工程魂第十五期二三版
1-s2.0-S0264127516312965-main
Optimizing matrix and fiber/matrix interface to achieve combination of strength,ductility and toughness in carbon nanotube-reinforced carbon/carbon compositesLei Feng,Kezhi Li ⁎,Bei Xue,Qiangang Fu,Leilei Zhang ⁎State Key Laboratory of Solidi fication Processing,Carbon/Carbon Composites Research Center,Northwestern Polytechnical University,Xi'an,710072,ChinaH I G H L I G H T S•Both matrix and fiber/matrix interface of carbon/carbon composites were opti-mized.•Radial carbon nanotube (CNT)was grown on carbon fibers (CF)to strength-en matrix.•Pyrocarbon layer was introduced be-tween CF and CNT/matrix to optimize interface.•Optimal designs endowed composite with improved strength,ductility and toughness.G R A P H I C A L A B S T R A CTa b s t r a c ta r t i c l e i n f o Article history:Received 2July 2016Received in revised form 2October 2016Accepted 3October 2016Available online 5October 2016The direct attachment of carbon nanotubes (CNTs)on carbon fibers (CFs)always leads to a decrease of fiber-dominated properties (e.g.,flexural strength)and a brittle fracture behavior of C/Cs,although the matrix-domi-nated properties (e.g.,compressive strength and interlaminar shear strength (ILSS))exhibit an obvious enhance-ment.To achieve the combination of mechanical strength,ductility and toughness in C/Cs,in this work,efforts were spent on simultaneously optimizing the matrix and fiber/matrix (F/M)Ts with radial orienta-tion were grown onto the CFs by double-injection chemical vapor deposition to modify the microstructure of ma-trix.Pyrocarbon was deposited on the surface of CFs before CNT growth to protect CFs and to weaken interfacial strength between CFs and CNT/matrix.These optimal designs create strengthening and toughness mechanisms such as crack de flection and long pullout of CFs in the failure process of composites,which endow C/Cs with im-proved flexural strength of 31.5%,flexural ductility of 118%,compressive strength of 81.5%and ILSS of 82%,ac-companied by a clear change from brittle fracture to pseudo-plastic fracture during flexural test.This work may provide a meaningful way to not only enhance both the fiber-and matrix-dominated strength but to sub-stantially improve the ductility and toughness of C/Cs.©2016Elsevier Ltd.All rights reserved.Keywords:Carbon nanotubesCarbon/carbon composites Interface Strength Toughness1.IntroductionDesign of high-performance structural engineering carbon/carbon composites (C/Cs)is driven by optimizing combinations of mechanicalMaterials and Design 113(2017)9–16⁎Corresponding authors.E-mail addresses:likezhi@ (K.Li),zhangleilei@ (L.Zhang)./10.1016/j.matdes.2016.10.0060264-1275/©2016Elsevier Ltd.All rightsreserved.Contents lists available at ScienceDirectMaterials and Designj o u r n a l h o me p a g e :ww w.e l s e v i e r.c o m /l o c a t e /m a t d e sproperties such as strength,ductility,toughness and requirements for stability and non-catastrophic failure during service[1,2].C/Cs exhibits high specific strength and modulus,however,they have weak compres-sion and interlaminar properties,lack ductility and toughness,and al-ways fail in an apparently brittle manner in unconstrained loading geometries[3–5].Recently,the huge interest in incorporating carbon nanotubes (CNTs)into structural composites have been stimulated by virtue of their extraordinary intrinsic properties,such as ultrahigh strength,ex-cellent electrical and thermal conductivities[6,7].These outstanding mechanical and physical properties,in combination with their unique 1D nanostructures with high specific surface areas,allow for efficient tailoring of both matrix microstructure andfiber/matrix(F/M)interface state[8,9].For the incorporation of CNTs into composite structures,the general trend has been focused on in situ-growth of CNTs[10–12]or attaching CNTs to the carbonfibers(CFs)[13–15].Unlike attracting CNTs which trend to lie in the plane offiber surface and thus only pro-vide one-side reinforcement to the C/Cs(just at F/M interface area), growing CNTs on the surface of CFs by catalytic chemical vapor deposi-tion(CVD)has many advantages in terms of controllability of size and orientation of CNTs,particularly a radial orientation that allows for si-multaneous reinforcements to the matrix and F/M interface[16].Excit-ing increases in matrix-dominated properties(e.g.,compressive strength and interlaminar shear strength)of C/Cs have been observed by growing CNTs onto carbonfibers[17–19].Nevertheless,there still exit some critical issues regarding the C/Cs reinforced with CVD-grown CNTs.Firstly,due to the potential damage(dissolution of metal catalysts into carbon,local oxidation and gasification)of the CFs during the growth reaction[20,21],and the difficulty of controlling the orienta-tion and uniformity of the grafted CNTs on CFs[16,22,23],the studies on the enhancements both infiber-and matrix-dominated strengths of C/ Cs have rarely been reported.Secondly and more importantly,the direct attachment of CNTs onto CF surface always result in strong F/M interfa-cial bonding and thus obstructs the crack deflection along the axis of CFs [17,23–25],which leads to the failure offiber pullout as an effective strengthening and toughening mechanism.There will be little or no property enhancement in the ductility and toughness expected in such a mode of composite failure[26,27].If CNT-reinforced C/Cs is to re-place C/Cs in industries,it is necessary to achieve the combination of global strength,ductility and toughness in C/Cs.Over the past few de-cades,however,few efforts have been spent on this issue.To improve the comprehensive mechanical performance of CNT-re-inforced C/Cs,the substantial problem and great challenge are how to moderate the F/M interfacial bonding so that it is neither too strong nor too weak and how to supply effective reinforcements to the carbon matrix without degrading thefiber strength.In this work,a thin pyrocarbon(PyC)interface layer was deposited on the surface of CFs by chemical vapor infiltration(CVI)technique to optimize the F/M in-terfacial bonding,whilst preventing the dissolution of metal catalysts into CFs occurred during the subsequent growth of CNTs.Afterwards, double-injection CVD(DICVD)technique was developed to grow radial-ly-aligned CNTs on PyC-coated CFs.The schematic of this manufacturing process is depicted in Fig.1.The hybridfiber preforms were then desifined by CVI technique to obtain thefinal CNT-reinforced C/Cs. Three-point bending,compression and interlaminar shearing tests were applied to examine the effect of these optimal designs on the me-chanical properties of C/Cs.2.Experimental2.1.Raw materialsCarbon felts(bulk density0.2g/cm3,fiber diameters6–8μm,Yixing Tianniao Co.Ltd.,China)used in this work were fabricated by alterna-tively overlapping layers of randomly oriented shortfiber bundles with needle-punching step-by-step.2.2.Deposition of PyC interface layer on CFs and the growth of CNTsCarbon felts werefirstly deposited with an interface layer of PyC by isothermal CVI technology,which was carried out at1080°C using flowing mixture of CH4(40L/h)and N2(160L/h)under the ambient pressure.The growth of CNTs in carbon felts was conducted by DICVD technique using FeSO4·6H2O as catalyst precursor.Incipient wetness technique was applied to introduce catalysts into felts using distilled water as solvent.Afterwards,they were placed in a CVD reactor and heated to750°C under Arflowing.At the growth temperature,xylene as the hydrocarbon source was injected into the reactor through a thin tube via a syringe.Ethylenediamine as the growth promoter wasfilled in another syringe and was injected separately from the same side for the xylene injection.The ratio of injection rates of xylene and ethylenediamine was8:1.The Ar/H2(2/1)gas mixture was used as the carrier gas with aflow rate of600sccm.The growth time was2h. The direct growth of CNTs in carbon felts without PyC interface layer was also performed by DICVD technique under identical growth condi-tions.The volume fractions of CNTs in carbon felts with and without PyC interface layer were approximately1.3%.posite preparation and mechanical property testsThe densification was carried out by isothermal CVI technique for 150h under the conditions described in section2.2.The C/Cs containing both the PyC interface layer and CNTs were denoted as CNT-PyC-C/Cs, while the C/Cs containing only CNTs were denoted as CNT-C/Cs.The Fig.1.Schematic of depositing PyC interface layer on CFs and followed by growth of radial CNTs by DICVD to maintainfiber strength,optimize F/M interface and strengthen matrix of C/Cs. 10L.Feng et al./Materials and Design113(2017)9–16densities of pure C/Cs,CNT-C/Cs and CNT-PyC-C/Cs were measured in the range of 1.64–1.67g/cm 3.The sizes of samples for bending tests were machined into 50mm ×8mm ×4mm.The support span for bend-ing tests was 40mm.To study the quasi-ductile fracture behavior of the composites,a ductility factor