故选项A 正确; 选项B :由杨辉三角直接可得11m m mn n n C C C -++=,故选项B 正确;选项C :二项式展开式中,令1a b ==,不论n 为奇数还是偶数,都可得012...2n nn n n n C C C C ++++=,故选项C 正确;选项D :由选项C 可知012...2nnn n n n C C C C ++++=,故选项D 正确. 故选:ABCD12.(多选)(2021·江苏省天一中学高三二模)已知6112a x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则下列结论正确的有( )A .1a =B .展开式中常数项为160C .展开式系数的绝对值的和1458D .若r 为偶数,则展开式中r x 和1r x -的系数相等 【答案】ACD 【详解】对于A , 6112a x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭ 令二项式中的x 为1得到展开式的各项系数和为1a +,12a ∴+=1a ,故A 正确;对于B ,661111212a x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 6611122x x x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,612x x ⎛⎫- ⎪⎝⎭展开式的通项为66621(1)2r r r r r T C x --+=-,当612x x ⎛⎫- ⎪⎝⎭展开式是中常数项为:令620r -=,得3r = 可得展开式中常数项为:33346(1)2160T C =-=-,当6112x x x ⎛⎫- ⎪⎝⎭展开式是中常数项为: 662665261(1)2(1)2r r r r r r r rC xC x x ----=⋅-- 令520r -=,得52r =(舍去) 故6112a x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中常数项为160-.故B 错误; 661111212a x xx x x x ⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭对于C ,求其展开式系数的绝对值的和与61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数的绝对值的和相等 61112xx x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭,令1x =,可得:66111112231458⎛⎫⎛⎫++⨯ ⎪⎪⎝⎭⎝==⎭ ∴61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数的绝对值的和为:1458.故C 正确; 对于D ,66611111222a x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+-=-+- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭612x x ⎛⎫- ⎪⎝⎭展开式的通项为66621(1)2r r r r r T C x --+=-, 当r 为偶数,保证展开式中r x 和1r x -的系数相等 ①2x 和1x 的系数相等,61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数中2x 系数为:622226(1)2C x -- 展开式系数中1x 系数为:622226(1)2C x --此时2x 和1x 的系数相等, ②4x 和3x 的系数相等,61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数中4x 系数为:15146(1)2C x - 展开式系数中3x 系数为:15146(1)2C x -此时4x 和3x 的系数相等, ③6x 和5x 的系数相等,61112x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式系数中6x 系数为:66600(1)2C x -展开式系数中5x 系数为:66600(1)2C x -此时6x 和5x 的系数相等,故D 正确;综上所在,正确的是:ACD 故选:ACD. 二、填空题13.(2020·全国高二课时练习)在如图所示的三角形数阵中,从第3行开始,每一行除1以外,其他每一个数字都是其上一行的左、右两个数字之和.若在此数阵中存在某一行,满足该行中有三个相邻的数字之比为4:5:6,则这一行是第______行(填行数). 第0行 1 第1行 1 1 第2行 1 2 1 第3行 1 3 3 1 第4行 1 4 6 4 1 第5行 1 5 10 10 5 1 第6行 1 6 15 20 15 6 1 【答案】98 【详解】三角形数阵中,第n 行的数由二项式系数(),,kn C k N N k n n ∈∈≤组成,如果第n 行中有1415k n k n C k C n k -==-+,1156kn k n C k C n k ++==-, 那么9445116k n n k -=⎧⎨-=⎩,解得9844n k =⎧⎨=⎩,故答案为:98.14.(2020·湖南高二月考)如图中的杨辉三角最早出现于我国南宋数学家杨辉1261年所著的《详解九章算法》.它有很多奇妙的性质,如除1以外的每个数等于它“肩上”两数之和、揭示了()na b +(n 为非负整数)展开式的项数及各项系数的有关规律等.由此可得图中第7行从左到右数第4个数是______;第n 行的所有数字之和为______.【答案】35 2n 【详解】解:根据除1以外的每个数等于它“肩上”两数之和得第7行从左到右数第4个数是第6行从左到右数第3个与第4个数之和,即152035+=;第n 行的所有数字之和为()na b +的展开式的所有项的二项式系数和2n .。

高中数学选择性必修二 5 3 2 极值与最值(精练)(含答案)

高中数学选择性必修二 5 3 2 极值与最值(精练)(含答案)

