七年级数学上册全册单元测试卷达标检测卷(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册全册单元测试卷达标检测卷(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)
1.
(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;
(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;
(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.
【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)解:结论DE=BD+CE成立;理由如下:
∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,
∴∠CAE=∠ABD,
在△ABD和△CEA中,
∴△ABD≌△CEA(AAS),
∴S△ABD=S△CEA,
设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,
∴S△ABC= BC•h=12,S△ACF= CF•h,
∵BC=2CF,
∴S△ACF=6,
∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,
∴△ABD与△CEF的面积之和为6.
【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.
2.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8
(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,
(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.
【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.
(2)MN=
【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;
(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值. 3.已知点O是直线AB上的一点,∠COE=120°,射线OF是∠AOE的一条三等分线,且∠AOF= ∠AOE.(本题所涉及的角指小于平角的角)
(1)如图,当射线OC、OE、OF在直线AB的同侧,∠BOE=15°,求∠COF的度数;
(2)如图,当射线OC、OE、OF在直线AB的同侧,∠FOE比∠BOE的余角大40°,求∠COF的度数;
(3)当射线OE、OF在直线AB上方,射线OC在直线AB下方,∠AOF<30°,其余条件不变,请同学们自己画出符合题意的图形,探究∠FOC与∠BOE确定的数量关系式,请直接给出你的结论.
【答案】(1)解:∵∠AOE+∠BOE=180°,∠BOE=15°,
∴∠AOE=180°-15°=165°
∴∠AOF= ∠AOE=×165°=55°
∵∠AOC=∠AOE-∠COE=165°-120°=45°
∴∠COF=∠AOF-∠AOC=55°-45°=10°
答:∠COF的度数为10°.
(2)解:设∠BOE=x,则∠BOE的余角为90°-x.
∵∠FOE比∠BOE的余角大40°,
∴∠FOE=130°-x
∵∠COE=120°,则∠COF=x-10°,∠AOC=60°-x,
∴∠AOF=∠AOC+∠COF=50°
∵∠AOF= ∠AOE
∴∠AOE=150°
∴∠BOE=x=180°-150°=30°
∴∠COF=x-10°=30°-10°=20°
答:∠COF的度数为20°
(3)解:∠FOC=∠BOE
如图,
设∠AOF=x
∵∠AOF=∠AOE
∴∠AOE=3x
∴∠EOF=2x,∠BOE=180°-3x=3(60°-x)
∵∠COE=120°
∴∠AOC=120°-3x
∴∠COF=∠AOC+∠AOF=120°-3x+x=2(60°-x)
∴
∴∠FOC=∠BOE
【解析】【分析】(1)利用邻补角的定义及已知求出∠AOE、∠AOF的度数,再利用∠AOC=∠AOE-∠COE,求出∠AOC的度数,然后根据∠COF=∠AOF-∠AOC,可求得结果。
(2)设∠BOE=x,利用余角的定义及∠FOE比∠BOE的余角大40°,用含x代数式表示出∠FOE、∠COF、∠AOC,再求出∠AOF的度数,即可得出∠AOE的度数,然后求出x的值,即可得出答案。
(3)根据题意画出图形,设∠AOF=x,利用已知分别用含x代数式表示出∠AOE、∠EOF、∠BOE,再用含x的代数式表示出∠FOC,然后就可得出∠FOC与∠BOE确定的数量关系式。
4.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90 ).
(1)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由;
(2)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=60 ,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.
【答案】(1)解:ON平分∠AOC.理由如下:∵OM平分∠BOC,∴∠BOM=∠MOC.∵∠MON=90°,∴∠BOM+∠AON=90°.又∵∠MOC+∠NOC=90°∴∠AON=∠NOC,即ON平分∠AOC
(2)解:∠BOM=∠NOC+30°.理由如下:∵∠BOC=60°,即:∠NOC+∠NOB=60°,又因为∠BOM+∠NOB=90°,所以:∠BOM=90°﹣∠NOB=90°﹣(60°﹣∠NOC)=∠NOC+30°,∴∠BOM与∠NOC之间存在的数量关系是:∠BOM=∠NOC+30°.
