人教版八年级下册数学 第17章 勾股定理 培优综合专练D1
八年级下册第17章勾股定理培优试题(含答案)
人教版数学八年级下册第17章勾股定理培优试题一.选择题(共10小题)1.在△ABC 中,∠B=90°,若BC=3,AC=5,则AB 等于( )A .2B .3C .4D .342.如图,有一长方形空地ABCD,如果AB=6米,AD=8米,要从A 走到C ,至少要走( ) A .6米 B .8米 C .10米 D .14米3.以下各组数为三角形的三边长,其中不能够构成直角三角形的是( )A .32、42、52B .7、24、25C .0.3、0.4、0.5D .9、12、154.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( ) A .3 B .5 C .4.2 D .45.某直角三角形的一直角边长为8,另一直角边长与斜边长的和为32,则斜边的长为( ) A .8 B .10 C .15 D .176.满足下列条件的△ABC,不是直角三角形的是( )A .∠C=∠A+∠BB .∠C=∠A-∠BC .a :b :c=3:4:5D .∠A :∠B :∠C=3:4:57.小明想知道学校旗杆的高度,她发现旗杆上的绳子刚好垂到地面,当她把绳子的下端拉开5米后,发现绳子下端距离地面1米,则旗杆的高是( )A .8米B .10米C .12米D .13米8.下列各组数中,不是勾股数的是( )A .9,12,15B .8,15,17C .12,18,22D .5,12,13 9.下列结论中,错误的有( )①在Rt △ABC 中,已知两边长分别为3和4,则第三边的长为5;②△ABC 的三边长分别为AB,BC,AC,若BC 2+AC 2=AB 2,则∠A=90°;③在△ABC 中,若∠A :∠B :∠C=1:5:6,则△ABC 是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A .0个B .1个C .2个D .3个10.如图,△ABC 中,AB=AC,AB=5,BC=8,AD 是∠BAC 的平分线,则AD 的长为( ) A .5 B .4 C .3 D .2二.填空题(共6小题)11.已知一个直角三角形的两直角边长分别是1和2,则斜边长为 .12.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,DE ⊥AB 于E ,且DE=15cm,BE=8cm,则 BC= cm .13.平面直角坐标系上有点A(-3,4),则它到坐标原点的距离为 .14.如图,分别以直角△ABC 的三边为直径作半圆,若两直角边分别为6,8,则阴影部分的面积是 .15.定义:如图,点P 、Q 把线段AB 分割成线段AP 、PQ 和BQ ,若以AP 、PQ 、BQ 为边的三角形是一个直角三角形,则称点P 、Q 是线段AB 的勾股分割点.已知点P 、Q 是线段AB的勾股分割点,如果AP=8,PQ=12(PQ>BQ),那么BQ= .16.如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了米.三.解答题(共8小题)17.如图,在正方形网格中,小正方形的边长为1,A,B,C为格点(1)判断△ABC的形状,并说明理由.(2)求BC边上的高.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.19.我市鸭绿江边的景观区内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积,经技术人员测量∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)请你帮助管理人员计算出这个四边形对角线AC的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.20.某广场内有一块空地ABCD如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=6m,BC=8m,CD=26m,AD=24m.求四边形ABCD空地的面积.21.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=1.8.(1)求CD的长;(2)求AB的长;(3)△ABC是直角三角形吗?请说明理由.22.如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7米,梯子顶端到地面的距离AC 为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A ′D 为1.5米,求小巷有多宽.23.如图,长7.5m 的梯子靠在墙上,梯子的底部离墙的底端4.5m .(1)求梯子的顶端到地面的距离;(2)由于地面有水,梯子底部向右滑动1.5m,则梯子顶端向下滑多少米?24.阅读下列一段文字,然后回答下列问题.已知在平面内有两点P 1()x 1,y 1、P 2()x 2,y 2,其两点间的距离P 1P 2=()x 1-x 22+()y 1-y 22,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为|x 2-x 1|或|y 2-y 1|.(1)已知A(2,4)、B(-3,-8),试求A、B两点间的距离;(2)已知M、N在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为-1,试求M、N两点的距离为;(3)已知一个三角形各顶点坐标为D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形状吗?说明理由.答案:1-5 CCACD6-10 DDCCC11.12.3213.514.2415.416.0.817. 解:(1)结论:△ABC是直角三角形.理由:∵BC2=12+82=65,AC2=22+32=13,AB2=62+42=52,∴AC2+AB2=BC2,∴△ABC是直角三角形.(2)设BC边上的高为h.则有•AC•AB=•BC•h,∵AC=,AB=2,BC=∴h=18.解:∵AB=13,AC=20,AD=12,AD⊥BC,∴Rt△ABD中,BD===5,Rt△ACD中,CD===16,∴BC=BD+CD=5+16=21.19.解:(1)连接AC.在Rt△ABC中,∵∠ABC=90°,AB=20,BC=15,∴AC===25(米).∴这个四边形对角线AC的长度为25米.(2)在△ADC中,∵CD=7,AD=24,AC=25,∴AD2+CD2=242+72=252=AC2,∴△ADC为直角三角形,∠ADC=90°,∴S四边形ABCD=S△ADC+S△ABC=×15×20+×7×24=234(平方米),∴四边形ABCD的面积为234平方米.20. 解:连接AC,在Rt△ABC中,AC2=AB2+BC2=62+82=102,∴AC=10.在△DAC中,CD2=262,AD2=242,而242+102=262,即AC2+AD2=CD2,∴∠DCA=90°,S四边形ABCD=S△BAC+S△DAC=•BC•AB+DC•AC,=×8×6+×24×10=144(m)2,答:四边形ABCD空地的面积是144m2.21.解:(1)∵CD是AB边上的高,∴△BDC是直角三角形,∴CD===2.4;(2)同(1)可知△ADC也是直角三角形,∴AD===3.2,∴AB=AD+BD=3.2+1.8=5;(3)△ABC是直角三角形,理由如下:又∵AC=4,BC=3,AB=5,∴AC2+BC2=AB2,∴△ABC是直角三角形.22.解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+1.52=6.25,∴BD2=4.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的宽度CD为2.7米.23.解:(1)如图,在Rt△ABC中,AC2=AB2-BC2,∵AB=7.5m,BC=4.5m,∴AC==6(m),答:梯子的顶端到地面的距离为6m;(2)如图,∵BF=1.5m,∴CF=6m,∴EC==4.5(m),∴AE=1.5,答:梯子顶端向下滑1.5米.24.解:(1)AB==13,故答案为:13;(2)MN=4-(-1)=5;故答案为:5;(3)△ABC为等腰三角形.理由如下:∵DE=5,EF=4-(-2)=6,DF==5,∴DE=DF,∴△DEF为等腰三角形;。
八年级数学人教版下册《第17章勾股定理》综合培优训练(附答案)
2020-2021年度人教版八年级数学下册《第17章勾股定理》综合培优训练(附答案)1.已知点P(3m,4﹣4m)为平面直角坐标系中一点,若O为原点,则线段PO的最小值为()A.2B.2.4C.2.5D.32.下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A.8,10,12B.3,4,5C.5,12,13D.7,24,253.在平面直角坐标系xOy中,点A的坐标为(4,﹣3),且OA=5,在y轴上确定一点P,使△AOP为等腰三角形,则所有符合题意的点P的坐标有()A.3个B.4个C.5个D.6个4.为了打造“绿洲”,计划在市内一块的三角形空地上种植某种草皮,已知AB=10米,BC =15米,∠B=150°,这种草皮每平方米售价2a元,则购买这种草皮需()元.A.75a B.50a C.a D.150a5.如图,四边形ABCD中,对角线AC⊥BD,点F为CD上一点,连接AF交BD于点E,AF⊥AB,DE=DF,∠BAG=∠ABC=45°,BC+AG=20,AE=2EF,则AF=.6.在△ABC中,AB=4,∠A=30°,AC=3,点O是△ABC内一点,则点O到△ABC三个顶点的距离和的最小值是.7.如图,已知四边形ABCD中,∠BCD=60°,连接AC、BD交于点E,BE=2ED=4.若CE=2AE,则AC的最大值为.8.如图,在△ABC中,∠BAC=120°,AB=4,D为BC的中点,AD⊥AB,则AC的长为.9.如图,△ABC中,AB=AC,点D在线段BC的延长线上,连接AD,CD=1,BC=12,∠DAB=30°,则AC=.10.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.如图在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D为BC边上一点,若△ABD为“准互余三角形”,则BD的长为.11.如图,四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°,若CD=4,则DE长为.12.如图,四边形ABCD、EFGH、NHMC都是正方形,A、B、N、E、F五点在同一直线上,且正方形ABCD、EFGH面积分别是4和9,则正方形NHMC的面积是.13.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点D是边AC上一动点,过点D 作DE∥AB,交BC于点E,F为线段DE的中点.当BF平分∠ABC时,AD的长度为.14.如图在△ABC中,∠BAC=90°,点D在BA延长线上,连接DC,若∠ACD=2∠B,AB=3,AD=2,则CD的长为.15.图中的螺旋形由一系列直角三角形组成,则以第n个三角形的斜边长为边长的正方形的面积为.16.一块钢板形状如图所示,量得AB=3,BC=4,AC=5,CD=12,AD=13,请你计算一下这块钢板的面积.17.已知△ABC中,AB=AC,CD⊥AB于点D.(1)若∠A=36°,求∠DCB的度数;(2)若AB=10,CD=6,求BC的长.18.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)19.如图:正方形网格中每个小方格的边长为1,且点A、B、C均为格点.(1)求△ABC的面积;(2)通过计算判断△ABC的形状;.(3)求AB边上的高.20.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长;(2)当t为几秒时,BP平分∠ABC;(3)问t为何值时,△BCP为等腰三角形?21.在一次“构造勾股数”的探究性学习中,老师给出了下表:m 2 3 3 4…n1123…a22+1232+1232+2242+32…b4 6 1224 …c22﹣1232﹣1232﹣2242﹣32…其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b=,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.参考答案1.解:根据题意知:PO==.当m=时,PO最小值===2.4.所以线段PO的最小值为2.4.故选:B.2.解:A、∵82+102≠122,∴三条线段不能组成直角三角形,故A选项符合题意;B、∵32+42=52,∴三条线段能组成直角三角形,故B选项不符合题意;C、∵52+122=132,∴三条线段能组成直角三角形,故A选项不符合题意;D、∵72+242=252,∴三条线段能组成直角三角形,故D选项不符合题意;故选:A.3.解:如图所示:①AO=AP时,有1个;②AO=PO时,有2个;③AP=PO时,有1个;一共4个.故选:B.4.解:如图,作BA边的高CD,设与AB的延长线交于点D,∵∠ABC=150°,∴∠DBC=30°,∵CD⊥BD,BC=15米,∵AB=10米,∴S△ABC=AB×CD=×10×7.5=37.5(平方米),∵每平方米售价2a元,∴购买这种草皮至少为37.5×2a=75a(元),故选:A.5.解:延长AF、BC,交于点H,如图:∵AF⊥AB,∠ABC=45°,∴∠BAH=90°,∠AHB=90°﹣∠ABC=45°,∴△ABH为等腰直角三角形,∴AH=AB,∵∠BAH=90°,∠BAG=45°,∠AHB=45°,∴∠GAE=∠BAG=∠AHB=45°,∵AC⊥BD,∴∠ABG+∠BAC=90°,∵∠BAC+∠HAC=∠BAH=90°,∴∠ABG=∠HAC,在△ABG和△HAC中,,∴△ABG≌△HAC(ASA),∴AG=HC,BH=BC+CH=BC+AG=20,在等腰直角三角形△ABH中,AH=AB,∠BAH=90°,由勾股定理得:AB2+AH2=BH2,∵AE=2EF,∴设EF=x,则AE=2x,∵DE=DF,∴∠DEF=∠DFE,∴∠AEG=∠HFC,∵∠AHB=∠GAE=45°,∴∠AGE=135°﹣∠HFC=∠FCH,在△AGE和△HCF中,,∴△AGE≌△HCF(AAS),∴FH=AE=2x,∴AH=AE+EF+FH=5x=20,解得:x=4,∴AF=AE+EF=3x=12,故答案为:12.6.解:如图,分别以OA和AB边向外作等边三角形ABD和AOE,连接OC,OB,ED,CD,∵△ABD和△AOE都是等边三角形,∴AE=AO,AD=AB,∠OAE=∠BAD=60°,∴∠DAE=∠BAO,在△AED和△AOB中,,∴△AED≌△AOB(SAS),∴DE=OB,∴OA+OB+OC=OE+DE+OC,当点C,O,E,D四点共线时,OE+DE+OC的值最小,此时OA+OB+OC=OE+DE+OC=CD,∵∠BAC=30°,∠BAD=60°,∴∠DAC=90°,又AB=4,AC=3,在Rt△ADC中,CD===5.故答案为:5.7.解:如图,作△BCD的外接圆⊙O,连接OB,OD,OC,OE,过点O作OH⊥BD于H.∵BE=2ED=4,∴DE=2,BD=4+2=6,∵∠BOD=2∠BCD=120°,OB=OD,∴∠OBD=∠ODB=30°,∵OH⊥BD,∴BH=HD=3,∴OH=,OB=2OH=2,∴HE=BE﹣BH=4﹣3=1,∴OE===2,∵EC≤OE+OC,∴EC≤2+2,∴EC的最大值为2+2,∵EC=2AE,∴AE的最大值为1+,∴AC的最大值为3+3.故答案为3+3.8.解:如图,作CE⊥AD交AD的延长线于E.∵∠BAD=∠E=90°,∠ADB=∠EDC,BD=DC,∴△ADB≌△EDC(AAS),∴AB=EC=4,∵∠BAC=120°,∠EAC=30°,∴AC=2EC=8,故答案为8.9.解:过点B作BE⊥AD于点E,AH⊥BC于H.设AB=AC=x.在Rt△ABE中,∵∠BAE=30°,AB=x,∴BE=AB=x,AE=BE=x,∵AB=AC,AH⊥BC,∴CH=BH=6,在Rt△AHB中,AH2=x2﹣62,在Rt△DBE中,DE==,在Rt△ADH中,AD==,∵AE+DE=AD,∴x+=,整理得:x4﹣13×51x﹣(12×13)2=0,解得x2=13×48或13×3(舍弃),∵x>0,∴x=4,经检验:x=4是无理方程的解,∴AC=4,故答案为4.10.解:作DM⊥AB于M.设∠BAD=α,∠B=β.①当2α+β=90°时,∵α+β+∠DAC=90°,∴∠DAC=∠DAB,∵DM⊥AB,DC⊥AC,∴DM=DC,∵∠DMA=∠C=90°,DM=DC,AD=AD,∴Rt△ADC≌Rt△ADM(HL),∴AM=AC=3,∵∠C=90°,AC=3,BC=4,∴AB===5,∴BM=5﹣3=2,设BD=x,则CD=DM=4﹣x,在Rt△BDM中,则有x2=(4﹣x)2+22,解得x=.∴BD=.②当α+2β=90°时,∵α+β+∠DAC=90°,∴∠DAC=β=∠B,∵∠C=∠C,∴△CAD∽△CBA,∴AC2=CD•CB,∴CD=,∴BD=BC﹣CD=4﹣=.故答案为或.11.解:如图:过C点作CF∥AB交AD于点F,∵AD∥BC,∴四边形ABCF是平行四边形,∴CF=AB,BC=AF,设BC=AF=a,∵AD∥BC,∠BCD=90°,∠DAC=45°,∴∠DAC=∠DCA=45°,∴AD=CD=4,∴DF=AD﹣AF=4﹣a,∵AB=BC+AD,∴CF=AB=a+4.在Rt△CDF中,根据勾股定理,得(a+4)2=(4﹣a)2+42,解得a=1,∴BC=1,AB=5.作EH⊥AB于点H,∵∠EAB=45°,∴∠AEH=45°,∴AH=EH=AE.设DE=x,则CE=4﹣x,在Rt△ADE中,AE=,S△ADE=AD•DE=2x.在Rt△BCE中,S△BCE=BC•CE=(4﹣x).在Rt△ABE中,S△ABE=AB•EH=.S梯形ABCD=CD(BC+AD)=10.S梯形ABCD=S△ADE+S△BCE+S△ABE,即10=2x+(4﹣x)+.整理得:7x2+192x﹣112=0,解得:x=或x=﹣28(舍去).所以DE的长为.故答案为.12.解:∵四边形ABCD、EFGH、NHMC都是正方形∴CN=NH,∠CNH=90°,∠CBN=∠NEH=90°,∵∠BCN+∠BNC=90°,∠BNC+∠ENH=90°,∴∠BCN=∠ENH,∴△CBN≌△NEH(AAS)∴BC=NE,BN=EH∵正方形ABCD、EFGH面积分别是4和9,∴BC=2,BN=3∴CN=∴正方形NHMC的面积是13.故填:13.13.解:∵∠C=90°,AC=4,BC=3,∴AB===5,∵DE∥AB,∴∠1=∠3,又∵BF平分∠ABC,∴∠1=∠2.∴∠1=∠3.∴EB=EF.∴ED=2BE,∵DE∥AB,∴△CDE∽△CAB,∴==,即==,解得,CD=,∴AD=CA﹣CD=4﹣=,故答案是:.14.解:在BA上取一点E,使得EB=EC.设EB=EC=x.∵EB=EC,∴∠E=∠ECB,∴∠AEC=2∠B,∵∠ACD=2∠B,∴∠AEC=∠ACD,∵∠AEC+∠ACE=90°,∠ACD+∠D=90°,∴∠ACE=∠D,∴△EAC∽△ECD,∴=,∠EAC=∠ECD=90°∴EC2=EA•ED,∴x2=(3﹣x)(5﹣x),∴x=,∴EC=,DE=5﹣=,∴CD==.故答案为:15.解:第n个三角形的斜边长为边长的正方形的面积即为第n个三角形的斜边长的平方.第一个三角形的斜边长OA1=,第二个三角形的斜边长OA2=同理:OA3=…,OA n=则第n个的斜边长为边长的正方形的面积为n+1.16.解:∵42+32=52,52+122=132,即AB2+BC2=AC2,故∠B=90°,同理,∠ACD=90°,∴S四边形ABCD=S△ABC+S△ACD=×3×4+×5×12=6+30=36.17.解:(1)在△ABC中,∵AB=AC,∠A=36°,∴∠B=∠ACB==72°.∵CD⊥AB于点D,∴∠DCB=90°﹣72°=18°;(2)∵△ABC中,AB=AC,CD⊥AB于点D,AB=10,CD=6,∴AC=AB=10.设BD=x,则AD=10﹣x,在Rt△ACD中,∵AC2=CD2+AD2,即102=62+(10﹣x)2,解得x=2.在Rt△BCD中,∵BC2=CD2+BD2,即BC2=62+22=40,∴BC==2.18.解:在Rt△ABC中,AC=30m,AB=50m;根据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.19.解:(1)△ABC的面积=4×4﹣×4×2﹣×2×1﹣×3×4=5;(2)由勾股定理得:AC2=42+22=20,BC2=22+12=5,AB2=32+42=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(3)∵AC==2,BC=,△ABC是直角三角形,∴AB边上的高===2.20.解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴由勾股定理得PB=2cm∴△ABP的周长为:AP+PB+AB=6+10+2=(16+2)cm;(2)如图2所示,过点P作PD⊥AB于点D,∵BP平分∠ABC,∴PD=PC.在Rt△BPD与Rt△BPC中,,∴Rt△BPD≌Rt△BPC(HL),∴BD=BC=6 cm,∴AD=10﹣6=4 cm.设PC=x cm,则P A=(8﹣x)cm在Rt△APD中,PD2+AD2=P A2,即x2+42=(8﹣x)2,解得:x=3,∴当t=3秒时,AP平分∠CAB;(3)若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P在AB边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴P A=PC ∴P A=PB=5cm∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.∴t=6s或13s或12s或10.8s时△BCP为等腰三角形.21.解:(1)当m=2,n=1时,a=5、b=4、c=3,∵32+42=52,∴a、b、c的值能为直角三角形三边的长;(2)观察得,a=m2+n2,b=2mn,c=m2﹣n2;(3)以a,b,c为边长的三角形一定为直角三角形,∵a2=(m2+n2)2=m4+2m2n2+n4,b2+c2=m4﹣2m2n2+n4+4m2n2=m4+2m2n2+n4,∴a2=b2+c2,∴以a,b,c为边长的三角形一定为直角三角形.。