5.3.2 极值与最值【题组一 求极值及极值点】1.(2020·北京市第十三中学高三开学考试)设函数()4f x x x=+,则()f x 的极大值点和极小值点分别为( ) A .-2,2 B .2,-2C .5,-3D .-5,3【答案】A【解析】易知函数定义域是{|0}x x ≠,由题意224(2)(2)()1x x f x x x +-'=-=, 当2x <-或2x >时,()0f x '>,当20x -<<或02x <<时,()0f x '<,∴()f x 在(,2)-∞-和(2,)+∞上递增,在(2,0)-和(0,2)上递减,∴极大值点是-2,极小值点是2.故选:A .2.(2020·黑山县黑山中学高二月考)函数()262xf x x x e =-+的极值点所在的区间为( )A .()1,0-B .()0,1C .()1,2D .()2,1--【答案】B【解析】()262xf x x e '=-+,且()f x '为单调函数,∴()12620f e '=-+>,()0620f '=-+<,由()()010f f ''<,故()f x 的极值点所在的区间为()0,1,故选:B.3.(2020·河北新华·石家庄二中高二期末)“2a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】()()x f x x a e =-,则()()1x f x x a e '=-+,令()0f x '=,可得1x a =-.当1x a <-时,()0f x '<;当1x a >-时,()0f x '>. 所以,函数()y f x =在1x a =-处取得极小值.若函数()y f x =在()0,∞+上有极值,则10a ->,1a ∴>.因此,“2a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的充分不必要条件.故选:A.4.(2020·扶风县法门高中高二月考(理))设函数()xf x xe =,则( )A .1x =为()f x 的极大值点B .1x =为()f x 的极小值点C .1x =-为()f x 的极大值点D .1x =-为()f x 的极小值点【答案】D【解析】因为()xf x xe =,所以()()()=+=+1,=0,x=-1x x x f x e xe e x f x 令得''.又()()()()()>0:>-1;<0<-1,--1-1+f x x f x x f x 由得由得:所以在,,在,∞'∞',所以1x =-为()f x 的极小值点.5.(2020·黑龙江让胡路·铁人中学高二期末(理))已知2x =是函数3()32f x x ax =-+的极小值点,那么函数()f x 的极大值为( ) A .15B .16C .17D .18【答案】D【解析】2()33f x x a ='-,又因为2x =是函数3()32f x x ax =-+的极小值点,所以2(2)3230f a =⨯-=',4a =,所以2()312f x x ='-,由2()3120f x x -'==,2x =-或2x =,所以在区间(,2)-∞-上,()0,()f x f x >'单调递增,在区间(2,2)-上,()0,()f x f x <'单调递减,在区间(2,)+∞上,()0,()f x f x >'单调递增,所以函数()f x 的极大值为3(2)(2)12(2)218f -=--⨯-+=,故选D.6.(2020·甘肃省会宁县第四中学高二期末(理))函数()x f x xe -=在[0,4]x ∈上的极大值为( )A .1eB .0C .44e D .22e 【答案】A【解析】由()xf x xe-=可得1()x xf x e-'=当(]0,1x ∈时()0f x '>,()f x 单调递增 当(]1,4x ∈时()0f x '<,()f x 单调递减所以函数()xf x xe-=在[0,4]x ∈上的极大值为()11f e=故选:A 7.(2020·天津一中高二期中)函数f(x)=3x 2+ln x -2x 的极值点的个数是( ) A .0 B .1 C .2 D .无数个【答案】A【解析】()2162162x x f x x x x-+=+='-,由()0f x '=得26210x x -+=,方程无解,因此函数无极值点8.(2020·北京高二期末)已知函数21()ln 2f x x x =-. (Ⅰ)求曲线()f x 在1x =处的切线方程; (Ⅱ)求函数()y f x =的极值.【答案】(Ⅰ)3250x y -+=;(Ⅱ)极小值是11ln 242+,无极大值. 【解析】(Ⅰ)()f x 的定义域是()0,∞+,1()22f x x x'=-, ()()311,12f f ='=,故所求切线斜率32k ,过()1,1的切线方程是:31(1)2y x -=-,即3250x y -+=; (Ⅱ)1(21)(21)()222x x f x x x x+-'=-=, 令()0f x >′,解得:12x >, 令()0f x <′,解得:102x <<, 故()f x 在10,2⎛⎫ ⎪⎝⎭递减,在1,2⎛⎫+∞⎪⎝⎭递增, 故()f x 的极小值是111111ln ln 2242242f ⎛⎫=-=+ ⎪⎝⎭,无极大值. 9.(2019·湖南雨花·高二期末(文))已知函数3()1224f x x x =-+.(1)求函数()f x 的单调区间; (2)求函数()f x 的极值.【答案】(1)单调增区间为:(,2)-∞-和(2,)+∞,单调减区间为:(2,2)-;(2)极大值40,极小值8.【解析】(1)∵3()1224f x x x =-+,∴2()312f x x '=-.令()0f x '=,则2x =-或2,故()f x 的单调增区间为:(,2)-∞-和(2,)+∞,单调减区间为:(2,2)-.(2)由(1)得:当2x =-时,()f x 有极大值40,当2x =时,()f x 有极小值8.10.(2020·林芝市第二高级中学高二期中(理))已知函数32()392f x x x x =-++-,求:(1)函数()y f x =的图象在点(0,(0))f 处的切线方程; (2)()f x 的单调区间及极值.【答案】(1)920x y --=;(2)减区间为(,1]-∞-,[3,)+∞,增区间为(1,3)-;极小值为7-,极大值为25.【解析】(1)显然由题意有,(0)0f =,2()369f x x x '=-++,∴(0)9f '=∴由点斜式可知,切线方程为:920x y --=;(2)由(1)有2()3693(1)(3)f x x x x x '=-++=-+-∴()0f x '<时,(,1]x ∈-∞-或[3,)x ∈+∞()0f x '>时,(1,3)x ∈-∴()f x 的单减区间为(,1]-∞-,[3,)+∞;单增区间为(1,3)-∴()f x 在1x =-处取得极小值(1)7f -=-, ()f x 在3x =处取得极大值(3)25f =.【题组二 求最值点最值】1.(2020·四川内江·高二期末(文))函数2cos y x x =+0,2π⎡⎤⎢⎥⎣⎦上的最大值是( )A .2πB .6πC .2D .1【答案】B【解析】函数()2cos 0,2f x y x x x π⎡⎤==+∈⎢⎥⎣⎦,()'12sin f x x =-, 令()'0f x =,解得6x π=.∴函数()f x 在0,6π⎡⎫⎪⎢⎣⎭内单调递增,在,62ππ⎛⎤ ⎥⎝⎦内单调递减.∴6x π=时函数()f x 取得极大值即最大值.2cos 6666f ππππ⎛⎫=+-=⎪⎝⎭.故选B . 2.