几何图形初步易错题汇编

合集下载

几何图形初步易错题汇编含答案

几何图形初步易错题汇编含答案
∴∠BAF+∠ABF=45°,
∴∠AFB=135°,故①正确;
∵DG∥AB,
∴∠BDG=∠ABC=2∠CBE,故②正确;
∵∠ABC的度数不确定,
∴BC平分∠ABG不一定成立,故③错误;
∵BE平分∠ABC,
∴∠ABF=∠CBE,
又∵∠C=∠ABG=90°,
∴∠BEC+∠CBE=90°,∠ABF+∠FBG=90°,
【详解】
解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱.
故选:D.
【点睛】
本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.
【点睛】
本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导
13.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=( )
A.10°B.50°C.45°D.40°
16.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()

(易错题精选)初中数学几何图形初步易错题汇编附答案解析

(易错题精选)初中数学几何图形初步易错题汇编附答案解析

(易错题精选)初中数学几何图形初步易错题汇编附答案解析

一、选择题

1.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.

A.14 B.15 C.16 D.17

【答案】B

【解析】

【分析】

在侧面展开图中,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C 即可.

【详解】

解:沿过A的圆柱的高剪开,得出矩形EFGH,

过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则

AP+PC就是蚂蚁到达蜂蜜的最短距离,

∵AE=A′E,A′P=AP,

∴AP+PC=A′P+PC=A′C,

∵CQ=1

2

×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,

在Rt△A′QC中,由勾股定理得:A′C=22

129

=15cm,

故选:B.

【点睛】

本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.

2.下面四个图形中,是三棱柱的平面展开图的是()

A.B.C.D.

【答案】C

【解析】

【分析】

根据三棱柱的展开图的特点作答.

【详解】

A、是三棱锥的展开图,故不是;

B、两底在同一侧,也不符合题意;

C、是三棱柱的平面展开图;

D、是四棱锥的展开图,故不是.

故选C.

【点睛】

本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征.

几何图形初步易错题汇编及解析

几何图形初步易错题汇编及解析

几何图形初步易错题汇编及解析

一、选择题

1.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠

1=32°,那么∠2的度数是()

A.64°B.68°C.58°D.60°

【答案】A

【解析】

【分析】

首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.

【详解】

∵AB∥CD,

∴∠1=∠AEG.

∵EG平分∠AEF,

∴∠AEF=2∠AEG,

∴∠AEF=2∠1=64°,

∵AB∥CD,

∴∠2=64°.

故选:A.

【点睛】

本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.

2.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是()

A.B.

C .

D .

【答案】D

【解析】

【分析】 根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.

【详解】

解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体.

故选:D .

【点睛】

本题主要考查三视图的识别,解决本题的关键是要熟练掌握三视图的识别方法.

3.如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠AOC =76°,则∠BOM 等于( )

A .38°

B .104°

C .142°

D .144° 【答案】C

【解析】

∵∠AOC =76°,射线OM 平分∠AOC ,

∴∠AOM=12∠AOC=12

×76°=38°, ∴∠BOM=180°−∠AOM=180°−38°=142°,

几何图形初步易错题汇编附答案

几何图形初步易错题汇编附答案
【解析】
【分析】
根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点
【详解】
解:A、AC=BC,则点C是线段AB中点;
B、AB=2AC,则点C是线段AB中点;
C、AC+BC=AB,则C可以是线段AB上任意一点;
D、BC= AB,则点C是线段AB中点.
故选:C.
【点睛】
A. B. C. D.
【答案】D
【解析】
解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.
故选D.
首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.
6.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是
A. B.
C. D.
【答案】D
【解析】
解:如右图,
连接OP,由于OP是Rt△AOB斜边上的中线,
所以OP= AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.
故选D.
17.如图,点C是射线OA上一点,过C作CD⊥OB,垂足为D,作CE⊥OA,垂足为C,交OB于点E,给出下列结论:①∠1是∠DCE的余角;②∠AOB=∠DCE;③图中互余的角共有3对;④∠ACD=∠BEC,其中正确结论有( )

(易错题精选)初中数学几何图形初步难题汇编附解析

(易错题精选)初中数学几何图形初步难题汇编附解析

(易错题精选)初中数学几何图形初步难题汇编附解析

一、选择题

1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()

A.主视图B.俯视图C.左视图D.一样大

【答案】C

【解析】

如图,该几何体主视图是由5个小正方形组成,

左视图是由3个小正方形组成,

俯视图是由5个小正方形组成,

故三种视图面积最小的是左视图,

故选C.

2.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是()

A.B.

C.D.