【解析】【分析】(1)ON平分∠AOC.理由如下:根据角平分线的定义得出∠BOM=∠MOC ,根据平角的定义得出∠BOM+∠AON=90°.又∠MOC+∠NOC=90°,根据等角的余角相等即可得出∠AON=∠NOC,即ON平分∠AOC ;
(2)∠BOM=∠NOC+30°.理由如下:根据角的和差得出∠NOC+∠NOB=60°,又因为∠BOM+∠NOB=90°,利用整体替换得出∠BOM=90°﹣∠NOB=90°﹣(60°﹣∠NOC)=∠NOC+30°。
5.如图1,已知数轴上有三点A、B、C,它们对应的数分别为a、b、c,且c-b=b-a;点C对应的数是10.
(1)若BC=15,
求a、b的值;
(2)如图2,在(1)的条件下,O为原点,动点P、Q分别从A、C同时出发,点P向左运动,运动速度为2个单位长度/秒,点Q向右运动,运动速度为1个单位长度/秒,N为OP的中点,M为BQ的中点.
①用含t代数式表示PQ、 MN;
②在P、Q的运动过程中,PQ与MN存在一个确定的等量关系,请指出他们之间的关系,并说明理由.
【答案】(1)∵BC=15,点C对应的数是10,
∴c-b=15,
∴b=-5,
∵c-b=b-a=15,
∴a=-20;
(2)①∵OQ=10+t,OP=20+2t,
∴PQ=(10+t)+( 20+2t)=30+3t;
∵OB=5, OQ=10+t,
∴BQ=15+t,
∵M为BQ的中点,
∴BM=7.5+0.5t,
∴OM=7.5+0.5t-5=2.5+0.5t.
∵OP=20+2t, N为OP的中点,
∴ON=10+t,
∴MN=OM+ON=12.5+1.5t;
②PQ-2MN=5.
∵PQ=30+3t,MN= 12.5+1.5t,
∴PQ-2MN=(30+3t)-2(12.5+1.5t)=5.
【解析】【分析】(1)利用数轴上所表示的数,右边的总比左边的大及数轴上任意两点间的距离等于这两点所表示数的差的绝对值,由BC=15,点C对应的数是10,即可算出点B 所表示的数,即b的值,进而根据 c-b=b-a 即可算出点A所表示的数a的值;
(2)① 根据路程等于速度乘以时间,得出PA=2t,CQ=t,所以OQ=OC+CQ=10+t,OP==OA+PA=20+2t, 进而根据PQ=OQ+OP,根据整式加减法法则算出PQ的长;根据BQ=OB+OQ得出 BQ=15+t, genuine线段中点的定义得出 BM=7.5+0.5t, ON=10+t, 根据MN=OM+ON ,由整式加减法法则即可算出答案;②PQ-2MN=5,理由如下:由PQ=30+3t,MN= 12.5+1.5t,故利用整式家家爱你法法则即可算出PQ-2MN=5。
6.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.
(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.
(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE 分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.
(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.
【答案】(1)解:∠AEB的大小不变,
∵直线MN与直线PQ垂直相交于O,
∴∠AOB=90°,
∴,
∵AE、BE分别是∠BAO和∠ABO角的平分线,
∴,,
∴ °,
∴∠AEB=135°
(2)解:∠CED的大小不变.
如图2,延长AD、BC交于点F.
∵直线MN与直线PQ垂直相交于O,
∴ °,
∴ °,
∴ °,
∵AD、BC分别是∠BAP和∠ABM的角平分线,
∴,,
∴ °, °,
∴ °,
∴ °,
∵DE、CE分别是∠ADC和∠BCD的角平分线,
∴ °,
∴ °;
(3)解:∵∠BAO与∠BOQ的角平分线相交于E,
∴ , ,
∴,
∵AE、AF分别是∠BAO和∠OAG的角平分线,
∴ °.
在△AEF中,
∵有一个角是另一个角的3倍,故有:
① , °, °;
② , °, °;
③ , °, °;
④ , °, °.
∴∠ABO为60°或45°.