(2020·甘肃武威·高三月考(理))已知函数()cos xf x e x x =-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求函数()f x 在区间[0,]2π上的最大值和最小值.【答案】(1)1y =;(2)最大值为1,最小值为2π-. 【解析】(1)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(2)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x xh x x x x x x '=---=-,当π(0,)2x ∈时,()0h x '<,所以()h x 在区间π[0,]2上单调递减,所以对任意π[0,]2x ∈有()(0)0h x h ≤=,即()0f x '≤,所以函数()f x 在区间π[0,]2上单调递减,因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为()22f ππ=-.3.(2020·江苏鼓楼·南京师大附中高三月考)已知函数2()f x alnx bx =-,a ,b R ∈.若()f x 在1x =处与直线12y相切. (1)求a ,b 的值;(2)求()f x 在1[e,]e 上的最大值.【答案】(1)112a b =⎧⎪⎨=⎪⎩;(2)12- . 【解析】(1)函数2()(0)f x alnx bx x =->,()2af x bx x∴'=-, 函数()f x 在1x =处与直线12y相切, ∴(1)201(1)2f a b f b '=-=⎧⎪⎨=-=-⎪⎩,解得112a b =⎧⎪⎨=⎪⎩;(2)21()2f x lnx x =-,21()x f x x-'=,当1x e e 时,令()0f x '>得:11x e<,令()0f x '<,得1x e <,()f x ∴在1[e,1],上单调递增,在[1,]e 上单调递减,所以函数的极大值就是最大值,()max f x f ∴=(1)12=-.4.(2020·安徽庐阳·合肥一中高三月考(文))已知函数f (x )=ax 3+bx +c 在x =2处取得极值为c ﹣16. (1)求a 、b 的值;(2)若f (x )有极大值28,求f (x )在[﹣3,3]上的最大值和最小值. 【答案】(1)1,12a b ==-;(2)最小值为4-,最大值为28.【解析】(1)因3()f x ax bx c =++ ,故2()3f x ax b '=+,由于()f x 在点2x =处取得极值,故有(2)0(2)16f f c ==-'⎧⎨⎩,即1208216a b a b c c +=⎧⎨++=-⎩ ,解得112a b =⎧⎨=-⎩;(2)由(1)知 3()12f x x x c =-+,2()312f x x '=-令()0f x '= ,得122,2x x =-=,当(,2)x ∈-∞-时,()0f x '>故()f x 在(,2)-∞-上为增函数;当(2,2)x ∈- 时,()0f x '< 故()f x 在(2,2)- 上为减函数,当(2,)x ∈+∞ 时()0f x '> ,故()f x 在(2,)+∞ 上为增函数.由此可知()f x 在12x =- 处取得极大值(2)16f c -=+,()f x 在22x = 处取得极小值(2)16f c =-,由题设条件知1628c += ,得12c =,此时(3)921f c -=+=,(3)93f c =-+=,(2)164f c =-=-,因此()f x 上[3,3]-的最小值为(2)4f =-,最大值为28.5.(2020·河南商丘·高三月考(文))已知()322126x mx f x x =--+的一个极值点为2.(1)求函数()f x 的单调区间;(2)求函数()f x 在区间[]22-,上的最值. 【答案】(1)函数()f x 的减区间为()1,2-,增区间为(),1-∞-,()2,+∞;(2)最小值是14-,最大值是13. 【解析】(1)()322126x m x x f x =--+,()26212x mx f x =--'∴,()322126x m x x f x =--+的一个极值点为2,()262221220m f =⨯-⨯-∴=',解得3m =.()3223126f x x x x =-∴-+,()()()26612612f x x x x x '=--=+-,令()0f x '=,得1x =-或2x =;令()0f x '<,得12x -<<;令()0f x '>,得1x <-或2x >; 故函数()f x 的减区间为()1,2-,增区间为(),1-∞-,()2,+∞. (2)由(1)知()3223126x x f x x =--+,()()()612f x x x '=+-,当21x -≤<-时,()0f x '>;当12x -<≤时,()0f x '<;()f x ∴在[]2,1--上为增函数,在(]1,2-上为减函数, 1x ∴=-是()f x 的极大值点,又()22f -=,()113f -=,()214f =-,所以函数()f x 在[]22-,上的最小值是14-,最大值是13. 6.(2020·重庆高二期末)已知()32133=+-f x x ax x (a R ∈)在3x =-处取得极值. (1)求实数a 的值; (2)求()f x 的单调区间;(3)求()f x 在区间[]3,3-上的最大值和最小值.【答案】(1)1;(2)增区间为(),3-∞-,()1,+∞,减区间为()3,1-;(3)最大值为9,最小值为53-. 【解析】(1)()223=+-'f x x ax ,由于()f x 在3x =-处取得极值,故(3)0f '-=,解得1a =,经检验,当1a =时,()f x 在3x =-处取得极值,故1a =.(2)由(1)得()32133f x x x x =+-,()223f x x x '=+-,由()0f x '>得1x >或3x <-;由()0f x '<得31x -<<.故()f x 的单调增区间为(),3-∞-,()1,+∞,单减区间为()3,1-.(3)由(2)得函数()f x 的极大值为()39f -=,得函数()f x 的极小值为()513f =-,又()39f =,所以函数()f x 在区间[]3,3-上的最大值为9,最小值为53-. 【题组三 已知极值及最值求参数】1.(2020·湖南其他(理))已知函数2(3))(x f x ae x a R =-∈,若[0,2]x ∈时,()f x 在0x =处取得最大值,则a 的取值范围为( )A .0a ≤B .212a e ≥C .6a e <D .2126a e e << 【答案】A 【解析】∵6()6()x x x x f x ae x e a e '=-=-,令6()x x g x e=, ∴6(1)()x x g x e-'=,∴1x <时()0g x '>,()g x 在(,1)-∞单调递增; ∴1x >时()0g x '<,()g x 在()1,+∞单调递减.如图,∴max (1)6)(g g x e ==, ∴当6a e ≥时,60x x a e-≥,∴()0f x '≥,()f x 在R 上单调递增,不成立; 当0a ≤时,()f x 在[0,2]上单调增减,成立; 当60a e <<时,60x x a e-=有两个根1x ,()2120x x x <<, ∵当1x x <时,60x x a e->,()0f x '>; 当12x x x <<时,60x x a e -<,()0f x '<; 当2x x >时,60x x a e->,()0f x '>, ∴()f x 在1[0,]x ,2[,)x +∞上单调递增,在12[,]x x 上单调递减,显然不成立.综上,0a ≤.故选:A2.