was introduced.It was calculated from the ratio of the secant modulus (the slope of the line from the origin to the stress at failure in the flexural stress-strain curve)to the elastic modulus [28].The samples used for compression test and interlaminar shearing test were machined into the sizes of 5mm ×5mm ×4mm.The numbers of samples for bending,compression and shearing tests were not less than 5.All the tests were carried out on a universal testing machine (CMT5304)at a constant speed of 0.5mm/min.2.4.CharacterizationThe morphologies and microstructures of grafted CNTs were exam-ined by scanning electrical microscopy (SEM,JSM-6700)operated at 15kV and transmission electrical microscopy (TEM,Tecnai F30G 2)op-erated at 200kV,respectively.Microstructure of the matrix PyC was in-vestigated using polarized light microscopy (PLM,Leica DMLP).The Raman spectrum was recorded on a Renishaw Invia RM200using aninVia micro-Raman spectrometer with an Ar ion laser of 514.5nm wavelength at room temperature.3.Results and discussion3.1.Radially-aligned CNTs grafted on CFs with and without PyC coating Fig.2a shows the surface SEM image of the CFs coated with a homog-enous PyC interface layer with a thickness of about 200nm (Fig.2b).After the growth process by DICVD,the CFs without (Fig.2c)and with (Fig.2d)PyC interface layer are uniformly covered with CNTs.The CNTs exhibit radial grafting morphologies,indicating that the DICVD technique has good repeatability for growing radial CNTs on different carbonaceous substrates.These radial nanotubes extend into the space among fibers capability of providing ef ficient reinforcements both to the interlaminar and intralaminar matrix [29].Observation of the cross-section of hybrid fibers presents the detailed information about the CNT length ranging from 4to 7μm (Fig.2e).TEM investigation (Fig.2f)reveals that the products are hollow nanotubes with smooth walls and a typical outer diameter of about 300nm.And the inner diam-eter and tube-wall thickness are about 200nm and 50nm,respectively.Fig.2.SEM images:(a)surface and (b)cross-section of PyC-coated CFs;(c)surface of radially-aligned CNTs grafted on CFs;(d)surface and (e)cross-section of radially-aligned CNTs grafted on PyC-coated CFs.(f)TEM image of an individual CNT and its high resolution TEM image (inset of f).11L.Feng et al./Materials and Design 113(2017)9–16High resolution TEM image (Fig.2f inset)presents that the CNTs have multi-walled structures and the graphitic sheets are parallel to the axial direction,exhibiting a good crystallinity.3.2.Microstructure of compositesThe polished transverse section of the C/Cs,CNT-C/Cs and CNT-PyC-C/Cs viewed by polarized light microscopy is shown in Fig.3.For C/Cs (Fig.3a),the PyC around CFs is in the shape of circular shell and has large grain size,long boundaries between interference colors and pro-nounced homocentric annular cracks.By contrast,PyC in CNT-PyC-C/Cs (Fig.3b)and CNT-C/Cs (Fig.3b inset)demonstrates a different mor-phology.As for the CFs grafted with radial CNTs,the PyC will deposit around the nanotubes rather than directly on the surface of CFs (here,CNTs provide direct reinforcement to the matrix within the reach of nanotubes).Besides,it has been demonstrated in our previous work [30],where the CNTs can also affect the PyC out of the reach of nano-tubes by inducing the formation of spherical or cone-shaped PyC and then restricting their growing up (here,it can be called as “indirect rein-forcement ”).As a result,the consequent PyC is clearly different in mor-phology from that in pure C/Cs.As seen,the PyC in C/Cs containing CNTs exhibits small grain size,short boundaries between interference colors and no annular cracks.In addition,it is interesting to note that CFs in CNT-PyC-C/Cs present white outlines (labeled by arrows in Fig.3b)at-tributed to the presence of PyC interface layers.Fig.3c and d presents the Raman results of C/Cs and CNT-PyC-C/Cs (same with CNT-C/Cs),respectively.Intensity ratio of disorder-inducedD-peak and tangential G-peak is inversely proportional to the level of crystalline order and crystal size L a (in nm)[31].As stated in Table 1,the D:G intensity ratio,I D /I G ,is about 1.85for C/Cs and falls to approxi-mately 1.52for CNT-PyC-C/Cs,suggesting that PyC has a signi ficant im-provement in crystallinity and meanwhile a big increase in L a after introducing radial CNTs.Axisymmetric peak broadening represents for large interplanar spacing d 002of carbon materials [32].As seen,both G-peak and D-peak of interlayer become sharper and more de fined after introducing radial CNTs,which indicates that,the d 002value of PyC in CNT-PyC-C/Cs has a distinct decrease compared with that in C/Cs.As the crystalline order improves and crystal size increases,the bond density within the interlayer increases [33].High bond densities and few defects could lead to a signi ficant increase in mechanical strength of PyC matrix.3.3.Mechanical properties of compositesFig.4presents the stress-strain curves of the three composites re-corded during bending test,compression test and shearing test.The de-tailed results of mechanical tests of three composites are listed in Table pared with C/Cs,CNT-PyC-C/Cs shows obvious improve-ment in flexural strength,flexural ductility,compressive strength and interlaminar shear strength (ILSS):31.5%in flexural strength,118%in flexural ductility,81.5%in compressive strength and 82%in ILSS.How-ever,the flexural strength and flexural ductility of CNT-C/Cs are de-creased by 14.5%and 73%,although the compressive strength and ILSS are increased by 67%and 115%,respectively.From the flexuralstress-Fig.3.PLM images (a,b and inset)and Raman spectra (c,d)of the three composites:(a and c)C/Cs;(inset of b)CNT-C/Cs;(b and d)CNT-PyC-C/Cs (note:red points marked in a and b are the Raman detection positions).Table 1Raman testing data of C/Cs,and CNT-PyC-C/Cs (±values represent standard deviation).Composite FWHM of G-peak (cm −1)FWHM of D-peak (cm −1)I D /I GC/Cs84.41±0.21116.54±0.30 1.85±0.01CNT-PyC-C/Cs78.76±1.8288.62±1.341.52±0.0712L.Feng et al./Materials and Design 113(2017)9–16strain curves (Fig.4a),we can get the information regarding the fracture behavior of the three composites.For C/Cs and CNT-C/Cs,the flexural stress-strain curves can be divided in two segments:linear rise and lin-ear decrease of stress.The stress suddenly drops leading to the cata-strophic failure of the samples as stress goes up to the peak value,which designates brittle fracture occurs in the two composites.By con-trast,CNT-PyC-C/Cs shows pronounced pseudo-plastic fracture behav-ior since the load decreases in a step-style rather than perpendicularly after the peak value.The stress-stain curve can be divided into three segments:linear rise of load,non-linear rise of load and stepped de-crease of load.The different segments correspond to three stages:ma-trix elastic deformation,appearing and propagating of destructive cracks among matrix,interfacial debonding and fiber pullout,respec-tively [34,35].It means that CNT-PyC-C/Cs does not rupture completely but only fractures partly,avoiding the catastrophic failure as the loading stress reaches to the maximum value,which indicates a signi ficant im-provement in the fracture toughness [36,37].The observation from the compressive and shear stress-strain curves (Fig.4b and c)is that the compressive strength and ILSS of C/Cs can be signi ficantly increased by grafting radial CNTs onto CFs,no matter whether the PyC interface layer is presented or not.From these results it is suggested that if we want to improve the global mechanical strength,ductility and tough-ness of C/Cs,it is necessary to simultaneously optimize both the matrix and F/M interface.When the flexural stress is loaded on the composite samples,the strength of the composites is mainly depended on the strength of CFs.Fig.5shows the SEM images of flexural fracture surfaces of the three composites.In Fig.5a,the fracture surface of C/Cs shows plenty of step-wise fractured PyC and very limited fiber pullout.These fracture steps result from the annular cracks that supply the paths for the spreading and link up of destructive cracks and then lead to the formation of step-wise PyC panels.Besides,the F/M interfacial bonding of C/Cs is loose with obvious gaps between CFs and PyC (Fig.5a inset).According to the observations from Fig.5a,the fracture process in C/Cs during bend-ing test can be described as follows:when the bending stress is loaded on the composite samples,destructive cracks will appear somewhere in matrix at the most critical flaws,and then propagate along the annu-lar cracks leading to the delaminating of PyC;it is hard for the weak ma-trix and poor F/M interface to induce the de flection of destructive cracks to propagate along fiber surface,which leads to the early failure of CFs since the CFs is dif ficult to be hold on by matrix [38];as the stress further increases,these destructive cracks link up with each other