人教版八年级数学下册第十七章 勾股定理练习(含答案)
人教版八年级数学下册第十七章 勾股定理练习(含答案)一、单选题1.在Rt△ABC 中,△C =90°,AC =3,BC =4,则斜边上的高CD 的长为( )A .125BC .52D .2.下列四组数中不是勾股数的是( )A .3,4,5B .2,3,4C .5,12,13D .8,15,17 3.满足下列条件的是直角三角形的是( )A .4BC =,5AC =,6AB = B .13BC =,14AC =,15AB = C .::3:4:5BC AC AB = D .::3:4:5A B C ∠∠∠=4.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,AD =ADC 2B ∠=∠,则BC的长为( )A 1B 1C 1D 1 5.如图,点A 表示的实数是( )A B C .1D .16.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行A .8米B .10米C .12米D .14米7.如图,圆柱形玻璃板,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的A 处,则蚂蚁到达蜂蜜的最短距离( )cm .A .14B .15C .16D .178.如图,网格中每个小正方形的边长均为 1,点 A ,B ,C 都在格点上,以 A 为圆 心 ,AB 为半径画弧,交最上方的网格线于点 D , 则图中线段CD 的长是( )A .0.8 BC 2D .39.如图为一个66⨯的网格,在ABC ∆,A B C '''∆和A B C ''''''∆中,直角三角形有( )个A .0B .1C .2D .310.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .钝角三角形D .等腰直角三角形二、填空题11.如图,在高3米,坡面线段距离AB 为5米的楼梯表面铺地毯,则地毯长度至少需 米.12.在平面直角坐标系中,点P 的坐标为()6,8-,则OP 的长是________.13.如图,某人欲从点A 处入水横渡一条河,由于水流的影响,他实际上岸的地点C 偏离欲到达的地点B200m ,结果他在水中实际游了250m ,求该河流的宽度为________m.14.如图,在四边形ABCD 中,3AB =,13BC =,12CD =,4=AD ,且90A ∠=︒,则四边形ABCD 的面积是______.三、解答题15.已知:在ACB △中,90ACB ∠=︒,3BC =,4AC =,CD AB ⊥于D . (1)求AB 的长;(2)求CD 的长;(3)求BD 的长.16.如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,长BC 为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长.17.(1)在ABC V 中,90C ∠=︒,18AC =,24BC =,CD AB ⊥,D 为垂足.求△AB 的长;△CD 的长.(2)如图,一架25dm 长的梯子AB 斜靠在一竖直的墙AO 上,梯子底端B 到墙的距离7BO dm =.移动梯子使底端B 外移至点D ,8BD dm =,求梯子顶端A 沿墙下滑的距离AC 的长.18.如图,把一块三角形()ABC △土地挖去一个直角三角形()90ADC ∠=︒后,测得6CD =米,8AD =米,24BC =米,26AB =米.求剩余土地(图中阴影部分)的面积.答案1.A 2.B 3.C 4.B 5.B 6.B 7.B8.D9.C10.B11.712.1013.15014.3615.(1)5AB =;(2)125CD =;(3)95BD =. 16.3cm .17.(1)△30;△14.4;(2)4.18.剩余土地(图中阴影部分)的面积为296m。
人教版 八年级数学下册 第17章 勾股定理 培优练习(含答案)
人教版 八年级下册 第17章 勾股定理 培优练习(含答案)一、单选题(共有6道小题)1.下列各组数能构成直角三角形三边长的是( ).A .1,2,3B .4,5,6C .12,13,14D .9,40,412.下列数组为三角形的边长:(1)5,12,13;(2)10,12,13;(3)7,24,25;(4)6,8,10,其中能构成直角三角形的有( )A .4组B .3组C .2组D .1组3.如图,长方形ABC D 中,A B =3,BC =1,AB 在数轴上,若以点A 为圆心,对角线A C 的长为半径作弧交数轴的正半轴于M ,则点M 表示的数是( )A :2B :5-1C :10-1 D:54.如图,在矩形ABCD 中,AB =8 ,BC=16,将矩形ABCD 沿EF 折叠,使点C 与点A 重合,则折痕EF 的长为 ( )A .6B .12C .25D .455.如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,点D 恰好落在BC 边上的G 点处,若矩形面积为34,且∠AFG=60°,GE=2BG ,则折痕EF 的长为( )A.1B.3C.2D.326.在等腰△ABC 中,∠ACB =90°,且AC =1.过点C 作直线l ∥AB ,P 为直线l 上一点,且–1–212MB AC 0D'E F D B CA 60°E H G FD A B CAP =AB .则点P 到BC 所在直线的距离是( )A .1B .1或132-+C .1或132+D .132-+或132+ 二、填空题(共有9道小题)7.如图,图中的数字代表正方形的面积,则正方形A 的面积为 。
8.如图所示,数轴上表示1,3的点为A ,B ,且C ,B 两点到点A 的距离相等,则点C 所表示的数是 ( )A.32-B.23-C.13-D.31-9.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25; ④9,40,41,…请你写出有以上规律的第⑤组勾股数: .10.如图所示,将长方形ABCD 沿直线AE 折叠,顶点D 正好落在BC 边上F 点处,已知CE=3cm ,AB=8cm ,则图中阴影部分面积为_______.11.如图,矩形ABCD 中,8,AB =点E 是AD 上的一点,有4,AE =BE 的垂直平分线交BC 的延长线与点,F 连结EF 交CD 于点,G 若G 是CD 的中点,则BC 的长是________. 916A12BA 0C E DA E FD B C A12.如图,在矩形ABCD 中,AB =4,BC =6,若点P 在AD 边上,连接BP 、PC ,△BPC 是以PB 为腰的等腰三角形,则PB 的长为_______.13.图①所示的正方形木块棱长为6cm ,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A 爬行到顶点B 的最短距离为 cm .14.一只蚂蚁从长、宽都是30cm ,高是80cm 的长方体纸箱的A 点沿纸箱爬到B点,它所行的最短路线长度为 . 15.观察以下几组勾股数:①3,4,5;②5,12,13;③7,24,25;④9,40,41. 请寻找规律,写出有以上规律的第⑤组勾股数: ,第n 组勾股数是 .三、解答题(共有5道小题)16.如图所示,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1),B (2,4),请猜想△OAB 是什么样的三角形,并证明。
人教版八年级下册数学 第17章 勾股定理 培优训练题
人教版八年级下册数学第17章勾股定理培优训练题1.如图,已知AB=10,BC=24,CD=26,DA=20,AB⊥BC,求四边形ABCD的面积.2.四边形ABCD中,AB=12,BC=3,CD=4,AD=13,∠C=90°.(1)求证:∠ABD=90°;(2)求四边形ABCD的面积.3.为了绿化环境,我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量,∠ADC=90°,CD=3米,AD=4米,AB=13米,BC=12米.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要300元,问总共需投入多少元?(1)4.如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.通过计算判断△ABC的形状.(2)△ABC的面积为.(3)求AB边上的高.5.如图,一高层住宅发生火灾,消防车立即赶到距大厦8米处(车尾AE到大厦墙面CD),升起云梯到火灾窗口B.已知云梯AB长17米,云梯底部距地面的高AE=1.5米,问发生火灾的住户窗口距离地面多高?6.随着疫情的持续,各地政府储存了充足的防疫物品.某防疫物品储藏室的截面是由如图所示的图形构成的,图形下面是长方形ABCD,上面是半圆形,其中AB=1.8m,BC=2m,一辆装满货物的运输车,其外形高2.3m,宽1.6m,它能通过储藏室的门吗?请说明理由.7.如图是某“飞越丛林”俱乐部新近打造的一款儿童游戏项目,工作人员告诉小敏,该项目AB段和BC段均由不锈钢管材打造,总长度为26米,长方形CDEF为一木质平台的主视图.小敏经过现场测量得知:CD=1米,AD=15米,于是小敏大胆猜想立柱AB段的长为10米,请判断小敏的猜想是否正确?如果正确,请写出理由,如果错误,请求出立柱AB段的正确长度.8.如图,在四边形ABCD中,AB=7cm,AD=24cm,∠BAD=90°,BC=20m,CD=15cm.(1)连接BD,求BD的长;(2)求四边形ABCD的面积.9.如图,学校有一块三角形空地ABC,计划将这块三角形空地分割成四边形ABDE和△EDC,分别摆放“秋海棠”和“天竺葵”两种不同的花卉.经测量,∠EDC=90°,DC=6m,CE=10m,BD=14m,AB=16m,AE=2m.(1)求DE的长;(2)求四边形ABDE的面积.10.如图,琪琪准备把一支笔放入铅笔盒ABCD,竖放时笔的顶端E比铅笔盒的宽AB还要长2cm,斜着放入时笔的顶端F与铅笔盒的边缘AB距离为6cm,求铅笔盒的宽AB的长度.11.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.12.如图,一棵高10m的大树倒在了高8m的墙上,大树的顶端正好落在墙的最高处,如果随着大树的顶端沿着墙面向下滑动,请回答下列各题.(1)如果大树的顶端沿着墙面向下滑动了2m,那么大树的另一端点是否也向左滑动了2m?说明理由,(2)如果大树的顶端沿着墙面向下滑动了am,那么大树的另一端点是否也向左滑动了am?说明理由.13.如图,铁路上A,B两点相距23km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=8km.现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km 处?14.阅读下面的情景对话,然后解答问题:(1)①根据“奇异三角形”的定义,请判断小红提出的命题是否正确,并填空(填“正确”或“不正确”);②若某三角形的三边长分别是2、4、,则该三角形(是或不是)奇异三角形;(2)若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边边长为;且此直角三角形的三边之比为(请按从小到大排列,不得含有分母);(3)在Rt△ABC中,∠ACB=90°.AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形.求a:b:c.15.如图,距学校A的正南方向240m的B处有一列火车,且该火车正以80m/s的速度沿北偏东30°的方向往C移动,火车在行进的过程中发出巨大的噪音,若火车周围200m以内认为受到噪音的影响,请问:(1)该学校是否受到噪音影响?请说明理由;(2)若会受到噪音影响,求噪音影响该学校的持续时间有多长?16.已知点A(﹣2,3),B(4,3),C(﹣1,﹣3).(1)求A,B两点之间的距离;(2)求点C到x轴的距离;(3)求三角形ABC的面积;(4)观察线段AB与x轴的关系,若点D是线段AB上一点(不与A,B重合),则点D的坐标有什么特点?17.如图,建筑物BC上有一个旗杆AB,琪琪计划用学过的知识测量该建筑物的高度,测量方法如下:在该建筑物底部所在的平地上有一棵小树FD,琪琪沿CD后退,发现地面上的点E、树顶F、旗杆顶端A恰好在一条直线上,继续后退,发现地面上的点G、树顶F、建筑物顶端B恰好在一条直线上,已知旗杆AB=3米,FD=4米,DE=5米,EG=1.5米,点A、B、C在一条直线上,点C、D、E、G在一条直线上,AC、FD均垂直于CG,请你帮助琪琪求出这座建筑物的高BC.18.在△ABC中,AB=c,BC=a,AC=b.如图1,若∠C=90°时,根据勾股定理有a2+b2=c2.(1)如图2,当△ABC为锐角三角形时,类比勾股定理,判断a2+b2与c2的大小关系,并证明;(2)如图3,当△ABC为钝角三角形时,类比勾股定理,判断a2+b2与c2的大小关系,并证明;(3)如图4,一块四边形的试验田ABCD,已知∠B=90°,AB=80米,BC=60米,CD=90米,AD=110米,求这块试验田的面积.19.如图,在△ABC中,AB=AC,BC=15,D是AB上一点,BD=9,CD=12.(1)求证:CD⊥AB;(2)求AC长.20.如图,琪琪将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端12米处,发现此时绳子底端距离打结处约4米,请算出旗杆的高度.21.如图,在四边形ABCD中,∠ABC=90°,AB=6,BC=8,CD=10,AD=10.(1)求四边形ABCD的面积.(2)求对角线BD的长.22.如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.23.如图,湖的两岸有A,B两点,在与AB成直角的BC方向上的点C处测得AC=60米,BC=48米.(1)求A,B两点间的距离;(2)求点B到直线AC的距离.24.如图,学校进行美化施工,已知AB=3米,BC=4米,∠ABC=90°,AD=12米,CD=13米,学校欲在此空地上铺草坪,已知草坪每平方米80元,试问用该草坪铺满这块空地共需花费多少元?25.一艘轮船以30千米/时的速度离开港口,向东南方向航行,另一艘轮船同时离开港口,以40千米/时的速度航行,它们离开港口一个半小时后相距75千米,求第二艘船的航行方向.26.如图,某工厂A到直线公路l的距离AB为3千米,与该公路上车站D的距离为5千米,现要在公路边上建一个物品中转站C,使CA=CD,求物品中转站与车站之间的距离.27.去年某省将地处A、B的两所大学合并成一所综合性大学,为方便A、B两地师生的交往,学校准备在相距2km的A、B两地修筑一条笔直公路(公路宽度忽略不计,如所示图中的线段AB),经测量,在A地的北偏东60°方向、B地的北偏西45°方向的C处有一半径为0.7km的圆形公园,问计划修筑的这条公路会不会穿过公园,为什么?。
{word试卷}人教版八年级数学下册第17章勾股定理综合训练(含答案)
20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:人教版八年级数学第17章勾股定理综合训练一、选择题(本大题共10道小题)1. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A. 7,24,25B. 3,4,5C. 3,4,5D. 4,7,82. 三角形的三边为,由下列条件不能判断直角三角形的()A. B.C. D.3. 一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A.斜边长为25 B.三角形周长为25C.斜边长为5 D.三角形面积为204. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()A B C D5. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A.600米 B. 800米 C. 1000米 D. 不能确定6. 如图,在由单位正方形组成的网格图中标有,,,四条线段,其中能构成一个直角三角形三边的线段是()A.,, B.,,C.,, D.,,7. 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5C. 2.4D.88. 如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A. 1倍B. 2倍C. 3倍D. 4倍9. 如图,梯子斜靠在墙面上,,当梯子的顶端沿方向下滑米时,梯足沿方向滑动米,则与的大小关系是()A. B. C. D.不确定10.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.32B.332C.32D. 不能确定二、填空题(本大题共6道小题)11. 在中,,(1)如果,则;(2)如果,则;(3)如果,则;(4)如果,则.12. 已知直角三角形两边,的长满足,则第三边长为______________.13. 如图,点是的角平分线上一点,过点作交于点.若,则点到的距离等于__________.14. 如图,一个长为米的梯子,斜靠在墙上,梯子的顶端距离地面的垂直距离为米,如果梯子的顶端下滑米,那么,梯子底端的滑动距离米(填“大于”、“等于”、“小于”)15. 若的三边满足条件:,则这个三角形最长边上的高为16. 如图,是一块直角三角形的土地,现在要在这块地上挖一个正方形蓄水池,已知剩余的两直角三角形(阴影部分)的斜边长分别为和,则剩余的两个直角三角形(阴影部分)的面积和...为.三、解答题(本大题共5道小题)17. 张大爷家承包了一个长方形鱼池,已知其面积为,其对角线长为,为建立栅栏,要计算这个长方形鱼池的周长,你能帮张大爷计算吗?18. 在中,是边上的中线,,求证:.19. 已知斜边的长为,两直角边的差为,求三角形的周长及斜边上的高.20. 中,,,.若,如图1,根据勾股定理,则.若不是直角三角形,如图2和图3,请你类比勾股定理,试猜想与的关系,并证明你的结论.图3图2图1abcab ccbaABCABC CBA21. 如图,是斜边的中点,,分别在,上,,判断,与的数量关系并证明你的结论.人教版八年级数学第17章勾股定理综合训练-答案一、选择题(本大题共10道小题)1. 【答案】B【解析】按照勾股数的规律计算.选B.2. 【答案】A3. 【答案】C【解析】在直角三角形中,直接应用勾股定理.可得斜边为5.选C.4. 【答案】C【解析】注意实际长度.应用勾股定理逆定理.选C.5. 【答案】C【解析】速度一定且相同,路程比=时间比.再用勾股定理,直线距离应该是25分钟的路程.选C.6. 【答案】B【解析】,,,,选B.7. 【答案】D【解析】本题易错.最短边为6,它的高为8.选D .8. 【答案】B9. 【答案】B【解析】由勾股定理得,化简得,10. 【答案】B 【解析】如解图,△ABC是等边三角形,AB=3,点P是三角形内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于点H,则BH=32,AH=AB2-BH2=332.连接P A,PB,PC,则S△P AB+S△PBC+S△PCA=S△ABC,∴12AB·PD+12BC·PE+12CA·PF=12BC·AH,∴PD+PE+PF=AH=332.二、填空题(本大题共6道小题)11. 【答案】(1)5;(2)10;(3)13;(4)25【解析】直接应用勾股定理,且为斜边. (1)5;(2)10;(3)13;(4)25.12. 【答案】或或【解析】根据绝对值和平方根的非负性可知:或或.13. 【答案】【解析】过点作,并交于点.∵是的角平分线,∴.又∵,∴.∴.∴.∴.14. 【答案】大于【解析】由勾股定理可知:大于15. 【答案】【解析】由,得,得三角形是直角三角形,所以高为16. 【答案】【解析】,,,在中,①在中,②在中,,即③③①②得,,最简单的方法为两个小的直角三角形旋转合并成一个大的直角三角形(正方形的边重合)故.三、解答题(本大题共5道小题)17. 【答案】【解析】设长方形的长和宽分别为,有,代入,可得18. 【答案】构造如上图所示的一个,延长,使,连接.易证得≌.∴,∴.∴.∴.∴.19. 【答案】【解析】由条件可设,∵,∴.又∵,∴.从而三角形的周长为.由三角形的面积公式可得,解得.20. 【答案】图2猜想:.证明:过点作于设,,,即,故.图3猜想:.证明:过作,交的延长线于.设为,则有根据勾股定理,得.即,∵,,∴,∴.21. 【答案】.延长到,使,连结、.显然,∴,,∵∴∴为直角三角形.∴.。
