高等数学第23讲讲义
高等数学精简讲义(pdf版)
f ''(0) + 1 6
f '''(η2 )
两式相减: f '''(η1 ) + f '''(η2 ) = 6
∃ξ
∈[η1,η2 ],∋
f
'''(ξ )
=
1[ 2
f
'''(η1) +
f
'''(η2 )] =
3
13. e < a < b < e2 ,求证: ln 2 b − ln 2 a > 4 (b − a) e2
三、补充习题(作业)
1. lim e x −1 − x = −3 (洛必达) x−>0 1 − x − cos x
2. lim ctgx( 1 − 1 )
x−>0
sin x x
∫x x e−t2 dt
3. lim x−>0
0
1− e−x2
=1
(洛必达或 Taylor) (洛必达与微积分性质)
第二讲 导数、微分及其应用
二、题型与解法 A.极限的求法
(1)用定义求 (2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法 (5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法 (7)洛必达法则与 Taylor 级数法 (8)其他(微积分性质,数列与级数的性质)
1. lim x−>0
证: f (x) = f (0) + f '(0)x + 1 f ''(0)x2 + 1 f '''(η)x3
23高数切片讲义第5章课后习题与答案
第五章 二重积分【基础练习题44】1. 根据二重积分的性质,比较下列积分的大小 (1)2d Dx y 与 3d Dx y ,其中积分区域D 是由x 轴、y 轴与直线1x y 所围成; (2)2d Dx y 与 3d Dx y ,其中积分区域D 是由圆周 22212x y 所围成; (3)ln d Dx y 与 2ln d Dx y,其中积分区域D 是三角形闭区域,三个顶点分别为 1,0,1,1,2,0; (4)ln d Dx y 与 2ln d Dx y,其中 ,35,01.D x y x y2.设1D I,222cos()d DI x y ,2223cos()d DI x y, 其中22(,)1D x y x y ,则 ( )(A )123I I I . (B )321I I I . (C )312I I I .(D )213I I I .【基础练习题44解析】1.【解析】(1)在积分区域D 上,01x y ,故有32()()x y x y . 故32d d DDx y x y . (2)由于积分区域D 位于半平面(,)1x y x y 内,故在D 上有23()()x y x y . 从而23d d DDx y x y . (3)由于积分区域D 位于条形区域(,)12x y x y 内,故知区域D 上的点满足0ln()1x y ,从而有2[ln()]ln()x y x y . 因此高等数学切片课后习题23高数切片讲义第3章课后习题与答案2ln d ln d DDx y x y. (4)由于积分区域D 位于半平面(,)e x y x y 内,故在D 上有ln()1x y ,从而2[ln()]ln()x y x y. 因此 2ln d ln d DDx y x y. 2.【答案】A.【解析】当221x y 时,有222220()1x y x y又cos x 在 0,1上为减函数,故有22222cos()cos x y x y且等号仅在部分点成立,由二重积分的比较性质知,321.I I I【基础练习题45】1. 画出积分区域,并计算下列二重积分:(1)D ,其中D 是由两条抛物线y 2y x 所围成的闭区域;(2)2d Dxy,其中D 是由圆周224x y 及y 轴所围成的右半闭区域; (3)e d x y D,其中(,) 1D x y x y ; (4)22()d D xy x ,其中D 是由直线2,y y x 及2y x 所围成的闭区域.2. 改换下列二次积分的积分次序: (1)10d (,)d yy f x y x;(2)2220d (,)d yy y f x y x;(3)10d (,)d y f x y x ; (4)212d (,)d x x f x y y ;(5)11d (,)d xx f x y y;(6)sin 0sin2d (,)d xxx f x y y.【基础练习题45解析】1.【解析】(1)D 可用不等式表示为2x y 01x (如图1).于是,237111424000226d d ()d .3355Dx x x y x y x x x x(2)D 可用不等式表示为0x 22y (如图2).故,22222222164d d d (4)d .215Dxy y y x x y y y图1 图2 (3)如图3,12D D D ,其中12(,)11,10,(,) 11,01.D x y x y x x D x y x y x x因此,12e d e d e d x y x y x yDD D 0111111e d e d e d e d x x x y x y x x x y x y1211211(ee )d (e e )d x x x x1e e . (4):,022yD x y y (如图4),故 2222202()d d ()d yy Dx y x y x y x x32222d 32yy x x y x y232019313d 2486y y y.图3 图4 2.【解析】(1)所给二次积分等于二重积分(,)d Df x y ,其中 (,)0,01D x y x y y .D 可改写为 (,)1,01x y x y x (如图5),于是 原式110d (,)d xx f x y y.(2)所给二次积分等于二重积分(,)d Df x y ,其中 2(,)2 ,D x y yx y02y .又D可表示为(,)42x x y y x(如图6),因此原式42d (,)d x x f x y y.图5 图6 (3)所给二次积分等于二重积分(,)d Df x y ,其中(,)1D x y x y.又D可表示为(,)011x y y x (如图7), 因此原式11d (,)d x f x y y.(4)所给二次积分等于二重积分(,)d Df x y,其中(,)2D x y x y12x . 又D可表示为(,)211x y y x y (如图8),故原式1102d (,)d yy f x y x.图7 图8 (5)111101d (,)d d (,)d d (,)d .xyxx f x y y x f x y y y f x y x【注】原二次积分11d (,)d xx f x y y中对y 的积分上限小于下限,不符合累次积分转化规则,需要线添加负号互换上下限. (6)如图9,将积分区域D 表示为12D D ,其中12(,)arcsin arcsin ,01,(,)2arcsin ,10.D x y y x y y D x y y x y于是,原式1arcsin 00arcsin 12arcsin d (,)d d (,)d yyyy f x y x y f x y x.图9【基础练习题46】1. 把下列积分化为极坐标形式,并计算积分值: (1)222d )d ax x y y; (2)0d a x y;(3)211222d ()d x xx x y y; (4)220d )d ay x y x .2. 选用适当的坐标计算下列各题: (1)22d Dx y,其中D 是由直线2,x y x 及曲线1xy 所围成的闭区域; (2)D,其中D 是由圆周221x y 及坐标轴所围成的第一象限内的闭区域; (3)22()d Dx y ,其中D 是由直线,,,3 (0)y x y x a y a y a a 所围成的闭区域.3. 作适当变换,计算下列二重积分: (1)22sin d d Dx y x y x y ,其中D 是平行四边形闭区域,它的四个顶点是π,0,2π,π,π,2π,0,π;(2)22d d Dx y x y ,其中D 是由两条双曲线1xy 和2xy 与两条直线y x 和4y x 所围成的在第一象限内的闭区域.【基础练习题46解析】1.【解析】(1)积分区域D 如图1所示. 在极坐标系中,(,)02cos ,02D a,于是,2cos 42cos 2220444420d d d 43134cos d 4.4224a a aa a原式(2)如图2,在极坐标系中,(,) 0sec ,04D a.图1 图2 于是,原式3sec 3440d d sec d 3a a340sec tan ln(sec tan )6a31)]6a . (3)积分区域D 如图3所示. 在极坐标系中,抛物线2y x 的方程是22sin cos ,即tan sec ;射线 (0)y x x 的方程是4,故 (,)0tan sec , 04D.图3于是tan sec44401d d tan sec d sec 1.原式(4)积分区域(,)0(,)0, 02D x y x y a a,故42420d d 248aa a原式.2.【解析】(1)D 如图4所示,根据D 的形状,选用直角坐标较宜,1(,) ,12D x y y x x x,故22223122119d d d ()d 4x x Dx x x y x x x y y.图4(2)根据积分区域D 的形状和被积函数的特点,选用极坐标为宜,(,)01,02D,故200d d d d D原式23111000d 221124011)2241201arcsin 22(2)8. (3)D 如图5所示. 选用直角坐标为宜. 又根据D 的边界曲线的情况,宜采用先对x 、后对y 的积分次序. 于是3332222224()d d ()d 2d 14.3a yaa y aaDa xy y x y x ay a y y a图53.【解析】(1)令,u x y v x y ,则,22u v v ux y. 在这变换下,D 的边界x y ,x y ,x y ,3x y 依次与u ,v ,u ,3v对应. 后者构成uOv 平面上D 对应的闭区域D 的边界,于是(,),3D u v u v (如图6).图6又 11(,)12211(,)222x y J u v , 因此2222223341()sin ()d d sin d d 21d sin d 21sin 2.23243D D x y x y x y u v u v u u v v u v v(2)令,yu xy v x,则x y . 