and then the failure of composites occurs.The strength of CFs cannot be fully re flected and thus the C/Cs exhibits brittle fracture with low fracture strength.As for CNT-C/Cs,the fracture surface is flat and with nearly ab-sent of fiber pullout (Fig.5b).This fracture surface can be attributed to the strongly-enhanced cohesion in matrix and also the powerful me-chanical interlocking at F/M interface,which lead the destructive cracks to extend into and through the CFs without interfacial debonding (Fig.5b inset).Additionally,the degradation of tensile strength of CFs caused during the CNT growth process is also responsible for the degra-dation of flexural strength of CNT-C/Cs [39].In contrast,CNT-PyC-C/Cs shows a stepwise fracture surface with abundant fiber pullouts (Fig.5c).Enlarged SEM image (Fig.5d)illustrates that the destructive cracks spread along the nano/μ-scale grain boundaries (labeled by red dotted lines).When the destructive cracks extend to the CFs,PyC inter-face layer plays a role in changing their direction and facilitates them spreading along the direction parallel to the fiber axis as much as possi-ble (as shown in Fig.5e,where exposed PyC interface layer on the pulled-out CFs can be clearly observed).The PyC interface layer protects CFs effectively and weakens the interfacial strength between CFs and CNT/PyC,leading to the long pull-out of CFs compared with brittle frac-ture of CFs without PyC interface layer.Therefore,the stress can be ef fi-ciently transferred from the matrix to the CFs through the strengthened matrix and optimized F/M interface.Crack de flection and fiber pullout require a great amount of fractured energy consumption during the fail-ure process [26,27,30,40],which in turn increase the flexural strength and ductility of CNT-PyC-C/Cs and also make the flexural stress release gently,resulting in the sliding region occurred in the flexural stress-strain curve which corresponds to an improved fracture toughness.When the compressive stress is loaded on the composite samples,the compressive strength is mainly depended on the matrix cohesion.Fig.6presents the SEM images of compressive fracture surfaces of the three composites.The fracture surface of C/Cs shows flat and no CFs exist on the surface (Fig.6a),implying that fracture primarily occurs as a typical delamination failure without crack de flection during com-pression test (corresponding failure model is depicted in Fig.6a inset).High degree of matrix delaminating is the dominant mechanism for the delamination failure (Fig.6b).Enlarged SEM image (Fig.6c)clearly shows existing annular cracks provide main channels for the long-dis-tance extending of destructive cracks and then opening the plies.As for CNT-C/Cs (Fig.6d),the strongly-enhanced matrix ef ficiently im-pedes the propagation of destructive cracks in the interlaminar region (corresponding failure mode is shown in Fig.6d inset).The de flected destructive cracks then turn to the intralaminar regions (Fig.6e)and di-rectly pass through the CFs by virtue of strong F/M interfacialbonding,Fig.4.Stress-strain curves of the three composites recorded during different mechanical tests:(a)flexural test;(b)compression test;(c)Shearing test.Table 2Mechanical properties of C/Cs,CNT-C/Cs and CNT-PyC-C/Cs (±values represent standard deviation).Composite Flexural strength (MPa)Flexural ductility Compressive strength (MPa)Shear strength (MPa)C/Cs54±60.11±0.03195±1133±5CNT-C/Cs46±70.03±0.01326±1371±8CNT-PyC-C/Cs71±100.24±0.06354±1660±613L.Feng et al./Materials and Design 113(2017)9–16forming many flat fractured surfaces (Fig.6f).But comparatively,CNT-PyC-C/Cs shows a rugged fracture surface with many exposed CFs (Fig.6g),indicating that the propagation direction of destructive cracks also changes mangy times during compression test (corresponding fail-ure mode is shown in Fig.6g inset).The optimized F/M interface induces the long-distance propagation of destructive cracks along the fiber sur-face rather than directly pass through the CFs occurred in CNT-C/Cs (Fig.6h and i).More energies are dissipated during this course,which in turn could explain the more pronounced increment in the compressive strength for CNT-PyC-C/Cs (that is 81.5%)than that of CNT-C/Cs (that is 67%).When the interlaminar shear stress is loaded on the composite sam-ples,the shear strength is mainly depended on both the matrix cohesion and F/M interfacial bonding strength.Fig.7presents the shearing frac-ture surface of three composites.As seen in Fig.8a,the smooth PyC shearing fracture surface suggests a serious matrix delaminating in C/Cs,which is similar to the failure mode observed in compression test.It can be thus said that for C/Cs the matrix cohesion is lowerthanFig.5.SEM images of the flexural fracture surfaces of the three composites:(a and inset)C/Cs;(b and inset)CNT-C/Cs;(c –e)CNT-PyC-C/Cs.Fig.6.SEM images of the compressive fracture surfaces of the three composites:(a –c)C/Cs;(d –f)CNT-C/Cs;(g –i)CNT-PyC-C/Cs (insets are the failure modes of the composites during compression tests).14L.Feng et al./Materials and Design 113(2017)9–16F/M interfacial bonding strength.As for the CNT-C/Cs (Fig.8b),matrix delaminating is inhibited and abundant damaged CFs can be clearly ob-served in the shearing fracture surface,indicating that the interfacial strength between CFs and CNT/PyC is strong enough to generate a crack de flection from CNT/PyC to CFs and thus leading to the cleaving of CFs.However,for the CNT-C/Cs (Fig.8c),the F/M interfacial bonding seems to be relatively weak compared with the strongly-enhanced ma-trix,according to the long-distance spreading of destructive cracks along CF surface.This observation provides direct evidence that the PyC interface layer weakens the interfacial bonding strength between CFs and CNT/PyC (Fig.8c inset).It also explains the reason why the in-crement in ILSS of CNT-PyC-C/Cs (that is 82%)is lower than that of CNT-C/Cs (that is 115%).In addition,CNT pullout has rarely been found in all the fracture surfaces of composite samples.Therefore,it can be said that the contribution of our CNTs to the high mechanical strengths of composites is mainly re flected in strengthening the matrix.From the above analysis,the schematic modeling of the failure mecha-nisms of the three composites during loading process has been established,as shown in Fig.8.4.ConclusionsPyC deposited on the CF surface following the radial CNT growth en-ables F/M interface optimizing,matrix strengthening and minimum degradation to the fiber strength.SEM morphologies of fracture surfaces of failure composites reveal that the synergistic effects of strongly-en-hanced matrix and optimized F/M interface not only ef ficiently de flects the propagation direction of destructive cracks,but also induces the long-distance spreading of destructive cracks along the surfaces of CFs,which signi ficantly increase the flexural strength,flexural ductility,frac-ture toughness,compressive strength and ILSS of C/Cs.However,the speci fic interfacial bonding strength between CFs and CNT/PyC as well as the effect of thickness of PyC interface layer on the mechanical perfor-mance of CNT-reinforced C/Cs are still unclear.Still and all,this work might open up a possibility to produce CNT-reinforced C/Cs with excel-lent mechanical strength,ductility and toughness to replace traditional C/Cs in industries.AcknowledgementsThis work has been supported by the Fundamental Research Funds for the Central universities under Grant No.3102014JCQ01030and “111”Project of China (B08040),and the Natural Science Foundation of China (Grant Nos.51521061and51502242).Fig.7.SEM images of the shearing fracture surfaces of the three composites:(a)C/Cs;(b)CNT-C/Cs;(c and inset)CNT-PyC-C/Cs.Fig.8.The failure mechanisms of the three composites during loading process (red lines represent propagation paths of the destructive cracks).15L.Feng et al./Materials and Design 113(2017)9–16References[1] E.Fitzer,L.M.Manocha,Carbon Reinforcements and Carbon/Carbon Composites,Christiane,Berlin,1998.[2]T.Windhorst,G.Blount,Carbon-carbon composites:a summary of recent develop-ments and applications,Mater Des.18(1997)11–15.[3]K.Anada,V.Gupta,The effect of processing conditions on the compressive and shearstrength of2-D carbon-carbon laminates,Carbon33(1995)739–748.[4]G.Savage,Carbon/Carbon Composites,Springer,London,1993.[5]X.H.Hou,H.J.Li,S.Y.Zhang,J.Shen,Interface-like fracture mechanism in pyrolyticcarbon matrix-based carbon–carbon composites,Mater.Lett.48(2001)117–120.[6]K.M.Liew,Z.X.Lei,L.W.Zhang,Mechanical analysis of functionally graded carbonnanotube reinforced composites:a review,Compos.Struct.120(2015)90–97. [7]J.N.Coleman,U.Khan,W.J.Blau,Y.K.Gun'Ko,Small but strong:a review of the me-chanical properties of carbon nanotube-polymer composites,Carbon44(2006) 1624–1652.[8]M.Sharma,S.Gao,E.Mäder,H.Sharma,L.Y.Wei,J.Bijwe,Carbonfiber surfaces andcomposite interphases,Compos.Sci.Technol.102(2014)35–50.