【解析】【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、
BE分别是∠BAO和∠ABO的角平分线得出,,由三角形内角和定理即可得出结论;(2)延长AD、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出,故
,再由AD、BC分别是∠BAP和∠ABM的角平分线,可知
,,由三角形内角和定理可知∠F=45°,再根据DE、CE 分别是∠ADC和∠BCD的角平分线可知,进而得出结论;
(3))由∠BAO与∠BOQ的角平分线相交于E可知 , ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论.
7.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,
(1)在图1中,若∠AOC=40°,则∠BOC=________°,∠NOB=________°.
(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);
(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.
【答案】(1)50;40
(2)解:β=2α-40°,理由是:
如图1,∵∠AOC=α,
∴∠BOC=90°-α,
∵OC平分∠MOB,
∴∠MOB=2∠BOC=2(90°-α)=180°-2α,
又∵∠MON=∠BOM+∠BON,
∴140°=180°-2α+β,即β=2α-40°
(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,
理由是:如图2,
∵∠AOC=α,∠NOB=β,
∴∠BOC=90°-α,
∵OC平分∠MOB,
∴∠MOB=2∠BOC=2(90°-α)=180°-2α,
∵∠BOM=∠MON+∠BON,
∴180°-2α=140°+β,即2α+β=40°,
答:不成立,此时此时α与β之间的数量关系为:2α+β=40.
【解析】【解答】(1)如图1,
∵∠AOC与∠BOC互余,
∴∠AOC+∠BOC=90°,
∵∠AOC=40°,
∴∠BOC=50°,
∵OC平分∠MOB,
∴∠MOC=∠BOC=50°,
∴∠BOM=100°,
∵∠MON=40°,
∴∠BON=∠MON-∠BOM=140°-100°=40°,
【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.
8.如图1,直线,的平分线交于点.
(1)求证:;
(2)如图2,过点作于点,交于点,探究与之间的数量关系,并证明你的猜想;
(3)如图3,在(2)的条件下,的平分线交延长线于点,为延长线上一点,,将延直线翻折,所得直线交于,交于,若,求的度数.
【答案】(1)证明: ,
,
又评分,
,
.
(2)解:为的外角,
,
又
,
即 .
(3)解:如图,
根据折叠的性质,
,
,
,
,
,
,,
,在中,,
为等腰直角三角形,,
,
,
.
【解析】【分析】(1)根据平行线的性质定理得到内错角相等,再根据角平分线的性质,即可得到等角.(2)根据平行与垂直的性质,可得,而为的外角,根据三角形的外角定理即可解答.(3)根据题目中已给的数量关系,求的度数可转化为先求的度数,根据折叠的性质和平行线的性质,可将多个角的复杂数量关系转移到中,结果证明它是个等腰直角三角形,如此可解.
9.如图1,AM∥CN,点B为平面内一点,AB⊥BC于B,过B作BD⊥AM.
(1)求证:∠ABD=∠C;
(2)如图2,在(1)问的条件下,分别作∠ABD、∠DBC的平分线交DM于E、F,若∠BFC =1.5∠ABF,∠FCB=2.5∠BCN,
①求证:∠ABF=∠AFB;
②求∠CBE的度数.
【答案】(1)证明:如图 1,过 B 作 BG∥CN,
∴∠C=∠CBG
∵AB⊥BC,
∴∠CBG=90°﹣∠ABG,
∴∠C=90°﹣∠ABG,
∵BG∥CN,AM∥CN,
∴AM∥BG,
∴∠DBG=90°=∠D,
∴∠ABD=90°﹣∠ABG,
∴∠ABD=∠C;
(2)①证明:如图2,设∠DBE=∠EBA=x,则∠BCN=2x,∠FCB=5x,设∠ABF=y,则∠BFC=1.5y,
∵BF 平分∠DBC,
∴∠FBC=∠DBF=2x+y,
∵∠AFB+∠BCN=∠FBC,
∴∠AFB+2x=2x+y,
∴∠AFB=y=∠ABF;
②解:∵∠CBE=90°,AF∥CN,
∴∠ABG+∠CBG=90°,∠BCN+∠AFB+∠BFC+∠BCF=180°,
∴
∴
∴∠CBE=3x+2y=3×30°+2×15°=120°.