在这变换下,D 的边界1xy ,y x , 2,4xy y x 依次与1,1,2,4u v u v 对应,后者构成uOv 平面上与D对应的闭区域D 的边界. 于是(,),4D u v u v (如图7).图7又(,)1111(,)42x y J u v v v v. 因此242222111117d d d d d d ln 2.223DD x y x y u u v u u v v v【基础练习题47】1.设222222322111d ,cos sin d ,e 1d ,xy x y x y x y M x y N x y P则必有( ) (A ) M N P . (B ) N M P . (C ) M N P . (D ) N P M .2. 设区域D 为222x y R ,则22d d Dx x y a .3. 设22(,)1D x y x y ,则2()d d Dx y x y . 4. 已知22,2D x y xy y ,计算二重积分32d d Dx y x y .5. 已知 ,,,1D x y y x y x x,计算二重积分esin d d xDy x y .6. 已知区域D 为圆224x y 在第一象限所围的部分,计算二重积分d d Dxx y x y .7. 求二重积分 22121e d d x y Dy x x y的值,其中D 是由直线,1y x y ,1x 围成的平面区域.8. 设区域22(,)1,0D x y x y x ,计算二重积分221d d 1Dxyx y x y . 【基础练习题47解析】1.【答案】(B ).【解析】因为 3322333x y x x y xy y ,函数3223,3,3,x x y xy y 分别是关于,,,x y x y 的奇函数,又积分区域1x y 关于x 轴、y 轴对称,故31d 0.x y M x y又22cos sin x y 在积分区域221x y 上大于0,且不恒为0;22e1x y 在积分区域221x y 上小于0,由二重积分的比较性质知2222222211cos sin d 0,e1d 0.x y x y x y N x y P故 N M P ,(B )正确.2.【答案】42π4R a .【解析】 【法1】直接利用极坐标计算2422322201d d cos d d 4RDx R x y r r a a a.【法2】由于积分区域D 关于y x 对称知222222222π222220044221d d d d d d 211d d d d 221π2π.244D DD R D x y x y x y x y x y a a a a x y x y r r r a a R R a a3.【答案】π4. 【解析】22()d d d d d d DDDx y x y x x y y x y ,因为积分区域D 关于x 轴对称,被积函数y 为关于y 的奇函数,故d d 0.Dy x y又积分区域D 关于y x 对称,故由轮换对称性知,222222π12001()d d d d d d d d 21πd d .24DDDDx y x y x x y y x y x y x y r r r4.【解析】因为积分区域D 关于y 轴对称,被积函数32x y 为关于x 的奇函数,故32d d 0.Dx y x y 5.【解析】因为积分区域D 关于x 轴对称,被积函数e sin xy 为关于y 的奇函数,故e sin d d 0.x Dy x y 6.【解析】因为积分区域D 关于y x 对称,故由轮换对称性知,21d d d d d d 2111ππd d 2.22242D DD D Dx y x y x y x y x y x y x y x y x y x y S7.【解析】如图,积分区域D 可拆分为12,D D ,其中1D 关于y 轴对称,2D 关于x 轴对称.又2121222211221e d d d d e d d ,x y x D D y D D D y x x y y x y xy x y 积分函数y 为关于y 的奇函数,关于x 的偶函数,而积分函数2212ex y xy 为关于,x y 的奇函数,由对称性知,12210210211e d d d d d d 22d .3y x y y D D y x x y y x y y y x y y8.【解析】因为22222211d d d d d d ,111D D Dxy xyx y x y x y x y x y x y 又积分区域D 关于x 轴对称,由对称性知,22d d 0,1Dxyx y x y 故 π12π202211220022221d d 11d 1πln22πln 1π.12211d d d d 11D Dr r xy x y x y x r y x y r r r。
(完整版)高等数学工专讲义
接下来我们就开始学习高等数学了,或许在学习的过程中我们会感觉乏味无味,可是我相信只需我们努力,我们必定能达到成功的此岸。
常量与变量变量的定义我们在察看某一现象的过程时,常常会碰到各样不一样的量,此中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是能够取不一样的数值,我们则把其称之为变量。
注:在过程中还有一种量,它固然是变化的,可是它的变化相对于所研究的对象是极其细小的,我们则把它看作常量。
变量的表示假如变量的变化是连续的,则常用区间来表示其变化范围。
在数轴上来说,区间是指介于某两点之间的线段上点的全体。
区间的名区间的知足的不等式区间的记号区间在数轴上的表示称闭区间a≤x≤b[a , b]开区间a< x< b(a,b)半开区间a<x≤b或 a≤x< b ( a, b] 或 [a , b)以上我们所述的都是有限区间,除此以外,还有无穷区间:[a ,+∞) :表示不小于 a 的实数的全体,也可记为:a≤x<+∞;(- ∞, b) :表示小于 b 的实数的全体,也可记为:- ∞< x< b;(- ∞, +∞) :表示全体实数,也可记为:- ∞< x<+∞注:此中 - ∞和 +∞,分别读作" 负无量大 " 和 " 正无量大 ", 它们不是数 , 只是是记号。
邻域设α与δ是两个实数,且δ> 0. 知足不等式│x - α│<δ的实数x的全体称为点α的δ 邻域,点α 称为此邻域的中心,δ称为此邻域的半径。
函数函数的定义假如当变量x 在其变化范围内随意取定一个数值时,量y 依据必定的法例总有确立的数值与它对应,则称y 是 x 的函数。
变量 x 的变化范围叫做这个函数的定义域。
往常x叫做自变量, y 叫做因变量。
注:为了表示y 是 x 的函数,我们用记号y=f(x)、y=F(x)等等来表示. 这里的字母"f" 、"F" 表示 y 与 x 之间的对应法例即函数关系,它们是能够随意采纳不一样的字母来表示的.注:假如自变量在定义域内任取一个确立的值时,函数只有一个确立的值和它对应,这类函数叫做单值函数,不然叫做多值函数。
(完整word版)高等数学辅导讲义.doc
第一部分函数极限连续函数、极限、连续函数极限连续函数概念函数的四种反函数与复初等函数数列极限函数极限连续概念间断点分类初等函数的连闭区间上连续特征合函数续性函数的性质函数的有界数列极限的函数极限的第一类间断有界性与最大性定义定义点值最小值定理函数的单调收敛数列的函数极限的可去间断点零点定理性性质性质函数的奇偶极限的唯一函数极限的跳跃间断点性性唯一性函数的周期收敛数列的函数极限的第二类间断性有界性局部有界性点收敛数列的函数极限的保号性局部保号性数列极限四函数极限与数则运算法则列极限的关系极限存在准函数极限四则则运算法则夹逼准则两个重要极限单调有界准无穷小的比则较高阶无穷小低阶无穷小同阶无穷小等价无穷小历年试题分类统计及考点分布考点复合函数极限四则两个重要单调有界无穷小的合计运算法则极限准则阶年份19871988 5 3 8 19891990 3 3 6 1991 5 3 8 1992 3 3 1993 5 3 8 1994 3 3 1995 3 3 1996 3 6 3 12 1997 3 3 199819992000 5 5 200120022003 4 4 8 2004 4 4 20052006 12 3 15 2007 4 4 2008 4 4 2009 4 4 2010 4 4 2011 10 10 20 合计8 18 37 32 27本部分常见的题型1.求分段函数的复合函数。
2.求数列极限和函数极限。
3.讨论函数连续性,并判断间断点类型。
4.确定方程在给定区间上有无实根。
一、 求分段函数的复合函数 例 1 (1988, 5 分) 设 f (x)e x2, f [ (x)]1 x 且 ( x) 0 求 (x) 及其定义,域。
解: 由 f (x) e x 2知 f [ ( x)] e2( x)1x ,又 (x) 0 ,则 ( x)ln(1 x), x 0 .例 2 (1990, 3 分) 设函数 f ( x)1, x1则 f [ f ( x)]10, x 1, .1, x1,练习题 : (1)设f (x)0, x1, g ( x)e x , 求f [ g( x)] 和 g[ f (x)] , 并作出这1, x 1,两个函数的图形。
高数学习资料含讲义及全部内容
第一章 函数与极限函数和极限都是高等数学中最重要、最基本的概念,极值方法是最基本的方法,一切内容都将从这二者开始。
§1、 函 数一、集合、常量与变量1、集合:集合是具有某种特定性质的事物所组成的全体。
通常用大写字母A 、B 、C ……等来表示,组成集合的各个事物称为该集合的元素。
若事物a 是集合M 的一个元素,就记a ∈M (读a 属于M );若事物a 不是集合M 的一个元素,就记a ∉M 或a ∈M (读a 不属于M );集合有时也简称为集。
注 1:若一集合只有有限个元素,就称为有限集;否则称为无限集。
2:集合的表示方法:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧===+++======等。
中在点;为我校的学生;须有此性质。