[9]Q.M.Gong,Z.Li,X.D.Bai,D.Li,J.Liang,The effect of carbon nanotubes on the micro-structure and morphology of pyrolytic carbon matrices of C–C composites obtained by CVI,Compos.Sci.Technol.65(2005)1112–1119.[10] E.T.Thostenson,W.Z.Li,D.Z.Wang,Z.F.Ren,T.W.Chou,Carbon nanotube/carbonfiber hybrid multiscale composites,J.Appl.Phys.91(2002)6034–6037.[11]V.P.Veedu,A.Cao,X.Li,K.Ma,C.Soldano,S.Kar,P.M.Ajayan,M.N.Ghasemi-Nejhad,Multifunctional composites using reinforced laminate with carbon-nanotube for-ests,Nat.Mater.5(2006)457–462.[12]R.Li,chman,P.Florin,H.D.Wagner,B.L.Wardle,Hierarchical carbon nanotubecarbonfiber unidirectional composites with preserved tensile and interfacial prop-erties,Compos.Sci.Technol.117(2015)139–145.[13] A.R.Boccaccini,J.Cho,J.A.Roether,B.J.C.Thomas,E.J.Minay,M.S.P.Shaffer,Electro-phoretic deposition of carbon nanotubes,Carbon44(2006)3149–3160.[14]T.Kamae,L.T.Drzal,Carbonfiber/epoxy composite property enhancement throughincorporation of carbon nanotubes at thefiber-matrix interphase-part I:the devel-opment of carbon nanotube coated carbonfibers and the evaluation of their adhe-sion,Compos Part A-Appl S43(2012)1569–1577.[15]L.Mei,X.He,Y.Li,R.Wang,C.Wang,Q.Peng,Grafting carbon nanotubes onto car-bonfiber by use of dendrimers,Mater.Lett.64(2010)2505–2508.[16]H.Qian,E.S.Greenhalgh,M.S.P.Shaffer,A.Bismarck,Carbon nanotube-based hierar-chical composites:a review,J.Mater.Chem.20(2010)4751–4762.[17]L.Feng,K.Z.Li,Z.S.Si,Q.Song,H.J.Li,J.H.Lu,et al.,Compressive and interlaminarshear properties of carbon/carbon composite laminates reinforced with carbon nanotube-grafted carbonfibers produced by injection chemical vapor deposition, Mater.Sci.Eng.A626(2015)449–457.[18]Q.Song,K.Z.Li,H.L.Li,H.J.Li,C.Ren,Grafting straight carbon nanotube radially ontocarbonfibers and their effect on the mechanical properties of carbon/carbon com-posites,Carbon50(2012)3943–3960.[19]H.Y.Yu,J.H.Lu,Q.Song,K.Z.Li,H.J.Li,Q.G.Fu,et al.,Compressive properties of car-bon/carbon composites reinforced by carbon nanotubes with different orientations and lengths,Vacuum99(2014)76–79.[20]H.Qian,A.Bismarck,E.S.Greenhalgh,G.Kalinka,M.S.P.Shaffer,et al.,Hierarchicalcomposites reinforced with carbon nanotube graftedfibers:the potential assessed at the singlefiber level,Chem.Mater.20(2008)1862–1869.[21]T.R.Pozegic,I.Hamerton,J.V.Anguita,W.Tang,P.Ballocchi,P.Jenkins,et al.,Lowtemperature growth of carbon nanotubes on carbonfibre to create a highly networked fuzzyfibre reinforced composite with superior electrical conductivity, Carbon74(2014)319–328.[22]J.Zhao,L.Liu,Q.Guo,J.Shi,G.Zhai,J.Song,et al.,Growth of carbon nanotubes on thesurface of carbonfibers,Carbon46(2008)380–383.[23]P.Xiao,X.F.Lu,Y.Q.Liu,L.L.He,Effect of in situ grown carbon nanotubes on thestructure and mechanical properties of unidirectional carbon/carbon composites, Mater.Sci.Eng.A528(2011)3056–3061.[24]Y.Y.Li,L.J.Guo,Q.Song,L.Li,J.H.Lu,K.Z.Li,et al.,Simultaneous improvements inflexural strength and ductility of carbon nanotube-doped carbon/carbon composites by depositing a pyrocarbon layer on carbonfibers,Ceram.Int.41(2015) 1943–1949.[25]K.Z.Li,L.Li,H.J.Li,Q.Song,J.H.Lu,Q.G.Fu,Electrophoretic deposition of carbonnanotubes onto carbonfiber felt for production of carbon/carbon composites with improved mechanical and thermal properties,Vacuum104(2014)105–110. [26]M.Sakai,R.Matsuyama,T.Miyajima,The pullout and failure of afiber bundle in acarbonfiber reinforced carbon matrix composite,Carbon38(2000)2123–2131. [27]M.Sakai,T.Miyajima,M.Inagaki,Fracture toughness andfiber bridging of carbonfiber-reinforced carbon matrix composites,Compos.Sci.Technol.40(1991) 231–250.[28] B.Reznik,M.Guellali,D.Gerthsen,Microstructure and mechanical properties of car-bon–carbon composites with multilayered pyrocarbon matrix,Mater.Lett.52 (2002)14–19.[29]S.S.Wicks,R.G.de villoria,B.L.Wardle,Interlaminar and intralaminar reinforcementof composite laminates with aligned carbon nanotubes,Compos.Sci.Technol.70 (2010)20–28.[30]L.Feng,K.Z.Li,Z.G.Zhao,H.J.Li,L.L.Zhang,J.H.Lu,et al.,Three-dimensional carbon/carbon composites with vertically aligned carbon nanotubes:providing direct and indirect reinforcements to the pyrocarbon matrix,Mater.Des.92(2016)120–128.[31]P.Mallet-Ladeira,P.Puech, C.Toulouse,M.Cazayous,N.Ratel-Ramond,P.Weisbecker,et al.,A Raman study to obtain crystallite size of carbon materials:a better alternative to the Tuinstra–Koenig law,Carbon80(2014)629–639.[32] A.Yoshida,Y.Kaburagi,Y.Hishiyama,Full width at half maximum intensity of the Gband in thefirst order Raman spectrum of carbon material as a parameter for graph-itization,Carbon44(2006)2333–2335.[33] C.A.Taylor,M.F.Wayne,W.K.S.Chiu,Heat treatment of thin carbonfilms and the ef-fect on residual stress,modulus,thermal expansion and microstructure,Carbon41 (2003)1867–1875.[34]X.Xiong,Y.L.Wang,Z.K.Chen,G.D.Li,Mechanical properties and fracture behaviorsof C/C composites with PyC/TaC/PyC,PyC/SiC/TaC/PyC multi-interlayers,Solid State Sci.11(2009)1386–1392.[35]H.Hatta,K.Suzuki,T.Shigei,S.Somiya,Y.Sawada,Strength improvement by densi-fication of C/C composites,Carbon39(2001)83–90.[36]H.L.Li,H.J.Li,J.H.Lu,C.Sun,Y.J.Wang,D.J.Yao,et al.,Improvement in toughness ofcarbon/carbon composites using multiple matrixes,Mater.Sci.Eng.A530(2011) 57–62.[37]G.Z.Xu,H.J.Li,R.C.Bai,J.Wei,Y.Q.Zhai,Influence of the matrix texture on the frac-ture behavior of2D carbon/carbon composites,Mater.Sci.Eng.A478(2008) 319–323.[38]J.Chen,P.Xiao,X.Xiong,The mechanical properties and thermal conductivity of car-bon/carbon composites with thefiber/matrix interface modified by silicon carbide nanofibers,Mater.Des.84(2015)285–290.[39]L.Feng,K.Z.Li,J.J.Sun,Y.J.Jia,H.J.Li,L.L.Zhang,Influence of carbon nanotube ex-tending length on pyrocarbon microstructure and mechanical behavior of carbon/ carbon composites,Appl.Surf.Sci.355(2015)1020–1027.[40]R.R.Naslain,The design of thefibre-matrix interfacial zone in ceramic matrix com-posites,Compos.Part A-Appl.S29(1998)1145–1155.16L.Feng et al./Materials and Design113(2017)9–16。
锚网索支架联合支护技术在深井巷道维修中的应用
锚网索支架联合支护技术在深井巷道维修中的应用
杨军辉;赵祥;朱明
【期刊名称】《河北工程大学学报(自然科学版)》
【年(卷),期】2009(026)003
【摘要】针对河北金牛能源公司邢东煤矿深部轨道大巷失修严重的现实问题,对原锚网支护方式做了理论分析,提出锚网索支架联合支护维修的技术方案,并在力学机理分析基础上,对邢东矿深井锚网索支架联合支护技术进行了系统分析和应用研究.现场效果表明,锚网支架联合支护巷修技术是适用于邢东矿高应力条件的经济可靠的支护方式.
【总页数】4页(P93-96)
【作者】杨军辉;赵祥;朱明
【作者单位】河北金牛能源股份公司邢东矿,河北,邢台,054000;河北金牛能源股份公司邢东矿,河北,邢台,054000;河北理工大学资源与环境学院,河北,唐山,063009【正文语种】中文
【中图分类】TD2
【相关文献】
1.深井软岩巷道U型钢+锚网索+喷浆联合支护技术研究 [J], 张心旷
2.深井软岩回采巷道锚网索支护技术应用 [J], 苏光祥
3.深井泥岩巷道锚网索支护技术的应用 [J], 刘慧
4.深井高地压软岩巷道“锚网索喷”联合支护技术实践 [J], 安超;蒋宇静;赵启峰;范向向
5.高强锚杆+预应力锚索联合支护技术在深井高地应力软岩巷道维修中的应用 [J], 余永强;王长江
因版权原因,仅展示原文概要,查看原文内容请购买。
600MW机组240m烟囱钢内筒液压提升倒装法施工
验、 施工过程监测等试验与监测, 确认液压提升倒装法适用于各种形式的钢 内筒。 关 键词 : 炉; 锅 多管式烟 囱; 内筒 ; 钢 液压提升倒装法; 钢绞线锚 固体 系
(. 电建 三公 司 , 苏 镇 江 220 ;. 省 电力公 司 , 1江苏 江 10 32江苏 江苏 南 京 2 02 ) 10 4
摘 要: 结合江 苏镇 江电厂三期 工程建设 , 介绍 了2台 6 0MW 超临界燃煤发 电机组 2炉共用 1 2 01. l 囱 0 座 4 /64n 烟
的施 工技术。阐述 了谊烟囱采用液压提 升倒装 法施 工的基本原理 与 系统组 成 。 对提升 器布置方案、 内筒第 1吊点 钢 和 第 2吊点的相对位置与二 次转换 、 拖梁和环粱方案等进行 了分析 比较及论证 。 用大型通用有限元软件 ( S ) 运 AN YS
中图分 类号 : U 6 . T 71 2
文 献标 识码 : A
文章 编 号 :0 9 0 6 (0 60 — 0 8 0 10 — 6 5 2 0 )3 0 1 — 3
1 工 程概 况
江 苏 镇 江 电 厂 三 期 工 程 建 设 2台 6 0MW 超 0
液 压提 升倒 装 系统 由提升 器 、 提升 器支 承体 系 、 钢 内筒 吊装 吊点 、 绞线 、 钢 钢绞 线锚 固体 系等 组成 。 G T 2 0 I ) 钢 索 式 液 压 提 升 装 置 技 术 参 Y - 0 (I 型 数: 额定 提升 力单 台液 压 千斤顶 为 2 0t4台液压 千 0 , 斤 顶 为 8 0t液 压 千 斤顶 活塞 工作 行程 为 2 0mm; 0 ; 0 液压 系统额 定 工作 压 力为 2 a 承载钢 索 数为 单 OMP : 台液压 千斤 顶 , ×1 ( 2 2根 左右捻 向各 l ) 2根 。 提 升 器支 承 体 系 : 由提 升 器支 承 平 台 、 承梁 、 支 钢 筋混 凝土 烟 囱外筒 及其 他支 承结 构组 成 。提升 器
1-s2.0-S0263436814001590-main
Effect of rare earth elements on the consolidation behavior and microstructure of tungsten alloysMingyue Zhao a ,Zhangjian Zhou a ,⁎,Qingming Ding a ,Ming Zhong a ,Kameel Arshad ba School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China bSchool of Physics and Nuclear Energy Engineering,Beihang University,Beijing 100191,Chinaa b s t r a c ta r t i c l e i n f o Article history:Received 11February 2014Available online 23July 2014Keywords:Rare earth element Tungsten alloyConsolidation behavior MicrostructureThe effects of rare earth elements (Y 2O 3,Y and La)on the consolidation behavior,microstructure and mechanical properties of tungsten alloys were investigated in this work.The starting powders were mechanical alloyed (MA)and then consolidated by spark plasma sintering (SPS).It was found that Y doping was bene ficial to obtain fully dense tungsten alloys with more re fined grains as compared to any other rare earth elements.The maximum values of Vickers microhardness and bending strength obtained from W –0.5wt.%Y alloy reached up to 614.4HV 0.2and 701.0MPa,respectively.