【解析】【分析】(1)过B作BG∥CN,根据平行线的性质以及同角的余角相等即可求解;
(2)①设∠DBE=∠EBA=x,∠ABF=y,由角平分线的性质和∠AFB+∠BCN=∠FBC 可求解;
②由平行线的性质可得∠FCN+∠CFA=180°,而∠ABG+∠CBG=∠CBE=90°,根据这两个等式可得关于x、y的方程组,解方程组可求得x、y的值,则∠CBE的度数可求解。
10.如图为一台灯示意图,其中灯头连接杆DE始终和桌面FG平行,灯脚AB始终和桌面FG垂直,
(1)当∠EDC=∠DCB=120°时,求∠CBA;
(2)连杆BC、CD可以绕着B、C和D进行旋转,灯头E始终在D左侧,设∠EDC,
∠DCB,∠CBA的度数分别为α,β,γ,请画出示意图,并直接写出示意图中α,β,γ之间的数量关系.
【答案】(1)解:如图,过C作CP∥DE,延长CB交FG于H,
∵DE∥FG,
∴PC∥FG,
∴∠PCD=180°﹣∠D=60°,∠PCH=120°﹣∠PCD=60°,
∴∠CHA=∠PCH=60°,
又∵∠CBA是△ABH的外角,AB⊥FG,
∴∠CBA=60°+90°=150°,
(2)解:如图,过C作CP∥DE,延长CB交FG于H,
∵DE∥FG,
∴PC∥FG,
∴∠D+∠PCD=180°,∠FHC+∠PCH=180°,
∴∠D+∠DCH+∠FHC=360°,
又∵∠CBA是△ABH的外角,AB⊥FG,
∴∠AHB=∠ABC﹣90°,
∴∠FHC=180°﹣(∠ABC﹣90°)=270°﹣∠ABC,
∴∠D+∠DCH+270°﹣∠ABC=360°,即∠D+∠DCB﹣∠ABC=90°.
即α+β﹣γ=90°.
【解析】【分析】(1)过C作CP∥DE,延长CB交FG于H,可证得ED∥PC∥FG,利用平行线的性质求出∠DCP,从而可求出∠PCH的度数;再利用两直线平行,内错角相等,可证得∠PCH=∠CHG,就可求出∠CHG的度数,然后利用垂直的定义及三角形的外角的性质,就可求出∠CBA的度数。
(2)过C作CP∥DE,延长CB交FG于H,可证得ED∥PC∥FG,利用平行线的性质可证得∠D+∠DCH+∠FHC=360°,再利用垂直的定义及三角形三角形外角的性质,∠AHB=∠ABC﹣90°,即可推出∠FHC=270°﹣∠ABC,然后代入整理可得到α,β,γ之间的数量关系。
11.如图(1),将两块直角三角板的直角顶点C叠放在一起.
(1)试判断∠ACE与∠BCD的大小关系,并说明理由;
(2)若∠DCE=30°,求∠ACB的度数;
(3)猜想∠ACB与∠DCE的数量关系,并说明理由;
(4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗?(不需说明理由)
【答案】(1)解:∠ACE=∠BCD,理由如下:
∵∠ACD=∠BCE=90°,∠ACE+∠ECD=∠ECB+∠ECD=90°,
∴∠ACE=∠BCD
(2)解:若∠DCE=30°,∠ACD=90°,
∴∠ACE=∠ACD﹣∠DCE=90°﹣30°=60°,
∵∠BCE=90°且∠ACB=∠ACE+∠BCE,
∠ACB=90°+60°=150°
(3)解:猜想∠ACB+∠DCE=180°.理由如下:
∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,
∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°
(4)解:成立
【解析】【分析】(1)根据同角的余角相等即可求证;
(2)根据余角的定义可先求得∠ACE=∠ACD-∠DCE,再由图可得∠ACB=∠ACE+∠BCE,把∠ACE和∠BCE 的度数代入计算即可求解;
(3)由图知,∠ACB=∠ACD+∠BCE-∠ECD,则∠ACB+∠ECD=∠ACD+∠BCE,把∠ACD和∠BCE的度数代入计算即可求解;
(4)根据重叠的部分实质是两个角的重叠可得。
12.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.