如:中的元素必中,且,即:有此性质的必在所具有的某种性质合可表示为:,那么该集若知其元素有某种性质不到元素规律的集合,、列不出全体元素或找为全体偶数集;,,,然数集,为全体自,,,写出,如:元素的规律,也可类似、对无限集,若知道其;鸡一只猫,一只狗,一只的方法来表示,如:可用列举出其全体元素、若集合为有限集,就枚举法}),(),{(}{}0375{}{)(}642{}321{)(}{},10,,3,2,1{)(23D y x y x C x x B x x x x A A A x x A iii B A ii B A i ΛΛΛΛΛΛ 3:全体自然数集记为N,全体整数的集合记为Z,全体有理数的集合记为Q,全体实数的集合记为R 。
以后不特别说明的情况下考虑的集合均为数集。
4:集合间的基本关系:若集合A 的元素都是集合B 的元素,即若有A x ∈,必有B x ∈,就称A 为B 的子集,记为B A ⊂,或A B ⊃(读B 包含A)。
显然:R Q Z N ⊂⊂⊂.若B A ⊂,同时A B ⊂,就称A 、B 相等,记为A=B 。
5:当集合中的元素重复时,重复的元素只算一次.如:{1,2,2,3}={1,2,3}。
高等数学讲义及答案
专题二 导数与微分........................................................................................ 11
一、导数................................................................................................................................. 11 1、函数在一点的导数.................................................................................................... 11 2、导函数........................................................................................................................ 12 3、高阶导数.................................................................................................................... 13 4、可导与连续................................................................................................................ 13
《高等数学讲义》(上、下册)--目录 樊映川等编
第一篇解析几何《高等数学讲义》 (上、下册) -- 目录第五章极坐标樊映川等编12.平面束的方程第一章行列式及线性方程组1.二阶行列式和二元线性方程组2.三阶行列式3.三阶行列式的主要性质4.行列式的按行按列展开5.三元线性方程组6.齐次线性方程组7.高阶行列式概念第二章平面上的直角坐标曲线及其方程1.轴和轴上的线段2.直线上点的坐标数轴3.平面数的点的笛卡儿直角坐标4.坐标变换问题5.两点间的距离6.线段的定比分点7.平面上曲线方程的概念8.两曲线的交点第三章直线与二元一次方程1.过定点有定斜率的直线方程2.直线的斜截式方程3.直线的两点式方程4.直线的截距式方程5.直线的一般方程6.两直线的交角7.直线平息及两直线垂直的条件8.点到直线的距离9.直线束第四章圆锥曲线与二元一次方程1.圆的一般方程2.椭圆及其标准方程3.椭圆形状的讨论4.双曲线及其标准方程5.双曲线形状的讨论6.抛物线及其标准方程7.抛物线形状的讨论8.椭圆及双曲线的准线9.利用轴的平移简化二次方程10.利用轴的旋转简化二次方程11.一般二元二次方程的简化1.极坐标的概念2.极坐标与直角的关系3.曲线的极坐标方程4.圆锥曲线的极坐标方才第六章参数方程1.参数方程的概念2.曲线的参数方程3.参数方程的作图法第七章控件直角坐标与矢量代数1.间点的直角坐标2.基本问题3.矢量的概念矢径4.矢量的加减法5.矢量与数量的乘法6.矢量在轴上的投影投影定理7.矢量的分解与矢量的坐标8.矢量的模矢量的方向余弦与方向数9.两矢量的数量积10.两矢量的夹角11.两矢量的矢量积12.矢量的混合积第八章曲面方程与曲线方程1.曲面方程的概念2.球面方程3.母线平行于坐标的柱面方程二次柱面4.控件曲线作为两曲面的交线5.空间曲线的参数方程6.空间曲线在坐标面上的投影第九章空间的平面于曲线1.过一点并已知一法线矢量的平面方程2.平面的一般方程的研究3.平面的截距式方程4.点到平面的距离5.两平面的夹角6.直线作为两平面的交线7.直线的方程8.两直线的夹角9.直线与平面的夹角10.直线与平面的交点11.杂例第十章二次曲面1.旋转曲面2.椭秋面3.单叶双曲面4.双叶双曲面5.椭圆抛物面6.双曲抛物面7.二次锥面第二篇第一章函数及其图形1.实数与数轴2.区间3.实数的绝对值邻域4.常量与变量5.函数概念6.函数的表示法7.函数的几种特性8.反函数概念9.基本初等函数的图形10.复合函数初等函数第二章数列的极限及函数的极限1.数列及其简单性质2.数列的极限3.函数的极限4.无穷大无穷小5.关于无穷小的定理6.极限的四则运算7.极限存在的准则两个重要极限8.双曲函数9.无穷小的比较第三章函数的连续性1.函数连续性的定义2.函数的间断点3.闭区间上连续函数的基本性质4.连续函数的和积及商的连续性5.反函数与复合函数的连续性6.初等函数的连续性第四章导数及微分1.几个物力学上的概念2.导数概念3.导数的几何意义4.求导数的例题导数的基本公式表5.函数的和积商的导数6.反函数的导数7.复合函数的导数8.高阶导数9.参数方程所确定的函数的导数10.微分概念11.微分的求法微分形式不变性12.微分应用与近似计算及误差的估计第五章中值定理1.中值定理2.罗必塔法则3.泰勒公式第六章导数的应用1.函数的单调增减性的判定法2.函数的极值及其求法3.最大值及最小值的求法4.曲线的凹性及其判定法5.曲线的拐点及其求法6.曲线的渐进线7.函数图形的描绘方法8.弧微分曲率9.曲率半径曲率中心10.方程的近似解第七章不定积分1.原函数与不定积分的概念2.不定积分的性质3.基本积分表4.换元积分法5.分步积分法6.有理函数的分解7.有理函数的积分8.三角函数的有理式的积分9.简单无理函数的积分10.二项微分式的积分11.关于积分问题的一些补充说明第八章定积分1.曲边梯形的面积变力所作的功2.定积分的概念3.定积分的简单性质中值定理4.牛顿-莱布尼兹公式5.用换元法计算定积分6.用分部积分法计算定积分7.定积分的近似公式8.广义积分第九章定积分的应用1.平面图形的面积2.体积3.曲线的弧长4.定积分在物力力学上的应用第十章级数I. 常数项级数1.无穷级数概念2.无穷级数的基本性质收敛的必要条件3. 正项级数收敛性的充分判定法4.任意项级数绝对收敛5.广义积分的收敛性6.T- 函数II. 函数项级数7.函数项级数的一般概念8.一致收敛及一致收敛级数的基本性质III 幂级数9.幂级数的收敛半径10.幂级数的运算11.泰勒级数12.初等函数的展开式13.泰勒级数在近似计算上的应用14.复变量的指数函数欧拉公式第十一章傅立叶级数1.三角级数三角函数系的正交性2.欧拉-傅立叶公式3.傅立叶级数4.偶函数及奇函数的傅立叶级数5.函数展开为正弦和余弦级数6.任意区间上的傅立叶级数第十二章多元函数的微分法及其应用1.一般概念2.二元函数的极限及连续性3.偏导数4.全增量及全微分5.方向导数6.复合函数的微分法7.隐函数及其微分法8.空间曲线的切线及法平面9.曲面的切平面及法线10.高阶偏导数11.二元函数的泰勒公式12.多元函数的极值13.条件极值--拉格朗日乘数法则第十三章重积分1.体积问题二重积分2.二重积分的简单性质中值定理3.二重积分计算法4.利用极坐标计算二重积分5.三重积分及其计算法6.柱面坐标和球面坐标7.曲面的面积8.重积分在静力学中的应用第十四章曲线积分及曲面积分1.对坐标的曲线积分2.对弧长的曲线积分3.格林公式4.曲线积分与路线无关的条件5.曲面积分6.奥斯特罗格拉特斯公式第十五章微分方程1.一般概念2.变量可分离的微分方程3.齐次微分方程4.一阶线性方程5.全微分方程6.高阶微分方程的几个特殊类型7.线性微分方程解的结构8.常系数齐次线性方程9.常系数非齐次线性方程10.欧拉方程11.幂级数解法举例12.常系数线性微分方程组。
微积分学PPt标准课件23-第23讲微积分的基本公式
确定的I定 bf(积 x)dx分 与值 之 . 对应 a 这意f(味 x)的 着 定b积 f(x)d分 x与它的上 a
之间存在一种函数关系.
固定积分 ,让 下 积 限 分 不 ,上 则 变 限 得变 到
分上限函数:
x
x
F ( x ) a f( x ) d x a f( t) d tx [ a ,b ] .
x
x
由夹逼 x的 定 任 ,即 理 意 F 可 及 (x)性 C 得 (点 a [,b ].)
编辑ppt
8
定理1说明: 定义在区[a间 ,b]上的 积分上限函数是连 . 续的
积分上限函数是否可导?
编辑ppt
9
由 F (x x ) F (x )x xf( t)d t, x
如果 f(x)C(a [,b])则 , 由积分,中 得值定
F ( x ) F ( x x ) F ( x )
x x
x
x x
a f( t) d t a f( t) d t x f( t) d t
又 f( x ) R (a ,[ b ]故 )f ,( x )在 [ a ,b ]上|f有 ( x )| M .界
于 0 | F ( 是 x ) | |x x f ( t ) d t | x x |f ( t ) |d t M x
所以,我们只需讨论积分上限函数.
bf (t)dt 称为积分下限函 . 数 x
编辑ppt
7
定理 1 若 f ( x ) R ( a , b [ ]则 ) F ( x , ) x f ( t ) d t C ( a , b [ ] .) a 证 x [ a , b ] ,且 x x [ a , b ] ,则
了解利用建立递推关系式求积分的方法.