©2014Elsevier Ltd.All rights reserved.IntroductionTungsten is a promising candidate material for high temperature applications due to its attractive properties,such as high melting point,high conductivity,low thermal expansion coef ficients and low sputtering yield [1].However,a major limitation of its use is the inherently high ductile –brittle transition temperature (DBTT)and low recrystallization temperature.Fine grained tungsten materials have shown improved properties in terms of reduced brittleness and improved toughness and strength [1,2].However,the improved mechanical properties will be deteriorated when exposed to high temperatures for long time and when the service temperature is higher than the recrystallization temperature of pure tungsten.Recent studies suggested that the dispersion of high temperature oxide nanoparticles,such as La 2O 3and Y 2O 3,will not only inhibit the grain growth of W during the consolidation but also stabilize the microstructure when exposed to higher temperature [3,4].It is well known that,the impurities,especially for oxygen,have det-rimental in fluence on the sinterability of tungsten powders and make tungsten materials embrittlement.Thus adding rare earth elements in the metallic state instead of the oxidic state should be better for fabrica-tion of high performance tungsten alloys,due to the high af finity of rare earth elements with oxygen.A recent research conducted by L.Veleva et al.[5]found that the relative density of W –(0.3–2)wt.%Y appeared higher than that of W –(0.3–2)wt.%Y 2O 3,however,the microhardnessappeared always lower than that of W –(0.3–2)wt.%Y 2O 3.From the viewpoint of oxygen absorption,it is suggested that La will be better than Y when used as alloying element for fabrication of W [6].However there are almost no reports on W –La alloy and their comparison with W –Y alloy.It will be interesting and important to investigate the effects of different rare earth elements on the densi fication of W and their mechanical properties.This is the motivation of this work.In this study the effect of rare earth elements,including Y 2O 3,Y and La on the consolidation behavior of W under the same sintering condi-tion was investigated.The microstructural evolution and mechanical properties of different rare earth tungsten materials were examined and compared.Experimental proceduresPowders of commercial pure W (with an average particle size of 2.0μm and a purity of 99.9%),rare earth element of Y or La (with an av-erage particle size of 48μm and a purity of 99.9%),and rare earth oxide of Y 2O 3(with an average particle size of 30nm and a purity of 99.9%)were used as starting materials.The mixture powders of W –0.5wt.%Y 2O 3(named as WYO),W –0.5wt.%Y (named as WY)or W –0.5wt.%La (named as WL)were mechanical alloyed (MA)in a planetary ball mill,respectively.The MA parameters can be found in our previous work [7,8].Then,the MA treated powders were placed into graphite tool in glove box and sintered by spark plasma sintering (SPS)in vacuum.Fig.1shows the temperature and pressure pro file of SPS as a function of time.In order to get fully dense bulk materials by suppress-ing the pore-boundary separation,the samples were first sintered at 1373K for 2min and then sintered at 1873K according to [9].Int.Journal of Refractory Metals and Hard Materials 48(2015)19–23⁎Corresponding author at:Laboratory of Special Ceramics and Powder Metallurgy,School of Materials Science and Engineering,University of Science &Technology Beijing,Beijing 100083,PR China.Tel./fax:+861062334951.E-mail address:zhouzhj@ (Z.Zhou)./10.1016/j.ijrmhm.2014.07.0140263-4368/©2014Elsevier Ltd.All rightsreserved.Contents lists available at ScienceDirectInt.Journal of Refractory Metals and Hard Materialsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m/l o c a t e /I J R M H MThe shrinkage of the specimens was continuously monitored by the displacement of the punch rod.The density of the compacts was measured by Archimedes method.A field emission scanning electron microscope (FE-SEM)equipped with Energy-dispersive X-ray Spectros-copy (EDS)and Scanning electron microscope (SEM)were employed to investigate the microstructural features,i.e.,the element distribution,and the size and morphology of the grains and the pores of the samples.Moreover,XRD was used to determine the phase and X-ray diffraction analysis was made by the Rietveld method using the Full prof program [10].The average crystallite size as well as the internal stress of the MA treated powders were determined from the diffraction peak widths taking into account the diffractometer resolution function.Vickers mi-crohardness was measured at room temperature by applying a load of 1.96N for 15s.Three point bending tests were conducted on specimens with dimensions of 2mm ×3mm ×18mm with a span of 13.1mm and a crosshead speed of 0.5mm/min.The thermal behavior of the MA treated powders in the range 373–1723K was investigated by differen-tial scanning calorimetry (DSC)at a heating rate of 10K/min in flowing pure Ar.Results and discussion Consolidation behaviorFig.2compares the consolidation behavior of all tungsten alloys as a function of temperature.It can be clearly seen that the displacement of WY alloy is similar with that of WL alloy,and shows quite different ten-dency from that of WYO alloy,especially at the sintering temperature of 1373K.For WY and WL alloys,the displacement decreased by 0.6mm between 993K and 1373K due to the thermal expansion of graphite punch rods and the matrix overweighing the contribution of pre-compaction,and continued to decrease at the sintering temperature of 1373K.For WYO alloy,the displacement experiences a slower down-ward trend between 993K and 1373K and a weak upward trend at 1373K.After that,the displacement of WY sees a similar trend with that of WYO.It was found that the WY alloy experienced a substantial decrease in the displacement while the WYO alloy experienced a slight increase at the temperature of 1373K.This result is likely to arise from the formation of a higher volume of Y 2O 3due to the oxidation of Y ele-ment in the WY system.Chemical analysis of the consolidated compacts was performed by the HORIBA EMIA-820V and LECO TCH600devices to measure the C and O contents,respectively.It shows that the C contents were about 240ppm for various tungsten materials fabricated under the same conditions.The amount of oxygen content which existed in MA treated WY powders was 0.4808wt.%,which is enough for the reactionwith added Y particles to form Y 2O 3.Fig.3shows the DSC curve of the MA treated WY powders in the range 373–1723K.A weak exothermic peak at 1500K with an onset temperature of 1400K is found.It probably corresponds to the oxidation of the metallic Y with the residual oxygen in a hermetically sealed pan,which also illustrates that the remaining Y particles are likely to start to react with oxygen around 1373K during SPS.Moreover,a sharp strong and a small exothermic peak can be clear-ly seen at 1003K and 1173K,respectively.According to [11,12],these peaks indicate that the strain relief took place during the heating of MA treated powders.Similar results on the oxygen analysis and the thermal behavior are also found for MA treated WL powders.Fig.4shows the milling and sintering effect on the XRD patterns of the investigated samples.It is obvious that the diffraction peaks are broadened after milling,which was caused by the re finement of powder particles and a high level of internal strain in the W grains fabricated by the MA process.After sintering,the diffraction peaks become narrow again due to the grain growth and strain relief.The quantitative data on such grain growth and strain relief can be obtained by the compari-son of lattice parameters after each stage of the powder processing (Table 1).It should be noted that the XRD patterns for all samples after milling exhibit a single BCC phase,suggesting that the rare earth elements were dissolved into the W lattice.This solid solutionduringFig.1.The temperature and pressure pro file as a function of time for the sintering experiments of rare earth tungstenalloys.Fig.2.The real time sintering curves of all samples without removing the contribution of the thermal expansion of the graphite tool andmatrix.Fig.3.DSC curve of the MA treated WY powder.The peak temperatures of thermally induced transformation of the powders are indicated by arrows.20M.Zhao et al./Int.Journal of Refractory Metals and Hard Materials 48(2015)19–23the MA process can be further demonstrated by the lattice parameter increase of the MA treated powders compared with that of the starting pure tungsten powder (Table 1).Microstructure observationMicrostructure of the fracture surfacesThe fracture surfaces of WY,WYO and WL samples are presented in Fig.5.It can be clearly seen that the rare earth elements in fluence the grain re finement signi ficantly.Fig.6shows the grain size distribution which was determined from the SEM micrographs of fracture surfaces.For each image,about 130grains were chosen randomly to eliminate the bias of grain counting.The grain size distributions of WL and WYO alloys are in the range from 1.6to 8.0μm and from 0.8to 4.4μm,respec-tively,and their average grain sizes are 2.46μm and 4.62μm,respective-ly;while,the average grain size of WY alloy is only 1.10μm,which is