人教版八年级数学下第十七章勾股定理综合训练习题附答案解析
第十七章综合训练(满分120分)一、选择题.(每小题4分,共32分)1.如图,网格中每个小正方形的边长为1,则△ABC中,边长不是整数的有()A.0条B.1条C.2条D.3条第1题图第6题图2.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形3.在Rt△ABC中,斜边AB=2,则AB2+BC2+AC2的值是()A.9B.8C.6D.44.已知a,b,c分别为△ABC的三边长,则符合下列条件的△ABC中,直角三角形有()①a=13,b=14,c=15; ②a2=(b+c)(b-c);③∠A∶∠B∶∠C=3∶4∶5;④a=7,b=24,c=25;⑤a=2,b=2,c=4.A.2个B.3个C.4个D.5个5.一直角三角形的斜边比一直角边长2,另一直角边长为6,则斜边长为()A.4B.8C.10D.126.(·黑龙江哈尔滨)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.203海里D.303海里7.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2第7题图第8题图8.(·湖南郴州)如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5.BE=DF=12,则EF的长是()A.7B.8C.72D.73二、填空题.(每小题4分,共32分)9.△ABC中,若∠C=90°,a=9,b=12,则c= .10.命题“若a2>b2,则a>b.”的逆命题是,逆命题是(填“真”或“假”)命题.11.若三角形的三边长满足a∶b∶c=7∶24∶25,则这个三角形中最大角的度数为.12.如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,已知AB=43,那么AD= .第12题图第14题图13.若△ABC的三边a,b,c满足a2+b2+c2+338=10a+24b+26c,则△ABC的形状是三角形.14.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和103cm 的长方体无盖盒子中,则细木棒露在盒子外面的最短长度是厘米.15.如图,以Rt△ABC(∠ACB=90°)各边为直径的三个半圆围成两个新月形(阴影部分),已知AC=3cm,BC=4cm,则新月形(阴影部分)的面积和是cm2.第15题图第16题图16.如图,一个三级台阶,它的每一级的长、宽、高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是.三、解答题.(共56分)17.(10分)如图所示,在△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.18.(10分)如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.19.(12分)如图,已知AD是△ABC的中线,求证:AB2+AC2=2(AD2+CD2).20.(12分)八年级三班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝的高度CE,他们进行了如下操作:①测得BD的长度为25m;②根据手中剩余线的长度计算出风筝线BC的长为65m;③牵线放风筝的小明身高1.6m.求风筝的高度CE.21.(12分)如图,有一牧童在A处放羊,其家在B处,A、B到河岸的距离分别为AC=400m,BD=200m,CD的距离为800m.牧童从A处把羊牵到河边饮水后再回家,试问:(1)在何处饮水,所走的路程最短?(2)最短路程是多少?。
人教版八年级数学下册 第17章《勾股定理》培优试题
第17章《勾股定理》培优试题一.选择题1.一个直角三角形的直角边是24,斜边是25,则斜边上的高为()A.7 B.C.168 D.252.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3 B.4 C.15 D.7.23.如图.在Rt△ARC中,∠ABC=90°,以Rt△ARC的三条边分别向外作等边三角形,其面积分别为S1、S2、S3,那么S1、S2、S3的关系是()A.S2+S3=S1B.S2+S3>S1C.S2+S3<S1D.S22+S32=S124.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对5.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6 B.C.D.6.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A .B .C .D .7.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为( ) A .4B .16C .D .4或8.设a 、b 是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是( ) A .1.5B .2C .2.5D .39.下列各组数中,能构成直角三角形的是( ) A .4,5,6B .1,1,C .6,8,11D .5,12,2310.给出下列长度的四组线段:①1,,;②3,4,5;③6,7,8;④a ﹣1,a +1,4a (a >1).其中能构成直角三角形的有 ( ) A .①②③B .②③④C .①②D .①②④11.下列各组数中是勾股数的是( ) A .4,5,6 B .0.3,0.4,0.5C .1,2,3D .5,12,1312.如图,在一个高为5m ,长为13m 的楼梯表面铺地毯,则地毯长度至少应是( )A .13mB .17mC .18mD .25m13.如图,在Rt △ABC 中,∠C =90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC =4,BC =2时,则阴影部分的面积为( )A .4B .4πC .8πD .814.由线段a ,b ,c 组成的三角形不是直角三角形的是( ) A .a =3,b =4,c =5 B .a =12,b =13,c =5C .a =15,b =8,c =17D .a =13,b =14,c =1515.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2 16.如图,将矩形MNPQ放置在矩形ABCD中,使点M,N分别在AB,AD边上滑动,若MN=6,PN=4,在滑动过程中,点A与点P的距离AP的最大值为()A.4 B.2C.7 D.817.在平面直角坐标系中,已知定点A(﹣,3)和动点P(a,a),则PA的最小值为()A.2B.4 C.2D.418.如图,△ABC中,AB=AC,AB=5,BC=8,AD是∠BAC的平分线,则AD的长为()A.5 B.4 C.3 D.2二.填空题19.如图,在Rt△ABC中,∠ACB=90°,AB=1O,BC=6,则AC=,若CD ⊥AB,则CD=.⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,20.如图,OP=1,过P作PP得OP=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP=.201221.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH的顶点E、F、G、H分别在正方形ABCD的边DA、AB、BC、CD上.若正方形ABCD的面积=16,AE=1;则正方形EFGH的面积=.22.如图,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动米.23.某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为米.24.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为米.三.解答题25.阅读材料并解答问题:我们已经知道,如图①完全平方公式(a+b)2=a2+2ab+b2可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示.(1)如图②是由以边长为a和b的正方形和几个全等的长方形所拼成的大长方形,请根据图中意思写出所表示的代数恒等式:;(2)如图③已知四个全等的直角三角形直角边分别为a、b,斜边为c,现将四个直角三角形拼凑成如图的正方形ABCD,且四边形EFGH也为正方形,请利用面积法推恒等式方法,推出直角三角形三边a、b、c的关系.(3)应用(2)中结论:已知直角三角形ABC中,a2﹣b2=28,a﹣b=2,其中直角边为a、b,斜边为c,求三角形斜边c.26.细心观察图形,认真分析各式,然后解答问题:12+1=2,S1=,+1=3,S2=,+1=4,S3=(1)请用含有n(n为正整数)的等式表示上述变化规律.(2)推算出OA10的长.(3)求出S12+S22+S32+…+S1002的值.27.大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h、h2.1(1)请你结合图形来证明:h1+h2=h;(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;28.如图,点C在线段BD上,AC⊥BD,CA=CD,点E在线段CA上,且满足DE=AB,连接DE并延长交AB于点F.(1)求证:DE⊥AB;(2)若已知BC=a,AC=b,AB=c,设EF=x,则△ABD的面积用代数式可表示为;S=c(c+x)你能借助本题提供的图形,证明勾股定理吗?试一试吧.△ABD29.如图,四边形ABCD中,∠C=90°,BD平分∠ABC,AD=3,E为AB上一点,AE =4,ED=5,求CD的长.30.如图,梯子AB斜靠在墙上,梯子的顶端A到地面的距离AC为8m,梯子的底端B 距离墙角C为6m.(1)求梯子AB的长;(2)当梯子的顶端A下滑2m到点A′时,底端B向外滑动到点B′,求BB′的长.参考答案一.选择题1.解:设斜边上的高h,由勾股定理得,直角三角形的另一条直角边==7,则×24×7=×25×h,解得,h=,故选:B.2.解:在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵BC=12,AC=9,∴AB==15,∵S△ABC=AC•BC=AB•h,∴h==7.2,故选:D.3.解:设AB=c,AC=b,BC=a,根据勾股定理得:c2=a2+b2,∵S1=c2,S2=a2,S3=b2,∴S1=S2+S3,即S2+S3=S1.故选:A.4.解:设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x=5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+,故选:C.5.解:∵∠ACB=90°,AC=8,AB=10,∴BC==6,△ABC的面积=×AB×CD=×AC×BC,即×10×CD=×8×6,解得,CD=,故选:C.6.解:如图所示:S=×BC×AE=×BD×AC,△ABC∵AE=4,AC==5,BC=4即×4×4=×5×BD,解得:BD=.故选:C.7.解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.8.解:∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5,①∵a、b是直角三角形的两条直角边,∴a2+b2=2.52,②由②得a2+b2=(a+b)2﹣2ab=2.52∴3.52﹣2ab=2.52ab=3,故选:D.9.解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.10.解:∵①12+2=2,故能构成直角三角形;②42+32=52,故能构成直角三角形;③62+72≠82,故不能构成直角三角形;④(a﹣1)2+(a+1)2≠(4a)2,故不能构成直角三角形.∴能构成直角三角形的是①②.故选:C.11.解:A、∵52+42≠62,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵12+22≠32,∴这组数不是勾股数;D、∵52+122=132,∴这组数是勾股数.故选:D.12.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故选:B.13.解:由勾股定理得,AB2=AC2+BC2=20,则阴影部分的面积=×AC×BC+×π×()2+×π×()2﹣×π×()2=×2×4+×π××(AC2+BC2﹣AB2)=4,故选:A.14.解:A、32+42=52,符合勾股定理的逆定理,是直角三角形;B、52+122=132,符合勾股定理的逆定理,是直角三角形;C、152+82=172,符合勾股定理的逆定理,是直角三角形;D、132+142≠152,不符合勾股定理的逆定理,不是直角三角形.故选:D.15.解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选:A.16.解:如图所示,取MN中点E,当点A、E、P三点共线时,AP最大,在Rt△PNE中,PN=4,NE=MN=3,根据勾股定理得:PE==5,在Rt△AMN中,AE为斜边MN上的中线,∴AE=MN=3,则AP的最大值为AE+EP=5+3=8.故选:D.17.解:PA===,∴PA的最小值为=4,故选:B.18.解:∵AB=AC,AD是∠BAC的平分线,∴BD=BC=4,AD⊥BC,由勾股定理得,AD==3,故选:C.二.填空题(共6小题)19.解:∵∠ACB=90°,AB=1O,BC=6,∴AC===8,∵CD⊥AB,∴S△ABC=AB•CD=AC•BC,即×10•CD=×8×6,解得CD=4.8.故答案为:8,4.8.==,20.解:由勾股定理得:OP∵OP=;得OP2=;=,依此类推可得OP=,∴OP故答案为:.21.解:∵四边形EFGH是正方形,∴EH=FE,∠FEH=90°,∵∠AEF+∠AFE=90°,∠AEF+∠DEH=90°,∴∠AFE=∠DEH,∵在△AEF和△DHE中,,∴△AEF≌△DHE,∴AF=DE,∵正方形ABCD的面积为16,∴AB=BC=CD=DE=4,∴AF=DE=AD﹣AE=4﹣1=3,在Rt△AEF中,EF==,故正方形EFGH的面积=×=10.故答案为:10.22.解:由题意可知梯子的长是不变的,由云梯长10米,梯子顶端离地面6米,可由勾股定理求得梯子的底部距墙8米.当梯子顶端离地面8米时,梯子的底部距墙为6米,则梯子的底部在水平面方向要向左滑动8﹣6=2(米).23.解:过点C作CO⊥AB,垂足为O,∵BD=900,∴OC=900,∵∠EAC=30°,∴∠ACO=30°.在Rt△AOC中,∵AC=2OA,设OA=x,则AC=2x,(2x)2﹣x2=OC2=9002,∴x2=270000,∴x=300∴AC=600米.故答案为600.24.解:设旗杆高xm,则绳子长为(x+1)m,∵旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为x2+52=(x+1)2,解得x=12m.三.解答题(共6小题)25.解:(1)因为长方形面积=(2a+b)(a+2b)=2a2+5ab+2b2,故答案为=2a+b)(a+2b)=2a2+5ab+2b2;(2)因为正方形的面积=c2=4×ab+(b﹣a)2=a2+b2,所以直角三角形的三边关系为:a2+b2=c2.(3)∵a2﹣b2=28,a﹣b=2,∴a+b=14,∴a=8,b=6,∴c2=82+62=100,∵c>0,∴c=10.26.解:(1)结合已知数据,可得:OA n2=n;S n=;(2)∵OA n2=n,∴OA 10=.(3)S+S+S+…+S=+++…===.27.(1)证明:连接AM,由题意得h1=ME,h2=MF,h=BD,∵S△ABC=S△ABM+S△AMC,S△ABM=×AB×ME=×AB×h1,S△AMC=×AC×MF=×AC×h2,又∵S△ABC=×AC×BD=×AC×h,AB=AC,∴×AC×h=×AB×h1+×AC×h2,∴h1+h2=h.(2)解:如图所示:h1﹣h2=h.28.(1)证明:在Rt△ABC和Rt△DCE中,∴Rt△ABC≌Rt△DCE(HL)∴∠BAC=∠EDC(全等三角形的对应角相等),∵∠AEF=∠DEC(对顶角相等),∠EDC+∠DEC=90°(直角三角形两锐角互余),∴∠BAC+∠AEF=∠EDC+∠DEC=90°.∴∠AFE=180°﹣(∠BAC+∠AEF)=90°.∴DE⊥AB.(2)解:由题意知:S=S△BCE+S△ACD+S△ABE=a2+b2+cx,△ABD∵,∴.∴a2+b2=c2.29.解:∵AD=3,AE=4,ED=5,∴AD2+AE2=ED2.∴∠A=90°.∴DA⊥AB.∵∠C=90°.∴DC⊥BC.∵BD平分∠ABC,∴DC=AD.∵AD=3,∴CD=3.30.解:(1)∵∠C=90°,AC=8m,BC=6m,∴AB===10m;(2)∵梯子的顶端A下滑2m,∴CA′=8﹣2=6m,∴CB′===8(m),∴BB′=B′C﹣BC=8﹣6=2(m).。
人教版八年级下册数学 第17章 勾股定理 培优综合专练