(2020·河南郑州·高三月考(文))已知函数()323362f x x a x ax ⎛⎫=-++ ⎪⎝⎭,若()f x 在()1,-+∞上既有极大值,又有最小值,且最小值为132a -,则a 的取值范围为( ) A .11,62⎛⎫- ⎪⎝⎭ B .11,26--⎛⎫ ⎪⎝⎭ C .11,26⎛⎤-- ⎥⎝⎦ D .11,22⎛⎫- ⎪⎝⎭ 【答案】C 【解析】()()()()23636361f x x a x a x a x '=-++=--的零点为2a 和1,因为()1132f a =-,所以1是函数的极小值即最小值点, 则2a 是函数的极大值点,所以121a -<<,且()1132f a -≥-, 解得1126a -<≤-.故选:C.3.(2020·广东高二期末(理))函数3()3f x x x =-在[0,]m 上最大值为2,最小值为0,则实数m 取值范围为( )A .[1B .[1,)+∞C .(1D .(1,)+∞【答案】A【解析】. 3()3f x x x =-,2()333(1)(1)f x x x x ∴=-=+-',令()0f x '=,则1x =或1-(舍负),当01x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减.函数()f x 在[0,]m 上最大值为2,最小值为0,且(0)0f f ==,f (1)2=,1m ∴≤≤.故选:A.4.(2020·贵州遵义·高三其他(文))若函数321()53f x x ax x =-+-无极值点则实数a 的取值范围是( )A .(1,1)-B .[1,1]-C .(,1)(1,)-∞-+∞D .(,1][1,)-∞-+∞【答案】B 【解析】321()53f x x ax x =-+-, 2()21f x x ax '∴=-+,由函数321()53f x x ax x =-+-无极值点知, ()0f x '=至多1个实数根,2(2)40a ∴∆=--≤,解得11a -≤≤,实数a 的取值范围是[1,1]-,故选:B5.(2020·四川省绵阳江油中学高二开学考试(理))函数()2xy x e =-+m 在[0,2]上的最小值是2-e ,则最大值是( )A .1B .2C .3D .4【答案】B【解析】'(2)(1)x x x y e x e x e =+-=-, 因为[0,2]x ∈,所以当[0,1)x ∈时,'0y <,当(1,2]x ∈时,'0y >,所以函数在[0,1)上单调递减,在(1,2]上单调递增,所以函数在1x =处取得最小值,根据题意有2e m e -+=-,所以2m =,当0x =时,220y =-+=,当2x =时,y 022=+=,所以其最大值是2,故选:B.6.(2020·四川省绵阳江油中学高二月考(理))函数()33f x x ax a =--在()0,1内有最小值,则a 的取值范围为( )A .01a ≤<B .01a <<C .11a -<<D .102a << 【答案】B【解析】∵函数f (x )=x 3﹣3ax ﹣a 在(0,1)内有最小值,∴f′(x )=3x 2﹣3a=3(x 2﹣a ),①若a≤0,可得f′(x )≥0,f (x )在(0,1)上单调递增,f (x )在x=0处取得最小值,显然不可能,②若a >0,f′(x )=0解得当x f (x )为增函数,0<xf (x )在所以极小值点应该在(0,1)内,符合要求.综上所述,a 的取值范围为(0,1)故答案为B7.(2020·黑龙江高二期中(理))已知函数()()22ln f x ax a x x =-++ (1)若1a =,求函数()f x 的极值;(2)当0a >时,若()f x 在区间[]1,e 上的最小值为-2,求a 的取值范围.【答案】(1) 函数()f x 的极大值为5ln 24--函数()f x 的极小值为2- (2) [)1,+∞ 【解析】(1)1a =,()23ln f x x x x =-+,定义域为()0,+∞,又()123f x x x =-+'= ()()2211231x x x x x x---+=. 当1x >或102x <<时()0f x '>;当112x <<时()0f x '< ∴函数()f x 的极大值为15ln224f ⎛⎫=--⎪⎝⎭ 函数()f x 的极小值为()12f =-.(2)函数()()22ln f x ax a x x =-++的定义域为()0,+∞, 且()()122f x ax a x =-++'= ()()()2221211ax a x x ax x x-++--=, 令()0f x '=,得12x =或1x a=, 当101a<≤,即1a ≥时,()f x 在[]1,e 上单调递增, ∴()f x 在[]1,e 上的最小值是()12f =-,符号题意; 当11e a <<时,()f x 在[]1,e 上的最小值是()112f f a ⎛⎫<=- ⎪⎝⎭,不合题意;当1e a≥时,()f x 在[]1,e 上单调递减, ∴()f x 在[]1,e 上的最小值是()()12f e f <=-,不合题意故a 的取值范围为[)1,+∞ 8.(2020·北京八中高二期末)已知函数22()(24)ln f x x ax x x =-+.(1)当1a =时,求函数()f x 在[1,)+∞上的最小值;(2)若函数()f x 在[1,)+∞上的最小值为1,求实数a 的取值范围;(3)若1a e>,讨论函数()f x 在[1,)+∞上的零点个数. 【答案】(1)1;(2)(,1]-∞;(3)答案见解析.【解析】(1)当1a =时,22()(24)ln ,f x x x x x =-+ ()(44)ln 2424(1)(ln 1)f x x x x x x x '=-+-+=-+,因为[1,)x ∈+∞,所以()0f x '≥,所以()f x 为单调递增函数,所以min ()(1)1f x f ==.(2)()(44)ln 2424()(ln 1)f x x a x x a x x a x '=-+-+=-+,[1,)x ∈+∞,当1a ≤时,()0f x '≥,所以()f x 为单调递增函数,min ()(1)1f x f ==,符合题意;当1a >时,在[1,)a 上,()0,()f x f x '<单调递减,在(,)a +∞上,()0,()f x f x '>单调递增,所以min ()()f x f a =,因为()11f =,故()()11f a f <=,与()f x 的最小值为1矛盾.故实数a 的取值范围为(,1].-∞(3)由(2)可知,当11a e<≤时,在[1,)+∞上,()f x 为单调递增函数,min ()1f x =, 此时函数()f x 的零点个数为0;当1a >时,22min ()()2ln f x f a a a a ==-+,令22()2ln ,(1,)g x x x x x =-+∈+∞,则()4ln 224ln 0g x x x x x ax x '=--+=-<,函数()g x 单调递减,令22()2ln 0g x x x x =-+=,解得12x e =, 所以当12(1,)x e ∈,()0>g x ,x e =,()0g x =,12(,)x e ∈+∞,()0<g x , 所以当12(1,)a e ∈时,min ()0f x >,此时函数()f x 在[1,)+∞上的零点个数为0; 当12a e =时,()0min f x =,此时函数()f x 在[1,)+∞上的零点个数为1; 12min (,),()0a e f x ∈+∞<,又()110f =>,故()f x 在()1,a 存在一个零点, ()2240f a a =>,故()f x 在(),2a a 存在一个零点,此时函数()f x 在[1,)+∞上的零点个数为2. 