2022考研高等数学强化讲义(重点题型解析)
2022考研高等数学强化讲义第一章函数极限连续重点题型一函数的性态【类型一与方法】有界性的判定例1下列函数无界的是 1(A )f x x x ()sin ,(0,)x =∈+∞1(B )f x x x ()sin ,(0,)x =∈+∞ 11(C )f x x ()sin ,(0,)x x =∈+∞x 0sin t(D )f x dt x (),(0,2022)t=∈∫【详解】【类型二与方法】导函数与原函数的奇偶性与周期性例2【2002,数二】设函数f x ()连续,则下列函数中,必为偶函数的是2x0()f t dt (A )∫x20()f t dt (B )∫x[0()()t f t f t dt −−](C )∫x [0()()t f t f t dt +−](D )∫【详解】重点题型二极限的概念例3【2003,数一、数二】设{a n },{b n },{c n }均为非负数列,且lim →∞a n =0n ,lim →∞b n =1n , →∞c n =∞n lim , 则必有(A )a n <b n 对任意n 成立(B )b n <c n 对任意n 成立→∞a n c n (C )极限n lim 不存在→∞b nc n (D )极限n lim 不存在【详解】例4【2014,数三】设lim →∞a a n =,且a ≠0,则当n n 充分大时有(A ) 2a a n >(B )2aa n <(C )a a n >−n 1【详解(D )a a n <+n 1】x f x g x 例5【2000,数三】设对任意的x ,总有ϕ()()()≤≤,且lim ()()0x[g x x →∞−=ϕ],则lim ()→∞x f x (A )存在且等于零(C )一定不存在【详解(B )存在但不一定为零(D )不一定存在】重点题型三函数极限的计算【类型一与方法】003sin 6()例6【2000,数二】若limx xf x x x →0+26()=0,则lim f x xx →0+为(C )36 (D )(B )6∞(A )0【详解】′′′++=3x满足初始条=()是二阶常系数微分方程例7【2002,数二】设y y x y py qy e 件y y (0)(0)0′的特解,则当x →0==时,函数 ln(1)+x y x ()2的极限(A )不存在(B )等于1 (C )等于2 (D )等于3【详解】[](1cos )ln(1tan )例8【2009,数二】求极限limsin 4x−−+x →0x x x .【详解】【类型二与方法】∞∞2(1)(21)(21)x xx x e e 例9lim e e x x →+∞+−=__________+2.【详解】1例10【2007,数三】lim (sin cos ) 2x x x 32→+∞++x x +=__________x +x 3.【详解】121(1)12ln 1x t e t dt x x例11【2014,数一、数二、数三】求极限limx →+∞t−−+∫.【详解】【类型三与方法】0 ∞1x e 例12lim ln(1)ln(1)x+x →0++=__________.【详解】【类型四与方法】∞−∞321例13求极限lim ln 2x x x x x →∞+−−1.【详解】【类型五与方法】00与∞011ln 例14【2010,数三】求极限lim 1xx x x→+∞−.【详解】【类型六与方法】1∞1x cos sin 例15【2012,数三】lim(tan )x xπ−=x →4__________.【详解】12例16求极限lim (0,)a a a a n N nx x +++ >∈x →0 nxx.【详解】重点题型四已知极限反求参数【方法】例17【1998,数二】确定常数a b c sin ,,的值,使limln(1)x b ax xt 3dtx →t 0−+=≠c c (0)∫.【详解】重点题型五数列极限的计算【类型一与方法】数列未定式例18设11,x n e 1−n nn =+−∈n N,求→∞x n n lim .【详解】【类型二与方法】通项由递推公式n n x f x +1=()给出x 例19【2002,数二】设031<<,n x n,证明数列{x +1==1,2,)n }的极限存在,并求此极限.【详解】例20【2011,数一、数二】(111ln 1I )证明:对任意正整数n ,都有1n n n<+< + ;1112n n(II )设a n nln (1,2,)=+++−=,证明数列{a n }收敛.【详解】【类型三与方法】n 项和的数列极限2sin sin 例21【1998,数一】求lim 1112n n n n ππsin π +++→∞ n +n n ++.【详解】例22【2017,数一、数二、数三】求2lim ln 1nn k kk =1→∞nn+∑.【详解】重点题型六无穷小量阶的比较【方法】例23【2002,数二】设函数f x ()在x =0的某邻域内具有二阶连续导数,且f (0)0≠,f ′(0)0≠,f ′′(0)0,,,使得当h →0≠.证明:存在唯一的一组实数λλλ123时,123()(2)(3)(0)f h f h f h f λλλ是比h 2高阶的无穷小++−.【详解】例24【2006,数二】试确定A ,B ,C 的值,使得x(1)1()e Bx Cx Ax o x++=++23,其中o x ()3是当x →0时比x 3高阶的无穷小量.【详解】−⋅⋅x x x 与ax n 为等价无穷小,求n 与a 例25【2013,数二、数三】当x →0时,1cos cos 2cos3的值.【详解】重点题型七间断点的判定x例26【2000,数二】设函数f x ()=a ebx在(,)−∞+∞+内连续,且→−∞f x =,则常数x lim ()0a b ,满足(A )a <0,b <0(C )a ≤0,b >0【详解(B )a >0,b >0(D )a ≥0,b <0】第二章一元函数微分学重点题型一导数与微分的概念例1【2000,数三】设函数f x ()在点x a =处可导,则函数 在点f x ()x a =处不可导的充分条件是 ′=且(A )f a ()0f a ()0(B )f a =()0 ′=且f a ()0 ≠′>且(C )f a ()0f a ()0′<且(D )f a >()0f a ()0<【详解】例2【2001,数一】设f (0)=0,则f (x )在x =0处可导的充要条件为 1(A )lim (1cosh)2f h →0h − 1(B )lim (1)f e −h h →0h存在 1(C )lim (sinh)存在2f h h →0h−存在1[(D )lim (2)()f h f h ]h →0h −存在【详解】2.当自变量x 在x =−1处取得增量x ∆=−0.1时,相例3【2002,数二】设函数f u ()可导,y f x =()应的函数增量∆y 的线性主部为0.1,则f ′(1)=(A )−1【详解(B )0.1 (C )1 (D )0.5】例4【2004,数一、数二】设函数f x ()连续,且f ′(0)0>,则存在δ>0,使得(A )f x ()在(0,) δ内单调增加(B )f x ()在(−δ,0)内单调减少 (C )对任意的x ∈(0,δ),有f x f ()(0)>(D )对任意的x ∈(−δ,0),有f x f ()(0)>【详解】 2()(1)(2)()xx例5【2012,数一、数二、数三】设函数f x e e e n ,其中n 为正整数,则f ′(0) =−−−nx = n −1(A )(1)(1)!nn (B )−−(1)(1)!n−−−n −1(C )(1)!n −n (D )(1)!n 【详解】,0,≤ 例6【2016,数一】已知函数f x ()=x x 111<≤= x n ,1,2, +1n n n ,则(A )x =0是f x ()的第一类间断点(C )f x ()在x =0处连续但不可导【详解(B )x =0是f x ()的第二类间断点(D )f x ()在x =0处可导】重点题型二导数与微分的计算【类型一与方法】分段函数1=例7【1997,数一、数二】设函数f x ()连续,ϕ()()0x f xt dt ∫f x ,且lim()x=A (A 为常数),求ϕ′x →0()x ,x 在x =0处的连续性并讨论ϕ′().【详解】【类型二与方法】复合函数11x x ≥例8【2012,数三】设函数f x ()= <x −,y f f x =(())21,,求x edydx ==__________.【详解】【类型三与方法】隐函数−=x y =()由方程例9【2013,数一】设函数y f x y x e (1)−确定,则1lim 1→∞n n n f−=__________.【详解】y −1例10【2007,数二】已知函数f u ()具有二阶导数,且f ′=(0)1,函数y y x 1=()由方程y xe −=所确定.设z f y x =−(ln sin ),求dz dxx =0,22d zdx x =0.【详解】【类型四与方法】反函数=()在(−∞,+∞)内具有二阶导数,且y ′≠0,x x y =()是y y x 例11【2003,数一、数二】设函数y y x 的反函数=().I )试将(x x y =()所满足的微分方程2dx (sin )0d x3y x dy dy 2++=变换为y y x =()满足的微分方程;(II )求变换后的微分方程满足初始条件y (0)03=,y ′(0)=2的解.【详解】【类型五与方法】参数方程例12【2008,数二】设函数y y x 0() t ln(1)2==()由参数方程x x t =+确定,其中x t ()y u du ∫是初值问题 dx te −x−=dt20 x t =0=|0的解,求2d y 2dx .【详解】【类型六与方法】高阶导数n (0)==−ln(12)在x =0处的n 阶导数y 例13【2010,数二】函数y x ()__________.【详解】2例14【2015,数二】函数f x x ()2x在x =0处的n 阶导数f =⋅()n (0)=__________.【详解】例15【2017,数一】已知函数f x ()=1+1x2,则f (3)(0)=__________.