人教版八年级下册数学第17章勾股定理培优综合专练1.如图,平面直角坐标系中有三条线段a,b,c.(1)请你平移其中两条线段,使得平移后的线段和第三条线段首尾顺次相接,构成一个三角形(在网格内部完成构图)(2)判断你构成的三角形的形状,并给出证明.2.如图,一架2.5米长的梯子AB斜靠在一座建筑物上,梯子底部与建筑物距离BC为0.7米.(1)求梯子上端A到建筑物的底端C的距离(即AC的长);(2)如果梯子的顶端A沿建筑物的墙下滑0.4米(即AA'=0.4米),则梯脚B将外移(即BB'的长)多少米?3.如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD 的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水.有两种方案备选方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB).(如图2)方案2:作A点关于直线CD的对称点A',连接A'B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM.(即AM+BM)(如图3)从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,当快艇Q在CD中间,DQ为多少时?△ABQ为等腰三角形?4.如图所示,△ABC中.(1)若∠A:∠B:∠C=2:3:4,求∠C的度数;(2)若AB=2,AC=6,BC=2,求BC边上的高.5.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,交BC于点D,CD=2,AC=2.(1)求∠B的度数;(2)求AB和BC的长.6.已知:如图,在△ABC中,AB=AC,点D、E分别是BC、AC上的点,且DE=3,AD=4,AE=5.若∠BAD=73°,∠C=35°,求∠AED的度数.7.如图,四边形ABCD中,∠B=90°,∠ACB=30°,AB=2,CD=3,AD=5.(1)求证:AC⊥CD;(2)求四边形ABCD的面积.8.如图1,Rt△ABC中,AC⊥CB,AC=15,AB=25,点D为斜边上动点.(1)如图2,过点D作DE⊥AB交CB于点E,连接AE,当AE平分∠CAB时,求CE;(2)如图3,在点D的运动过程中,连接CD,若△ACD为等腰三角形,求AD.9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,顶端距离地面的高度AC为2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面的高度A′D为2米,求小巷的宽度.10.题目:如图,在△ABC中,点D是BC边上一点,连结AD,若AB=10,AC=17,BD=6,AD=8,解答下列问题:(1)求∠ADB的度数;(2)求BC的长.琪琪做第(1)题的步骤如下:∵AB2=BD2+AD2∴△ABD是直角三角形,∠ADB=90°.(1)琪琪解答第(1)题的过程是否完整,如果不完整,请写出第(1)题完整的解答过程(2)完成第(2)题.答案1.解:(1)如图所示,(2)构成直角三角形,理由:由图可得,a=5,b=,c=2,∴a2=25,b2+c2=5=20=25,∴a2=b2+c2,∴可以构成直角三角形.2.解:(1)在△ABC中,∠ACB=90°,AB=2.5,BC=0.7.根据勾股定理可知答:梯子上端A到建筑物的底端C的距离为2.4米.(2)在△A'B'C'中,∠ACB=90°,A'B'=AB=2.5,A'C=AC﹣AA'=2.4﹣0.4=2 根据勾股定理可知B'C=,B'B=B'C﹣BC=1.5﹣0.7=0.8.答:梯脚B将外移0.8米.3.解:(1)方案1:AC+AB=1+5=6,方案2:AM+BM=A′B==,∵6<,∴方案1更合适;(2)如图,①AQ1=AB=5或AQ4=AB=5时,CQ1=CQ4==2,∴QG=2+2(舍去)或2﹣2(舍去);②AB=BQ2=5或AB=BQ5=5时,DQ==3,∴QG=3+2=5或3﹣2=1(舍去),③G为CD中点时,当AQ3=BQ3时,(GQ3+2)2+12=(2﹣GQ3)2+42,解得:GQ3=,DQ=.故当DQ=3或时,△ABQ为等腰三角形.4.解:设∠A=2k,∠B=3k,∠C=4k,由题意得,2k+3k+4k=180°,解得k=20°,所以,∠C=4×20°=80°,(2)∵AB=2,AC=6,BC=2,∴BC2=AB2+AC2,∴△ABC是直角三角形,∴BC边上的高=.5.解:(1)∵在Rt△ACD中,∠C=90°,CD=2,AC=2,∴tan∠CAD===,∴∠CAD=30°,∵AD平分∠CAB,∴∠CAB=2∠CAD=60°,∵∠C=90°,∴∠B=90°﹣60°=30°;(2)∵在Rt△ABC中,∠C=90°,∠B=30°,∴AB=2AC=4,∴BC==6.6.解:∵AB=AC,∠C=35°,∴∠B=∠C=35°,∵DE=3,AD=4,AE=5,∴DE2+AD2=3+4=25,AE2=5=25,∴DE2+AD2=AE2,∴△ADE是直角三角形,∠ADE=90°;又∵∠BAD+∠B+∠ADB=180°,∠BAD=73°,∴∠ADB=180°﹣73°﹣35°=72°;又∵∠ADB+∠ADE+∠EDC=180°,∴∠EDC=180°﹣72°﹣90°=18°;∴∠AED=∠EDC+∠C=18°+35°=53°.7.(1)证明:在Rt△ABC中,∠B=90°,∠ACB=30°,AB=2,∴AC=2AB=4,在△ACD中,AC=4,CD=3,AD=5,∵42+32=52,即AC2+CD2=AD2,∴∠ACD=90°,∴AC⊥CD;(2)解:在Rt△ABC中,∠B=90°,AB=2,AC=4,∴BC==2,∴Rt△ABC的面积为AB•BC=×2×2=2,又∵Rt△ACD的面积为AC•CD=×4×3=6,∴四边形ABCD的面积为:2+6.8.解:(1)∵AC⊥CB,AC=15,AB=25∴BC=20,∵AE平分∠CAB,∴∠EAC=∠EAD,∵AC⊥CB,DE⊥AB,∴∠EDA=∠ECA=90°,∵AE=AE,∴△ACE≌△ADE(AAS),∴CE=DE,AC=AD=15,设CE=x,则BE=20﹣x,BD=25﹣15=10在Rt△BED中∴x2+102=(20﹣x)2,∴x=7.5,∴CE=7.5.(2)①当AD=AC时,△ACD为等腰三角形∵AC=15,∴AD=AC=15.②当CD=AD时,△ACD为等腰三角形∵CD=AD,∴∠DCA=∠CAD,∵∠CAB+∠B=90°,∠DCA+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,∴CD=BD=DA=12.5,③当CD=AC时,△ACD为等腰三角形,如图1中,作CH⊥BA于点H,则•AB•CH=•AC•BC,∵AC=15,BC=20,AB=25,∴CH=12,在Rt△ACH中,AH==9,∵CD=AC,CH⊥BA,∴DH=HA=9,∴AD=18.9.解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25.∵BD>0,∴BD=1.5米.∴CD=BC+BD=0.7+1.5=2.2米.答:小巷的宽度CD为2.2米.10.解:(1)不完整,∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴∠ADB=90°;(2)在Rt△ACD中,CD==15,∴BC=BD+CD=6+15=21,答:BC的长是21.。
人教版八下数学勾股定理专题培优
第十七章 勾股定理 7.勾股定理(一)基础题训练01.在Rt △ABC 中,∠C =90°,a =3,b =4,则c =______. 【解答】:c =502. 在Rt △ABC 中,∠C =90°,a =6, c =10,则b =______. 【解答】:b =803. 在△ABC 中, ∠C =90°, ∠A=30°,则其三边a :b :c =__________ 【解答】:a :b :c =1:3:204. 在Rt △ABC 中,∠C =90°,∠A ,∠B , ∠C 的对边分别为a ,b ,c ,则下列结论正确的是( ) A.222a cb =+ B. 222c b a =- C. 222b c a -= D. 222b c a =- 【解答】:C05.一个直角三角形的三边为三个连续偶数,则它的三边分别为( )A.2、4、6B.4、6、8C.6、8、10D.3、4、5 【解答】:C06.等腰直角三角形的直角边为2,则斜边的长为( ) A.2 B. 22 C.1 D.2【解答】:B07.已知等边三角形的边长为2cm,则等边三角形的面积为()A. 32B.3 C.1 D. 2【解答】:B08.如图,在△ABC 中,∠C =90°,AB =15,则两个正方形面积的和为()A.150B.200C.225D.350【解答】:C09. 在△ABC 中, ∠C =90°,c =20, a :b =3:4,则a =_____. 【解答】:12ABC10. 如图,在△ABC 中,AB =AC =10cm ,高AD =8cm ,求BC 的长及S △ABC .【解答】:BC =12,S △ABC =48. 11.(2013·资阳)如图,点E 在正方形内,∠AEB = 90°,AE =6,BE =8,求阴影部分的面积.【解答】:S 阴 = 76.12. 如图,在△ABC 中,AD ⊥BC 于D ,AB =3,BD =2,DC =1,求AC 的长.【解答】:AC=6.中档题训练13.已知直角三角形的两边为2和3,则第三边的长为 【解答】(答案13或5)14.如图,已知直角△ABC 中,∠C =90°,3BC =,4AC =,CD ⊥AB 于D .()1求AB 的长;()2 求CD 的长.DCBAABCDECBDA[解析] (1)5AB =;(2) 由面积法可求 125CD =15.已知直角△ABC 的周长为12cm ,一直角边的长为4cm ,求斜边的长? [解析] 设另一直角边为x ,则斜边为8-x ,在Rt △ABC 中,2224(8x x +=-) ∴ 3x =, ∴ 斜边为835-= 16.如图在△ABC 中,AB BC =,∠ABC =90°,D 为AC 的中点,DE ⊥DF ,DE 交AB 于E ,DF BC 交于F1() 求证:BE CF =;(2) 若3AE =,1CF =,求EF 的长[解析] 1() 证△BED ≌△CFD (2) 10EF =综合题训练17.如图CA CB =,CD CE = ,∠ACB =∠ECD 90=°,D 为AB 边上一点.若1AD =,3BD =,求CD 的长.[解析] 由△ACE ≌△BCD 可得,∠EAC =∠45B =°,∠90EAD =°,2222210DE AD AE AD BD =+=+=,10DE =5CD =8. 勾股定理(二)基础训练01.在直角坐标系中,点P(-2,3)到原点的距离为【解答】:1302.如图,∠ACB=∠ABD=90,AC=2,BC=1,AD=14,则BD=【解答】303.已知△ABC中,AB=AC=10,BD是AC边上的高,CD=2,则BD为()A.4B.6C.8D.210【解答】B04.如图,每个小正方形的边长为1,ABC中边长为无理数的边共有()条A.0B.1C.2D.3【解答】C05.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达到该建筑物的最大高度是()A.12米B.13米C.14米D.15米【解答】A06.把三角形的两条直角边同时扩大到原来的2倍,则其斜边扩大到原来的()A.1倍B.2倍C.3倍D.4倍【解答】B07.如图,在水塔的东北方向32m 处有一抽水站A,在水塔的东南方向24m 处有一建筑工地B,在A,B间建一条水管,则水管AB的长为()A.45mB.40mC.50mD.60m【解答】B08.一直角三角形的斜边长比一直角边的长大2,另一直角边长为6,则斜边长为()A.4B.8C.10D.12【解答】C09.如图,有两棵树,一棵树高10米,另一棵树高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行( )A.8米B.10米C.12米D.14米 【解答】B10.如图,将一个有45°角的三角板ABC 的直角顶点C 放在一张宽为3cm 的纸带边沿上,另一顶点B 在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,求三角板最大边AB 的长。
人教版初2数学8年级下册 第17章(勾股定理)周末培优训练卷(含解析)
第十七章勾股定理周末培优训练卷1.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,AB=5,AD=2.(1)求CD的长;(2)求四边形ABCD的面积.2.如图,在Rt△ABC中,∠C=90°,AC=8,AB=10,AB的垂直平分线分别交AB、AC 于点D、E.求AE的长.3.《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).水深和芦苇长各多少尺?4.如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC与AE的长度一样,滑梯的高度BC=4m,BE=1m.求滑道AC的长度.5.如图,△ABC中,∠ABC=90°,AC=25cm,BC=15cm.(1)直接写出AB的长度 .(2)设点P在AB上,若∠PAC=∠PCA.求AP的长;(3)设点M在AC上.若△MBC为等腰三角形,直接写出AM的长.6.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B﹣A运动.设点P的运动时间为t秒(t>0).(1)求AC的长及斜边AB上的高;(2)①当点P在CB上时,CP的长为 .(用含t的代数式表示)②若点P在∠BAC的角平分线上,则t的值为 .(3)在整个运动中,直接写出△BCP是等腰三角形时t的值.7.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,在A处有一所中学,AP=120米,此时有一辆消防车在公路MN上沿PN方向以每秒5米的速度行驶,假设消防车行驶时周围100米以内有噪音影响.(1)学校是否会受到影响?请说明理由.(2)如果受到影响,则影响时间是多长?8.一块钢板形状如图所示,量得AB=3,BC=4,AC=5,CD=12,AD=13,请你计算一下这块钢板的面积.9.我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为62+82=4×52=100,所以这个三角形是常态三角形.(1)若△ABC三边长分别是2,和4,则此三角形 常态三角形(填“是”或“不是”);(2)若Rt△ABC是常态三角形,则此三角形的三边长之比为 (请按从小到大排列);(3)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,连接CD,若△BCD 是常态三角形,求△ABC的面积.10.如图,已知在△ABC中,CD⊥AB于D,BD=9,BC=15,AC=20.(1)求CD的长;(2)求AB的长;(3)判断△ABC的形状.11.定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=2,MN=4,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN的长.12.如图,Rt△ACB在直线l上,且∠ABC=90°,BC=6cm,AC=10cm.(1)求AB的长.(2)若有一动点P从点B出发,以2cm/s的速度在直线l上运动,则当t为何值时,△ACP 为等腰三角形?13.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.14.如图,在一棵树CD的6m高处B有两只猴子,其中一只猴子爬下树走到离树12m处的池塘的A处,另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,请问这棵树有多高?15.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑行爱好者从A点到E点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)16.如图是盼盼家新装修的房子,期中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA,如果梯子的底端P不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB.(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B处,若MA=1.6米,AP=1.2米,则甲房间的宽度AB= 米.(2)当他在乙房间时,测得MA=2.4米,MP=2.5米,且∠MPN=90°,求乙房间的宽AB;17.阅读下列内容:设a,b,c是一个三角形的三条边的长,且a是最长边,我们可以利用a,b,c三边长间的关系来判断这个三角形的形状:①若a2=b2+c2,则该三角形是直角三角形;②若a2>b2+c2,则该三角形是钝角三角形;③a2<b2+c2,则该三角形是锐角三角形.例如一个三角形的三边长分别是4,5,6,则最长边是6,由于62=36<42+52,故由上面③可知该三角形是锐角三角形,请解答以下问题:(1)若一个三角形的三条边长分别是2,3,4,则该三角形是 三角形.(2)若一个三角形的三条边长分别是3,4,x,且这个三角形是直角三角形,则x的值为 .(3)若一个三角形的三条边长a=,b=,c=,其中a是最长边,请判断这个三角形的形状,并写出你的判断过程.18.如图所示的一块地,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求这块地的面积.19.以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(8,6,10),(15,8,17),(24,10,26)等.(1)根据上述四组勾股数的规律,写出第六组勾股数;(2)用含n(n≥2且n为整数)的数学等式描述上述勾股数组的规律,并证明.20.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB 长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,问FH多少里?21.(1)如图1,等腰三角形ABC中,AB=AC,点D是BC的中点,DE⊥AB于点E、DF⊥AC于点F.求证:DE=DF;(2)如图2,等腰三角形ABC中,AB=AC=13,BC=10,点D是BC边上的动点,DE ⊥AB于点E、DF⊥AC于点F.请问DE+DF的值是否随点D位置的变化而变化?若不变,请直接写出DE+DF的值;若变化,请说明理由.22.善于思考的小鑫同学,在一次数学活动中,将一副直角三角板如图放置,A,B,D在同一直线上,且EF∥AD,∠BAC=∠EDF=90°,∠C=45°,∠E=60°,量得DE=12cm,求BD的长.23.如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D为AC边上的动点,点D 从点C出发,沿边CA向点A运动,当运动到点A时停止,若设点D运动的时间为t 秒.点D运动的速度为每秒1个单位长度.(1)当t=2时,CD= ,AD= ;(2)求当t为何值时,△CBD是直角三角形,说明理由;(3)求当t为何值时,△CBD是以BD或CD为底的等腰三角形?并说明理由.24.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式 ;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.25.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为: .(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.26.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?27.在一次“构造勾股数”的探究性学习中,老师给出了下表:m 2 3 3 4…n1123…a22+1232+1232+2242+32…b4 6 1224 …c22﹣1232﹣1232﹣2242﹣32…其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a= ,b= ,c= .(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.28.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)29.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).(1)用这样的两个三角形构造成如图(2)的图形(B,E,C三点在一条直线上),利用这个图形,求证:a2+b2=c2(2)当a=1,b=2时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.①请在坐标轴上找一点C,使△ABC为等腰三角形.写出一个满足条件的在x轴上的点的坐标: ;写出一个满足条件的在y轴上的点的坐标: ,这样的点有 个.30.