综上,可得121(,)a e e∈时,函数()f x 在[1,)+∞上的零点个数为0; 12a e =时,函数()f x 在[1,+∞)上的零点个数为1; 12(,)a e ∈+∞,函数()f x 在()0f x '>上的零点个数为2.9.(2020·广东禅城·佛山一中高二月考)已知函数()ln x f x a x e =-;()1讨论()f x 的极值点的个数;()2若2a =,求证:()0f x <.【答案】(1)当a≤0时,f (x )无极值点;当a >0时,函数y=f (x )有一个极大值点,无极小值点;(2)见解析【解析】(1)根据题意可得,()(0)xx a a xe f x e x x x-='-=>, 当0a ≤时,0f x ,函数()y f x =是减函数,无极值点;当0a >时,令0f x ,得0x a xe -=,即x xe a =,又x y xe a =-在0,上存在一解,不妨设为0x , 所以函数()y f x =在()00,x 上是单调递增的,在()0,x +∞上是单调递减的.所以函数()y f x =有一个极大值点,无极小值点;总之:当0a ≤时,无极值点;当0a >时,函数()y f x =有一个极大值点,无极小值点.(2)()2ln xf x x e =-,()2(0)xxe f x x x '-=>, 由(1)可知()f x 有极大值()0f x ,且0x 满足002x x e=①, 又x y xe =在0,上是增函数,且02e <<,所以()00,1x ∈,又知:()()000max 2ln x f x f x x e ==-,② 由①可得002x e x =,代入②得()()00max 022ln f x f x x x ==-,令()22ln g x x x =-,则()()2221220x g x x x x+=+=>'恒成立, 所以()g x 在0,1上是增函数,所以()()0120g x g <=-<,即()00g x <,所以()0f x <.10.(2020·四川达州·高二期末(理))已知a R ∈,函数()ln f x x a x =-,()212g x x ax =-. (1)讨论()f x 的单调性; (2)记函数()()()h x g x f x =-,求()h x 在1,12⎡⎤⎢⎥⎣⎦上的最小值. 【答案】(1)答案见解析;(2)答案见解析.【解析】(1)()()ln 0f x x a x x =->,则()1a x a f x x x'-=-=. 当0a ≤时,当()0,x ∈+∞时,()0f x '>,函数()y f x =单调递增; 当0a >时,当(),x a ∈+∞时,()0f x '>,函数()y f x =单调递增, 当()0,x a ∈时,()0f x '<,函数()y f x =单调递减.综上所述,当0a ≤时,函数()y f x =的单调递增区间为()0,∞+;当0a >时,函数()y f x =的单调递减区间为()0,a ,单调递增区间为(),a +∞; (2)()()()21ln 2h x g x f x x ax x a x =-=--+,1,12x ⎡⎤∈⎢⎥⎣⎦, ()()()()2111x a x a x a x a h x x a x x x -++--'=--+==.①当1a ≥时,对任意的1,12x ⎛⎫∈ ⎪⎝⎭,()0h x '>,函数()y h x =单调递增, 所以,函数()y h x =在1,12⎡⎤⎢⎥⎣⎦上的最小值为()min 13ln 2282a h x h a ⎛⎫==--- ⎪⎝⎭; ②若12a ≤,对任意的1,12x ⎛⎫∈ ⎪⎝⎭,()0h x '<,函数()y h x =单调递减, 所以,函数()y h x =在1,12⎡⎤⎢⎥⎣⎦上的最小值为()()min 112h x h a ==--; ③若112a <<时,当1,2x a ⎛⎫∈ ⎪⎝⎭时,()0h x '>,函数()y h x =单调递增, 当(),1x a ∈时,()0h x '<,函数()y h x =单调递减, 又因为13ln 2282a h a ⎛⎫=--- ⎪⎝⎭,()112h a =--, ()13111ln 2ln 2282282a a h h a a a ⎛⎫⎛⎫⎛⎫-=------=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (i )当1ln 2082a a +-≥时,即当1128ln 24a <≤-时,()112h h ⎛⎫≥ ⎪⎝⎭, 此时,函数()y h x =在区间1,12⎡⎤⎢⎥⎣⎦上的最小值为()()min 112h x h a ==--; (ii )当1ln 2082a a +-<时,即当118ln 24a <<-时,()112h h ⎛⎫< ⎪⎝⎭. 此时,函数()y h x =在区间1,12⎡⎤⎢⎥⎣⎦上的最小值为()min 13ln 2282a h x h a ⎛⎫==---⎪⎝⎭.综上所述,()min 31ln 2,828ln 2411,28ln 24a a a h x a a ⎧--->⎪⎪-=⎨⎪--≤⎪-⎩. 11.(2020·四川省绵阳江油中学高二期中(文))已知函数232()(1)f x a x a x x b =-+++在1x =处取得极小值1.(1)求()f x 的解析式;(2)求()f x 在[0,2]上的最值.【答案】(1)32()21f x x x x =-++(2)最小值为1,最大值为3. 【解析】(1)22()32(1)1f x a x a x '=-++, 由2(1)321(1)(31)0f a a a a '=--=-+=,得1a =或13a =-. 当1a =时,2()341(1)(31)f x x x x x '=-+=--,则()f x 在1(,),(1,)3-∞+∞上单调递增,在1(,1)3上单调递减,符合题意,由(1)1211f b =-++=,得1b =; 当13a =-时,214(1)(3)()1333x x f x x x '--=-+=,则()f x 在(,1),(3,)-∞+∞上单调递增,在(1,3)上单调递减,()f x 在1x =处取得极大值,不符合题意.所以32()21f x x x x =-++. (2)由(1)知()f x 在1[0,),(1,2]3上单调递增,在1(,1)3上单调递减, 因为131(0)(1)1,(),(2)3327f f f f ====,所以()f x 的最小值为1,最大值为3. 12.(2020·扶风县法门高中高二月考(理))已知函数2()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+.(1)求,a b 的值;(2)讨论()f x 的单调性,并求()f x 的极大值.【答案】(1)4a b ==;(2)见解析.【解析】(1)()()24x x e ax b f a x =++--'.由已知得()04f =,()04f '=.故4b =,8a b +=.从而4a =,4b =.(2)由(1)知,()()2414x f x e x x x =+--,()()()14224422x x f x e x x x e ⎛⎫=+--=+- ⎝'⎪⎭. 令()0f x '=得,ln2x =-或2x =-.从而当()(),2ln 2,x ∈-∞--+∞时,()0f x '>;当()2,ln 2x ∈--时,()0f x '<.故()f x 在(),2-∞-,()ln 2,-+∞上单调递增,在()2,ln 2--上单调递减. 当2x =-时,函数()f x 取得极大值,极大值为()()2241f e --=-.。