【详解】重点题型三导数应用求切线与法线【类型一与方法】直角坐标y f x =()表示的曲线0arctan x e−t 例16【2002,数一】已知两曲线y =f (x )与y =∫2dt 在点(0,0)处的切线相同,写出此切线2 方程,并求极限lim→∞n n nf.【详解】例17【2000,数二】已知f x ()是周期为5的连续函数,它在x =0的某个领域内满足关系式(1sin )3(1sin )8()f x f x x xx 是当x →0时比x 高阶的无穷小,且f x (),其中α+−−=+α()在x =1处可导,求曲线y f x =()在点(6,(6))f 处的切线方程.【详解】=()x x t 【类型二与方法】参数方程 y y t =()表示的曲线1−t −µ02 例18【1999,数二】曲线 x e du=−22ln(2)= y t t ∫在(0,0)处的切线方程为__________.【详解】【类型三与方法】极坐标r r =()θ表示的曲线=θ例19【1997,数一】对数螺线r e 在点2,e ππ2处切线的直角坐标方程为__________.【详解】重点题型四导数应用求渐近线【方法】例20【2005,数二】曲线y =的斜渐近线方程为__________.【详解】例21【2014,数一、数二、数三】下列曲线中有渐近线的是 (A )y x x 2=+sin sin(B )y x x =+2sin x 1(C )y x =+sin x 1【详解(D )y x =+】1例22【2007,数一、数二、数三】曲线ln(1)y e x x=++渐近线的条数为(A )0 (B )1 (C )2 (D )3 【详解】重点题型五导数应用求曲率【方法】(数一、数二掌握,数三大纲不要求)22741 例23【2014,数二】曲线 x t =+=++上对应于t =1y t t的点处的曲率半径是(A (B (C )(D )【详解】重点题型六导数应用求极值与最值【方法】例24【1997,数二】已知函数y f x []2=()对一切x 满足()3()1xf x x f x e ′′′ −x .+=−若′f x x ()0(0)00=≠,则(A )f x ()(B )f x 0是f x ()的极大值()0是f x ()的极小值x f x 00是曲线(C )(,())y f x =()的拐点x f x 00也不是曲线0不是f x ()的极值,(,())y f x (D )f x ()【详解=()的拐点】[] 2例25【2000,数二】设函数f x ()满足关系式f x f x x ′′′,且f ′()()+=(0)0=,则(A )f (0)是f x ()的极大值(B )f (0)是f x ()的极小值(C )点(0,(0))f 是曲线y f x =()的拐点 (D )f (0)不是f x ()的极值,点(0,(0))f 也不是曲线y f x =()的拐点【详解】′′例26【2010,数三】设函数f x (),g x ()具有二阶导数,且g x ()0 <.若()g x a 0=是g x ()的极值,则f g x (())在x 0取极大值的一个充分条件是 (B )f a ′>()0(C )f a ″<()0(A )f a ′<()0【详解(D )f a ″>()0】322+++=60确定,求f x ()的极值=()由方程例27【2014,数一】设函数y f x y xy x y .【详解】重点题型七导数应用求凹凸性与拐点【方法】例28【2016,数二、数三】设函数f x ()在(,)−∞+∞内连续,其导函数的图形如图所示,则(A )函数f x ()有2个极值点,曲线y f x =()有2个拐点 (B )函数f x ()有2个极值点,曲线y f x =()有3个拐点 (C )函数f x ()有3个极值点,曲线y f x=()有1个拐点(D )函数f x ()有3个极值点,曲线y f x=()有2个拐点【详解】22例29【2001,数二】曲线y x x =−−(1)(3)的拐点个数为(A )0 (B )1 (C )2 (D )3【详解】 例30【2011,数一】曲线(1)(2)(3)(4)y x x x x 234=−−−−的拐点是 (B )(2,0)(C )(3,0)(D )((A )(1,0)【详解4,0)】重点题型八导数应用证明不等式【方法】例31【2000,数一、数二】设f x (),g x ()是恒大于零的可导函数,且()()()()0f x g x f x g x ′′ −<,则当a x b <<时,有(A )()()()()f x g b f b g x(B )>()()()()f x g a f a g x>(C )()()()()f x g x f b g b (D )>()()()()f x g x f a g a >【详解】 例32【2017,数一、数三】设函数f x ()可导,且f x f x ()()0′ >,则(A )f f (1)(1)(B )f f >−(1)(1)<−(C ) f f (1)(1)>−(D )f f (1)(1)<−【详解】例3【2002,数二】设0<<a b,证明不等式2ln ln a b a a b b a−<<22+−【详解】重点题型九 导数应用求方程的根【方法】例34【2003,数二】讨论曲线4ln y x k 与y x x =+4ln 4的交点个数=+.【详解】x 1()2例35【2015,数二】已知函数xf x =+∫∫,求f x ()零点的个数.【详解】重点题型十微分中值定理证明题【类型一与方法】证明含有ξ一个点的等式1例36【1999,数三】设函数f x ()在区间[0,1]上连续,在(0,1)内可导,且f f (0)(1)0==,2f=1.试证:(12I )存在η∈,1,使f ()ηη =;(II )对于任意实数λ,必存在ξη[′∈(0,),使得f f ()()1]ξλξξ−−=.【详解】例37设f x ()在[,]a b 上连续,在(,)=,a >0.证明:存在ξ∈a b 内可导,f a ()0(,)a b ,使得f f ()()aξb ξξ−′=.【详解】例38设函数f (x )在[0,1]上连续,在(0,1)内可导,f (1)=0,证明:存在ξ∈(0,1),使得(2ξ+1)f (ξ)+ξf ′(ξ)=0.【详解】,【类型二与方法】证明含有ξη两个点的等式=,f (1)=31例39【2010,数二】设函数f x ()在闭区间[0,1]上连续,在开区间(0,1)内可导,且f (0)0.证明:存在ξ∈20,21,η∈1,1,使得f f ′′()()ξηξη+=+22.【详解】【类型三与方法】证明含有高阶导数的等式或不等式例40设f x ()在[−1,1]上有三阶连续的导数,f (1)0=,f ′−=,f (1)1(0)0ξ(1,1)=,证明∃∈−,使得f ′′′()3ξ=.【详解】第三章一元函数积分学重点题型一定积分的概念=()在区间[−−3,2],[2,3]例1【2007,数一、数二、数三】如图,连续函数y f x 上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]的图形分别是直径为2的下、上半圆周.()()x=设F x f t dt ∫,则下列结论正确的是 3(A )F F 4(3)(2)=−− 5(B )F F 4(3)(2)=3(C )F F 4(3)(2)−=5(D )F F 4(3)(2)−=−−【详解】2008,数二、数三】如图,曲线段的方程为y f x =()例2【,函数f x ()在区间[0,a ]上有连续的导数,则定积分axf x dx ∫′()等于(A )曲边梯形ABOD 的面积(B )梯形ABOD 的面积(C )曲边三角形ACD 的面积(D )三角形ACD 的面积【详解】x1sin t例3【2009,数三】使不等式t∫dt x >ln 成立的x 的范围是(B )1, 2π (C ) π2,π(D )(,)(A )(0,1)【详解π+∞】40tan πxx例4【2003,数二】设I 1=∫x 4dx ,I 2=0∫tan πx dx ,则(B )1>>I I 12(A )I I 12>>1(C )I I 21>>1【详解(D )1>>I I 21】重点题型二不定积分的计算【类型一与方法】分段函数例5求∫max(,,1)32x x dx .【详解】1x2x 4+例6求+∫1dx .【详解】【类型三与方法】无理函数例7【2009,数二、数三】计算不定积分 +>∫ln 1dx x (0).【详解】ln(1)【类型四与方法】指数有理式例8【2000,数二】设f x (ln )+xx =,计算∫f x dx ().【详解】1例9求∫sin cos x x 3dx .【详解】1例10求∫++x x 1sin cosdx .【详解】(2)∫sin cos 24x xdx 例11求(.1)∫sin 4cos 2cos3x x xdx 1【详解】()1sin 4cos 2cos3(sin 6sin 2)cos3211sin 6cos3sin 2cos32211115sin 4444x x xx x x x x x xx x x x=+=+ sin 9sin 3sin =++−141111 cos9cos5cos3cos 3620124Ix x x x dx x x x x C=++−∫=−−−++(sin 9sin 5sin 3sin )(2)24211cos 211cos 4sin cos sin 2(1cos 2)1(1cos 2cos 4cos 2cos 4)161111cos 2cos 4cos 616321632x x x x x +−x x xx xx x x =⋅=+4282=+−−=+−−1111163216321111 sin 2sin 4sin 6cos 2cos 4cos 6166464192x x x dx x x x x C I =+−− ∫=+−−+ 【类型六与方法】被积函数含有对数函数、反三角函数例12求.【详解】重点题型三定积分的计算【类型一与方法】分段函数,0x x 1≥例13设f x ()= 1+1x,0 <2 1+e x(1)f x dx ,求−∫. 【详解】【类型二与方法】对称区间例14设f x (),g x ()在[−l l ,]上连续,f x f x A ()()+−=,g x ()为偶函数.