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所知道的四边形中是勾股四边形的两种图形的名称 , ;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连接AD、DC,若∠DCB=30°,试证明;DC2+BC2=AC2.(即四边形ABCD是勾股四边形)31.先阅读下列一段文字,再回答问题:已知平面内两点P1(x1,y1)、P2(x2,y2),这两点间的距离P1P2=.同时当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知点A(2,3)、B(4,2),试求A、B两点间的距离;(2)已知点A、B在平行于x轴的直线上,点A的横坐标为7,点B的横坐标为5,试求A、B两点间的距离;(3)已知一个三角形的各顶点坐标为A(﹣2,1)、B(1,4)、C(1﹣a,5),试用含a 的式子表示△ABC的面积.32.某地要开发一块三角形植物园,如图,测得AC=80cm,BC=60cm,AB=100cm.(1)若入口E在边AB上,且AB=2BE,求从入口E到出口C的最短路线的长;(2)在第一问的条件下,若线段CD是一条水渠,且点D在边AB上,CD=CE,请直接写出DE的长度.33.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF ⊥AC于F,M为EF中点,求AM的最小值.34.学了勾股定理后,刘老师给学生布置了一道题:如图△ABC中,∠B=45°,∠BAC=75°,AB=,求BC的长.有些同学认为△ABC不是直角三角形,求不出BC的长,老师让学生小组合作,经过讨论形成共识:可以通过作垂直构建直角三角形求解.请你结合他们的思路完成这一问题.35.如图,在四边形ABCD中,AB∥CD,∠D=90°,若AD=3,AB=4,CD=8,点P 为线段CD上的一动点,若△ABP为等腰三角形,求DP的长.36.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连接AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?37.数学实验室:制作4张全等的直角三角形纸片(如图1),把这4张纸片拼成以弦长c 为边长的正方形构成“弦图”(如图2),古代数学家利用“弦图”验证了勾股定理.探索研究:(1)小明将“弦图”中的2个三角形进行了旋转,得到图3,请利用图3证明勾股定理;数学思考:(2)小芳认为用其它的方法改变“弦图”中某些三角形的位置,也可以证明勾股定理.请你想一种方法支持她的观点(先在备用图中补全图形,再予以证明).38.已知:如图,有一块Rt△ABC的绿地,量得两直角边AC=8m,BC=6m.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8m为直角边长的直角三角形,求扩充后等腰△ABD的周长.(1)在图1中,当AB=AD=10m时,△ABD的周长为 ;(2)在图2中,当BA=BD=10m时,△ABD的周长为 ;(3)在图3中,当DA=DB时,求△ABD的周长.参考答案1.解:(1)延长BA、CD交于点H,如图所示:∵∠B=∠ADC=90°,∠C=60°,∴∠ADH=90°,∠H=30°,∴HA=2AD=4,CH=2BC,∴DH===2,BH=HA+AB=4+5=9,∵BH===BC=9,∴BC=3,∴CH=2BC=6,∴CD=CH﹣HD=6﹣2=4;(2)四边形ABCD的面积=△BCH的面积﹣△ADH的面积=×3×9﹣×2×2=.2.解:在Rt△ABC中,∠C=90°,AC=8,AB=10,∴BC===6,连接BE,∵DE垂直平分AB,∴AE=BE,设AE=BE=x,则CE=8﹣x,在Rt△BCE中,∵BC2+CE2=BE2,∴62+(8﹣x)2=x2,解得x=,∴AE=.3.解:设水深x尺,则芦苇长(x+1)尺.由题意得x2+52=(x+1)2.解得x=12.∴x+1=13.答:水深12尺;芦苇长13尺.4.解:设AC=xm,则AE=AC=xm,AB=AE﹣BE=(x﹣1)m,由题意得:∠ABC=90°,在Rt△ABC中,AB2+BC2=AC2(x﹣1)2+42=x2解得x=8.5∴AC=8.5m.5.解:(1)∵∠ABC=90°,AC=25cm,BC=15cm,∴AB===20(cm),故答案为:20cm;(2)∵∠PAC=∠PCA,∴AP=PC,设AP=PC=x,∴PB=20﹣x,∵∠B=90°,∴BP2+BC2=CP2,即(20﹣x)2+152=x2,解得:x=,∴AP=;(3)AM的长为10cm,7cm,12.5cm.如图(1),当CB=CM=15时,AM=AC﹣CM=25﹣15=10(cm);如图(2),当BM=CM时,AM=BM=CM=AC=12.5(cm);如图(3),当BC=BM时,过B作BH⊥AC于点H,则BH==12(cm),CH==9(cm),∴CM=2CH=18(cm),∴AM=AC﹣CM=7(cm);综上所述,AM的长为10cm,7cm,12.5cm.6.解:(1)在△ABC中,∠ACB=90°,AB=5,BC=3,由勾股定理得:AC=4.设斜边AB上的高为h,∵AB•h=AC•BC,∴5h=3×4,∴h=2.4.∴AC的长为4,斜边AB上的高为2.4;(2)已知点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B﹣A运动,①当点P在CB上时,点P运动的长度为:AC+CP=2t,∵AC=4,∴CP=2t﹣AC=2t﹣4.故答案为:2t﹣4.②当点P'在∠BAC的角平分线上时,过点P'作P'D⊥AB,如图:∵AP'平分∠BAC,P'C⊥AC,P'D⊥AB,∴P'D=P'C=2t﹣4,∵BC=3,∴BP'=3﹣(2t﹣4)=7﹣2t,在Rt△ACP'和Rt△ADP'中,,∴Rt△ACP'≌Rt△ADP'(HL),∴AD=AC=4,又∵AB=5,∴BD=1,在Rt△BDP'中,由勾股定理得:12+(2t﹣4)2=(7﹣2t)2,解得:t=.故答案为:.(3)由图可知,当△BCP是等腰三角形时,点P必在线段AC或线段AB上,①当点P在线段AC上时,此时△BCP是等腰直角三角形,∴此时CP=BC=3,∴AP=AC﹣CP=4﹣3=1,∴2t=1,∴t=0.5;②当点P在线段AC上时,若BC=BP,则点P运动的长度为:AC+BC+BP=4+3+3=10,∴2t=10,∴t=5;若PC=BC,如图2,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=5,BC=3,AC=4,∴AB•CH=AC•BC,∴5CH=4×3,∴CH=,在Rt△BCH中,由勾股定理得:BH==1.8,∴BP=3.6,∴点P运动的长度为:AC+BC+BP=4+3+3.6=10.6,∴2t=10.6,∴t=5.3;若PC=PB,如图3所示,过点P作PQ⊥BC于点Q,则BQ=CQ=0.5×BC=,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ∥AC,∴PQ为△ABC的中位线,∴PQ=0.5×AC=0.5×4=2,在Rt△BPQ中,由勾股定理得:BP==2.5,点P运动的长度为:AC+BC+BP=4+3+2.5=9.5,∴2t=9.5,∴t=4.75.综上,t的值为0.5或4.75或5或5.3.7.解:(1)学校受到噪音影响.理由如下:作AB⊥MN于B,如图1,∵PA=120m,∠QPN=30°,∴AB=PA=60m,而60m<100m,∴消防车在公路MN上沿PN方向行驶时,学校受到噪音影响;(2)以点A为圆心,100m为半径作⊙A交MN于C、D,如图,∵AB⊥CD,∴CB=BD,在Rt△ABC中,AC=100m,AB=60m,CB==80m,∴CD=2BC=160m,∵消防车的速度5m/s,∴消防车在线段CD上行驶所需要的时间=160÷5=32(秒),∴学校受影响的时间为32秒.8.解:∵42+32=52,52+122=132,即AB2+BC2=AC2,故∠B=90°,同理,∠ACD=90°,∴S四边形ABCD=S△ABC+S△ACD=×3×4+×5×12=6+30=36.9.解:(1)∵22+42=4×()2=20,∴△ABC三边长分别是2,和4,则此三角形是常态三角形.故答案为:是;(2)∵Rt△ABC是常态三角形,∴设两直角边长为:a,b,斜边长为:c,则a2+b2=c2,a2+c2=4b2,则2a2=3b2,故a:b=:,∴设a=x,b=x,则c=x,∴此三角形的三边长之比为:::.故答案为:::;(3)∵Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,△BCD是常态三角形,∴当AD=BD=DC,CD2+BD2=4×62时,解得:BD=DC=6,则AB=12,故AC==6,则△ABC的面积为:×6×6=.当AD=BD=DC,CD2+BC2=4×BD2时,解得:BD=DC=2,则AB=4,故AC=2,则△ABC的面积为:×6×2=6.故△ABC的面积为或6.10.解:(1)在△BCD中,因为CD⊥AB,所以BD2+CD2=BC2.所以CD2=BC2﹣BD2=152﹣92=144.所以CD=12.(2)在△ACD中,因为CD⊥AB,所以CD2+AD2=AC2.所以AD2=AC2﹣CD2=202﹣122=256.所以AD=16.所以AB=AD+BD=16+9=25.(3)因为BC2+AC2=152+202=625,AB2=252=625,所以AB2=BC2+AC2.所以△ABC是直角三角形.11.解:(1)是.理由:∵AM2+BN2=22+(2)2=16,MN2=42=16,∴AM2+NB2=MN2,∴AM、MN、NB为边的三角形是一个直角三角形.故答案为是.(2)设BN=x,则MN=12﹣AM﹣BN=7﹣x,①当MN为最大线段时,依题意MN2=AM2+NB2,即(7﹣x)2=x2+25,解得x=;②当BN为最大线段时,依题意BN2=AM2+MN2.即x2=25+(7﹣x)2,解得x=.综上所述BN的长为或.12.解:(1)∵∠ABC=90°,BC=6cm,AC=10cm,∴AB===8cm;(2)①如图1,若CP=CA,则:BP=CP+BC=6+10=16或BP=CP﹣BC=10﹣6=4,即2t=16,t=8或2t=4,t=2;②如图2,若AP=AC,则:AB垂直平分PC,BP=BC=6,即2t=6,t=3;③若PA=PC,则P在AC的垂直平分线上,所以P在B左侧,PB=2t,BC=6,∴t=8,PA=2t+6,∵∠ABP=90°,∴AP2=AB2+BP2,即(2t+6)2=(2t)2+82,解得t=;综上所述,当点P向左运动s、2s、3s或向右运动8s时,△ACP为等腰三角形.13.解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ===(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t=,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE==,∴CE=,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.14.解:由题意知AD+DB=BC+CA,且CA=12米,BC=6米,设BD=x米,则AD=(18﹣x)米,在Rt△ACD中:CD2+CA2=AD2,即(18﹣x)2=(6+x)2+122,解得x=3,故树高为CD=6+3=9米.答:树高为9米.15.解:将半圆面展开可得:AD=4π米,DE=DC﹣CE=AB﹣CE=18米,在Rt△ADE中,AE=米.即滑行的最短距离约为22米.16.解:(1)在Rt△AMP中,∵∠A=90°,MA=1.6米,AP=1.2米,∴PM===2,∵PB=PM=2,∴甲房间的宽度AB=AP+PB=3.2米,故答案为:3.2;(2)∵∠MPN=90°,∴∠APM+∠BPN=90°,∵∠APM+∠AMP=90°,∴∠AMP=∠BPN.在△AMP与△BPN中,,∴△AMP≌△BPN,∴MA=PB=2.4,∵PA==0.7,∴AB=PA+PB=0.7+2.4=3.1;17.解:(1)∵42=16>22+32,∴该三角形是钝角三角形,故答案为:钝角,(2)①若4为最长边,则:42=32+x2,解得x=,x=﹣(舍去),②若x最长边,则:x=32+42,得x=5,x=﹣5(舍去),故答案为:5或.(3)∵a2﹣b2﹣c2=x2+3z2﹣x+y2﹣2y+=(x﹣)2+(y﹣1)2+3z2+>0,∴a2>b2+c2,∴该三角形是钝角三角形.18.解:连接AC,∵∠ADC=90°,AD=4,CD=3,∴AC=5.由AB=13,BC=12可得AC2+BC2=AB2,∴△ABC是直角三角形,∴S △ABC =30,S △ACD =6,30﹣6=24(m 2).故这块地的面积为24m 2.19.解:(1)上述四组勾股数组的规律是:32+42=52,62+82=102,82+152=172,102+242=262,即(n 2﹣1)2+(2n )2=(n 2+1)2,所以第六组勾股数为14,48,50.(2)勾股数为n 2﹣1,2n ,n 2+1,证明如下:(n 2﹣1)2+(2n )2=n 4+2n 2+1=(n 2+1)2.20.解:∵EG ⊥AB ,FH ⊥AD ,HG 经过点A ,∴FA ∥EG ,EA ∥FH ,∴∠AEG =∠HFA =90°,∠EAG =∠FHA ,∵AB =9里,AD =7里,EG =15里,∴AF =3.5里,AE =4.5里,∴FH =1.05里.21.(1)证明:如图1,连接AD .∵AB =AC ,点D 是BC 边上的中点,∴AD 平分∠BAC ,∵DE 、DF 分别垂直AB 、AC 于点E 和F .∴DE =DF .(2)解:不变.如图2所示:连接AD ,∵AB =AC =13,BC =10,∴△ABC 底边BC 上的高==12,∴△ABC 的面积=×BC ×12=60,∴AB •DE +AC •DF =60,∴DE +DF =,故答案为:.22.解:过点F作FH⊥AB于点H,∴∠FHB=90°,∵∠EDF=90°,∠E=60°,∴∠EFD=90°﹣60°=30°,∴EF=2DE=24,∴DF==12,∵EF∥AD,∴∠FDA=∠DFE=30°,∴FH=DF=6,∴DH==18,∵△ABC为等腰直角三角形,∴∠ABC=45°,∴∠HFB=90°﹣45°=45°,∴∠ABC=∠HFB,∴BH=FH=6,则BD=DH﹣BH=18﹣6.23.解:(1)t=2时,CD=2×1=2,∵∠ABC=90°,AB=8,BC=6,∴AC===10,AD=AC﹣CD=10﹣2=8;故答案是:2;8.(2)①∠CDB=90°时,S△ABC=AC•BD=AB•BC,即×10•BD=×8×6,解得BD=4.8,∴CD===3.6,t=3.6÷1=3.6秒;②∠CBD=90°时,点D和点A重合,t=10÷1=10秒,综上所述,t=3.6或10秒;故答案为:(1)2,8;(2)3.6或10秒;(3)①CD=BC时,CD=6,t=6÷1=6;②BD=BC时,如图,过点B作BF⊥AC于F,则CF=3.6,CD=2CF=3.6×2=7.2,∴t=7.2÷1=7.2,综上所述,t=6秒或7.2秒时,△CBD是以BD或CD为底的等腰三角形.24.(1)解:这个公式是完全平方公式:(a+b)2=a2+2ab+b2;理由如下:∵大正方形的边长为a+b,∴大正方形的面积=(a+b)2,又∵大正方形的面积=两个小正方形的面积+两个矩形的面积=a2+b2+ab+ab=a2+2ab+b2,∴(a+b)2=a2+2ab+b2;故答案为:(a+b)2=a2+2ab+b2;(2)证明:∵△ABC≌△CDE,∴∠BAC=∠DCE,∵∠ACB+∠BAC=90°,∴∠ACB+∠DCE=90°,∴∠ACE=90°;(3)证明:∵∠B=∠D=90°,∴∠B+∠D=180°,∴AB∥DE,即四边形ABDE是梯形,∴四边形ABDE的面积=(a+b)(a+b)=ab+c2+ab,整理得:a2+b2=c2.25.解:(1)△ABC的面积=3×3﹣×2×1﹣×3×1﹣×2×3,=9﹣1﹣1.5﹣3,=9﹣5.5,=3.5,故答案为3.5;(2)△DEF如图2所示;面积=2×4﹣×1×2﹣×2×2﹣×1×4,=8﹣1﹣2﹣2,=8﹣5,=3.26.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.27.解:(1)当m=2,n=1时,a=5、b=4、c=3,∵32+42=52,∴a、b、c的值能为直角三角形三边的长;(2)观察得,a=m2+n2,b=2mn,c=m2﹣n2;(3)以a,b,c为边长的三角形一定为直角三角形,∵a2=(m2+n2)2=m4+2m2n2+n4,b2+c2=m4﹣2m2n2+n4+4m2n2=m4+2m2n2+n4,∴a2=b2+c2,∴以a,b,c为边长的三角形一定为直角三角形.28.解:过C作CD⊥AB交AB延长线于点D,∵∠ABC=120°,∴∠CBD=60°,在Rt△BCD中,∠BCD=90°﹣∠CBD=30°,∴BD=BC=×20=10(米),∴CD==10(米),∴AD=AB+BD=80+10=90米,在Rt△ACD中,AC==≈92(米),答:A、C两点之间的距离约为92米.29.解:(1)由图可得,×(a+b)(a+b)=ab+c2+ab,整理得=,∴a2+2ab+b2=2ab+c2,∴a2+b2=c2.(2)一个满足条件的在x轴上的点的坐标:(﹣1,0);一个满足条件的在y轴上的点的坐标:(0,2+),这样的点有4个.故答案为:(﹣1,0);(0,2+),4.30.(1)解:∵直角梯形和矩形的角都为直角,所以它们一定为勾股四边形.(2)证明:连接CE,∵BC=BE,∠CBE=60°∴△CBE为等边三角形,∴∠BCE=60°又∵∠DCB=30°∴∠DCE=90°∴△DCE为直角三角形∴DE2=DC2+CE2∵AC=DE,CE=BC∴DC2+BC2=AC231.解:(1)AB==.(2)∵已知点A、B在平行于x轴的直线上,点A的横坐标为7,点B的横坐标为5,∴AB=7﹣5=2.(3)由题意,直线AB的解析式为y=x+3,延长AB交直线y=5于N(2,5).①当1﹣a<2,即a>﹣1时,作CM∥y轴交AB于M.则M(1﹣a,4﹣a),∴CM=5﹣(4﹣a)=a+1,∴S△ABC=•CM•(B x﹣A x)=•(a+1)•3=a+.②当1﹣a>2,即a<﹣1时,同法可得S△ABC=﹣a﹣.32.解:(1)∵AC=80cm,BC=60cm,AB=100cm,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∵AB=2BE,∴E为AB的中点,即CE为AB边上的中线,∴CE=AB=50cm;(2)作CF⊥AB,交AB于点F,∵CE=CD,∴EF=DF,∵S△ABC=AC•BC=AB•CF,∴CF==48cm,在Rt△ACF中,根据勾股定理得:AF==64cm,∴EF=AF﹣AE=64﹣50=14cm,则ED=2EF=28cm.33.解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.当AP⊥BC时,AP的最小值即为直角三角形ABC斜边上的高,∴AM的最小值是.34.解:作AD⊥BC于D,在Rt△ABD中,∠B=45°,∴DA=DB,由勾股定理得,AD2+BD2=AB2=6,解得,AD=DB=,∵∠B=45°,∠BAC=75°,∴∠C=60°,∴∠DAC=30°,∴CD=AC,由勾股定理得,AD2+CD2=AC2,即3+CD2=4CD2,解得,CD=1,则BC=BD+CD=+1.35.解:①AB=AP时,DP==;②BP=AP时,DP=AB=×4=2;③BA=BP时,过点B作BH⊥CD于H,则BH=AD=3,由勾股定理得,PH==,DP=4﹣,或者DP′=4+.综上所述,DP的值为,2,4﹣,或4+.36.解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则2t=8,解得t=4;若AB=AP,则BP=32,2t=32,解得t=16;若PA=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为4、16、5.(3)若P在C点的左侧,CP=16﹣2t.AP=20﹣2t(20﹣2t)2=(16﹣2t)2+82解得:t=5,若P在C点的右侧,CP=2t﹣16.AP=2t﹣12;(2t﹣12)2=(2t﹣16)2+82解得:t=11答:当t为5或11时,能使DE=CD.37.解:(1)如图3所示∵图形的面积表示为a2+b2+2×ab=a2+b2+ab,图形的面积也可表示为c2+4×ab=c2+ab;∴(a+b)2=c2+4×ab,a2+b2+ab=c2+ab,∴a2+b2=c2即直角三角形两直角边的平方和等于斜边的平方.(2))如图4所示:∵大正方形的面积表示为(a+b)2;大正方形的面积也可表示为c2+4×ab∴(a+b)2=c2+4×ab,a2+b2+2ab=c2+2ab,∴a2+b2=c2;即直角三角形两直角边的平方和等于斜边的平方.38.解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC2+AC2=AD2,即x2+82=(6+x)2,解得;x=,∵AC=8m,BC=6m,∴AB=10m,故△ABD的周长为:AD+BD+AB=2(+6)+10=(m).。