中国科学技术大学数学科学学院2015年直博生摸底考试试题( SDU 版)

中国科学技术大学数学科学学院2015年直博生摸底考试试题( SDU 版)
2. A 为 n × n 复矩阵且不可对角化. 证: 存在矩阵 B 使得 AB = BA 且 Bn = 0. 3. A 为 n × n 复矩阵, 且有 n 个两两不同特征值, 对于
A : Mn(C) → Mn(C) X → AX − XA.
证: A 可对角化, 且求出 A 的秩.
复变函数 (三选二)
− 1) 收敛
⇔ {an} 有界.
3. (1) 对任给的实数 x 以及正整数 N : N > 1, 则存在整数 p, q : 0 < q < N, 使得
|qx −
p|
<
1 N
.
(2)

x
为q
>
0),
使得
x

p q
<
1 q2
.
线性代数 (三选二)
1. V 为一个有限维空间,U,W 为 V 的子空间. 证: 存在 V 的一组基 B, 使得 B ∩ W 为 W 的一组基, B ∩ U 为 U 的一组基.
1.
(n ∈ N+),

∂|z|n . ∂z
2.
证明或否定:
sin z zp
在 C\{0} 上有原函数 ⇔
p 为奇数.

3. 证明或否定: ∑ sin(zn) 在单位圆内绝对且内闭一致收敛. n=1
1
中国科学技术大学数学科学学院 2015 年直博生摸底考试试题 ( SDU 版)
2609480070@ 2015 年 4 月 25 日
数学分析 (三选二)
1.

1
+
1 sin
x
dx,
∫∫ √ 1 − x2 − 4y2 dxdy.