【答案】D

【解析】

【分析】

根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.

【详解】

解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体.

故选:D.

【点睛】

本题主要考查三视图的识别,解决本题的关键是要熟练掌握三视图的识别方法. 3.下列图形经过折叠不能围成棱柱的是().

A.B.C.D.

【答案】B

【解析】

试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成.

考点:棱柱的侧面展开图.

4.下列立体图形中,侧面展开图是扇形的是()

A.B.

C.

D.

【答案】B

【解析】

根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.

5.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()

A.中B.考C.顺D.利

【答案】C

【解析】

试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,

“祝”与“考”是相对面,

“你”与“顺”是相对面,

“中”与“立”是相对面.

故选C.

考点:正方体展开图.

(易错题精选)初中数学几何图形初步真题汇编及答案

(易错题精选)初中数学几何图形初步真题汇编及答案

(易错题精选)初中数学几何图形初步真题汇编及答案

一、选择题

1.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC 上一点,则DE+BE的最小值为()

A.2

B.31

C.3

D.23

【答案】C

【解析】

【分析】

作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.

【详解】

解:作B关于AC的对称点B',连接B′D,

∵∠ACB=90°,∠BAC=30°,

∴∠ABC=60°,

∵AB=AB',

∴△ABB'为等边三角形,

∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,

∴最小值为B'到AB的距离3

故选C.

【点睛】

本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此

题的关键.

2.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()

A.1 B.2 C.3 D.4

【答案】C

【解析】

试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.

∴EP+FP=EP+F′P.

由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时

EP+FP=EP+F′P=EF′.

∵四边形ABCD为菱形,周长为12,

∴AB=BC=CD=DA=3,AB∥CD,

∵AF=2,AE=1,

∴DF=AE=1,

∴四边形AEF′D是平行四边形,

(易错题精选)初中数学几何图形初步易错题汇编

(易错题精选)初中数学几何图形初步易错题汇编

(易错题精选)初中数学几何图形初步易错题汇编

一、选择题

1.如图,在Rt ABC V 中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交

AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12

MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD △的面积是( )

A .15

B .30

C .45

D .60 【答案】B

【解析】

【分析】

作DE AB ⊥于E ,根据角平分线的性质得4DE DC ==,再根据三角形的面积公式求解即可.

【详解】

作DE AB ⊥于E

由尺规作图可知,AD 是△ABC 的角平分线

∵90C ∠=︒,DE AB ⊥

∴4DE DC ==

∴△ABD 的面积1302

AB DE =

⨯⨯= 故答案为:B .

【点睛】

本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.

2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )

A.B.

C.D.

【答案】D

【解析】

【分析】

根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题.

【详解】

解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱.

故选:D.

【点睛】

本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.

几何图形初步易错题汇编及答案

几何图形初步易错题汇编及答案
A. B. C. D.
∵∠3=∠G+∠CFG,∠1=∠2+∠G,∠CFG=∠AFE,
∴∠3=∠G+∠2+∠G,∠G= (∠3﹣∠2).
故选:C.
【点睛】
本题考查了三角形中角度的问题,掌握角平分线的性质、三角形外角的性质是解题的关键.
6.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是( )
A.中B.考C.顺D.利
【详解】如图,AP∥BC,
∴∠2=∠1=50°,
∵∠EBF=80°=∠2+∠3,
∴∠3=∠EBF﹣∠2=80°﹣50°=30°,
∴此时的航行方向为北偏东30°,
故选A.
【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.
12.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()
【详解】
解:A、根据作图方法可得AD是∠BAC的平分线,正确;
B、∵∠C=90°,∠B=30°,
∴∠CAB=60°,
∵AD是∠BAC的平分线,
∴∠DAC=∠DAB=30°,
∴∠ADC=60°,正确;
C、∵∠B=30°,∠DAB=30°,
∴AD=DB,
∴点D在AB的中垂线上,正确;

初中数学几何图形初步易错题汇编及答案

初中数学几何图形初步易错题汇编及答案

初中数学几何图形初步易错题汇编及答案

一、选择题

1.如图,在平行四边形ABCD 中,4AB =,7AD =,ABC ∠的平分线BE 交AD 于点E ,则DE 的长是( )

A .4

B .3

C .3.5

D .2

【答案】B

【解析】

【分析】 根据平行四边形的性质可得AEB EBC ∠=∠,再根据角平分线的性质可推出

AEB ABE ∠=∠,根据等角对等边可得4AB AE ==,即可求出DE 的长.