(()()()lllf xg x dx A g x dx 1)证明:−=∫∫;22xsin arctan xe dx ππ(2)计算−∫;222sin1xππ−(3)计算∫【详解x dx +−e .】【类型三与方法】周期函数100+π2100x x dx sin 2(tan 1)例15 求⋅+∫.【详解】【类型四与方法】被积函数含有变限积分函数或抽象函数的导数0例16【2013,数一】计算∫x 1ln(1)t +dt ,其中f x ()=t ∫.【详解】bf x a()f xg x ()()【类型五与方法】形如+∫dx 的积分例17 求下列积分(20xe sin dx e e sin cos x x π1)+∫(2).【详解】40ln(1tan )π例18 求+∫x dx .【详解】重点题型四反常积分的计算【方法】例19【1998,数二】计算积分【详解】重点题型五反常积分敛散性的判定【方法】1x x (1)a b+∞例20【2016,数一】若反常积分+∫dx 收敛,则(A )a <1且b >1(C )a <1且a b +>1【详解(B )a >1且b >1(D )a >1且a b +>1】重点题型六变限积分函数sin ,0x x x πππ≤<例21【2013,数二】设函数f x ()= 2, 2≤≤0()()x =,F x f t dt ∫,则(A )x =π是函数F x ()的跳跃间断点(B )x =π是函数F x ()的可去间断点(C )F x ()在x =π处连续但不可导(D )F x ()在x =π处可导【详解】例22【2007,数二】设f x ()是区间0,4π上的单调,可导函数,且满足0cos sin sin cos t tf x ()f t dt tdtt t−−1()=x+∫∫其中f−1是f 的反函数,求f x ().【详解】重点题型七 定积分应用求面积【方法】例23【1998,数二】曲线y x x x 322与x 轴所围成的图形的面积A ==−++__________.【详解】66ππcos3θθ例24【2013,数二】设封闭曲线L 的极坐标方程为r =−≤≤,则L 所围平面图形的面积是__________.【详解】=−t (sin )x a t t≤≤=−(1cos )例25求摆线 y a t (02)π与x 轴所围的图形面积.【详解】重点题型八定积分应用求体积【方法】=(),使得由曲线例26【2002,数二】求微分方程xdy x y dx +−=(2)0的一个解y y x y y x =()与直线x =1,x =2以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小. 【详解】例27【2003,数一】过原点作曲线y x =ln 及x 轴围成平面图形D =ln 的切线,该切线与曲线y x .(I )求D 的面积A ;(II )求D 绕直线x e 【详解=旋转一周所得旋转体的体积V .】重点题型九 定积分应用求弧长【方法】(数一、数二掌握,数三大纲不要求)例28求心形线r a a =+>θ(1cos )(0)的全长.【详解】22020002l d a a d a t dt a tdt a πππ2ππθθθ==2cos 4cos 8cos 8θ===∫∫∫∫∫重点题型十定积分应用求侧面积【方法】(数一、数二掌握,数三大纲不要求)例29过原点作曲线y =的切线,求由此曲线、切线及x 轴围成的平面图形绕x 轴旋转一周所得到的旋转体的表面积.【详解】设切点为x 0(,切线方程为 )y −0x x ,代入(0,0),得x 0=2,y 0=1x故切线方程为y =2.由曲线y x =≤≤2)绕x轴旋转一周所得到的旋转体的表面积为1126S 1)πππ 1=−∫∫ 1(02)绕x 由yx x 2=≤≤轴旋转一周所得到的旋转体的表面积为0πS 2==2∫12π因此,所求旋转体的表面积为S S S =+=61).重点题型十一定积分物理应用【方法】(数一、数二掌握,数三大纲不要求)例30设星形线x a t y a t 33==cos ,sin 上每一点处线密度的大小等于该点到原点的距离的三次方,求星形线在第一象限的弧段对位于原点处的单位质点的引力.x y 处长为ds 的小段到原点的距离【详解】点(,)为r=,线密度为r 3,质量为3r ds ,其中ds a t tdt 3sin cos .32r ds 该小段对质点的引力为dF G Grds r == x ,水平分量为dF dF Gxds x r ⋅,垂直分量为ydF dF Gyds y r=⋅=,故323222cos 3sin cos 0.6,sin 3sin cos 0.6x y F Ga t a t tdt Ga F Ga t a t tdt Ga ππ=⋅==⋅=∫∫重点题型十二证明含有积分的等式或不等式【方法】()cos x=例31【2000,数二】设函数S x t dt ∫.I )当n 为正整数,且n x n (ππn S x n ≤+≤<+(1)时,证明2()<2(1);S x x ()(II )求lim x→+∞.【详解】例32【2014,数二、数三】设函数f x (),g x ()在区间[a b ,]上连续,且f x ()单调增加,0()1g x ≤≤.证明:I )(0(),,xag t dt x a x a b []≤≤−∈∫;()()()a a g t dt b()aaf x dx f xg x dx+∫≤b(II )∫∫.【详解】第四章常微分方程重点题型一一阶微分方程【类型一与方法】可分离变量y1y xx 2∆=()在任意点x 处的增量∆=+ +x 0α,且当∆→时,例1【1998,数一、数二】已知函数y y x α是∆x 的高阶无穷小,y (0)=π,则y (1)等于(B )π (C )e 4ππ(A )2π【详解(D )πe 4】例2【2002,数二】已知函数f x ()在(0,)+∞内可导,f x ()0>,→+∞f x =,且x lim ()1满足1f x hx lim h()f x () h →01=e +x,求f x ().【详解】【类型二与方法】一阶齐次例3【1999,数二】求初值问题0(0)|x =1(+−=>y dx xdy x=0的解 y .【详解】【类型三与方法】一阶线性例4【2010,数二、数三】设y y ,12是一阶线性非齐次微分方程y p x y q x′+=()()的两个特解.若,使λµy y 常数λµ12 是该方程的解,λµy y +12−是该方程对应的齐次方程的解,则(B )λ=−21,µ=−2(A )λ=21,µ=211 3,µ=31(D )λ=23,µ=32(C )λ=2【详解】22例5【2016,数一】若(1)y x =+22(1)y x =++′+=y p x y q x ()() 的两个解,则q x () +(A )3(1)x x 2x x 2(B )−+3(1)(C )1+x x 221x(D )−+x【详解】例6【1999,数三】设微分方程y y x ′−=ϕ2()2,1x ,其中ϕx ()<x =0,1>,试求在(,)−∞+∞内的连续函数y y x=(),使之在(,1)+∞内都满足所给方程,且满足条件y −∞和(1,)(0)0=.【详解】【类型四与方法】伯努利方程(数一掌握,数二、数三大纲不要求)例7求解微分方程 4y y x ′x−.【详解】令z =21,则2z z x ′x −=2,得222211dx 22x x z e x e dx Cx x C − dx +=+=∫∫∫12x Cx 32,其中C 为任意常数+.【类型五与方法】全微分方程(数一掌握,数二、数三大纲不要求)例8求解下列微分方程:22(1)(231)(2)0yyxe x dx x e y dy +−+−=;(2)2223x y x y y −34dx dy +=0.2y【详解】(1)法一:设P x y xe x (,)2312+−(,)2y,Q x y x e y =−,则PQ2xe yyx∂∂==∂∂,方程为全微分方程.u u设存在u x y (,),使得du x y dx dy P x y dx Q x y dy x y∂∂(,)=+=+(,)(,)∂∂,得y y 223u x y xe x dx x e x x y (,)(231)ϕ()=+−=+−+∫∂u由y=+x e y2y ϕ′(),得ϕ′()2∂y y=−2,方程的,ϕ()=−y y 通解为232y +−−=x e x x y C .法二:由232232(231)(2)(2()()()(22)0yy y 22)(31)(2)yyxe x dx x e y dy xe dx x e dy x dx y dyy d x e d x x d y d x e x x y +−+−=++−+−=+−+−=+−−=232y+−−=得x e x x y C .2x (2)设P x y (,)y =y x 4322y −3,Q x y (,)=,则 46P x Qy y x∂∂=−=∂∂.当y ≠0时,方程为全微分方程.2243131xyy x 122x 2 u x y xdx x C y y y−(,)2=+dy x =−++−=∫∫2233方程的通解为x y y Cy −+=.重点题型二二阶常系数线性微分方程【类型一与方法】解的性质与结构1=−32x x ,例9【2013,数二】已知y e xe y e xe 2=−x x 2,y xe 3=−2x 是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件yx =0=0,y ′x =0=1的解为y =__________.