高中数学选择性必修三 6 3 2 二项式系数的性质

高中数学选择性必修三 6 3 2 二项式系数的性质

+a4+a5+a6等于
A.4
B.-71
√C.64
D.199
解析 ∵(2-x)6=a0+a1(1+x)+a2(1+x)2+…+a6(1+x)6, 令x=0,∴a0+a1+a2+a3+a4+a5+a6=26=64.
12345
4.x-1x10的展开式的各项系数的和为__0__.
12345
5.(2x-1)6的展开式中各项系数的和为__1__;各项的二项式系数的和 为__6_4__. 解析 令x=1,得各项系数的和为1; 各二项式系数之和为26=64.
即Cnm=_C_nn-_m_
增减性 与最 大值
增减性:当k<n+1 时,二项式系数是逐渐增大的;当k> n+1 时,二项式系
2
2
n
数是逐渐 减小的 .最大值:当n为偶数时,中间一项的二项式系数_C__n2_最大;
n1
n1
当n为奇数时,中间两项的二项式系数__C_n_2__,___C_n_2__相等,且同时取得
12345
课堂小结
KE TANG XIAO JIE
1.知识清单: (1)二项式系数的性质. (2)赋值法求各项系数的和. 2.方法归纳:一般与特殊、函数与方程. 3.常见误区:赋值时应注意展开式中项的形式,杜绝漏项.
4 课时对点练
PART FOUR
基础巩固
1.在(a+b)n的二项展开式中,与第k项的二项式系数相同的项是
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
6.若(x+3y)n的展开式中各项系数的和等于(7a+b)10的展开式中二项式 系数的和,则n的值为___5__. 解析 (7a+b)10 的展开式中二项式系数的和为 C010+C110+…+C1100=210, 令(x+3y)n中x=y=1, 则由题设知,4n=210,即22n=210,解得n=5.

2023年新高考II卷数学真题(解析版)

2023年新高考II卷数学真题(解析版)

1 q
故选:C.
方法二:设等比数列an 的公比为 q ,
因为 S4 5, S6 21S2 ,所以 q 1,否则 S4 0 ,
从而, S2, S4 S2, S6 S4, S8 S6 成等比数列,
所以有, 5
S2
2
S2
21S2
5 ,解得:
S2
1 或
S2
5 4

当 S2 1时, S2, S4 S2, S6 S4, S8 S6 ,即为 1, 4, 16, S8 21,
A. bc 0
B. ab 0
C. b2 8ac 0
).
D. ac 0
【答案】BCD 【解析】
【分析】求出函数 f (x) 的导数 f (x) ,由已知可得 f (x) 在 (0, ) 上有两个变号零点,转化为一元二次方
程有两个不等的正根判断作答.
【详解】函数
f
(x)
a ln
x
b xc x2Fra bibliotekA. 该圆锥的体积为 π
B. 该圆锥的侧面积为 4 3π
C. AC 2 2
D. △PAC 的面积为 3
【答案】AC 【解析】 【分析】根据圆锥的体积、侧面积判断 A、B 选项的正确性,利用二面角的知识判断 C、D 选项的正确性.
【详解】依题意, APB 120, PA 2 ,所以 OP 1,OA OB 3 ,
B. MN 8 3
D. OMN 为等腰三角形
【分析】先求得焦点坐标,从而求得 p ,根据弦长公式求得 MN ,根据圆与等腰三角形的知识确定正确答
案.
【详解】A 选项:直线 y 3 x 1 过点 1, 0 ,所以抛物线 C : y2 2 px p 0 的焦点 F 1, 0 ,

新课程新教材高中数学选择性必修3:二项分布1

新课程新教材高中数学选择性必修3:二项分布1

——二项分布
二项分布: X ~ B(n, p). 则 X 的分布列为
事件A发生的概率
事件 A发生的概率
P( X k) Cnk pk (1 p)nk , k 0,1, 2, , n.
事件A发生的次数 试验总次数
深圳市第七高级中学 傅世宁
X
0
1
P Cn0 p0 (1 p)n Cn1 p1(1 p)n1
(3)一批产品的次品率为 5 0 0 ,有放回地随机抽取 20 件.
随机试验
(1) (2) (3)
是否为n重伯 努利试验
是 是 是
伯努利试验
抛掷一枚质地均匀的硬币 该飞碟运动员射击一次
从一批产品中随机抽取一件
P(A)
0.5 0.8 0.95
重复试验的次数
10 3 20
——n重伯努利试验 思考2
下面 3 个随机试验是否为 n 重伯努利试验?如果是,那么其中的伯努利试验是什么?对于每个试验,
由由分分步步乘乘法法计计数数原原理理,可,知33次,次独3独次立立独重重立复复重 试试验复验共试共有验有共232有=338=28种3 种可可8能种能结可结果能果,结,它果它们,们两它两互们互斥两,斥两每,互个每斥结个,果结都果是都3是个3相个相
每 互独个立结事果事件都件的是的积积3 .个.由由相概概互率率独的的立加加事法法件公公的式式积和和.乘由乘法概法公率公式的式得加得法公式和乘法公式得
探究1
某飞碟运动员每次射击中靶的概率为 0.8.连续 3 次射击,中靶次数 X 的概率分 布列是怎样的?
由为分了步简乘法化计表数示原,理每,次3射次击独用立1重表复示试中验靶共,有用230=表8 种示可脱能靶结,果那,么它3们次两射互击斥恰,好每个2 次结果中都靶是 3 个相 互的独所立有事可件能的积结.果由可概表率示的为加1法1公0,式10和1,乘01法1公,这式得三个结果发生的概率都相等,均为 0.82 0.2 ,

人教版七年级数学上册.2数轴(1)