人教版初中数学培优系列八年级下册之第17章勾股定理题目和详解(40题)
人教版初中数学培优系列八年级下册之第17章勾股定理题目和详解(40题)重要说明:1、本资料系本人多年教学经验的总结,力求每一道题目代表一种题型或一种思维,力求穷尽本章所有相关知识的培优,内容主要立足于课程标准,少部分奥赛内容,掌握此培优系列内容则中考无忧,同时具备参加重点高中学校的自主招生考试的能力。
2、本资料仅供优生(百分制下得分80分以上学生)使用,其余学生不得使用,每道题目后面附有详细解答及点评,学生至少做两遍资料方能理解其中真谛和得到能力提升。
3、本资料主要根据人教版教材编写,其它版本的教材都是在国家同一个课程标准下编写的,只是编排顺序不同,因此该内容也适用于其它版本的教材的对应章节。
一.选择题(共9小题)1.一支长为13cm的金属筷子(粗细忽略不计),放入一个长、宽、高分别是4cm、3cm、16cm的长方体水槽中,那么水槽至少要放进()深的水才能完全淹没筷子.A.13cm B.4cm C.12cm D.cm2.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B 到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()A.6 B.8 C.10 D.123.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt △ABC能作出()A.2个B.3个C.4个D.6个4.直角三角形的三边为a﹣b,a,a+b且a、b都为正整数,则三角形其中一边长可能为()A.61 B.71 C.81 D.915.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.14S B.13S C.12S D.11S6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.7.如图,在Rt△ABC中,∠ACB=90°,AB=4.分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A.2πB.3πC.4πD.8π8.直角三角形一直角边长为12,另两边长均为自然数,则其周长为()A.36 B.28 C.56 D.不能确定9.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25 C.10+5 D.35二.填空题(共11小题)10.如图,MN垂直平分线段AB,P是射线MN上的一个动点,连接PA,PB,过点P 作CD∥AB,点G在直线CD上,连接GA、GB,已知AB=4,若满足△GAB是等腰三角形的点G有且只有3个,则PM的长为.11.如图,在Rt△ABC中,∠ACB=90,AC=3,BC=4,分别以AB、AC、BC为边在AB同侧作正方形ABEF,ACPQ,BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4,则S1+S2+S3+S4=.12.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为.13.△ABC是等腰三角形,腰上的高为8cm,面积为40cm2,则该三角形的周长是cm.14.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.15.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则最短距离为.16.如图所示的是一段楼梯,高BC=3m,斜边AB=5m,现计划在楼上铺地毯,至少需要地毯的长为m.17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中所示方法将△BCD沿BD折叠,使点C落在边AB上的点C′处,则折痕BD的长为.18.已知一个直角三角形的两边长分别是3和4,则以第三边为边长的正方形面积为.19.如图,E、F、G、H分别为正方形ABCD的边AB、BC、CD、DA上的点,且AE=BF=CG=DH=AB,则图中阴影部分的面积与正方形ABCD的面积之比为.20.如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知CE=3 cm,AB=8 cm,则图中阴影部分面积为cm2.三.解答题(共20小题)21.两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)设AB的垂直平分线交ME于点N,且MN=4km,在M处测得点C位于点M的北(结偏东60°方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.果保留根号)22.王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长;(2)问第一条边长可以为7米吗?请说明理由,并求出a的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.23.能够成为直角三角形三边长的三个正整数,我们称之为一组勾股数,观察下列表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.3,4,5 32+42=525,12,13,52+122=1327,24,2572+242=2529,40,4192+402=412……17,b,c172+b2=c224.如图,已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,如此类推.(1)求AC、AD、AE的长.(2)写出第n个等腰直角三角形的斜边长AN.25.如图,公路MN与公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否受到噪音影响?说明理由;如果受影响,且知拖拉机的速度为18km/h,那么学校受影响的时间是多少秒?26.在△ABC中,∠A=150°,AB=20m,AC=30m,求△ABC的面积.27.计算①;②如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD的面积.28.一个直立的火柴盒在桌面上倒下,启发人们发现了勾股定理的一种新的证法.如图,火柴盒的一个侧面ABCD倒下到AB′C′D′的位置,连接CC′,设AB=a.BC=b,AC=c,请利用四边形BCC′C的面积证明勾股定理.29.有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将ABC沿直线AD折叠,使AC落在斜边AB上,且与AE重合,求CD的长.30.如图,A、B两个小集镇在河流的同侧,分别到河岸L的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米2万元,请你在河岸L上选择水厂的位置M(作图并标注出来),使铺设水管的费用最节省,并求出总费用是多少?31.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112= + ;(2)请用含字母n (n 为正整数)的关系式表示出你发现的规律: ;(3)结合勾股定理有关知识,说明你的结论的正确性.32.如图,某货船以20海里/时的速度将一批重要物资由A 处运往正西方向的B 处,经16小时的航行到达,到达后必须立即卸货.此时,接到气象部门通知,一台风中心正以40海里/时的速度由A 向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.(1)问:B 处是否会受到台风的影响?请说明理由.(2)为避免受到台风的影响,该船应在多少小时内卸完货物? (供选用数据:≈1.4,≈1.7)33.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a 2+b 2=c 2证明:连结DB ,过点D 作BC 边上的高DF ,则DF=EC=b ﹣a∵S 四边形ADCB =S △ACD +S △ABC =b 2+ab .又∵S 四边形ADCB =S △ADB +S △DCB =c 2+a (b ﹣a )∴b 2+ab=c 2+a (b ﹣a )∴a 2+b 2=c 2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a 2+b 2=c 2.34.已知:如图,△ABC的面积为84,BC=21,现将△ABC沿直线BC向右平移a(0<a <21)个单位到△DEF的位置.(1)求BC边上的高;(2)若AB=10,①求线段DF的长;②连结AE,当△ABE时等腰三角形时,求a的值.35.如图,AM是△ABC的中线,∠C=90°,MN⊥AB于N,求证:AN2﹣BN2=AC236.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值37.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为5的等腰直角三角形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是格点,求∠ABC的度数.38.阅读下列材料:小明遇到一个问题:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC 的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.参考小明解决问题的方法,完成下列问题:(1)图2是一个6×6的正方形网格(每个小正方形的边长为1).①利用构图法在答卷的图2中画出三边长分别为、、的格点△DEF;②计算①中△DEF的面积为;(直接写出答案)(2)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,正方形PRDE,连接EF.①判断△PQR与△PEF面积之间的关系,并说明理由.②若PQ=,PR=,QR=3,直接..写出六边形AQRDEF的面积为.39.如图1,有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,如图2,其中,三个正方形围成的三角形是直角三角形.再经过一次“生长”后,变成图3;“生长”10次后,如果继续“生长”下去,它将变得更加“枝繁叶茂”.随着不断地“生长”,形成的图形中所有正方形的面积和也随之变化.若生长n次后,变成的图中所有正方形的面积用S n表示,求回答:(1)S0=,S1=,S2=,S3=;(2)S0+S1+S2+…+S10=.40.如图①,我们在“格点”直角坐标系上可以看到,要求AB或CD的长度,可以转化为求Rt△ABC或Rt△DEF的斜边长.例如:从坐标系中发现:D(﹣7,3),E(4,﹣3),所以DF=|5﹣(﹣3)|=8,EF=|4﹣(﹣7)|=11,所以由勾股定理可得:.(1)在图①中请用上面的方法求线段AB的长:AB=;(2)在图②中:设A(x1,y1),B(x2,y2),试用x1,x2,y1,y2表示:AC=,BC=,AB=;(3)试用(2)中得出的结论解决如下题目:已知:A(2,1),B(4,3);(此问涉及一次函数内容,未学勿做,学后再做)①直线AB与x轴交于点D,求线段BD的长;②C为坐标轴上的点,且使得△ABC是以AB为边的等腰三角形,请求出C点的坐标.人教版初中数学培优系列八年级下册之第17章勾股定理题目和详解(40题)参考答案与试题解析一.选择题(共9小题)1.【分析】依据题中条件构建直角三角形,利用勾股定理即可求解.【解答】解:如图:由题意可知FH=4cm、EF=3cm、CH=16cm.在Rt△EFH中,由勾股定理得EH===5cm,EL为筷子,即EL=13cm设HL=h,则在Rt△EHL中,HL===12cm.故选:C.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.2.【分析】MN表示直线a与直线b之间的距离,是定值,只要满足AM+NB的值最小即可.过A作直线a的垂线,并在此垂线上取点A′,使得AA′=MN,连接A'B,则A'B与直线b的交点即为N,过N作MN⊥a于点M.则A'B为所求,利用勾股定理可求得其值.【解答】解:过A作直线a的垂线,并在此垂线上取点A′,使得AA′=4,连接A′B,与直线b交于点N,过N作直线a的垂线,交直线a于点M,连接AM,过点B作BE⊥AA′,交射线AA′于点E,如图.∵AA′⊥a,MN⊥a,∴AA′∥MN.又∵AA′=MN=4,∴四边形AA′NM是平行四边形,∴AM=A′N.由于AM+MN+NB要最小,且MN固定为4,所以AM+NB最小.由两点之间线段最短,可知AM+NB的最小值为A′B.∵AE=2+3+4=9,AB=,∴BE==,∵A′E=AE﹣AA′=9﹣4=5,∴A′B==8所以AM+NB的最小值为8.故选:B.【点评】本题考查了勾股定理的应用、平行线之间的距离,解答本题的关键是找到点M、点N的位置,难度较大,注意掌握两点之间线段最短.3.【分析】可以分A、B、C分别是直角顶点三种情况进行讨论即可解决.【解答】解:当AB是斜边时,则第三个顶点所在的位置有:C、D,E,H四个;当AB是直角边,A是直角顶点时,第三个顶点是F点;当AB是直角边,B是直角顶点时,第三个顶点是G.因而共有6个满足条件的顶点.故选:D.【点评】正确进行讨论,把每种情况考虑全,是解决本题的关键.4.【分析】直角三角形的三边为a﹣b,a,a+b,由他们的大小关系可知,直角边为a﹣b,a,则根据勾股定理可知:(a﹣b)2+a2=(a+b)2,解得a=4b.∴直角三角形的三边为3b、4b、5b,看给出的答案是不是3、4、5的倍数,如果是,就可能是边长.如果不是就一定不是.所以题中81能整除3,所以可能.【解答】解:由题可知:(a﹣b)2+a2=(a+b)2,解得:a=4b所以直角三角形三边分别为3b、4b、5b.当b=27时,3b=81.故选:C.【点评】此题主要考查了直角三角形的三边的关系.但做此题时要用到排除法,所以学生对做题的技巧也要有所掌握.5.【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=13b2=13S,故选:B.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.6.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.7.【分析】根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆面积.【解答】解:∵S1=π()2=πAC2,S2=πBC2,∴S1+S2=π(AC2+BC2)=πAB2=2π.故选:A.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.8.【分析】设直角边长是x,斜边长是y,根据勾股定理可得到一个方程,通过方程的分析可求解.【解答】解:设直角边长是x,斜边长是y,y2﹣x2=122,(y﹣x)(y+x)=1×12×12.则有或或或;则另外两边可能是37,35或20,16或15,9或13,5.∴其周长为84或48或36或30,结合选项可得D选项正确.故选:D.【点评】本题综合考查了勾股定理与二元一次方程组,关键是根据勾股定理得到另外两条边的平方差,再进一步借助因式分解和因数分解的知识,得到关于两条边的方程组,从而求解.9.【分析】要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB====25.(2)如图,BC=5,AC=20+10=30,由勾股定理得,AB====5.(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;由于25<5<5,故选:B.【点评】本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.二.填空题(共11小题)10.【分析】分两种情况进行讨论,画出图形,依据点G在直线CD 上,AB=4,△GAB是等腰三角形的点G有且只有3个,即可得到PM的长.【解答】解:如图所示,分别以A,B为圆心,AB长为半径画弧,①当直线CD经过两弧的交点时,直线CD与两弧共有3个交点G1,G2,G3,此时满足△GAB是等腰三角形的点G有且只有3个,△OAB是等边三角形,∴PM==2;②当直线CD与两弧均相切时,直线CD与两弧、直线MN共有3个交点G1,G2,G3,此时满足△GAB是等腰三角形的点G有且只有3个,∴PM=AG1=AB=4,故答案为:4或2.【点评】本题考查的是等腰三角形的判定,垂直平分线的性质以及勾股定理的综合运用,解题时注意:等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.11.【分析】过F作AM的垂线交AM于N,通过证明S1+S2+S3+S4=Rt△ABC的面积×3,依此即可求解.【解答】解:过F作AM的垂线交AM于N,则Rt△ANF≌Rt△ABC,Rt△NFK≌Rt△CAT,所以S2=S Rt△ABC.由Rt△NFK≌Rt△CAT可得:Rt△FPT≌Rt△EMK,∴S3=S△FPT,可得Rt△AQF≌Rt△ACB,∴S1+S3=S Rt△AQF=S Rt△ABC.∵Rt△ABC≌Rt△EBD,∴S4=S Rt△ABC∴S1+S2+S3+S4=(S1+S3)+S2+S4=S Rt△ABC+S Rt△ABC+S Rt△ABC=S Rt△ABC×3=4×3÷2×3=18.故答案为:18.【点评】本题考查勾股定理的知识,有一定难度,解题关键是将勾股定理和正方形的面积公式进行灵活的结合和应用.12.【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【解答】解:如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM==4,综上所述,当△ABM为直角三角形时,AM的长为4或4或4.故答案为:4或4或4.【点评】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线的综合应用,运用分类讨论以及数形结合思想是解答此题的关键.13.【分析】先根据三角形面积公式求出腰长,设AE=xcm,则BC=cm,BE=cm,在Rt △ACE中,根据勾股定理求出x,进一步得到BC,从而得到该三角形的周长,即可求解.【解答】解:腰长为40×2÷8=10(cm),如图1,等腰三角形顶角是锐角,如图2,等腰三角形顶角是钝角,设AE=x,则BC=,BE=,在Rt△ACE中,x2+()2=102,解得x=±4(负值舍去)或x=±2(负值舍去),∴BC=4或8,∴该三角形的周长是(20+4)或(20+8)cm.故答案为:(20+4)或(20+8).【点评】考查了勾股定理,等腰三角形的性质,三角形面积,难点是根据勾股定理得到底边的长.14.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.15.【分析】将正方体展开,根据两点之间线段最短,构造出直角三角形,进而求出最短路径的长.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.【点评】此题考查了平面展开﹣最短路径问题,勾股定理,熟练求出AB的长是解本题的关键.16.【分析】先根据勾股定理求出AC的长,再由地毯的长=AC+BC即可得出结论.【解答】解:∵Rt△ABC中,BC=3m,AB=5m,∴AC===4m,∴地毯的长=AC+BC=4+3=7m.故答案为:7.【点评】本题考查的是勾股定理的应用,熟记勾股定理是解答此题的关键.17.【分析】根据勾股定理易求AB=10.根据折叠的性质有BC=BC′,CD=DC′,∠C=∠AC′D=90°.在△AC′D中,设DC′=x,则AD=8﹣x,AC′=10﹣6=4.根据勾股定理可求x.