【详解】 ′′例10【2004,数二】微分方程y y x x +=++21sin 的特解形式可设为 2∗(A )(sin cos )y ax bx c x A x B x =++++ (2∗(B )sin cos )y x ax bx c A x B x =++++ 2∗(C )sin y ax bx c A x =+++2∗(D )cos y ax bx c A x =+++ 【详解】 2x′′′−+=+例11【2017,数二】微分方程y y y e x 48(1cos 2) 的特解可设为y *=22xx ++(A )Ae e B x C x (cos 2sin 2)22x x ++(B )Axe e B x C x (cos 2sin 2)22xx ++(C )Aexe B x C x (cos 2sin 2)22x x ++(D )Axe xe B x C x (cos 2sin 2)【详解】【类型二】已知微分方程的解反求微分方程11223x x 例12【2015,数一】设y e x e=+−′′′++=是二阶常系数非齐次线性微分方程y ay by ce x 的一个特解,则(A )a =−3,b =2,c =−1(C )a =−3,b =2,c =1(B )a =3,b =2,c =−1(D )a =3,b =2,c =1【详解】 【类型三】解二阶常系数线性微分方程′′′例13【2012,数一、数三】已知函数f x ()满足方程f x f x f x ()()2()0′′+−=及f x f x e ()()2+=x.(I )求f x ()的表达式;22x(II )求曲线y f x f t dt =−()()∫的拐点.【详解】重点题型三高阶常系数线性齐次微分方程【方法】例14求解微分方程y (4)−3y ′′−4y =0.【详解】特征方程为r r 42−−=340,得r 1,2=±2,r i3,4=±,方程的通解为x x −y C e C e C x C x 22cos sin =+++1234.重点题型四二阶可降阶微分方程【方法】(数一、数二掌握,数三大纲不要求)2例15求微分方程()y x y y ″+′=′满足初始条件y y (1)(1)1=′=的特解.′=,则y p 【详解】本题不含y ,令y p ′′′=2′(),原方程化简为p x p p +=,转化为反函数1dx −=dp dp ppdp px p ,得x e e pdp C p p C − =∫∫∫+=+().由p y (1)(1)1=′=,得C =0,从而xp ′=2,于是y =322,得3y x C =+1.由y (1)13221=,得C 1=31,故y x 33=+.重点题型五欧拉方程【方法】(数一掌握,数二、数三大纲不要求)2′′′++=2sin ln 例16求解微分方程x y xy y x .=t,原方程转化为【详解】令x e D D y Dy y t (1)−++=2sin ,即2d y2+dty t =2sin .特征方程为r 2+=10,得λ=±i ,齐次方程的通解为y C t C t =+12cos sin .∗=+(cos sin ),代入方程,得A =−1,B =0,故令y t A t B t y t t ∗=−cos .因此原方程的通解为12y C x C x x x cos ln sin ln ln cos ln =+−⋅.重点题型六差分方程【方法】(数三掌握,数一、数二大纲不要求)+1−=⋅2t的通解为__________例17【1997,数三】差分方程t t y y t . 【详解】齐次方程的通解为y C t =.令t y At B *=+()2t,代入方程,得A =1,B =−2,故t y t*=−(2)2t.因此原方程的通解为y C t t =+−(2)2t. 2y y x x 5的通解为__________例18【2018,数三】差分方程∆−=. 【详解】121121()()()22x x x x x x x x x x x y y y y y y y y y y y ++++++∆=∆∆=∆−=−−−=−+原方程化简为y y x x ++21−=25,转化为y y x x x =2x+1−=25.齐次方程的通解为y C .令x y A x*=,代入方程,得A =−5,故y x *=−5.因此原方程的通解为y C x =−25.重点题型七变量代换求解二阶变系数线性微分方程2例19【2005,数二】用变量代换x t t =<<cos (0)x y xy y ′′′π化简微分方程(1)−−+=0,并求其x =0=,y ′满足y |1|2x =0=的特解.【详解】重点题型八微分方程综合题【类型一】综合导数应用2001,数二】设L 是一条平面曲线,其上任意一点P x y x 例20【(,)(0)>到坐标原点的距离,恒等于该点处的切线在y 轴上的截距,且L 经过点 12,0,求曲线L 的方程.【详解】【类型二】综合定积分应用例21【2009,数三】设曲线y f x=(),其中f x ()是可导函数,且f x ()0>.已知曲线y f x=()与直线y =0,x =1及x t t =>(1)所围成的曲边梯形绕x 轴旋转一周所得的立体体积值是该曲边梯形面积值的πt 倍,求该曲线的方程.【详解】【类型三】综合变限积分例22【()()()1xx−f x t dt x t f t dt e x 2016,数三】设函数f x ()连续,且满足−=−+−∫∫,求f x ().【详解】【类型四】综合多元复合函数x例23【2014,数一、数二、数三】设函数f u ()具有二阶连续导数,z f e y =(cos )满足 ∂∂22z e y e 2x x z z+=+(4cos )∂∂x y22=,f ′若f (0)0(0)0=,求f u ()的表达式.【详解】【类型五】综合重积分例24【1997,数三】设函数f t ()在[0,+∞)上连续,且满足方程x y t 222f t e 4πt f dxdy 2+≤4 ()=+∫∫求f t ().【详解】第五章多元函数微分学重点题型一多元函数的概念【方法】例1【2007,数二】二元函数f x y (,)在点(0,0)处可微的一个充分条件是 ](A )(,)(0,0)lim(,)(0,0)0x y [f x y f →−=f x f (B )lim(,0)(0,0)x x →0− f y f =0,且lim(0,)(0,0)yy →0−=0(C)(,)limx y→=0[f x f (D )lim (,0)(0,0)0x x ],且′′x →0−=lim (0,)(0,0)0f y f y y ′′y →0−=【详解】例2【2012,数一】如果函数f x y (,)在点(0,0)处连续,那么下列命题正确的是f x y (A )若极限lim (,)x yx →0存在,则f x y (,)在点(0,0)y →0+处可微 f x y (B )若极限lim (,)x y22x →0存在,则f x y (,)在点(0,0)y →0+处可微f x y (C )若f x y (,)在点(0,0)处可微,则极限lim (,)x y x →0y →0+存在f x y (D )若f x y (,)在点(0,0)处可微,则极限lim (,)x y22x →0y →0+存在【详解】例3【2012,数二】设函数f x y (,)可微,且对任意x y ,都有∂f x y x(,)>0,∂f x y (,)<0,则使不等∂y∂式f x y f x y 1122(,)(,)<成立的一个充分条件是(A )x x 12 ,y y >12(B )x x <12,y y >12>(C )x x 12<,y y 12(D )x x <12<,y y 12>【详解】例4【2012,数三】设连续函数z f x y =(,)满足x →0y →=0,则dz (0,1)=__________.【详解】重点题型二多元复合函数求偏导数与全微分【方法】例5【2001,数一】设函数z =f (x ,y )在点(1,1)处可微,且f (1,1)1=,∂(1,1)xf=2∂,∂(1,1)yf =3∂,x f x f x x ϕ()(,(,))=,求dx ϕ3dx ()x =1.【详解】例6【2011,数一、数二】设z f xy yg x =(,()),其中函数f 具有二阶连续偏导数,函数g x ()可导,且在x =1处取得极值g (1)1=,求2x 11y z==∂∂∂x y.【详解】重点题型三多元隐函数求偏导数与全微分【方法】例7【2005,数一】设有三元方程xy −z ln y +e xz =1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程 (A )只能确定一个具有连续偏导数的隐函数z z x y =(,)(B )可确定两个具有连续偏导数的隐函数x x y z =(,)和z z x y =(,)(C )可确定两个具有连续偏导数的隐函数y y x z =(,)和z z x y =(,)(D )可确定两个具有连续偏导数的隐函数x x y z =(,)和y y x z =(,)【详解】例8【1999,数一】设y y x =(),z z x =()是由方程z xf x y =+()和F x y z (,,)0=所确定的函数,dz其中f 和F 分别具有一阶连续导数和一阶连续偏导数,求dx.【详解】重点题型四变量代换化简偏微分方程【方法】例9【2010,数二】设函数u f x y 222=(,)具有二阶连续偏导数,且满足等式2241250u u ux y∂∂∂++=∂∂x y ∂∂.确定a bξη∂2u=0,的值,使等式在变换ξ=+x ay ,η=+x by 下简化为∂∂.【详解】重点题型五求无条件极值【方法】222(,)例10【2003,数一】已知函数f x y (,)在点(0,0)的某个邻域内连续,且lim()f x y xyx yx →0y →0−=1+,则(A )点(0,0)不是f x y (,)的极值点(B )点(0,0)是f x y (,)的极大值点(C )点(0,0)是f x y (,)的极小值点(D )根据所给条件无法判别点(0,0)是否为f x y (,)的极值点。
高考数学复习第二十三章选修系列23.1几何证明选讲市赛课公开课一等奖省名师优质课获奖PPT课件
2
2
2
2
∠CPO=∠ACB=90°.所以∠CPD=90°.
因为EC是切线,所以∠DCP=∠CBA,
从而△CPD∽△BCA,故 CP= DP,
BC AC
所以DP=15 .故OD=DP+OP=15 +1 =8.
2
22
28/70
6.(湖北,15,5分)如图,P为☉O外一点,过P点作☉O两条切线,切点分别为A,B.过PA中点Q
∵ED=2,ME=3,∴AM=1.
在Rt△AMO中,易得OM=2 2,故CE=2 ,2
在Rt△CED中,CD= C=E22 ,故DEB2C=2 3.
3
评析 本题考查圆性质、垂径定理及勾股定理,考查学生推理论证能力和运算求解能力.垂径 定理应用是求解本题关键.