much smaller than that of WL and WYO alloys.The grain size distribu-tion of WY alloy is in the range from 0.3to 2.0μm,which is much nar-row as compared with that of WL and WYO alloys.Moreover,it is worth noting that the average grain size acquired from the SEM images of fracture surfaces has a remarkable consistency with those calculated by the Rietveld method using the Full prof program,as shown in Table 1.More careful analysis of Fig.6reveals that the WY alloy is denser than WYO and WL alloys.Many big worm-like pores (indicated by yel-low arrows)and small pores (indicated by white dot circles)can be found for WYO and WL alloys on the surface of individual tungstengrains and in the triple junctions.It is easy to learn that the tungsten grains with different additions grew up in a different speed (WL N WYO N WY)according to the average grain size of each stage of powder processing.Besides,the grain growth of pure tungsten or ODS W-based materials sintered by SPS starts between 1373K and 1773K according to literature [9,13].Under a certain pressure between 1773K and 1873K in our present work,the smaller the grain size,the easier the re-arrangement and plastic deformation,and thus higher shrinkage can be achieved.During the holding time at sintering temperature (1873K),grain growth took place simultaneously with further densi fication,which was achieved dominantly by more homogeneous interfacial atomic diffusion but with minimized involvement of surface diffusion according to [9].Meanwhile,the worm-like pores could be formed if the holding time at sintering temperature of 1873K was not enough for W –0.5La alloy having a large grain size.The microstructure of chemically etched surfacesThe microstructures of chemically etched surface are illustrated in Fig.7.EDS analysis indicated that the black phases which existed in WYO,WY and WL alloys are rare earth oxides (indicated by blue ar-rows)and the dark gray phases are pores (indicated by red arrows).For WY alloy (Fig.7b),pores can hardly be found,which is consistent with the microstructure observation of the fracture surface.Besides,fine Y 2O 3particles are distributed uniformly along grain boundaries of WY alloy;while for WYO and WL alloys (Fig.7a and c),many micro-scale pores are found in triple junctions and tungsten grain boundaries,especially for WL alloy.Moreover,the FESEM images shown in Fig.7a and c reveal that the oxide particles are irregular and not distributed uniformly.In the XRD measurements performed on the WL alloy (Fig.4and Table 1),a weak diffraction peak of La 2O 3phase and lattice parameter decrease of sintered WL alloy are observed,which also suggest that the La particles separate from tungsten grains and become micro-scale La 2O 3during sintering.The densi fication analysisTable 2shows the relative density of the rare earth tungsten alloys.The relative density of WY reaches 99.4%,which is much higherthanFig.4.Effect of milling and SPS sintering on the XRD patterns of rare earth tungsten alloys.(a)MA treated powders,and (b)sintered compacts.Table 1Lattice parameters after each stage of the powder processing and the average grain size ac-quired from the SEM images of fracture surfaces.SamplePowder Sintered compact Crystallite size (nm)lattice strain (%)a (W:nm)Grain size (nm)Lattice strain (%)Grain size (nm)—SEM WY 8050.3510.31646215220.0701100WL 4100.3010.31659956650.0414620WYO 6200.3860.31653424820.0342460W11740.0450.31604021M.Zhao et al./Int.Journal of Refractory Metals and Hard Materials 48(2015)19–23the WYO (92.1%)and WL (88.3%).This result is agreeable with the mi-crostructure observation.Owing to the grain boundary cleaning effect and sintering enhancing effect of Y particles during SPS,Y doping is ben-e ficial to achieve fully dense tungsten alloys than Y 2O 3doping.On the other hand,the well-distributed fine Y 2O 3dispersions which existed in WY alloy play a prominent role in the re finement of tungsten grains,thus dense fine grained sample can be obtained under the present sintering process.Kim et al.[14]reported that the second phases can act as obstacles in inhibiting the grain growth only in solid phase sintering.Owing to the formation of metallic La liquid phase at 1193Kaccording to the phase diagram Mo –La and then the formation of micro-scale and non-uniformly distributed La 2O 3dispersions as a result of oxidation,the grain growth speed of WL alloy is much higher than that of WYO and WY alloys.Thereby,the relative density of WL alloy is lower than that of WYO alloy and WY alloy even though La particles can exert cleaning effect on the tungsten grain boundaries.Besides,in accordance with literatures [4,15,16],the internal energy originating from the signi ficant strain of the particles could serve as a part of sintering driving force.As shown in Table 1,the lattice strain of WL alloy is 0.301%,lower than that of WYO (0.386%)and WY (0.351%),which is another reason for the lower relative density of WL alloy.The basic mechanical propertiesVickers microhardness and bending strength of the rare earth tung-sten alloys were also listed in Table 2.Of all the three kinds of tungsten materials,the hardness of WY sample is 614.4HV 0.2,much higher than that of WYO (445.2HV 0.2)and WL (303HV 0.2).The lower hardness of WYO and WL alloys originates from the lower relative density and coarse grain size,as shown in Figs.5and 6.Moreover,WY exhibits the highest bending strength (701MPa)among these tungsten alloys,which is 11%and 88%higher than that of WYO and WL alloys.As shown in Fig.5,the remaining pores,including worm-like pores and small pores,reduce the contact area of tungsten grains,thus the bending strength of WYO and WL to some extent decreases.Besides,the coarse grain size (Fig.6)and inhomogeneous dispersions of oxide particles (Fig.7)of WYO and WL alloys are also the reason for their low bending strength.ConclusionsTungsten alloys were successfully fabricated by adding different rare earth elements to W matrix.The effect of dispersing rare earthelementsFig.5.SEM micrographs of fracture surfaces for:(a)WYO,(b)WY,and (c)WL;the yellow arrows denote worm-like pores existed on the surface of individual grains,and the white dot circles denote pores located in the triplejunctions.Fig.6.Histograms of the grain size distributions for WYO,WY and WL alloys.22M.Zhao et al./Int.Journal of Refractory Metals and Hard Materials 48(2015)19–23on the microstructure evolution and mechanical properties of the tung-sten alloys can be concluded as follows:(1).The relative density of WY,WYO and WL alloy reached 99.4%,92.1%and 88.3%,respectively.The Y doping was bene ficial toobtain fully dense tungsten alloys as compared with Y 2O 3doping and La doping because the finely distributed second phase parti-cles suppressed the tungsten grain growth and thus ensured the suf ficient grain boundary volume available for densi fication by grain boundary diffusion.The analysis of consolidation behavior and thermal behavior of MA treated WY or WL powders revealed that the added Y or La particles were likely to start to react with oxygen around 1373K during SPS.(2).The average grain sizes of WY,WYO and WL alloys were 1.10μm,2.46μm and 4.62μm,respectively.The Y doping was bene ficial to obtain tungsten alloys with more re fined tungsten grains as com-pared with Y 2O 3doping and La doping.(3).Of all the three kinds of rare earth tungsten alloys,WY alloy ex-hibited the highest mechanical properties at room temperature.The maximum values of Vickers microhardness and bending strength reached up to 614.4HV 0.2and 701.0MPa,respectively.AcknowledgmentsThe authors would like to express their thanks for the financial support of the National Natural Science Foundation of China under grant No.50634060.References[1]Zhang Y,Ganeev AV,Wang JT,Liu JQ,Alexandrov IV.Observations on the ductile-to-brittle transition in ultra fine-grained tungsten of commercial purity.Mater Sci Eng A 2009;503:37–40.[2]Kitsunai Y,Kurishita H,Kayano H,Hiraoka Y,Igarashi T,Takida T.Microstructure andimpact properties of ultra-fine grained tungsten alloys dispersed with TiC.J Nucl Mater 1999;271–272:423–8.[3]Kim Y,Lee KH,Kim E,Cheong D,Hong SH.Fabrication of high temperature oxidesdispersion strengthened tungsten composites by spark plasma sintering process.J Refract Met Hard Mater 2009;5:842–6.[4]Wang HT,Fang ZZ,Hwang KS,Zhang HB,Siddle D.Sinter-ability of nanocrystallinetungsten powder.Int J Refract Met Hard Mater 2010;28:312–6.[5]Veleva L,Oksiuta Z,Vogt U,Baluc N.Sintering and characterization of W –Y andW –Y 2O 3materials.Fusion Eng Des 2009;84:1920–4.[6]Brown PH,Rathjen AH,Graham RD,Tribe DE.Chapter 92rare earth elements inbiological systems.Handbook on the physics and chemistry of rare earths;1990.p.423–52.[7]Zhou ZJ,Tan J,Qu DD,Pintsuk G,Rödig M,Linke J.Basic characterization of oxidedispersion strengthened fine-grained tungsten based materials fabricated by me-chanical alloying and spark plasma sintering.J Nucl Mater 2012;431:202–5.