在△BCD中,运用勾股定理求BD.【解答】解:∵∠C=90°,AC=8,BC=6,∴AB=10.根据折叠的性质,BC=BC′,CD=DC′,∠C=∠AC′D=90°.∴AC′=10﹣6=4.在△AC′D中,设DC′=x,则AD=8﹣x,根据勾股定理得(8﹣x)2=x2+42.解得x=3.∴CD=3.∴BD===3.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应边、角相等.18.【分析】分两种情况考虑:若4为直角边,利用勾股定理求出斜边;若4为斜边,利用勾股定理求出第三边,分别求出以第三边为边长的正方形面积即可.【解答】解:分两种情况考虑:若4为直角边,根据勾股定理得:斜边为=5,此时第三边为边长的正方形面积为25;若4为斜边,根据勾股定理得:第三边为=,此时第三边为边长的正方形面积为7,综上,以第三边为边长的正方形面积为25或7.故答案为:25或7【点评】此题考查了勾股定理,利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键.19.【分析】先设正方形的边长为a,再求证Rt△AED≌Rt△DHC≌Rt△CGB≌Rt△BFA,再由AE=BF=CG=DH=AB可求出其面积,由相似三角形的判定定理可求出△DHJ、△AEL、△BFN、△CKG是直角三角形,且都全等,再根据S阴影=S□ABCD﹣4S△AED+4S△AEL计算即可.【解答】解:设正方形的边长为a,则S□ABCD=a2,∵AE=BF=CG=DH=AB,∴AE=BF=CG=DH=a,∴AF==a,∵∠DAE=∠DCB=∠ADC=∠ABC=90°,∴Rt△AED≌Rt△DHC≌Rt△CGB≌Rt△BFA,∴S=×a•a=a2.△AED∵Rt△AED≌Rt△BFA,∴∠EAL=∠ADE,∠AEL=∠BFN,∴∠ALE=∠DAE=90°,∴△AEL是直角三角形,∵∠EAL=∠EAL,∠ALE=∠ABF=90°,∴Rt△AEL∽Rt△AFB,∴==,即==,解得,AL=a ,EL=,∴S △AEL =AL•EL=×a ×=,同理可得,S △AEL =S △BNF =S △CKG =S △DHJ =,∴S 阴影=S 正方形ABCD ﹣4S △AED +4S △AEL =a 2﹣4S △AED +4S △AEL =a 2﹣4×a 2+4×=a 2, ∴阴影部分的面积与正方形ABCD 的面积之比为a 2:a 2=.【点评】本题涉及到直角三角形的判定定理、相似三角形的判定及性质、矩形及直角三角形的面积公式,比较复杂,涉及面较广,但难度适中.20.【分析】根据折叠的性质求出EF=DE=CD ﹣CE=5,AD=AF=BC ,再根据勾股定理列出方程求解即可.【解答】解:由折叠的性质知,EF=DE=CD ﹣CE=5,AD=AF=BC ,由勾股定理得,CF=4,AF 2=AB 2+BF 2,即AD 2=82+(AD ﹣4)2,解得,AD=10,∴BF=6,图中阴影部分面积=S △ABF +S △CEF =30cm 2.【点评】本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②勾股定理,三角形的面积公式求解.三.解答题(共20小题)21.【分析】(1)到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C;(2)先判断出∠CMN=30°,∠CND=45°,再用三角函数得出MD=CD;ND=CD即可.【解答】解:(1)如图所示:∴点C就是所求作的点;(2)如下图,作CD⊥MN于点D,由题意得:∠CMN=30°,∠CND=45°,∵在Rt△CMD中,=tan∠CMN,∴MD==CD;∵在Rt△CND中,=tan∠CNM,∴ND=CD;∵MN=4km,∴MN=MD+DN=CD+CD=4km,解得:CD=(2﹣2)km.∴点C到公路ME的距离为(2﹣2)km.【点评】此题是解直角三角形,主要考查了尺规作图中的角平分线和中垂线,锐角三角函数,解本题的关键是用锐角三角函数判断出ND=CD,MD=CD.22.【分析】(1)本题需先表示出第二条边长,即可得出第三条边长.(2)本题需先求出三边的长,再根据三角形的三边关系列出不等式组,即可求出a的取值范围.(3)本题需先求出a的值,然后即可得出三角形的三边长.【解答】解:(1)∵第二条边长为2a+2,∴第三条边长为30﹣a﹣(2a+2)=28﹣3a.(2)当a=7时,三边长分别为7,16,7,由于7+7<16,所以不能构成三角形,即第一条边长不能为7米,根据题意得:,解得:<a<.则a的取值范围是:<a<.(3)在(2)的条件下,注意到a为整数,所以a只能取5或6.当a=5时,三角形的三边长分别为5,12,13.由52+122=132知,恰好能构成直角三角形.当a=6时,三角形的三边长分别为6,14,10.由62+102≠142知,此时不能构成直角三角形.综上所述,能围成满足条件的小圈是直角三角形形状,它们的三边长分别为5米,12米,13米.【点评】本题主要考查了一元一次不等式组的应用,在解题时要能根据三角形的三边关系,列出不等式组是本题的关键.23.【分析】(1)根据表格找出规律再证明其成立;(2)把已知数据代入经过证明成立的规律即可.【解答】解:(1)以上各组数的共同点可以从以下方面分析:①以上各组数均满足a2+b2=c2;②最小的数(a)是奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…由以上特点我们可猜想并证明这样一个结论:设m为大于1的奇数,将m2拆分为两个连续的整数之和,即m2=n+(n+1),则m,n,n+1就构成一组简单的勾股数,证明:∵m2=n+(n+1)(m为大于1的奇数),∴m2+n2=2n+1+n2=(n+1)2,∴m,n,(n+1)是一组勾股数;(2)运用以上结论,当a=17时,∵172=289=144+145,∴b=144,c=145.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.24.【分析】(1)根据勾股定理即可得出第1个等腰直角三角形的斜边长、第2个等腰直角三角形的斜边长、第3个等腰直角三角形的斜边长.(2)依次、反复运用勾股定理计算,根据计算结果即可得到第n个等腰直角三角形的斜边长.【解答】解:(1)根据勾股定理,第1个等腰直角三角形的斜边长是:,第2个等腰直角三角形的斜边长是:AD===2,第3个等腰直角三角形的斜边长是:.。
八年级数学下册第17章 勾股定理 综合提优卷(含答案)
第17章勾股定理综合提优卷(时间:60分钟满分:100分)一、填空题(每题3分,共30分)1.如图,在一次暴风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底4米处,那么这棵树折断之前的高度是_______米.2.直角三角形一条直角边与斜边分别为4 cm和5 cm,则斜边上的高等于_______cm.3.如图,在直角三角形ABC中,∠C=90°,AC=12,BC=5,则以AB为直径的半圆的面积为_______.4.如图,在四边形ABCD中,∠A=90°,若AB=4 cm,AD=3 cm,CD=12 cm,BC=13 cm,则四边形ABCD的面积是_______.5.木工师傅要做一个长方形桌面,做好后量得长为80 cm,宽为60 cm,对角线为100 cm,则这个桌面_______.(填“合格”或“不合格”)6.甲、乙两人同时从同一地点出发,甲往东走了8 km,乙往南走了6 km,这时两人相距_______km.7.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了_______步路(假设2步为1米),却踩伤了花草.8.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=a,则图中阴影部分的面积为_______.9.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD =5,则CD=_______.10.动手操作:在矩形纸片ABCD中,AB=3,BD=5.如图所示,折叠纸片使点A落在边BC上的A'处,折痕为PQ.当点A'在边BC上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在边AB、AD上移动,则点A'在边BC上可移动的最大距离为_______.二、选择题(每题3分,共30分)11.下列各组数中,可以构成勾股数的是( ).A.13,16,19 B.17,21,23 C.18,24,36 D.12,35,37 12.下列命题中,是假命题的是( ).A.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形B.在△ABC中,若a2=(b+c) (b-c),则△ABC是直角三角形C.在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形13.一直角三角形的三边分别为2,3,x,那么以x为边长的正方形的面积为( ).A.13 B.5 C.13或5 D.414.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的边长分别是3,5,2,3,则最大的正方形E的面积是( ).A.13 B.26 C.47 D.9415.在Rt△ABC中,∠C=90°,AC=3,BC=4,则点C到AB的距离是( ).A.125B.425C.34D.9416.已知一直角三角形的木板,三边的平方和为1800 cm2,则斜边长为( ).A.30 cm B.80 cm C.90 cm D.120 cm17.底面周长为12,高为8的圆柱体上有一只小蚂蚁要从点A爬到点B,则蚂蚁爬行的最短距离是( ).A.10 B.8 C.5 D.418.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C'处,BC,交AD于点E,AD =8,AB=4,则DE的长为( ).A.3 B.4 C.5 D.619.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则CD的长为( ).A.32B.4 C.25D.4.520.如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2013条棱分别停止在所到的正方体顶点处时,它们之间的距离是( ).A.0 B.1 C.2D.3三、解答题(共40分)21.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长;(2)求AB的长.22.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…这到底是巧合,还是有什么规律蕴涵其中呢?请你结合有关知识进行研究.若132=a +b,则a,b的值可能是多少?23.如图所示,一轮船以16 n mi1e/h的速度从港口A出发向东北方向航行,另一轮船以12 n mi1e/h的速度同时从港口出发向东南方向航行,那么离开港口A2h后,两船相距多远?24.如图是用硬纸板做成的四个全等的直角三角形,两直角边长分别是a,b,斜边长为c 和一个边长为c的正方形,请你将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图;(2)证明勾股定理.25.如图,A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1 km,BD =3 km,CD=3 km现在河边CD上建一水厂向A、B两村输送自来水,铺设水管的费用为20 000元/千米,请你在河CD边上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用?26.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP =160米,假设拖拉机行驶时,周围100米以内会受到噪音的影响,那么拖拉机在公路MN 上沿PN方向行驶时,学校是否回受到噪声的影响?说明理由.如果受影响,已知拖拉机的速度为18千米/时,那么学校受影响的时间为多少秒?参考答案1.8 2.2.4 3.169 84.36 cm25.合格6.10 7.8 8.2 2 a9.1.4 10.211.D 12.C 13.C 14.C 15.A 16.A 17.A 18.C 19.B 20.C 21.(1)12 (2)2522.a=84,b=8523.2h后24.略25.作点A关于河CD的对称点A',连接A'B交河CD于O点,点O就是水厂的位置,26.24秒。
人教版本初中八年级下册的第17章勾股定理培优专题训练附答案
人教版八年级下册第17章勾股定理培优专题训练一.选择题(共11小题)1.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.642.已知一个直角三角形的三边的平方和为1800cm2,则斜边长为()A.30cm B.80cm C.90cm D.120cm3.以下各组数中能作为直角三角形的三边长的是()222B.C.9,41,40D.2,3,4A.3,4,54.如图:a,b,c表示以直角三角形三边为边长的正方形的面积,则以下结论正确的选项是()A.a2+b2=c2B.ab=c C.a+b=c D.a+b=c25.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.B.或C.D.56.若直角三角形的两条直角边长为a,b,斜边长为c,斜边上的高为h,则有()A.ab=h2B.C.D.a2+b2=2h27.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形8.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,此中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变为了右图,假如持续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2009次后形成的图形中全部的正方形的面积和是()A.2008B.2009C.2010D.19.我国是最早认识勾股定理的国家之一.下边四幅图中,不可以证明勾股定理的是()A.B.C.D.10.如图,巷子左右双侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米.若梯子底端地点保持不动,将梯子斜靠在右墙时,顶端距离地面米,则巷子的宽度为()D.米A.米B.米C.2米11.如图,一个梯子AB长米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为米,梯子滑动后停在DE的地点上,测得BD长为米,则梯子顶端A着落了()米.A.B.1C.D.2二.填空题(共6小题)12.点P(﹣5,12)到原点的距离是.13.如图,在等边△ABC中,点D、E分别在边BC、AB上,且DE∥AC,过点E作EF⊥DE,交CB的延伸线于点F.若BD=5,则EF2=.14.已知:如图,四边形ABDC,AB=4,AC=3,CD=12,BD=13,∠BAC=90°.则四边形ABDC的面积是.15.如下图的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.16.如图,将一根长12厘米的筷子置于底面直径为6厘米,高为8厘米的圆柱形杯子中,则筷子露在杯子外面的长度起码为厘米.17.如图1,这个图案是我国汉代的赵爽在讲解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的表示图如图 2,此中四边形 ABCD 和四边形 EFGH 都是正方形,△ABF 、 △BCG 、△CDH 、△DAE 是四个全等的直角三角形.若 EF =2,DE =8,则 AB 的长为.三.解答题(共 7小题)18.如图,是一块四边形绿地的表示图,此中AB 长为24米,BC 长15米,CD 长为20米,DA 长7米,∠C =90°,求绿地ABCD 的面积.19.中国古代数学家们关于勾股定理的发现和证明, 在世界数学史上拥有独到的贡献和地位,表现了数学研究中的继承和发展.现用 4个全等的直角三角形拼成如下图“弦图” .Rt ABC 中,∠ACB =90°,若AC =b ,BC =a ,请你利用这个图形解决以下问题:(1)试说明a 2+b 2=c 2;(2)假如大正方形的面积是10,小正方形的面积是2,求(a+b )2的值.20.如,将Rt △ABC 其角点A 旋90°获得Rt △ADE ,接BE ,延DE 、BC 订交于点F ,有∠BFE =90°,且四形ACFD 是一个正方形.(1)判断△ABE 的形状,并明你的; (2)用含b 代数式表示四形 ABFE 的面; (3)求:a 2+b 2=c 2.21.我学了勾股定理后,都知道“勾三、股四、弦五” .察:3、4、5;5、12、13;7、24、25;9、40、41;⋯,些勾股数的勾都是奇数,且从3起就没有断. (1)你依据上述的律写出下一勾股数: ; (2)若第一个数用字母 n (n 奇数,且 n ≥3)表示,那么后两个数用含 n 的代数式分表示 和 ,用所学知明它是一勾股数.22.如,甲船以 16海里/的速度走开港口,向南航行,乙船在同同地向西南方向航 行,已知他走开港口一个半小后分抵达 B 、A 两点,且知 AB =30海里,乙船每小航行多少海里?23.如,花果山上有两只猴子在一棵 CD 上的点B ,且BC =5m ,它都要到 A 吃 西,此中一只猴子甲沿爬下走到离 10m 的池塘 A ,另一只猴子乙先爬到D 处后再沿缆绳DA线段滑到A 处.已知两只猴子所经过的行程相等,设BD为xm .(1)请用含有 x 的整式表示线段AD 的长为m ;(2)求这棵树高有多少米?( 24.如图1,△ABC 中,CD ⊥AB 于D ,且BD :AD :CD =2:3:4,( 1)试说明△ABC是等腰三角形;( 2)已知S △ABC =40cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点 N 从点A 出发以同样速度沿线段 AC 向点 终点时整个运动都停止.设点 M 运动的时间为 t (秒),①若△DMN 的边与BC 平行,求 t 的值;②若点E 是边AC 的中点,问在点 M 运动的过程中,△ MDE 能,求出 t 的值;若不可以,请说明原因.C 运动,当此中一点抵达可否成为等腰三角形?若参照答案一.选择题(共 11小题)1.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的面积为 ( )A .4B .8C .16D .64 【解答】解:∵正方形 PQED 的面积等于 225,∴即PQ 2=225, ∵正方形 PRGF 的面积为 289, PR 2=289, 又△PQR 为直角三角形,依据勾股定理得: PR 2=PQ 2+QR 2,QR 2=PR 2﹣PQ 2=289﹣225=64,则正方形QMNR 的面积为64.应选:D .2.已知一个直角三角形的三边的平方和为1800cm 2,则斜边长为()A .30cmB .80cmC .90cmD .120cm【解答】解:设直角三角形的两直角边分别为 acm ,bcm ,斜边为ccm ,依据勾股定理得: a 2+b 2=c 2,22 2,∵a+b+c =18002c 2=1800,即c 2=900,则c =30cm . 应选:A .3.以下各组数中能作为直角三角形的三边长的是( )A .32,42,52B .C .9,41,40D .2,3,4【解答】解: A 、92+162≠252,故不是直角三角形,故不切合题意;B 、( )2+( )2≠( )2,故不是直角三角形,故不切合题意;C 、92+402=412,故是直角三角形,故切合题意;2 2 2D 、2+3 ≠4,故不是直角三角形,故不切合题意.应选:C .4.如图:a ,b ,c 表示以直角三角形三边为边长的正方形的面积,则以下结论正确的选项是( )A .a 2+b 2=c 2B .ab =cC .a+b =cD .a+b =c 2【解答】解:∵ a 、b 、c 表示以直角三角形三边为边长的正方形的面积,a =AC 2,b =BC 2,c =AB 2.又∵在直角△ ABC 中,AC 2+BC 2=AB 2. a+b =c . 应选:C .5.△ABC中,AB =AC =5,BC =8,点P 是BC边上的动点,过点P 作PD ⊥AB 于点D ,PE ⊥AC于点E ,则PD+PE的长是()A .B .