【详解】

∵四边形ABCD 是平行四边形

∴//AD BC

∴AEB EBC ∠=∠

∵BE 是ABC ∠的平分线

∴ABE EBC ∠=∠

∴AEB ABE ∠=∠

∴4AB AE ==

∴743DE AD AE =-=-=

故答案为:B .

【点睛】

本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.

2.下列图形经过折叠不能围成棱柱的是( ).

A .

B .

C .

D .

【答案】B

【解析】

试题分析:三棱柱的展开图为3个矩形和2个三角形,故B 不能围成.

考点:棱柱的侧面展开图.

3.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )

A .210824(3) cm -

B .()2108123cm -

C .()254243cm -

D .()254123cm -

【答案】A

【解析】

【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9−23,再根据六棱柱的侧面积是6ah 求解.

(易错题精选)初中数学几何图形初步易错题汇编附答案

(易错题精选)初中数学几何图形初步易错题汇编附答案

(易错题精选)初中数学几何图形初步易错题汇编附答案

一、选择题

1.已知直线m ∥n ,将一块含30°角的直角三角板按如图所示方式放置(∠ABC =30°),并且顶点A ,C 分别落在直线m ,n 上,若∠1=38°,则∠2的度数是( )

A .20°

B .22°

C .28°

D .38°

【答案】B

【解析】

【分析】 过C 作CD ∥直线m ,根据平行线的性质即可求出∠2的度数.

【详解】

解:过C 作CD ∥直线m ,

∵∠ABC =30°,∠BAC =90°,

∴∠ACB =60°,

∵直线m ∥n ,

∴CD ∥直线m ∥直线n ,

∴∠1=∠ACD ,∠2=∠BCD ,

∵∠1=38°,

∴∠ACD =38°,

∴∠2=∠BCD =60°﹣38°=22°,

故选:B .

【点睛】

本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.

2.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC 的度数为( )

A .90°

B .75°

C .105°

D .120°

【答案】B

【解析】

【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.

【详解】

∵//BC DE

∴30E BCE ==︒∠∠

∴453075AFC B BCE =+=︒+︒=︒∠∠∠

故答案为:B .

【点睛】

本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.

3.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=55°,那么∠2的度数是( )

A .20°

几何图形初步易错题汇编及答案解析

几何图形初步易错题汇编及答案解析
【点睛】
此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.
19.下列说法中正确的有( )
(1)如果互余的两个角的度数之比为1:3,那么这两个角分别是45°和135°
(2)如果两个角是同一个角的补角,那么这两个角不一定相等
(3)一个锐角的余角比这个锐角的补角小90°
故选A.
【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.
12.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()
A.64°B.68°C.58°D.60°
【答案】A
【解析】
【分析】
首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.
(4)由73°42+16°18′=90°可知(4)正确.
综上,正确的结论为(3)(4),共2个.
故选B.
【点睛】
本题考查了余角和补角的定义,熟练运用余角和补角的定义是解决问题的关键.
20.如图,已知 的周长是21, , 分别平分 和 , 于 ,且 ,则 的面积是()
A.25米B.84米C.42米D.21米
【答案】C
【解析】
【分析】
根据角平分线的性质可得点O到AB、AC、BC的距离为4,再根据三角形面积公式求解即可.

几何图形初步易错题汇编含答案解析

几何图形初步易错题汇编含答案解析

几何图形初步易错题汇编含答案解析

一、选择题

1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()

A.主视图B.俯视图C.左视图D.一样大

【答案】C

【解析】

如图,该几何体主视图是由5个小正方形组成,

左视图是由3个小正方形组成,

俯视图是由5个小正方形组成,

故三种视图面积最小的是左视图,

故选C.

2.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是

A.(0,0)B.(0,1)C.(0,2)D.(0,3)

【答案】D

【解析】

【详解】

解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,

此时△ABC的周长最小,

∵点A、B的坐标分别为(1,4)和(3,0),

∴B′点坐标为:(-3,0),则OB′=3

过点A作AE垂直x轴,则AE=4,OE=1

则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,

∵C′O∥AE,

∴∠B′C′O=∠B′AE,

∴∠B′C′O=∠EB′A

∴B′O=C′O=3,

∴点C′的坐标是(0,3),此时△ABC的周长最小.

故选D.

3.如图所示是一个正方体展开图,图中六个正方形内分别标有“新”、“时”、“代”、“去”、“奋”、“斗”、六个字,将其围成一个正方体后,则与“奋”相对的字是( )

A.斗B.新C.时D.代

【答案】C

【解析】

分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.