[8]Tan J,Zhou ZJ,Zhu XP,Guo SQ,Qu DD,Lei MK,et al.Evaluation of ultra-fine grainedtungsten under transient high heat flux by high-intensity pulsed ion beam.Trans Nonferrous Metals Soc China 2012;22:1081–5.[9]Ma J,Zhang JZ,Liu W,Shen ZJ.Suppressing pore-boundary separation during sparkplasma sintering of tungsten.J Nucl Mater 2013;438:199–203.[10]Rodríguez-Carvajal J.Recent advances in magnetic structure determination byneutron powder diffraction +FullProf.Physica B 1993;192:55–6.[11]Muñoz A,Monge MA,Savoini B,Rabanal ME,Garces G,Pareja 2O 3-reinforced Wand W –V alloys produced by hot isostatic pressing.J Nucl Mater 2011;417:508–11.[12]Maweja K,Phasha MJ,Choenyane LJ.Thermal stability and magnetic saturation ofannealed nickel –tungsten and tungsten milled powders.J Refract Met Hard Mater 2012;30:78–84.[13]Yar MA,Wahlberg S,Bergqvist H,Salem HG,Johnsson M,Muhammed M.Spark plas-ma sintering of tungsten –yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization.J Nucl Mater 2011;412:227–32.[14]Kim Y,Hong MH,Lee SH,Kim EP,Lee S,Noh JW.The effect of yttrium oxide on thesintering behavior and hardness of tungsten.Met Mater Int 2006;12:245–8.[15]Han Y,Fan JL,Liu T,Cheng HC,Tian JM.The effects of ball-milling treatment on thedensi fication behavior of ultra-fine tungsten powder.Int J Refract Met Hard Mater 2011;29:743–50.[16]Prabhu G,Chakraborty A,Sarma B.Microwave sintering of tungsten.Int J Refract MetHard Mater 2009;27:545–8.Fig.7.FESEM micrographs of chemically etched surface of:(a)WYO,(b)WY,and (c)WL.Table 2The relative density and basic mechanical properties of rare earth tungsten alloys.Sample Relative density (%)Microhardness (HV 0.2)Bending strength (MPa)WYO 92.1445.2631WY 99.4614.4701WL88.3303372.123M.Zhao et al./Int.Journal of Refractory Metals and Hard Materials 48(2015)19–23。
2024年江苏公务员考试行测试题(A类)
2024年江苏公务员考试行测试题(A类)第一部分常识判断1.2024年2月27日,第十四届全国冬季运动会在内蒙古自治区呼伦贝尔市闭幕。
第十五届全国冬季运动会将于2028年在()举行。
A.河南省B.黑龙江省C.湖北省D.辽宁省【答案】:D2.下列关于“深海一号”的相关表述,正确的是()。
A.“深海一号”二期工程导管架海上安装采用下潜下水方式进行B.“深海一号”二期工程导管架在南海东部海域C.“深海一号”二期工程距离三亚市约102公里。
D.“深海一号”二期导管架已精准安装就位【答案】:D3.从商务部了解到,2023年,中国和西班牙双边贸易额达486亿美元,中国已成为西班牙在欧盟外的()。
A.第三大贸易伙伴B.第二大贸易伙伴C.第一大贸易伙伴D.第四大贸易伙伴【答案】:C4.2024年中央一号文件指出,扩大完全成本保险和种植收入保险政策实施范围,实现()A.五谷作物西部试点推进B.大豆有序扩面C.糖料研发增种1/ 14D.三大主粮全国覆盖【答案】:D5.2月17日,()全国冬季运动会开幕式在内蒙古呼伦贝尔市海拉尔区内蒙古冰上运动训练中心举行。
A.第十六届B.第十四届C.第十七届D.第十五届【答案】:B6.中国古代诗歌史上流派纷呈,其中有个影响特别大的诗派叫做“江西诗派”,江西诗派有“一祖三宗”之说,请问是哪一祖?()A.黄庭坚B.苏轼C.贾岛D.杜甫【答案】:D7.初级合作社和高级合作社最根本的区别是()。
A.地区B.性质C.规模D.名称【答案】:B8.下列不是来源于史实的成语是()。
A.讳疾忌医B.草木皆兵C.破釜沉舟D.八仙过海【答案】:D9.所谓“零碳城市”,就是最大限度地减少温室气体排放的环保型城市,也可称“生态城市”,地球大气中主要的温室气体包括二氧化碳、水汽、()等。
2/ 14A.二氧化硫B.甲烷C.氧气D.一氧化碳【答案】:B10.9月13日,苹果新品发布会上推出了iphone8,iPhoneX等新手机,价格均在五千元以上,导致众多普通消费者望而却步,从而减少了对苹果手机的购买。
创造中国工程科技新辉煌
创造中国工程科技新辉煌
徐匡迪
【期刊名称】《中国工程科学》
【年(卷),期】2008(10)5
【摘要】1978年3月18日是一个让中年以上的中国知识分子永远难以忘怀的日子。
这一天,历经“文革”磨难后的第一次全国科学大会在北京隆重举行。
邓小平同志在大会讲话中提出了“科学技术是生产力”、“知识分子是工人阶级一部分”的著名论断,郭沫若先生在闭幕式上发表了脍炙人口的名篇“科学的春天”,至今我们还能脱口吟诵那令人心潮澎湃、充满希望的结束语:“‘日出江花红胜火,春来江水绿如蓝’。
这是革命的春天,这是人民的春天,这是科学的春天!让我们张开双臂,热烈地拥抱这个春天吧!”
【总页数】2页(P4-5)
【作者】徐匡迪
【作者单位】中国工程院,北京,100038
【正文语种】中文
【中图分类】TB-27
【相关文献】
1.站在新的起点创造新的辉煌——访中国检验认证集团董事长刘生明
2.创造中国工程科技新辉煌
3.肩负新使命迈向新征程创造新辉煌探寻地市报精品之路——不让有获奖潜质的新闻题材溜棹——我的摄影作品《触目惊心!2万多吨垃圾跨省
非法倾倒苏州太湖边》荣获中国新闻奖的感悟4.新使命、新担当,努力创造中国电影新辉煌5.以信息化培育新动能用新动能推动新发展以新发展创造新辉煌——福建省市场监管系统参展第二届数字中国建设峰会
因版权原因,仅展示原文概要,查看原文内容请购买。
2024年全民国防教育活动总结报告(精选15篇).doc
2024年全民国防教育活动总结报告(精选15篇)全民国防教育活动总结报告精选篇1一年一度的新生军训是我校德育工作的一项重要内容之一。
今年的军训,在我校领导的高度重视下,在部队官兵的大力帮助下,在全体同学的共同努力下,我们的军训成果显著,特总结如下:一、领导重视、明确分工、落实计划、齐抓共管。
今年的军训工作是对我校新生思想素质和道德水平的第一次综合的考验和评价,对我校以后的工作有着重要的参考作用,所以校领导对此极为重视,并成立了军训领导小组,组长由书记和主管德育的副校长担任,组员由德育处的同志和新生班主任及来我校训练的官兵组成,大家共同商量,集思广益,明确分工,达成共识,制定了严谨的军训计划,为搞好今年的军训工作打下了坚实的基础,良好的开端是成功的一半,我校的军训在大家的共同努力下如火如荼的开展起来。
二、严格要求,严格训练。
今年我校军训的规模之大,参加人数之多是近几年来少有的,有十个中队,七百多名学生参加,部队给予了我校大力的支持和帮助,特派一名股长带领十名教官来我校指导训练,每个中队由一名教官负责军训,带队干部统筹指挥,在训练期间,做到了高标准,严要求。
有大部分没有经历过这种体验,他们是怀着憧憬、神秘、好奇的心理来参加军训的,结果与其想法截然不同,军事训练的艰苦程度、艰辛程度是他们远远想象不到的,军训这几天有时烈日当空,有时阴风细雨,我们的学生在教官的严格要求下,努力克服薄弱的意志,达到训练的目的,取得了丰硕的成果。
三、效果突出,成果显著。
20__届新生通过这次军训,亲身体验到了太多太多的东西,首先表现在精神面貌的改变,身体素质的.增强;其次还培养了他们热爱祖国、热爱学校、团结友善的崇高精神;第三增强了组织纪律性和集体荣誉感,学习我军不怕困难、勇往直前、不怕牺牲、人民利益高于一切的光荣传统,深刻、深入地把军魂、军威融入到学生们的心中,使之得到继承和发扬,为以后的学习和工作打下良好的基础。
1、为期五天的军训,已经顺利的结束,我们一定将军训带来的成果在工作实际中长久的保持下来,为我校的腾飞而贡献力量。
2023年黑龙江省齐齐哈尔市中考语文真题(原卷版)
二○二三年齐齐哈尔市初中学业考试语文试卷考生注意:1.考试时间120分钟2.全卷共四道大题,总分120分3.使用答题卡的考生,请将答案填写在答题卡的指定位置一、知识积累及运用(第1—8题,共28分)1.下列加点字的注音正确的一项是()A.翌.日(yì)赋予.(yú)殷.红(yān)铢两悉称.(chèn)B.狩.猎(shòu)潜.力(qián)哺.育(bǔ)挟.而不服(xiá)C.熏陶.(táo)束缚.(fù)顷.刻(qǐng)强.词夺理(qiǎng)D.罅.隙(xià)黝.黑(yǒu)相符.(fǔ)戛.然而止(jiá)2.下列词语书写正确的一项是()A.帐篷瞻仰郑重其事望眼欲川B.稽首枯燥如雷贯耳神彩奕奕C.妥贴琐屑雕梁画栋锲而不舍D.抉择谰语和颜悦色人情世故3.下列各句中加点成语使用有误的一项是()A.那乐声,高亢雄浑。
在夜雾中直冲霄汉,令人叹为观止....。
B.自媒体时代,一些人通过博眼球的标题哗众取宠....,我们要抵制这种现象。
C.这部著作,是作者花费大半生光阴,殚精竭虑....写成的。
D.《经典咏流传》将古典高雅的诗词和现代优美的旋律完美融合,二者相得益彰....,让传统文化在古今映照中得以传承和发扬。
4.下列句子中没有语病的一项是()A.据调查,青少年近视的原因主要是户外运动时间偏少,不科学使用电子产品造成的。
B.“无我之境”出自王国维的《人间词话》,它是一种评判诗词境界,也是做人境界的标尺。
C.书籍是精神世界的入口。
通过阅读,人们不仅能润泽心灵、涵养品格,还能获得知识、锻炼思维。
D.大数据的生成,有其内在的规律。
只有深刻认识,并掌握这些规律,才能提高科学认识大数据的能力。
5.下列表述正确的一项是()惊蛰是农历二十四节气之一,其含义是春雷始鸣..雷鸣最.引人注意。
....,惊醒蛰伏地下冬眠的昆虫。
水塔上部结构支筒
铜陵有色铜冶炼工艺技术升级改造项目闪速炉水塔上部结构支筒施工方案中国十五冶铜陵有色铜冶炼工艺技术升级改造工程项目经理部2011年3月13日审批栏批审编会准核制签目录1工程概况 (1)2编制依据 (1)3施工部署 (1)3.1施工组织机构 (1)3.2 作业队人员与机械设备 (2)3.3 施工工艺 (3)3.4 施工工期 (3)3.5 施工现场平面布置 (4)4施工方法 (4)5关键部位的施工工艺 (5)5.1支筒井架提升 (5)1、井架基础 (5)2、井架安装 (5)5.2 滑模施工 (6)1、滑模组装 (6)2、滑模提升 (6)3、模板拆除 (9)6质量保证体系 (9)7安全保证体系 (10)7 文明施工措施 (11)附一格构式井架计算书 (12)1工程概况3本工程为共2座一样的钢筋混凝土倒锥壳水塔。
其容量为1000m,有效高度为50米(内存最低水位)。
整座水塔采用现浇施工工艺,倒锥壳水塔主要由钢筋混凝土基础,筒身和水柜三大部分组成。
基础方案已审批,本方案为筒体施工方案。
筒身为等截面筒体现浇钢筋混凝土结构,直径为5060mm,壁厚为350mm、筒身纵向两侧每隔5米设有园形窗1个,内设有平台、爬梯等。
砼标号C35,砼用量251m³。
筒体采用提升式滑模施工。
2编制依据施工图纸《混凝土结构工程施工质量验收规范》(GB50204—2002)《建筑安全检查标准》(JGJ59-99)《烟囱工程施工及验收规范》(GB50078-2008)《钢结构工程施工及验收规范》GB50205—2001;《建筑钢结构焊接技术规程》JGJ81-2002《建筑施工高处作业安全技术规范》JGJ80—913施工部署3.1施工组织机构项目部施工组织机构与作业队组织机构见图3.1.1,3.1.2。
图3.1.1 项目部施工组织机构图图 3.1.2 作业队施工组织机构安全员:王名飞(兼)3.2 作业队人员与机械设备1、作业队人员表 3.2.1序号 工程名 称单 位数量1 木 工 人 42 钢 筋工 人 6 3 砼工人 7 4 油漆、涂料工 人 2 5 架子 工人 3 6 电焊工 人 3 7 机械 工人 2 8 维 护 电 工 人 1 9 普 工 人 5 10合计人 332、机械设备表 3.2.2按照机具使用计划组织设备进场,所有进场机械必须经检验合格方可投入使用。
勉县汉江大桥工程概况
勉县汉江大桥工程概况勉县汉江大桥是亚行紧急贷款灾后重建勉县交通项目之一,2009年4月陕西省发改委陕发改交运[2009]384号文件对大桥工程可行性研究报告进行了批复,2009年6月陕西省环境保护厅陕环批复[2009]313号文件对大桥的环境影响评价报告进行了批复,2009年7月陕西省水利厅陕水汛旱[2009]49号文件对大桥防洪影响评价报告进行了批复,2009年8月陕西省发改委陕发改基础[2009]1196号文件对大桥的初步设计进行了批复,2009年9月汉中市交通运输局汉市交发[2009]235号文件对大桥的施工图进行了批复。
一、路线及规模。
勉县跨汉江大桥位于原九冶大桥下游一公里处,路线南起汉江南岸绿缘路预留平交口,向被跨江滨南路、汉江、江滨北路后止于规划纬五路口处,与定军山南路相接。
建设规模总长度780.25米,其中桥梁全长628米,主桥长280米,南北岸引桥共长348米,南北岸引道共长152.25米。
二、技术标准。
参照二级公路技术标准并结合城市规划、大桥及引道的设计速度采用60公里/小时,行车道采用双向四车道,主桥宽度22.6米,引桥宽度20米,引道路基宽度20米,桥梁设计荷载公路Ⅱ级,设计洪水频率百年一遇。
三、桥梁设计。
勉县跨汉江大桥采用矮塔斜拉的桥型设计方案。
主桥采用76米+128米+76米跨径双塔矮塔斜拉桥,主塔未独柱式,斜拉锁采用单索面伞形布置,主梁采用预应力混凝土变截面连续箱梁,下部采用墙式墩、钻孔灌注桩基础结构型式;南北岸引桥上部采用20米跨径预应力混凝土空心板梁,下部均采用柱式墩台、钻孔灌注桩基础结构型式。
四、引道设计。
北岸引道长74.14米,南岸引道长82.11米,引道路基断面采用4×3.75米行车道+2×2.5米人行道结构型式,路面采用沥青混凝土结构。
五、工程概算。
初步设计总概率核定为8350.7493万元,其中建筑安装工程费6690.0604万元,资金来源为利用亚行优惠紧急贷款6976.8万元(1020万美元,含建设期利息)其余部分由勉县政府筹措解决。
基于流固耦合的铅铋回路冷却器应力分析
基于流固耦合的铅铋回路冷却器应力分析黄善清;黄群英;高胜;姜志忠;王苏豪;FDS团队【期刊名称】《核科学与工程》【年(卷),期】2013(033)002【摘要】基于流固耦合的方法对KYLIN-II液态铅铋回路中的冷却器进行了应力分析与强度评定.首先在ANSYS Fluent中进行计算流体动力学CFD(Computational Fluid Dynamics)分析,获得了冷却器中准确的温度分布;然后将冷却器的温度以热载荷的形式导入ANSYS Mechanical软件中,并考虑流体的静压载荷,设计了两种不同工况,开展冷却器结构静力分析;最后基于JB 4732-95标准对计算结果进行应力分类和强度评定.结果表明,换热管与管壳连接处存在应力集中现象,但结构仍然满足强度要求,冷却器的结构设计方案合理、可行.【总页数】8页(P186-193)【作者】黄善清;黄群英;高胜;姜志忠;王苏豪;FDS团队【作者单位】中国科学院核能安全技术研究所,安徽合肥230031;中国科学院核能安全技术研究所,安徽合肥230031;中国科学院核能安全技术研究所,安徽合肥230031;中国科学院核能安全技术研究所,安徽合肥230031;中国科学院核能安全技术研究所,安徽合肥230031;中国科学院核能安全技术研究所,安徽合肥230031【正文语种】中文【中图分类】TL353【相关文献】1.双铅铋回路自然循环瞬态响应分析 [J], 张勋;陆道纲;郭超2.铅铋自然循环回路热损效应分析 [J], 陆道纲;张勋;郭超3.铅铋循环回路小破口事故计算模型研究 [J], 周涛; 石顺; 冯祥; 秦雪猛; 肖异4.铅铋快堆一回路充排系统可靠性分析 [J], 孙明;郁杰5.世界最大的铅铋回路试验装置建成 [J],因版权原因,仅展示原文概要,查看原文内容请购买。
部编人教版五年级语文上册阅读理解专项水平练习及答案
部编人教版五年级语文上册阅读理解专项水平练习及答案一、阅读理解。
家乡有一句“紧走搭石慢过桥”的俗语。
搭石,原本就是天然石块,踩上去难免会活动,走得快才容易保持平衡。
人们走搭石不能抢路,也不能突然止步。
如果前面的人突然停住,后边的人没处落脚,就会掉进水里。
每当上工、下工,一行人走搭石的时候,动作是那么协调有序!前面的抬起脚来,后面的紧跟上去。
嗒嗒的声音,像轻快的音乐;清波漾漾,人影绰绰,给人画一般的美感。
经常到山里的人,大概都见过这样的情景:如果有两个人面对面同时走到溪边,总会在第一块搭石前止步,招手示意,让对方先走;等对方过了河,两人再说上几句家常话,才相背而行。
假如遇上老人来走搭石,年轻人总要俯下身子背老人过去,人们把这看成理所当然的事。
一排排搭石,任人走,任人踏,它们联结着故乡的小路,也联结着乡亲们美好的情感。
1.写出下列词语的近义词。
经常——(______)大概——(______)情景——(______)2.第2自然段通过描写走搭石的两种情景来反映乡亲们的感情,这两种情景分别是______和_______。
3.写出“紧走搭石慢过桥”这句俗语的意思。
_________________________4.照样子,把句子补充完整。
例:一排排搭石,任人走,任人踏,它们联结着故乡的小路,也联结着乡亲们美好的情感。
风筝飞上了高高的天空,带去了_________,也带去了____________。
5.短文中许多地方都使我们感受到“美”,有看得见的具体的“美”,也有看不见的心灵的“美”,请试着写一写你发现的“美”。
_________________________二、阅读理解。
________李逵归心似箭,迈开脚步,大步走去。
走着走着,只见前面闪出一片松林,烟笼雾锁,十分险恶。
李逵是个胆大粗豪之人,根本不觉害怕,直走进去。
突然,一个大汉从树上跳下,暴喝一声:“黑旋风李逵在此!识相的留下买路钱,免得伤了性命!”李逵一惊,寻思此处如何又有一个黑旋风?定睛一看,见那人面黑如炭,如烟熏火燎一般,手持两柄大斧,倒也威风凛凛。
给第十五届“五个一工程”的意见及建议
给第⼗五届“五个⼀⼯程”的意见及建议⽇前,第⼗五届“五个⼀⼯程”⼊选作品公⽰,正在征求群众意见。
以下意见和建议,请有关⽅⾯参考。
歌曲⽅⾯。
歌曲《复兴的⼒量》李维福词印青曲滚滚长江流淌我们美好的向往巍巍泰⼭挺⽴我们不屈的脊梁洒满阳光的⼤地是母亲温暖的胸膛在你宽阔的怀抱⾥我们幸福荣光中国道路⽆⽐宽⼴万众⼀⼼奔向前⽅中华⼉⼥百炼成钢创造奇迹初⼼不忘这就是复兴的⼒量茫茫太空闪烁我们智慧的光芒⼤海深处涌动我们蓝⾊的梦想充满⽣机的⼤地新时代歌声在唱响在你奔腾的⾎脉⾥我们信仰如钢中国道路⽆⽐宽⼴万众⼀⼼奔向前⽅中华⼉⼥百炼成钢创造奇迹初⼼不忘这就是复兴的⼒量这就是复兴的⼒量歌词空洞:滚滚长江流淌向往,巍巍泰⼭挺⽴脊梁,⼤地母亲温暖胸膛,茫茫太空智慧光芒,⼤海深处蓝⾊梦想,净扯些⼤得⽆边、深不见底的虚空和概念化的东西,不见⼀丝⼀毫深⼊⼴⼤⼈民群众⽣产⽣活实际、与⼈民群众风⾬同⾈奋⽃在⼀起的⽣产⽣活实践细节内容。