人教版七年级数学上册.2数轴(1)
度.如右图所示.
知识要点2 用数轴上的点表示有理数
数轴上点的表示:一般地,设a是一个正数,则数 轴上表示数a的点在原点的 右 边,与原点的距离 是 a 个单位长度;表示数-a的点在原点的 左 边, 与原点的距离是 a 个单位长度. 有理数与数轴上点的对应关系:任何一个 有理 数 都可以用数轴上唯一的一个点来表示, 但是反过 来不成立,即数轴上的点并不都表示有理数(以后 会学到).
易错提醒:(1)数轴上点的移动:若没有明确移动 方向,要分向左或向右两种情况解答;(2)已知两 点间的距离求数轴上的点:若没有明确两点的位 置关系,需分另一点在已知点的左侧或右侧两种 情况解答.如距离原点2个单位长度的点所表示 的数是 2和-2 .
例 数轴上的点A表示的数是+2,那么与点A相距 5个单位长度的点表示的数是( D ) A.5 B.±5 C.7 D.7或-3
分析:此题没有明确所求点在点A的哪一侧,故 需分要求的点在已知点A的左侧和右侧两种情况 进行讨论.
方法点拨:解答此类问题要注意考虑两种情况, 即要求的点在已知点的左侧或右侧.另外,点 在数轴上移动时也要分向左、向右两种情况.
快速对答案
1D 2B 3C 4B
提示:点击 进入习题
5 1或-5
6
详细答案 点击题序
4.如果数轴上点 A 表示-2,点 B 表示 1,那么离 原点较近的点是点 B . 5.数轴上点 P 表示的数为-2,若将点 P 在数轴上 移动 3 个单位长度,则所得到的点表示的数 为 1或-5 .
6.(教材 P9 练习 T2 变式)画出数轴并表示下列有理 数:
4,-3,-1.5,-2 3 ,0,2.5. 4
知识要点1 数轴的概念及画法
数轴
内容
注意点

高中数学选择性必修二 5 3 2 函数的极值与最大(小)值新导学案

高中数学选择性必修二 5 3 2 函数的极值与最大(小)值新导学案

5.3.2 函数的极值与最大(小)值(2)导学案1.了解函数最大(小)值的概念以及与函数极值的区别与联系;2.掌握求函数最值的方法及其应用;3.体会数形结合、化归转化的数学思想.重点:求函数最值的方法及其综合应用难点:函数最大(小)值的概念以及与函数极值的区别与联系1.求函数y=f(x)的极值的一般方法:解方程f '(x) = 0.当 f '(x) = 0 时:如果在x0附近的左侧f '(x)>0,右侧f '(x)<0 ,那么f (x) 为极大值;如果在x0附近的左侧f '(x)<0,右侧f '(x)>0 ,那么f (x) 为极小值;2.求函数f (x)在闭区间[a,b]上的最值的步骤(1)求函数y=f (x)在区间(a,b)上的____;(2)将函数y=f (x)的______与____处的函数值f (a),f (b)比较,其中最大的一个是______,最小的一个是______.极值;各极值;端点;最大值;最小值1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间[a,b]上的最大值和最小值,一定在区间端点处取得.()(2)开区间上的单调连续函数无最值.( )(3)在定义域内,若函数有最值与极值,则极大(小值就是最大(小)值.()(4)若函数y=f (x)在区间[a,b]上连续,则一定有最值;若可导,则最值点为极值点或区间端点.()一、新知探究我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质。

也就是说,如果x0是函数y=f(x)的极大(小)值点,那么在x=x附近找不到比f (x)更大的值,但是,在解决实际问题或研究函数性质时,我们往往更关注函数在某个区间上,哪个值最大,哪个值最小,如果x0是某个区间上函数y=f(x)的最大(小)值点,那么f (x)不小(大)于函数y=f(x)在此区间上所有的函数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学:三选二(公共基础部分)
September17,2016
分析
一、求
I=
Z2
1
a+cosÂ
dÂ;a>1:
二、设复变函数f(z)为整函数,且存在正整数n以及常数R>0;M>0,使得当j z j>R时,
有j f(z)jÄM j z j n.试证明:f(z)是一个至多n次的多项式或一常数.
三、陈述Lebesgue控制收敛定理并证明
lim n!+1Z1
ln(x+n)
n
e x cos x d x=0:
四、陈述开映射定理并证明:设k k1和k k2是线性空间X上的两种范数,且使得(X;k k1)
和(X;k k2)都是完备的.若存在常数a>0使得对任意x2X,有k x k2Äa k x k1,则一定存在常数b>0,使得对任意x2X,有k x k1Äb k x k2.
代数
一、设a和b是群G的元素,阶数分别为m和n,(m;n)=1且ab=ba.证明ab的阶为
mn.
二、设S n是f1;2; ;n g上的n次对称群.证明:
1)S=f j 2S n; (1)=1g是S n的子群;
2)f(1);(1;2);(1;3); ;(1;n)g组成S在S n中的一个左陪集代表元素.
三、设群G作用在集合X上.记n为X在G作用下的轨道个数,对任意a2X,记
Ωa=f ga j g2G g是a所在的轨道,Ga=f g2G j ga=a g为a的固定子群.对任意g2G,记f(g)为X在g作用下的不动点个数.证明:
1)b2Ωa,Ωa=Ωb;
2)对任意g2G,有G ga=gG a g 1;
3)P g2G f(g)=n j G j.
四、设R;S是环,f:R!S是环的同态.证明同态核ker f是环R的理想,并且映射
F:R/ker f!S
r!f(r)
是环的单同态,特别地:F:R/ker f!Im f是环的同构.
五、证明多项式x2+x+1与x3+x+1在Z2上不可约,并求出有限域Z2上的全部三次不
可约多项式.
几何拓扑
一、在实数集R上定义一个拓扑,使其包含(0;2)与(1;3),且包含尽可能少的开集.
二、设X是一个拓扑空间,A与B是X的子集,A与B分别为A与B的闭包.证明若
A B,则A B.
三、设f X n g是具有标准拓扑的实数集R中的数列,其中x n=( 1)n n.
1)证明每个含0的邻域都包含某个开区间( a;a);
2)对任意的a>0,存在N2Z+,使得当n N时,有x n2( a;a).
四、求E3中曲线r(t)=(a cos t;a sin t;bt)的曲率和挠率,其中a和b是不为0的常数.
五、求E3中曲面r(u;v)=(u cos v;u sin v;v)的高斯曲率和平均曲率.。

相关文档
最新文档