详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,

几何图形初步易错题汇编含答案解析

几何图形初步易错题汇编含答案解析

几何图形初步易错题汇编含答案解析

一、选择题

1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()

A.主视图B.俯视图C.左视图D.一样大

【答案】C

【解析】

如图,该几何体主视图是由5个小正方形组成,

左视图是由3个小正方形组成,

俯视图是由5个小正方形组成,

故三种视图面积最小的是左视图,

故选C.

2.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是

A.(0,0)B.(0,1)C.(0,2)D.(0,3)

【答案】D

【解析】

【详解】

解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,

此时△ABC的周长最小,

∵点A、B的坐标分别为(1,4)和(3,0),

∴B′点坐标为:(-3,0),则OB′=3

过点A作AE垂直x轴,则AE=4,OE=1

则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,

∵C′O∥AE,

∴∠B′C′O=∠B′AE,

∴∠B′C′O=∠EB′A

∴B′O=C′O=3,

∴点C′的坐标是(0,3),此时△ABC的周长最小.

故选D.

3.如图所示是一个正方体展开图,图中六个正方形内分别标有“新”、“时”、“代”、“去”、“奋”、“斗”、六个字,将其围成一个正方体后,则与“奋”相对的字是( )

A.斗B.新C.时D.代

【答案】C

【解析】

分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.

详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,

(专题精选)初中数学几何图形初步易错题汇编附答案解析

(专题精选)初中数学几何图形初步易错题汇编附答案解析

(专题优选)初中数学几何图形初步易错题汇编附答案分析

一、选择题

1.如图,将一副三角板如图搁置,∠COD=28°,则∠ AOB 的度数为 ( )

A.152 °B. 148 °C. 136 °D. 144 °【答案】 A

【分析】

【剖析】

依据三角板的性质得AOD BOC 90 ,再依据同角的余角相等可得

∠AOC ∠ BOD 62 ,即可求出∠AOB的度数.【详

解】

∵这是一副三角板

∴AOD BOC 90

∵∠COD28

∴∠AOC∠BOD62

∴∠ AOB∠AOC∠COD∠BOD62 +28 +62 =152

故答案为: A.

【点睛】

本题考察了三角板的度数问题,掌握三角板的性质、同角的余角相等是解题的重点.2.以下图形经过折叠不可以围成棱柱的是().

A.B.C.D.

【答案】 B

【分析】

试题剖析:三棱柱的睁开图为

.3 个矩形和 2 个三角形,故 B 不可以围

.

3.如图,在正方形ABCD中,E是AB上一点,BE2,AE 3BE,P是AC上一动点,则 PB PE 的最小值是()

A.8B. 9C. 10D. 11

【答案】 C

【分析】

【剖析】

连结 DE,交 AC于 P,连结 BP,则此时PB+PE的值最小,从而利用勾股定理求出即可.【详解】

解:如图,连结DE ,交AC于P,连结BP,则此时 PB PE 的值最小

∵四边形 ABCD 是正方形

B、D 对于 AC 对称

∴PB PD

PB PE PD PE DE

Q BE2, AE3BE

AE6, AB8

DE628210 ;

故 PB PE 的最小值是10,应

选: C.

【点睛】

几何图形初步易错题(Word版 含答案)

几何图形初步易错题(Word版 含答案)

一、初一数学几何模型部分解答题压轴题精选(难)

1.如图(1),将两块直角三角板的直角顶点C叠放在一起.

(1)试判断∠ACE与∠BCD的大小关系,并说明理由;

(2)若∠DCE=30°,求∠ACB的度数;

(3)猜想∠ACB与∠DCE的数量关系,并说明理由;

(4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗?(不需说明理由)

【答案】(1)解:∠ACE=∠BCD,理由如下:

∵∠ACD=∠BCE=90°,∠ACE+∠ECD=∠ECB+∠ECD=90°,

∴∠ACE=∠BCD

(2)解:若∠DCE=30°,∠ACD=90°,

∴∠ACE=∠ACD﹣∠DCE=90°﹣30°=60°,

∵∠BCE=90°且∠ACB=∠ACE+∠BCE,

∠ACB=90°+60°=150°

(3)解:猜想∠ACB+∠DCE=180°.理由如下:

∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,

∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°

(4)解:成立

【解析】【分析】(1)根据同角的余角相等即可求证;

(2)根据余角的定义可先求得∠ACE=∠ACD-∠DCE,再由图可得∠ACB=∠ACE+∠BCE,把∠ACE和∠BCE 的度数代入计算即可求解;

(3)由图知,∠ACB=∠ACD+∠BCE-∠ECD,则∠ACB+∠ECD=∠ACD+∠BCE,把∠ACD和∠BCE的度数代入计算即可求解;

(4)根据重叠的部分实质是两个角的重叠可得。。

2.如图,EF⊥AB于F,CD⊥AB于D,点在AC边上,且∠1=∠2= .