副歌歌词⼤⽽空的⼝号化倾向明显,基本上是⼀串⼝号连到底,对应的⾳乐旋律⾃然也是⼝号化谱曲,⼗分平庸,没有亮点,让⼈唱罢听罢就扔了就忘了,⼀句精彩的⾳乐旋律也留不下。
这是⼀⾸脱离群众⽣产⽣活实际、⼤⽽空、形式主义的歌曲。
这⾸歌名字叫《复兴的⼒量》,因为缺乏⽂化艺术价值,是没有⽂化艺术⼒量的,是不能推动⾳乐⽂化实现复兴的。
这⾸歌在艺术性、传唱度、群众和时代影响⼒上和《春天的故事》没法⽐,发展才是硬道理,新时代全⾯深化改⾰的形势逼着我国的⾳乐⽂化事业必须与时俱进、⾮进不可,不进就不能有新突破,就不能打开新局⾯,就会不进则退。
歌曲《再⼀次出发》屈塬词王备曲当年的海风掀开厚重的⾯纱梦和初⼼的队伍从脚下开拔⼀条长路越⾛越宽阔希望的⽥野开满了鲜花古⽼的⼤地丛⽣崭新的神话诗和远⽅的⽬标还没有到达千秋⼤业越来越壮丽春天的故事传遍了天涯新时代的号⾓中再⼀次出发歌声和汗⽔⼀路挥洒中国梦的旗帜下再⼀次出发追梦的⼈们雄姿英发满载千年宏愿再⼀次出发(尾句1)新时代的号⾓中再⼀次出发歌声和汗⽔⼀路挥洒中国梦的旗帜下再⼀次出发追梦的⼈们雄姿英发迎着万⾥长风再⼀次出发(尾句2)这⾸歌词也是⼤⽽空的概念多:海风、⾯纱,梦、初⼼,长路宽阔,希望的⽥野;⼤地、神话,诗、远⽅,⼤业壮丽,春天的故事,缺乏⼈民群众奋⽃在实践⼀线的⽣活细节。
韵律表
上平一东东同铜桐筒童僮瞳中衷忠虫终戎崇嵩弓躬宫融雄熊穹穷冯风枫丰充隆空公功工攻蒙笼聋珑洪红鸿虹丛翁聪通蓬烘潼胧砻峒螽梦讧冻忡酆恫总侗窿懵庞种盅芎倥艨绒葱匆骢上平二冬冬农宗钟龙舂松冲容蓉庸封胸雍浓重从逢缝踪茸峰锋烽蛩慵恭供淙侬松凶墉镛佣溶邛共憧喁邕壅纵龚枞脓淞匈汹禺蚣榕彤上平三江江扛窗邦缸降双庞逄腔撞幢桩淙豇上平四支支枝移为垂吹陂碑奇宜仪皮儿离施知驰池规危夷师姿迟眉悲之芝时诗棋旗辞词期祠基疑姬丝司葵医帷思滋持随痴维卮麋螭麾墀弥慈遗肌脂雌披嬉尸狸炊篱兹差疲茨卑亏蕤陲骑曦歧岐谁斯私窥熙欺疵赀笞羁彝颐资糜饥衰锥姨楣夔涯伊蓍追上平四支缁箕椎罴篪萎匙脾坻嶷治骊尸綦怡尼漪累牺饴而鸱推縻璃祁绥逵羲羸肢骐訾狮奇嗤咨堕其睢漓蠡噫馗辎胝鳍蛇陴淇淄丽筛厮氏痍貔比僖贻祺嘻鹂瓷琦嵋怩熹孜台蚩罹魑丕琪耆衰惟剂提禧居栀戏畸椅磁痿离佳虽仔寅委崎隋逶倭黎犁郦上平五微微薇晖徽挥韦围帏违霏菲妃绯飞非扉肥腓威畿机几讥矶稀希衣依沂巍归诽痱欷葳颀圻上平六鱼鱼渔初书舒居裾车渠余予誉舆胥狙锄疏蔬梳虚嘘徐猪闾庐驴诸除储如墟与畲疽苴于茹蛆且沮祛蜍榈淤好雎纾躇趄滁屠据匹咀衙涂虑上平七虞梧吴租卢鲈苏酥乌枯都铺禺诬竽吁瞿劬需俞逾觎揄萸臾渝岖镂娄夫孚桴俘迂姝拘摹糊鸪沽呱蛄驽逋舻垆徂孥泸栌嚅蚨诹扶母毋芙喁颅轳句邾洙麸机膜瓠恶芋呕驺喻枸侏龉葫懦帑拊上平八齐齐蛴脐黎犁梨黧妻萋凄堤低氐诋题提荑缔折篦鸡稽兮奚嵇蹊倪霓西栖犀嘶撕梯鼙批挤迷泥溪圭闺睽奎携畦骊鹂儿上平九佳佳街鞋牌柴钗差涯阶偕谐骸排乖怀淮豺侪埋霾斋娲蜗娃哇皆喈揩蛙楷槐俳上平十灰灰恢魁隈回徊枚梅媒煤瑰雷催摧堆陪杯醅嵬推开哀埃台苔该才材财裁来莱栽哉灾猜胎孩虺崔裴培坏垓陔徕皑傀崃诙煨桅唉颏能茴酶偎隗咳上平十一真真因茵辛新薪晨辰臣人仁神亲申伸绅身宾滨邻鳞麟珍尘陈春津秦频苹颦银垠筠巾民珉缗贫淳醇纯唇伦纶轮沦匀旬巡驯钧均臻榛姻寅彬鹑皴遵循振甄岷谆椿询恂峋莘堙屯呻粼磷辚濒闽豳逡填狺泯洵溱夤荀竣娠纫鄞抡畛嶙斌氤上平十二文文闻纹云氛分纷芬焚坟群裙君军勤斤筋勋薰曛熏荤耘芸汾氲员欣芹殷昕贲郧雯蕲上平十三元元原源园猿辕坦烦繁蕃樊翻萱喧冤言轩藩魂浑温孙门尊存蹲敦墩暾屯豚村盆奔论坤昏婚阍痕根恩吞沅媛援爰幡番反埙鸳宛掀昆琨鲲扪荪髡跟垠抡蕴犍袁怨蜿溷昆炖饨臀喷纯上平十四寒寒韩翰丹殚单安难餐滩坛檀弹残干肝竿乾阑栏澜兰看刊丸桓纨端湍酸团抟攒官观冠鸾銮栾峦欢宽盘蟠漫汗郸叹摊奸剜棺钻瘢谩瞒潘胖弁拦完莞獾拌掸萑倌繁曼馒鳗谰洹滦上平十五删删潸关弯湾还环鹌鬟寰班斑颁般蛮颜菅攀顽山鳏艰闲娴悭孱潺殷扳讪患下平一先先前千阡笺天坚肩贤弦烟燕莲怜田填钿年颠巅牵妍研眠渊涓蠲编玄县泉迁仙鲜钱煎然延筵禅蝉缠连联涟篇偏便全宣镌穿川缘鸢铅捐旋娟船涎鞭专圆员乾虔愆骞权拳椽传焉跹溅舷咽零骈阗鹃翩扁平沿诠痊悛荃遄卷挛戋佃滇婵颛犍搴嫣癣澶单竣鄢扇键蜷棉下平二萧萧箫挑貂刁凋雕迢条跳苕调枭浇聊辽寥撩僚寮尧幺宵消霄绡销超朝潮嚣樵谯骄娇焦蕉椒饶烧遥姚摇谣瑶韶昭招飚标杓镳瓢苗描猫要腰邀乔桥侨妖夭漂飘翘祧佻徼侥哨娆陶橇劭潇骁獠料硝灶鹞钊蛲峤轿荞嘹逍燎憔剽下平三肴肴巢交郊茅嘲钞包胶爻苞梢蛟庖匏坳敲胞抛鲛崤铙炮哮捎茭淆泡跑咬啁教咆鞘剿刨佼抓姣唠下平四豪豪毫操髦刀萄猱桃糟漕旄袍挠蒿涛皋号陶翱敖遭篙羔高嘈搔毛艘滔骚韬缫膏牢醪逃槽劳洮叨绸饕骜熬臊涝淘尻挑嚣捞嗥薅咎谣下平五歌歌多罗河戈阿和波科柯陀娥蛾鹅萝荷过磨螺禾哥娑驼佗沱峨那苛诃珂轲莎蓑梭婆摩魔讹坡颇俄哦呵皤么涡窝茄迦伽磋跎番蹉搓驮献蝌箩锅倭罗嵯锣下平六麻麻花霞家茶华沙车牙蛇瓜斜邪芽嘉瑕纱鸦遮叉葩奢楂琶衙赊涯夸巴加耶嗟遐笳差蟆蛙虾拿葭茄挝呀枷哑娲爬杷蜗爷芭鲨珈骅娃哇洼畲丫夸裟瘕些桠杈痂哆爹椰咤笆桦划迦揶吾佘下平七阳阳杨扬香乡光昌堂章张王房芳长塘妆常凉霜藏场央泱鸯秧嫱床方浆觞梁娘庄黄仓皇装殇襄骧相湘箱缃创忘芒望尝偿樯枪坊囊郎唐狂强肠康冈苍匡荒遑行妨棠翔良航倡伥羌庆姜僵缰疆粮穰将墙桑刚祥详洋徉佯粱量羊伤汤鲂樟彰漳璋猖商防下平七阳筐煌隍凰蝗惶璜廊浪裆沧纲亢吭潢钢丧盲簧忙茫傍汪臧琅当庠裳昂障糖疡锵杭邙赃滂禳攘瓤抢螳踉眶炀阊彭蒋亡殃蔷镶孀搪彷胱磅膀螃下平八庚庚更羹盲横觥彭棚亨英瑛烹平评京惊荆明盟鸣荣莹兵卿生甥笙牲檠擎鲸迎行衡耕萌氓宏闳茎莺樱泓橙筝争清情晴精睛菁旌晶盈瀛嬴营婴缨贞成盛城诚呈程声征正轻名令并倾萦琼赓撑瞠枪伧峥猩珩蘅铿嵘丁嘤鹦铮砰绷轰訇瞪侦顷榜抨趟坪请下平九青青经泾形刑邢型陉亭庭廷霆蜓停丁宁钉仃馨星腥醒惺娉灵棂龄铃苓伶零玲翎瓴囹聆听厅汀冥溟螟铭瓶屏萍荧萤荥扃町瞑暝下平十蒸蒸承丞惩陵凌绫冰膺鹰应蝇绳渑乘升胜兴缯凭仍兢矜征凝称登灯僧增曾憎层能棱朋鹏弘肱腾滕藤恒冯瞢扔誊下平十一尤尤邮优忧流留榴骝刘由油游猷悠攸牛修羞秋周州洲舟酬仇柔俦畴筹稠邱抽湫遒收鸠不愁休囚求裘球浮谋牟眸矛侯猴喉讴沤鸥瓯楼娄陬偷头投钩沟幽彪疣绸浏瘤犹啾酋售蹂揉搜叟邹貅泅球逑俅蜉桴罘欧搂抠髅蝼兜句妯惆呕缪繇偻篓馗区下平十二侵侵寻浔林霖临针箴斟沈深淫心琴禽擒钦衾吟今襟金音阴岑簪琳琛椹谌忱壬任黔歆禁喑森参淋郴妊湛下平十三覃覃潭谭参骖南男谙庵含涵函岚蚕探贪耽龛堪戡谈甘三酣篮柑惭蓝郯婪庵颔褴澹下平十四盐盐檐廉帘嫌严占髯谦奁纤签瞻蟾炎添兼缣尖潜阎镰粘淹箝甜恬拈暹詹渐歼黔沾苫占崦阉砭下平十五咸咸缄谗衔岩帆衫杉监凡馋芟喃嵌掺搀严上声一董董动孔总笼汞桶空拢洞懂侗上声二肿肿种踵宠陇垄拥壅冗茸重冢奉捧勇涌踊俑蛹恐拱巩竦悚耸溶上声三讲讲港棒蚌项耩上声四纸纸只咫是枳砥抵氏靡彼毁委诡傀髓妓绮此褫徙髀尔迩弭弥婢侈弛豕紫捶揣企旨指视美訾否兕几姊匕比妣轨水唯止市徵喜已纪跪技迤鄙晷宄子梓矢雉死履垒诔揆癸趾芷以已似姒巳祀史使驶耳里理李俚鲤起杞士仕俟始峙痔齿矣拟耻滓玺跬圮痞址悝娌秭倚被你仔上声五尾尾鬼苇卉虺几伟韪炜斐诽菲岂匪蜚上声六语语圉圄御吕侣旅膂抒宁杼与予渚煮汝茹暑鼠黍杵处贮褚女许拒距炬所楚础阻俎沮举莒序绪屿墅著巨讵咀纾去上声七雨羽禹宇舞父府鼓虎古股贾土吐圃谱庾户树煦琥怙嵝篓卤努肚沪枸辅组乳弩补鲁橹睹竖腐数簿姥普拊侮五斧聚午伍缕部柱矩武脯苦取抚浦主杜祖堵愈祜扈雇虏甫腑俯估诂牯瞽酤怒浒诩栩拄剖鹉溥赌伛偻莽滏上声八荠荠礼体米启醴陛洗邸底诋抵坻弟悌递涕济澧祢上声九蟹蟹解骇买洒楷锴摆拐矮伙上声十贿贿悔改采彩海在宰醢载铠恺待怠殆倍猥蕾诒蓓鼐颏浼汇璀每亥乃上声十一轸轸敏允引尹尽忍准隼笋盾闵悯泯菌蚓诊畛肾牝赈窘蜃陨殒蠢紧缜纯吮朕稹嶙上声十二吻吻粉蕴愤隐谨近恽忿坟刎殷上声十三阮阮远本晚苑返反阪损饭偃堰稳蹇犍婉蜿宛阃鲧捆很恳垦圈盾绻混沌娩棍上声十四旱旱暖管满短馆盥缓碗款懒卵散伴诞浣瓒断侃算疃但坦袒悍懑纂趱上声十五潸潸眼版产限撰栈绾赧羼柬拣莞板上声十六铣铣善遣浅典转衍犬选冕辇免展茧辩篆勉翦卷显践饯眄喘软蹇演岘栈扁阐娈跣腆鲜戬吮辫件琏蠕单殄腼蚬缅沔键搴冼燹癣狷钱趁匾宴上声十七小表鸟了晓少扰绕娆绍秒沼眇矫蓼皎杳窈袅窕挑掉渺缈藐淼娇标悄缭僚昭夭燎赵兆上声十八巧巧饱卯狡爪鲍挠搅绞拗姣炒上声十九皓皓宝藻早枣老好道稻造脑恼岛倒祷抱讨考燥嫂槁潦保葆堡褓草昊浩颢镐皂袄缫蚤澡灏媪杲缟涝上声二十哿哿火舸柁沱我娜荷可坷轲左果裹朵锁琐堕垛惰妥坐裸跛簸颇叵祸卵娑爹揣隋上声二十一马马下者野雅瓦寡社写泻夏冶也把贾假舍赭厦惹若踝姐哆哑且瘕洒上声二十二养养痒鞅怏泱像象橡仰朗奖浆敞氅枉沆荡惘放仿两傥杖响掌党想爽广享丈仗幌晃莽襁纺蒋攘盎脏苍长上网荡壤赏往罔蟒魍抢慌厂慷向上声二十三梗梗影景井岭领境警请屏饼永骋逞颍颖顷整静省幸颈郢猛炳杏丙打哽秉耿憬冷靖睛上声二十四迥迥炯茗挺艇町醒溟酊刭等鼎顶胫肯拯酩上声二十五有有酒首手口母后柳友妇斗狗久负厚走守绶右否受牖偶耦阜九后咎吼帚垢亩舅藕朽臼肘韭剖诱牡缶酉扣欧黝蹂取钮莠丑苟糗某玖拇纣纠枸忸浏赳蚪培擞趣陡寿殴上声二十六寝寝饮锦品枕审甚衽饪稔禀沈凛荏恁婶上声二十七感感览榄胆澹啖坎惨敢颔撼毯喊橄嵌上声二十八琰琰焰敛俭险检脸染掩点贬冉陕谄奄渐玷忝闪歉广俨上声二十九槛范减舰犯湛斩黯掺阚喊滥歉去声一送送梦凤洞众弄贡冻痛栋仲中讽恸空控赣砻哄衷去声二宋宋重用颂诵统纵讼种综俸共供从缝雍封恐去声三绛绛降巷撞虹洚淙去声四置事地意志治思泪吏赐字义利器位戏至次累伪寺瑞智记异致肆翠骑使试类弃饵媚鼻易辔坠醉议翅避粹侍谊帅厕寄睡忌萃穗臂嗣吹遂恣四骥季刺驷识痣志寐魅去声四邃燧隧谥植织饲食积被芰懿悸觊冀暨匮馈篑比庇畀痹毖泌鸷贽挚渍迟祟豉珥示伺嗜自詈痢莉譬肄惴劓啻企腻施遗值柴出萎司诿陂二近始术瑟德去声五未未味气贵费沸尉畏慰蔚魏胃渭谓讳卉毅溉既衣忾诽痱蜚翡去声六御御处去虑誉署据驭曙助絮著豫翥恕与遽疏庶诅预茹语踞狙沮除如女讵欤楚嘘去声七遇遇路赂露鹭树度渡赋布步固素具数怒务雾鹜骛附兔故顾雇句墓暮慕募注驻祚裕误悟寤住戍库护诉蠹妒惧趣娶铸傅付谕妪捕哺忤措错醋赴恶互孺怖煦寓酤瓠输吐屡塑捂瞿驱讣属作酗雨获镀圃驸足播苦铺姹去声八霁霁制计势世丽岁卫济第艺惠慧币桂滞际厉涕契毙帝蔽敝锐戾裔袂系祭隶闭逝缀替细税例誓蕙偈诣砺励噬继谛系剂曳睇憩彗逮芮掣蓟妻挤弟题鳜蹶齐棣说彘离荔泥蜕赘揭唳泄娣薜呓濞捩羿谜缔切医去声九泰泰会带外盖大濑赖蔡害最贝霭沛艾兑奈绘桧脍会太汰癞粝蜕酹狈去声十卦卦挂懈隘卖画派债怪坏诫戒界介芥械拜快迈话败稗噫疥瀣湃聩惫杀喝解祭蒯喟呗寨去声十一队队内塞爱辈佩代退载碎背秽菜对废诲晦昧戴贷配妹溃黛赉吠逮岱肺溉耒慨块赛刈耐悖淬敦铠焙在再孛柿睐裁采回粹栽北劾悔去声十二震震信印进润阵镇填刃顺慎鬓晋骏闰峻衅振舜吝烬讯胤殡迅瞬谆馑蔺徇赈觐摈仅认衬瑾趁韧汛磷躏浚缙娠引诊蜃亲去声十三问问闻运晕韵训粪奋忿郡分紊汶愠靳近斤郓员拚隐去声十四愿愿论怨恨万饭献健寸困顿建宪劝蔓券钝闷逊嫩贩溷远曼喷艮敦郾褪堰圈去声十五翰翰岸汉难断乱叹干观散奈旦算玩烂贯半案按炭汗赞漫冠灌窜幔灿璨换焕唤悍弹惮段看判叛腕涣绊惋钻缦锻瀚胖谰蒜泮谩摊侃馆滩盥去声十六谏谏雁患涧闲宦晏慢盼豢栈惯串苋绽幻讪绾谩汕疝瓣篡铲栅扮去声十七霰霰殿面县变箭战扇煽膳传见砚选院练燕宴贱电荐绢彦甸便眷线倦羡堰奠遍恋眩钏倩卞汴弁拚咽片禅谴谚缘颤擅援媛瑗佃钿淀狷煎悬袖穿茜溅拣缠牵先炫善缱遣研衍辗转饯去声十八啸啸笑照庙窍妙诏召邵要曜耀调钓吊叫燎峤少眺诮料肖尿剽掉鹞粜轿烧疗漂醮骠绕娆摇哨约嘹裱去声十九效效教貌校孝闹淖豹爆罩拗窖酵稍乐较钞敲觉去声二十号号帽报导盗操噪灶奥告诰暴好到蹈劳傲躁涝漕造冒悼倒骜缟懊澳膏犒郜瀑旄靠糙去声二十一个贺佐作逻坷轲大饿奈那些过和挫课唾簸磨座坐破卧货左惰去声二十二驾夜下谢榭罢夏暇霸灞嫁赦借藉炙蔗假化舍价射骂稼架诈亚罅跨麝咤怕讶诧迓胯柘卸泻靶乍桦杷。
优质工程评选办法
优质工程评选办法第一章总则第一条为适应新形势,继续深入贯彻落实国家《质量振兴纲要》,坚持“百年大计,质量第一”的方针,促进企业深入开展工程创优活动,推动企业和施工现场加强工程质量管理,创建工程质量品牌,确保工程质量水平的持续改进与提高,扩大企业质量信誉、影响力和强化市场竞争力,规范优质工程评审工作,特制定本办法。
第二条XX有限公司(以下简称股份公司)优质工程设中国中铁杯(省部优)。
各子、分公司对符合优质工程申报条件的项目按照自愿原则组织申报。
第三条中国中铁杯由股份公司安质监督部承办。
安质监督部对中国中铁杯工程申报、合规审查、现场检查、会议评审负总责。
对重点项目及拟推荐申报国家级工程质量奖(鲁班奖、国家优质工程奖等)的工程项目、申报过程的关键环节进行审核监管。
第二章评选工程范围第四条中国中铁杯评选工程为已经建成并投入使用的各类新(扩)建工程。
第五条中国中铁杯评选工程分为:1.住宅工程;2.公共建筑工程;3.交通水利工程;4.市政园林工程;5.采用新技术、新工艺,具有推广价值和显著经济效益、社会效益的其他工程项目。
以上1-5类工程的评选范围和规模应符合本办法附件一的规定。
第六条申报中国中铁杯的工程项目,必须是获得集团公司级优质工程的项目。
经股份公司渠道推荐申报国家级工程质量奖(鲁班奖、国家优质工程奖等)的项目必须获得中国中铁杯优质工程奖。
第七条中国中铁杯评选活动每年一次,项目申报截止日期:申报简表报送截止时间为3月15日前,含下年度拟申报鲁班奖工程项目的申报简表。
详见附件二。
申报表(含全部材料)报送截止时间为4月30日。
详见附件三。
第三章申报条件第八条申报中国中铁杯的施工单位必须依照《工程建设施工企业质量管理规范》和《质量管理体系要求》通过了施工企业质量管理体系认证,有完善的质量保证体系,开工前必须制定创优规划,创优目标明确,施工中精心组织、科学管理,严格过程控制,实现一次成优。
工程资料要求准确、齐全、真实、有效,建设手续齐备并已按有关规定入档或备案。
看国家记忆观后感纪录片心得
看国家记忆观后感纪录片心得翻阅《国家记忆》,给人的视觉冲击是如此强烈。
一帧一帧的照片,让我们真切地感受到一个听得到枪炮声和一个嗅得到硝烟,触得到军人体温的战争场面(《国家记忆》编者语)。
以下是店铺为大家整理的关于看国家记忆观后感,给大家作为参考,欢迎阅读!看国家记忆观后感篇1钱学森是中国航天事业的奠基人,中国两弹一星功勋奖章获得者,被誉为"中国航天之父"、"中国导弹之父"、"中国自动化控制之父"和"火箭之王".两弹一星元勋,是共和国永远的丰碑。
作为中华民族的优秀儿女,科学界的一代伟人,钱学森不仅给我们留下了彪炳史册的科学成就,还留下了弥足宝贵的精神财富。
通过观看纪录片《钱学森与中国航天60年》,我得以进一步了解钱学森的感人事迹,体悟钱学森精神的内涵。
这部纪录片也唤起了我高中时观看电影《钱学森》的时留下的记忆,联系二者的内容,我的心中颇有感触。
钱学森是一代科学巨人、中华优秀儿女的典范,他的成就可以说是高山仰止、大海无边,虽然我们可能永远无法取得像钱学森一样的成就,但是我们仍应学习他的伟大精神——作为我国著名的“两弹一星功勋奖章“获得者,钱学森教授的一生为中国的航空和国防事业付出了毕生的精力。
他拥有着一颗赤诚火热的中国心:他放弃了美国良好的生活条件,毅然选择回到国内,回到一个在外国人眼里,被视作是一个农耕社会的新中国。
即使被美国人软禁,即使已经失去了教授的职位和地位,即使有无数的美国间谍监视着他的私人生活,但他依然没有向恶势力低头,依然坚持着自己回国的信念和执着。
回国后,为了党中央毛主席周托付的重任,为了新中国的国防事业和航天事业,为了新中国亿万同胞的安全,他一直在坚持着科学研究。
他放下了身为天之骄子的些许傲慢,坚持带领所有人学习导弹技术;他放下了和家人团聚的时间,坚持在前线指导工作。
他为我国的科研付出了自己半生的心血和精力,这种无私奉献的精神是他伟大的另一面。
专题14 作文【好题汇编】备战2024-2025学年九年级语文上学期期末真题分类汇编(重庆专用)
专题14作文(原卷版)【1-2023-2024学年重庆市渝北区八上期末语文真题】写作(55分)(1)于鲁迅而言,藤野先生是冬天里的炭火,温暖着他的心灵;于朱德而言,母亲是无声的春雨,滋润着他的人生;于茨葳格而言,托尔斯泰是精神的摆渡者,升华着他的灵魂;于艾芙·居里而言,玛丽·居里是点亮世界的火把,给予她科学的信仰。
于你而言,是否也有一个人,对你有着别样的意义呢?请将“你是我的______”补充完整,并以此为题,写一篇文章。
要求:①不少于500字;②不得泄露个人信息,凡涉及真实的人名、校名、地名,一律用A、B、C等英文大写字母代替;③不得抄袭,不得套作;④除诗歌外,文体不限。
(2)初二伊始,小渝决定以饱满的热情投入到学习中去,但他的同桌小淘总是和周围同学聊天玩乐,且声响较大。
小渝无法专注学习,又不好直说,心情烦闷。
如果你是小渝,请你给小淘写一封信,以求走出困境。
要求:①不少于500字;②不得泄露个人信息,凡涉及真实的人名、校名、地名,一律用A、B、C等英文大写字母代替;③不得抄袭,不得套作;④除诗歌外,文体不限。
【2-2023-2024学年重庆市九龙坡区八上期末语文真题】以下两题,任做一题。
(1)著名作家余光中曾说:“人生有许多事情,正如船后的波纹,总要过后才觉得美的。
”他的话,引发了你哪些联想和思考?请写一篇文章。
要求:①请自拟题目。
②立意自定,文体自选(除诗歌外),不得套作,不得抄袭。
③字数不少于600字。
④文中不得出现真实的地名、校名和人名等与考生信息相关的表述。
(2)最是拼搏动人心。
杭州残运会赛场上,轮椅击剑运动员比赛时,需要把轮椅固定在可调节轨道的框架上;盲人门球运动员需要通过听声辨位决定自身运动方向;举重运动员需要试着用双手举起杠铃……面对常人难以想象的困难,参赛残疾人运动员毫不畏惧,迎难而上。
不断实现自我超越,展现出他们不屈的灵魂,他们都是自己的冠军,这些困难都成了他们的勋章。
2×12500kva工业硅矿热炉生产线项目投资可研报告
1、概述1.1、项目概述1.1.1、项目单位:硅业有限公司工业硅矿热炉生产线;1.1.2、项目内容:建设2×12500KVA工业硅矿热炉生产线及相关辅助生产设施;1.1.3、拟建规模:工程项目:年产1.65万吨化学级工业硅;1.1.4、建设地点:1.2 、承建单位概况1.2.1、单位名称:硅业有限公司1.2.2、单位地址:1.2.3、承建单位概况:硅业有限公司是一家是具有独立法人资格的民营企业公司。
成立于年,投资万元建成投产KVA工业硅生产线,公司的发展战略是走“电冶”之路,公司的地理位置优越,公路、铁路运输十分方便。
硅业有限公司地处工业园,占地亩,2×12500KVA化学工业硅矿热电炉工程于年月投产,公司实行现代化的企业管理制度,在生产上拥有一批技术人员和一支技术过硬的职工队伍,公司本着“以人为本、和谐发展”的宗旨,坚持以市场为导向,以服务为根本,效益为核心的企业方针,坚持为客户提供最好的产品和优质的服务。
1.3 、建设地点概况园区是在国家实施西部大开发战略中,落实政府“十五”期间建立硅工业基地决策,于年月经政府批准设立的。
年月日正式成立,随即又被列为省重点开发区。
1.4、编制依据1.4.1、高耗能工业园区管理委员会关于硅业科技有限公司建设化学硅工程项目的批复;1.4.2、中亚硅业科技有限公司提交的有关设计基础资料。
1.5 、工程建设的必要性1.5.1 必要性1.5.1.1、中央实施西部大开发战略,加快中西部地区的发展,是我国现代化战略的重要组成部分,是逐步缩小地区差距,达到共同富裕的必然要求。
该项目的实施对本地区的经济发展具有一定的促进作用。
1.5.1.2、地处我国西北部腹地,具有丰富的矿产资源和炼焦用煤资源,丰富的水、电资源和便捷的交通运输条件。
1.5.1.3、目标就是要把公司发展成为煤电冶结合、1.5.2、公司领导锐意进取,有一定的市场竞争意识和经济价值观念;企业在长期的生产实践中培养了一批优秀的工程技术人员和管理人员,并有一支素质较高的熟练生产工人队伍,这对工程顺利建设提供了可靠的技术保证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
会。
本次发展大会由我系团总支副书记叶青青主持。
出
温家宝强调做好玉树地震灾区抗震救灾和恢复重建
中共中央政治局常委、国务院总理温家宝5月1日晚在青海玉树主持召开会议研究灾后恢复重建工作。
他强调,玉树地震灾区抢险救灾、应急救援基本结束,进入全力医治伤员、安臵受灾群众,恢复正常秩序、
加快恢复重建的新阶段。
我们必须坚持人民利益高于一切,以更加顽强的精神、更加精心的组织、更加细致
的工作,克服一切艰难险阻,科学依法统筹做好抗震救灾和恢复重建工作,让灾区人民满意,让全国人民放
心。
在听取青海省委、省政府抗震救灾工作汇报后,温家宝对前一阶段抗震救灾工作取得的成绩给予充分肯
定。
他指出,在党中央、国务院、中央军委的坚强领导下,在青海省委、省政府的有效组织下,各级干部群
众、人民解放军指战员、武警部队官兵、公安民警以及来自不同方面的专业救援队伍,不畏艰险,克服重重
困难,在极其艰苦的条件下,在较短的时间内,完成了紧急救援任务。
目前,拉网式人员搜救抢救工作已经
完成,所有伤员全部得到救治,群众的吃、住、医有了基本保障,通讯、供水、供电等基本恢复,部分学校
复课,废墟清理开始进行。
灾区人心安定、民族团结、社会稳定。
温家宝强调,下一阶段,灾后恢复重建要
着眼于玉树的战略地位和长远发展,切实做到与加强三江源保护相结合,与促进民族地区经济社会发展相结
合,与扶贫开发和改善生产生活条件相结合,与体现民族特色和地域风貌相结合。
通过坚持不懈的努力,使
灾区基本生产生活条件和经济社会发展全面恢复并超过灾前水平,建设一个生态美好、特色鲜明、经济发展、
安全和谐的社会主义新玉树。