(1)若点C恰为AB的中点,求DE的长;
(2)若AC=6cm,求DE的长;
(3)试说明不论AC取何值(不超过16cm),DE的长不变;
(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE 分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.
【答案】(1)解:∵点C恰为AB的中点,
∴AC=BC= AB=8cm,
∵点D、E分别是AC和BC的中点,
∴DC= AC=4cm,CE= BC=4cm,
∴DE=8cm
(2)解:∵AB=16cm,AC=6cm,
∴BC=10cm,
由(1)得,DC= AC=3cm,CE= CB=5cm,
∴DE=8cm
(3)解:∵点D、E分别是AC和BC的中点,
∴DC= AC,CE= BC,
∴DE= (AC+BC)= AB,
∴不论AC取何值(不超过16cm),DE的长不变
(4)解:∵OD、OE分别平分∠AOC和∠BOC,
∴∠DOC= ∠AOC,∠EOC= ∠BOC,
∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)= ∠AOB=65°,
∴∠DOE=65°与射线OC的位置无关
【解析】【分析】(1)由点C恰为AB的中点,得到AC=BC的值,再由点D、E分别是AC
和BC的中点,求出DE的值;(2)由(1)得,DC= AC的值,CE= CB的值,得到DE的值;(3)由点D、E分别是AC和BC的中点,得到不论AC取何值(不超过16cm),DE 的长不变;(4)由OD、OE分别平分∠AOC和∠BOC,根据角平分线定义,得到
∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=∠AOB,得到∠DOE=65°与射线OC的位置无关.
13.如图1,△ABC中,∠ABC=∠BAC,D是BC延长线上一动点,连接AD,AE平分∠CAD交CD于点E,过点E作EH⊥AB,垂足为点H.直线EH与直线AC相交于点F.设∠AEH=,∠ADC= .
(1)求证:∠EFC=∠FEC;
(2)①若∠B=30°,∠CAD=50°,则=________,=________;
②试探究与的关系,并说明理由;
(3)若将“D是BC延长线上一动点”改为“D是CB延长线上一动点”,其它条件不变,请在图2中补全图形,并直接写出与的关系.
【答案】(1)证明:∵∠ABC=∠BAC,EH⊥AB.
∴∠EFC=∠AFH=90°-∠BAC,∠FEC=90°-∠ABC,
∴∠EFC=∠FEC.
(2)35°;70°;解:② , 理由如下: 由(1)可知:
, 又∵ , ∴ . ∴ .
(3)解:图形如下:
∵∠ABC=∠BAC,∠BHE=90°-∠ABC,∠F=90°-∠BAC,
∴ .
又∵,
∴在△CEF中有:∠ECF+2∠CEF=180°,
即 .
.
∵2∠EAC=∠DAC, ,
∴ .∴即 .
∴ .
【解析】【解答】解:(2)①∵∠CAD=50°,AE平分∠CAD,
∴∠ =∠AFH-∠EAC=90°-∠BAC-∠EAC=90°-30°-25°=35°.
∵∠ACB=∠ABC+∠BAC=60°,∠CAD=50°,
∴∠ =180°-∠ACB-∠CAD=180°-60°-50°=70°.
故答案为:35°,70°.
【分析】(1)利用等角的余角相等的性质证明即可.(2)①利用外角定理和角平分线的性质求解即可;②分别用∠和∠表示出∠AEC即可解.(3)画出图形,将所有的角度集中在△CEF 的内角和上,列出等式求解即可.
14.如图
(1)如图1,AB∥CD,∠AEP=40°,∠PFD=130°。
求∠EPF的度数。
小明想到了以下方法(不完整),请填写以下结论的依据:
如图1,过点P作PM∥AB,
∴∠1=∠AEP=40°(________)
∵AB∥CD,(已知)
∴PM∥CD,(________)
∠2+∠PFD=180°(________)
∵∠PFD=130°,∴∠2=180°-130°=50°
∴∠1+∠2=40°+50°=90°
即∠EPF=90°
(2)如图2,AB∥CD,点P在AB,CD外,问∠PEA,∠PFC,∠P之间有何数量关系?请说明理由;
(3)如图3所示,在(2)的条件下,已知∠P=α,∠PEA的平分线和ZPFC的平分线交于点G,用含有α的式子表示∠G的度数是________。
(直接写出答案,不需要写出过程)
【答案】(1)两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;两直线平行,同旁内角互补
(2)解:
理由如下:过点作,则
∴
∵
∴
∵
∴
∴
即 .