(易错题精选)初中数学几何图形初步难题汇编含答案

(易错题精选)初中数学几何图形初步难题汇编含答案

(易错题精选)初中数学几何图形初步难题汇编含答案

一、选择题

1.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()

A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补

C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等

【答案】D

【解析】

【分析】

【详解】

解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;

因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.

2.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于()

A.38°B.104°C.142°D.144°

【答案】C

【解析】

∵∠AOC=76°,射线OM平分∠AOC,

∴∠AOM=1

2

∠AOC=

1

2

×76°=38°,

∴∠BOM=180°−∠AOM=180°−38°=142°,

故选C.

点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键. 3.下列图形经过折叠不能围成棱柱的是().

A .

B .

C .

D .

【答案】B

【解析】

试题分析:三棱柱的展开图为3个矩形和2个三角形,故B 不能围成.

考点:棱柱的侧面展开图.

4.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何图形初步易错题汇编

一、选择题

1.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=()

A.10°B.50°C.45°D.40°

【答案】A

【解析】

【分析】

先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.

【详解】

∵DE∥AF,∠CED=50°,

∴∠CAF=∠CED=50°,

∵∠BAC=60°,

∴∠BAF=60°﹣50°=10°,

故选:A.

【点睛】

此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键. 2.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是()

A.B.

C.D.

【答案】D

【解析】

【分析】

根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.

【详解】

解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体. 故选:D .

【点睛】

本题主要考查三视图的识别,解决本题的关键是要熟练掌握三视图的识别方法.

3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )

A .90°

B .75°

C .105°

D .120°

【答案】B

【解析】

【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.

【详解】

∵//BC DE

∴30E BCE ==︒∠∠

∴453075AFC B BCE =+=︒+︒=︒∠∠∠

故答案为:B .

【点睛】

本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.

4.下列图形中,是正方体表面展开图的是( )

A .

B .

C .

D .

【答案】C

【解析】

【分析】

利用正方体及其表面展开图的特点解题.

【详解】

解:A 、B 、D 经过折叠后,下边没有面,所以不可以围成正方体,C 能折成正方体. 故选C .

【点睛】

本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.

5.把正方体的表面沿某些棱剪开展成一个平面图形(如图),请根据各面上的图案判断这个正方体是( )

A .

B .

C .

D .

【答案】C

【解析】

【分析】 通过立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.

【详解】

结合立体图形与平面图形的相互转化,即可得出两圆应该在几何体的上下,符合要求的只有C ,D ,再根据三角形的位置,即可排除D 选项.

故选C .

【点睛】

考查了展开图与折叠成几何体的性质,从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形是解题关键.

6.如图,在平行四边形ABCD 中,4AB =,7AD =,ABC ∠的平分线BE 交AD 于点E ,则DE 的长是( )

A .4

B .3

C .3.5

D .2

【答案】B

【解析】

【分析】 根据平行四边形的性质可得AEB EBC ∠=∠,再根据角平分线的性质可推出

AEB ABE ∠=∠,根据等角对等边可得4AB AE ==,即可求出DE 的长.

【详解】

∵四边形ABCD 是平行四边形

∴//AD BC

∴AEB EBC ∠=∠

∵BE 是ABC ∠的平分线

∴ABE EBC ∠=∠

∴AEB ABE ∠=∠

∴4AB AE ==

∴743DE AD AE =-=-=

故答案为:B .

【点睛】

本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.

7.已知:在Rt △ABC 中,∠C =90°,BC =1,AC =3,点D 是斜边AB 的中点,点E 是边AC 上一点,则DE +BE 的最小值为( )

A .2

B 31

C 3

D .23【答案】C

【解析】

【分析】

作B 关于AC 的对称点B',连接B′D ,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB 之间的连接线段,其最小值为B'到AB 的距离3,3

【详解】

解:作B 关于AC 的对称点B',连接B′D ,

∵∠ACB=90°,∠BAC=30°,

∴∠ABC=60°,

∵AB=AB',

∴△ABB'为等边三角形,

∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,

∴最小值为B'到AB的距离=AC=3,

故选C.

【点睛】

本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.

8.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②所示.则下列图形中,是图②的表面展开图的是().

A.B.C.D.

【答案】B

【解析】

试题分析:由平面图形的折叠及立体图形的表面展开图的特点解题.

解:由图中阴影部分的位置,首先可以排除C、D,

又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B符合题意.

故选B.

点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.

9.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()

相关文档
最新文档