31/70
8.(课标全国Ⅱ理,22,10分)如图,CD为△ABC外接圆切线,AB延长线交直线CD于点D,E, F分别为弦AB与弦AC上点,且BC·AE=DC·AF,B,E,F,C四点共圆. (1)证实:CA是△ABC外接圆直径; (2)若DB=BE=EA,求过B,E,F,C四点圆面积与△ABC外接圆面积比值.
AC PA 2
4.(广东,15,5分)(几何证实选讲选做题)如图,已知AB是圆O直径,AB=4,EC是圆O切线,切
点为C,BC=1.过圆心O作BC平行线,分别交EC和AC于点D和点P,则OD=
.
27/70
答案 8
解析 易得AC= 4=2 ,由12 OP1∥5 BC,且O为AB中点可知CP= AC= ,O1 P= 15BC= 1 , 1
BC CD
又BC= 2,从而AB=3 . 2 所以AC= A=B42,所 B以CA2 D=3. 由切割线定理得AB2=AD·AE, 即AE= AB=2 6,
武忠祥教授高等数学考研第二三章
x
lim
______.
x0 f ( x02x) f ( x0 x)
【1】
【例 2】(2011年2,3)已知 f ( x) 在 x 0 处可导,且 f (0) 0,
则
lim
x0
x2
f
(
x) 2 x3
f
(
x3
)
(A) 2 f (0).
(B) f (0).
(C) f (0).
(D) 0.
【例3】(2013年,1)设函数 y f ( x) 由方程 y x e x(1 y)
2) ( x ) x 1
3) (a x ) a x ln a
5) (loga
x)
1 x lna
7) (sin x) cos x
4) (e x ) e x 6) (ln x ) 1
x 8) (cos x) sin x
9) (tan x) sec2 x
10) (cot x) csc2 x
第二章 导 数 与 微 分
2023最新整理收集 do
something
考试内容概要
(一)导数与微分的概念
1. 导数的概念
定义1(导数)
f ( x0 )
lim y lim x0 x x0
f ( x0 x) x
f ( x0 )
f ( x0 )
lim
x x0
f (x) x
f ( x0 ) x0
f ( x0 ) 0 定理9(极值的第一充分条件)
设 f ( x) 在 U( x0 , ) 内可导,且 f ( x0 ) 0(或 f ( x) 在 x0 处连续)
(1)若 x x0 时, f ( x) 0; x x0 时, f ( x) 0, 则 f 在 x0 处取极大值.
高等数学高等数学高等数学23.ppt
1
1 ′
⋅ = cos ⋅ ln + sin ⋅
sin
′
= cos ⋅ ln +
于是
即Biblioteka ′= sin
cos ⋅ ln +
sin
二
对数求导法
= ()()
其中(), ()都关于可导
两边取对数
ln = () ln () (隐函数)
ln = ln
两边对求导,得
′ ln
所以
1
+ = ln + ′
( ln − )
=
( ln − )
′
三
小结
1. 对数的性质
2. 对数求导法:
1) 对方程两边取对数;
2) 两边同时对x求导;
3) 移项整理,表示成′ = ()的形式.
两边对求导
′ ()
1 ′
= ′ () ln + ()
()
移项整理,得
′ =
按指数函数求导公式
ln ⋅ ′ () +
−1
⋅ ′()
按幂函数求导公式
方法2 幂指函数的导数=指数函数的导数+幂函数的导数
二
对数求导法
1
1
1
1
−1
2
⋅ ′ =
+
−
−
3 +2 −1 3− +4
即
′
1 3 ( + 2)( − 1)
1
1
高等数学上23高阶导数省公开课金奖全国赛课一等奖微课获奖课件
上页
返回
下页
结束
17/21
思索题
设 g( x) 连续,且 f ( x) ( x a)2 g( x) , 求 f (a) . f ( x) 2( x a)g( x) ( x a)2 g( x)
f ( x) 2g( x) 2( x a)g( x) 2( x a)g( x) 2( x a)2 g( x)
eax (a sin bx b cos bx) eax a 2 b2 sin(bx ) ( arctan b)
a y a 2 b2 [aeax sin(bx ) beax cos(bx )]
a 2 b2 e ax a 2 b2 sin(bx 2)
n
y(n) (a 2 b2 ) 2 e ax sin(bx n)
( f ( x)) lim f ( x x) f ( x)
x 0
x
存在, 则称( f ( x))为函数f ( x)在点x处的二阶导数.
首页
上页
返回
下页
结束
3/21
记作
f
( x),
y,
d2y dx 2
或
d
2 f (x) dx 2
.
二阶导数导数称为三阶导数,
f ( x),
y,
d3y .
dx 3
首页
上页
返回
下页
结束
16/21
练习2: 设
y
x2
1 3x
2
, y(n)=?
提醒: 令
1
AB
(x 2)(x 1) x 2 x 1
A (x 2) 原式
1
x2
B (x 1) 原式 x 1 1 y 1 1
x 2 x 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 一元函数积分学
§3.1 不定积分的概念与性质
一、 知识结构
1、不定积分的概念
2、基本积分公式
3、不定积分的性质
二、 考试大纲要求
1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数的存在定理。
2.熟练掌握不定积分的基本公式。
一、不定积分的概念
1、原函数
(1)原函数的定义:如果在区间I 上可导函数F (x )的导函数为f (x )即对任一x ∈I 都有 F
'(x )=f (x )或dF (x )=f (x )dx
那么函数F (x )就称为f (x )(或f (x )dx )在区间I 上的一个原函数
例:因为(sin x )'=cos x 所以sin x 是cos x 的一个原函数
因为x x 21
)(='所以x 是x
21的一个原函数 (2)如何求函数的一个原函数:求f (x )的一个原函数就是问谁的导数等于f (x )。
例:求2x 的一个原函数。
解:求2x 的一个原函数就是问谁的导数等于2x ,我们知道:23)31(x x =',所以
33
1x 就是2x 的一个原函数。
问题:
1、什么样的函数有原函数?
2、如果一个函数有原函数,是不是只有一个?
3、如果不止一个,怎样求出所有的原函数?
(3)原函数存在定理如果函数f (x )在区间I 上连续
那么在区间I 上存在可导函数F (x )使对任一x ∈I 都有 F '(x )=f (x )
简单地说就是连续函数一定有原函数
例:3x 连续,则有原函数.
(4)所有的原函数=一个原函数+C
问题:cos x 和x
21还有其它原函数吗? 因为(sin x+1)'=cos x
所以sin x+1也是cos x 的一个原函数 两点说明 第一如果函数f (x )在区间I 上有原函数F (x )那么f (x )就有无限多个原函数F (x )+C 都是f (x )的原函数其中C 是任意常数 第二f (x )的任意两个原函数之间只差一个常数即如果Φ(x )和F (x )都是f (x )的原函数则
Φ(x )-F (x )=C (C 为某个常数)
例:求cos x 和x
21的所有原函数
因为(sin x )'=cos x 所以sin x 是cos x 的一个原函数,sin x +c 就是cos x 的所有原函数
因为x x 21
)(='所以x 是x 21的一个原函数,x +c 就是x
21的所有原函数 2、不定积分的定义
(1)定义:在区间I 上函数f (x )的带有任意常数项的原函数称为f (x )(或f (x )dx )在区间I 上的不定积分记作
⎰dx
x f )(
其中记号⎰称为积分号f (x )称为被积函数f (x )dx 称为被积表达式x 称为积分变量
(2)不定积分就是所有的原函数,求不定积分就是就是求所有的原函数。
即:
⎰+=C
x F dx x f )()(
例:C
x xdx +=⎰sin cos
C x dx x
+=⎰21 (3)微分和积分的关系 从不定积分的定义
(1)
⎰=)(])([x f dx x f dx d 或⎰=dx
x f dx x f d )(])([ 又由于F (x )是F '(x )的原函数
所以
(2)⎰+='C x f dx x f )()(或记作⎰+=C x f x df )()( 由此可见微分运算(以记号d 表示)与求不定积分的运算(简称积分运算以记号⎰表示)是
互逆的当记号⎰与d 连在一起时或者抵消或者抵消后差一个常数 例问()⎰dx x f dx d
)(与⎰'dx x f )(是否相等?
解不相等.设),()(x f x F ='则()⎰dx x f dx d )())((C x F dx
d +=0)(+'=x F )(x f = 而由不定积分定义⎰'dx x f )(C x f +=)(,所以()⎰dx x f dx
d )(.)(⎰'≠dx x f 二、基本积分表
(1)C kx kdx +=⎰(k 是常数)(2)C x dx x ++=+⎰111μμμ 出师表
两汉:诸葛亮
先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。
宫中府中,俱为一体;陟罚臧否,不宜异同。
若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。
侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。
将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。
亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。
先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。
侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。
臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。
先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。
后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。
先帝知臣谨慎,故临崩寄臣以大事也。
受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。
今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。
此臣所以报先帝而忠陛下之职分也。
至于斟酌损益,进尽忠言,则攸之、祎、允之任也。
愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。
若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。
臣不胜受恩感激。
今当远离,临表涕零,不知所言。