(3)
【解析】【解答】(3)如图:
∵EG平分∠PEA,FG平分∠PFC,
∴∠1=∠PFC,∠2=∠PEA,
∴∠1-∠2=∠PFC-∠PEA=(∠PFC-∠PEA),
∵∠PFC=∠PEA+∠P,
∴∠PFC-∠PEA=∠P,
∴∠1-∠2=∠P,
∵∠3=∠P+∠2,
∴∠G=∠3-∠1=∠P+∠2-∠1=∠P=α.
【分析】(1)根据平行线的性质及平行公理,即可求解;
(2)过点P作PN∥AB,根据平行公理得PN∥CD,得出∠PFC=∠FPN,由AB∥CD得出∠PEA=∠NPE,
从而得出∠FPN=∠PEA+∠FPE,即可求出∠PFC=∠PEA+∠FPE,即可求解;
(3)根据角平分线的定义得出∠1=∠PFC,∠2=-∠PEA,由∠PFC=∠PEA+∠P,得出∠1-∠2=
∠P,由三角形的外角性质得出∠G=∠3-∠1,∠3=∠P+∠2,从而求出∠G=α.
15.如图,已知CD∥EF,A,B分别是CD和EF上一点,BC平分∠ABE,BD平分∠ABF
(1)证明:BD⊥BC;
(2)如图,若G是BF上一点,且∠BAG=50°,作∠DAG的平分线交BD于点P,求∠APD 的度数:
(3)如图,过A作AN⊥EF于点N,作AQ∥BC交EF于Q,AP平分∠BAN交EF于P,直接写出∠PAQ=________.
【答案】(1)证明:∵BC平分∠ABE,BD平分∠ABF
∴∠ABC= ∠ABE,∠ABD= ∠ABF
∴∠ABC+∠ABD= (∠ABE+∠ABF)= ×180°=90°
∴BD⊥BC
(2)解:∵CD∥EF
BD平分∠ABF
∴∠ADP=∠DBF= ∠ABF,∠DAB+∠ABF=180°
又AP平分∠DAG,∠BAG=50°
∴∠DAP= ∠DAG
∴∠APD=180°-∠DAP-∠ADP
=180°-∠DAG-∠ABF
=180°- (∠DAB-∠BAG)-∠ABF
=180°-∠DAB+ ×50°-∠ABF
=180°- (∠DAB+∠ABF)+25°
=180°- ×180°+25°
=115°
(3)45°
【解答】(3)解:如图,
【解析】
∴∠1=∠4,∠2+∠3+∠4=180°,
∵BC平分∠ABE,
∴∠1=∠2=∠4,
∴∠3+∠4=90°,
又∵CD∥EF,AN⊥EF,AP平分∠BAN
∴∠PAN= (90°-∠3),∠NAQ=90°-∠4,
∴∠PAQ=∠PAN+∠NAQ= (90°-∠3)+(90°-∠4)
=45°- ∠3+90°-∠4
=135°-(∠3+∠4)
=135°-90°
=45°.
【分析】(1)根据角平分线和平角的定义可得∠CBD=90°,即可得出结论;(2)根据平行线的性质以及角平分线的定义可得∠ADP=∠DBF= ∠ABF,∠DAB+∠ABF=180°,∠DAP= ∠DAG,然后根据出三角形内角和即可求出∠APD的度数;(3)根据平行线的性质以及角平分线的定义可得∠1=∠2=∠4,∠2+∠3+∠4=180°,即∠3+∠4=90°,根据垂直和平行线的性质以及角平分线的定义可得∠PAN= (90°-∠3),∠NAQ=90°-∠4,则∠PAQ=∠PAN+∠NAQ= (90°-∠3)+(90°-∠4),代入计算即可求解.。