或C .D .5∴ 【解答】解:过A 点作AF ⊥BC 于F ,连结AP ,∴ ∵△ABC 中,AB =AC =5,BC =8, ∴ BF =4,∴△ABF中,AF=∴×8×3=×5×PD+=3,×5×PE,12=×5×(PD+PE)PD+PE=.应选:A.6.若直角三角形的两条直角边长为a,b,斜边长为c,斜边上的高为h,则有()A.ab=h 2B.C.D.a 2+b2=2h2【解答】解:∵ab=ch∴h=∴=∴===.应选C.7.在△ABC中,若a=n 2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【解答】解:∵(22222 n﹣1)+(2n)=(n+1),∴三角形为直角三角形,应选:D.8.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,此中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变为了右图,假如持续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2009次后形成的图形中全部的正方形的面积和是()A.2008B.2009C.2010D.1【解答】解:设直角三角形的是三条边分别是a,b,c.依据勾股定理,得a 2+b2=c2,即正方形A的面积+正方形B的面积=正方形C的面积=1.推而广之,“生长”了2009次后形成的图形中全部的正方形的面积和是2010×1=2010.应选:C.9.我国是最早认识勾股定理的国家之一.下边四幅图中,不可以证明勾股定理的是()A.B.C.D.【解答】解:A、∵+c 2+ab=(a+b)(a+b),∴整理得:a 2+b2=c2,即能证明勾股定理,故本选项不切合题意;B、∵4×22+c=(a+b),222∴整理得:a+b=c,即能证明勾股定理,故本选项不切合题意;C 、∵4× +(b ﹣a )2=c 2,∴整理得:a 2+b 2=c 2,即能证明勾股定理,故本选项不切合题意; 、依据图形不可以证明勾股定理,故本选项切合题意;应选:D .10.如图,巷子左右双侧是竖直的墙壁, 一架梯子斜靠在左墙时, 梯子底端到左墙角的距离为米,顶端距离地面 米.若梯子底端地点保持不动,将梯子斜靠在右墙时,顶端距离地面米,则巷子的宽度为( )A .米B .米C .2米D .米【解答】解:由题意可得: AD 2=22=, 在Rt △ABC 中,222∵∠ABC =90°,BC =米,BC+AB =AC ,AB 22=, AB =±2, AB >0,∴AB =2米,∴巷子的宽度为0.7+2=(米).应选:A .11.如图,一个梯子 AB 长米,顶端 A 靠在墙AC 上,这时梯子下端 B 与墙角C 距离为米,梯子滑动后停在DE的地点上,测得BD长为米,则梯子顶端 A 着落了()米.A .B .1C .D .2【解答】解:在Rt △ABC 中,AB =米,BC =米,故AC ==2米,在Rt △ECD 中,AB =DE =米,CD =()米,故EC ===米,故AE =AC ﹣CE =2﹣=米.应选:A .二.填空题(共6小题)12.点P (﹣5,12)到原点的距离是13.【解答】解:∵点P (﹣5,12),∴点P 到原点的距离==13.故答案为:13.13.如图,在等边△ABC 中,点D 、E 分别在边BC 、AB 上,且DE ∥AC ,过点E 作EF ⊥DE ,交CB 的延伸线于点F .若BD =5,则EF 2=75.【解答】解:∵△ ABC 是等边三角形, ∴∠C =60°, DE ∥AC ,∴∠EDB =∠C =60°, EF ⊥DE ,∴∠DEF =90°,∴∠F =90°﹣∠EDB =30°,∵∠ABC =60°,∠EDB =60°, ∴△EDB 是等边三角形. ED =BD =5,∵∠DEF =90°,∠F =30°, DF =2DE =10, EF 2=DF 2﹣DE 2=75. 故答案为:75.14.已知:如图,四边形ABDC ,AB =4,AC =3,CD =12,BD =13,∠BAC =90°.则四边形ABDC 的面积是36.【解答】解:连结BC ,∵∠A =90°,AB =4,AC =3 ∴BC =5,∵BC =5,BD =13,CD =12∴BC 2+CD 2=BD 2∴△BCD 是直角三角形∴S 四边形ABCD =S △BCD +S △ABC = ×4×3+×5×12=36,故答案为:3615.如下图的一块地,已知 AD =4米,CD =3米,∠ADC =90°,AB =13米,BC =12米,这块地的面积为24m 2.【解答】解:如图,连结 AC 由勾股定理可知AC = = =5,又AC 2+BC 2=52+122=132=AB 2 故三角形 ABC 是直角三角形故所求面积=△ABC 的面积﹣△ACD 的面积==24(m 2).16.如图,将一根长 12厘米的筷子置于底面直径为则筷子露在杯子外面的长度起码为2 厘米.6厘米,高为8厘米的圆柱形杯子中,【解答】解:如下图,筷子,圆柱的高,圆柱的直径正好构成直角三角形,∴勾股定理求得圆柱形水杯的最大线段的长度,即=10cm ,∴筷子露在杯子外面的长度起码为 12﹣10=2cm , 故答案为 2.17.如图1,这个图案是我国汉代的赵爽在讲解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的表示图如图△BCG、△CDH、△DAE 2,此中四边形ABCD和四边形EFGH都是正方形,△ABF、是四个全等的直角三角形.若EF=2,DE=8,则AB的长为10.【解答】解:依题意知,BG=AF=DE=8,EF=FG=2BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB===10.故答案是:10.三.解答题(共7小题)18.如图,是一块四边形绿地的表示图,此中AB长为24米,BC长15米,CD长为20米,DA长7米,∠C=90°,求绿地ABCD的面积.【解答】解:连结BD.如下图:∵∠C=90°,BC=15米,CD=20米,∴BD===25(米);在△ABD中,∵BD=25米,AB=24米,DA=7米,222222,24+7=25,即AB+DA=BD∴△ABD是直角三角形.∴S四边形ABCD=S△ABD+S△BCDAB?AD+BC?CD×24×7+×15×2084+150234(平方米);即绿地ABCD 的面积为234平方米.19.中国古代数学家们关于勾股定理的发现和证明, 在世界数学史上拥有独到的贡献和地位, 表现了数学研究中的继承和发展.现用 4个全等的直角三角形拼成如下图“弦图” .Rt ABC 中,∠ACB =90°,若AC =b ,BC =a ,请你利用这个图形解决以下问题: (1)试说明a 2+b 2=c 2; (2)假如大正方形的面积是10,小正方形的面积是2,求(a+b )2的值.【解答】解:(1)∵大正方形面积为 c 2,直角三角形面积为 ab ,小正方形面积为( b ﹣a )2, c 2=4×ab+(a ﹣b )2=2ab+a 2﹣2ab+b 2即c 2=a 2+b 2.;(2)由图可知,(b ﹣a )2=2,4×ab =10﹣2=8,2ab =8,∴(a+b )2=(b ﹣a )2+4ab =2+2×8=18. 20.如图,将 Rt △ABC 绕其锐角极点 A 旋转90°获得Rt △ADE ,连结BE ,延伸DE 、BC订交于点 F ,则有∠BFE =90°,且四边形 ACFD 是一个正方形.(1)判断△ABE 的形状,并明你的;(2)用含b 代数式表示四形 ABFE 的面; (3)求:a 2+b 2=c 2.【解答】(1)△ABE 是等腰直角三角形,明:∵Rt △ABC 其角点 A 旋90°获得在 Rt △ADE , ∴∠BAC =∠DAE ,∴∠BAE =∠BAC+∠CAE =∠CAE+∠DAE =90°, 又∵AB =AE ,∴△ABE 是等腰直角三角形;2)∵四形ABFE 的面等于正方形ACFD 面,∴四形ABFE 的面等于:b 2.3)∵S 正方形ACFD =S △BAE +S △BFE即:b2= c2+ (b+a )(b a ), 整理:2b 2=c 2+(b+a )(b a ) a 2+b 2=c 2.21.我学了勾股定理后,都知道“勾三、股四、弦五” .察:3、4、5;5、12、13;7、24、25;9、40、41;⋯,些勾股数的勾都是奇数,且从 3起就没有断.(1)你依据上述的律写出下一勾股数: 11,60,61 ;(2)若第一个数用字母 n (n 奇数,且 n ≥3)表示,那么后两个数用含 n 的代数式分表示 和 ,用所学知明它是一勾股数.【解答】解:(1)11,60,61;(2)后两个数表示为和,∵,,∴.又∵n≥3,且n为奇数,∴由n,,三个数构成的数是勾股数.故答案为:11,60,61.22.如图,甲船以16海里/时的速度走开港口,向东南航行,乙船在同时同地向西南方向航行,已知他们走开港口一个半小时后分别抵达B、A两点,且知AB=30海里,问乙船每小时航行多少海里?【解答】解:∵甲轮船向东南方向航行,乙轮船向西南方向航行,AO⊥BO,∵甲轮船以16海里/小时的速度航行了一个半小时,OB=16×=24海里,AB=30海里,∴在Rt△AOB中,AO===18,∴乙轮船每小时航行18÷=12海里.23.如图,花果山上有两只猴子在一棵树CD上的点B处,且BC=5m,它们都要到A处吃东西,此中一只猴子甲沿树爬下走到离树10m处的池塘A处,另一只猴子乙先爬到树顶D处后再沿缆绳DA线段滑到A处.已知两只猴子所经过的行程相等,设BD为xm.(1)请用含有x的整式表示线段AD的长为15﹣x m;(2)求这棵树高有多少米?【解答】解:(1)设BD 为x 米,且存在 BD+DA =BC+CA , 即BD+DA =15,DA =15﹣x , 故答案为:15﹣x ; (2)∵∠C =90°22 2∴AD =AC+DC∴(15﹣x )2=(x+5)2+102x =CD ==答:树高 米;24.如图1,△ABC 中,CD ⊥AB 于D ,且BD :AD :CD =2:3:4, 1)试说明△ABC 是等腰三角形; 2)已知S △ABC =40cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向 点A 运动,同时动点 N 从点A 出发以同样速度沿线段 AC 向点C 运动,当此中一点抵达 终点时整个运动都停止.设点 M 运动的时间为 t (秒),①若△DMN 的边与BC 平行,求 t 的值;②若点E 是边AC 的中点,问在点 M 运动的过程中,△ MDE 可否成为等腰三角形?若 能,求出 t 的值;若不可以,请说明原因.【解答】(1)证明:设 BD =2x ,AD =3x ,CD =4x ,则AB =5x ,在Rt△ACD中,AC==5x,AB=AC,∴△ABC是等腰三角形;2)解:S△ABC=×5x×4x=40cm 2,而x>0,x=2cm,则BD=4cm,AD=6cm,CD=8cm,AC=10cm.①当MN∥BC时,AM=AN,即10﹣t=t,∴t=5;当DN∥BC时,AD=AN,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②∵点E是边AC的中点,CD⊥AB,∴DE=AC=5,当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;当t=4时,点M运动到点D,不构成三角形当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.假如DE=DM,则t﹣4=5,∴t=9;假如ED=EM,则点M运动到点A,∴t=10;假如MD=ME=t﹣4,过点E作EF⊥AB于F,如图3所示:∵ED=EA,∴DF=AF=AD=3,在Rt△AEF中,EF=4;∵BM=t,BF=7,∴FM=t﹣7则在Rt△EFM中,(t﹣4)2﹣(t﹣7)2=42,∴t=.综上所述,切合要求的t值为9或10或.。
人教版八年级数学下册第十七章 勾股定理练习(含答案)
第十七章勾股定理一、单选题1.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25B.14C.7D.7或252.下列各组数中,属于勾股数的是()A.12B.1.5,2,2.5C.6,8,10D.5,6,73.已知Rt△ABC的三边分别为a、b、c,则下列结论不可能成立的是()A.a2﹣b2=c2B.△A﹣△B=△CC.△A:△B:△C=3:4:5D.a:b:c=7:24:254.如图是一个底面为等边三角形的三棱镜,在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为5cm,底面边长为4cm,则这圈金属丝的长度至少为()A.8cm B.13cm C.12cm D.15cm5.如图所示:已知两个正方形的面积,则字母A所代表的正方形的面积为()A .4B .8C .64D .16 6.已知x ,y 为正数,且224(3)0x y -+-=,如果以x ,y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A .5B .25C .7D .157.如图,在ABC V 中,D 是BC 上一点,已知1312155AB AD AC BD ====,,,,则DC 的长为( )A .13B .12C .9D .88.下列说法中,正确的有( )△如果△A+△B -△C=0,那么△ABC 是直角三角形; △如果△A:△B:△C=5:12:13,则△ABC是直角三角形; △则△ABC 为直角三角形;△如果三角形三边长分别是2244n n n -+、4、(n >2),则△ABC 是直角三角形;A .1个B .2个C .3个D .4个9.如图,在5×5的正方形网格中,从在格点上的点A ,B ,C ,D 中任取三点,所构成的三角形恰好是直角三角形的个数为( )A .1B .2C .3D .410.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是( )A.B.C.D.二、填空题11.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则EF=________.12.如图,数轴上点A表示的数据为________.13.一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口12km/h 的速度向东南方向航行,它们离开港口1小时后相距__________km.14.已知△ABC的三边长分别是6cm、8cm、10cm,则△ABC的面积是___________三、解答题15.我校要对如图所示的一块地进行绿化,已知AD=8米,CD=6米,AD△CD,AB=26米,BC=24米,求这块地的面积.16.学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.17.在ABC ∆中,BC a =,AC b =,AB c =.设c 为最长边.当222+=a b c 时,ABC ∆是直角三角形;当222a b c +≠时,利用代数式22a b +和2c 的大小关系,探究ABC ∆的形状(按角分类).(1)当ABC ∆三边分别为6、8、9时,ABC ∆为______三角形;当ABC ∆三边分别为6、8、11时,ABC ∆为______三角形.(2)猜想,当22a b +______2c 时,ABC ∆为锐角三角形;当22a b +______2c 时,ABC ∆为钝角三角形.(3)判断当2a =,4b =时,ABC ∆的形状,并求出对应的c 的取值范围.18.在ABC ∆中,已知三角形的三边长,求这个三角形的面积.(1)如图1,已知5AC =,12BC =,13AB =,则ABC ∆的面积是______; (2)如图2,已知10BC =,13AB AC ==,求ABC ∆的面积; (3)如图3,已知8AC =,10BC =,12AB =,求ABC ∆的面积答案1.D 2.C 3.C 4.B 5.C 6.C 7.C 8.C 9.C 10.C 11.5cm1213.2014.24cm2.15.这块地的面积是96平方米.16.12米.∆为钝角三角形17.(1)锐角,钝角.(2)>,<;(3)6<<时,ABCc18.(1)30;(2)60;(3)。
人教版八年级数学下册第十七章《勾股定理》单元培优练习题(含答案)
《勾股定理》单元培优练习题一.选择题1.下列命题中,是假命题的是()A.有一个内角等于60°的等腰三角形是等边三角形B.在直角三角形中,斜边上的高等于斜边的一半C.在直角三角形中,最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等2.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,233.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6 B.C.D.4.有一个三角形两边长为4和5,要使三角形为直角三角形,则第三边长为()A.3 B.C.3或D.以上都不对5.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7 B.8 C.7D.76.在下列各组数中,是勾股数的是()A.1、2、3 B.2、3、4 C.3、4、5 D.4、5、67.在同一平面上把三边BC=3,AC=4,AB=5的三角形沿最长边AB翻折后得到△ABC′,则CC′的长等于()A.B.C.D.8.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.B.C.D.9.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.310.从电线杆离地面8米处拉一根长为10m的缆绳,这条缆绳在地面的固定点距离电线杆底部有()m.A.2 B.4 C.6 D.811.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm12.若△ABC的三边a、b、c满足(a﹣b)2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二.填空题13.直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是cm.14.若△ABC得三边a,b,c满足(a﹣b)(a2+b2﹣c2)=0,则△ABC的形状为.15.已知a,b是互质的正整数,且a+b,3a,a+4b恰为一直角三角形的三条边长,则a+b的值等于16.如图,在Rt△ABC中,∠A=90°,AB=AC=4,点D为AC的中点,点E在边BC上,且ED⊥BD,则△CDE的面积是.17.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数,,.18.将一副三角尺按如图所示方式叠放在一起,若AB=20cm,则阴影部分的面积是cm2.19.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形的形状是三角形.20.若3,4,a和5,b,13是两组勾股数,则a+b的值是.21.如图,小正方形边长为1,则△ABC中AC边上的高等于.22.如图,四个全等的直角三角形围成一个大正方形ABCD,中间阴影部分是一个小正方形EFGH,这样就组成一个“赵爽弦图”.若AB=5,AE=4,则正方形EFGH的面积为.三.解答题23.在△ABC中,∠ACB=90°,AC=5,AB=BC+1,求Rt△ABC的面积.24.如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.25.操作:剪若干个大小形状完全相同的直角三角形,三边长分别记为a、b、c(如图①),分别用4张这样的直角三角形纸片拼成如图②③的形状,图②中的两个小正方形的面积S2、S3与图③中小正方形的面积S1有什么关系?你能得到a、b、c之间有什么关系?26.观察下表请你结合该表格及相关知识,求出b,c的值,并验证13,b,c是否是勾股数?27.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形可以拼出多种四边形,画出周长最大的四边形;当a=2,b=4时,求这个四边形的周长.参考答案一.选择题1.解:A、等腰三角形底角相等,若底角为60°,则顶角为180°﹣60°﹣60°=60°,若顶角为60°,则底角为=60°,所以有一个角为60°的等腰三角形即为等边三角形,故A选项正确;B、直角三角形中斜边的中线等于斜边的一半,只有在等腰直角三角形中斜边的高与斜边的中线才会重合,故B选项错误;C、在直角三角形中,最大的边为斜边,根据勾股定理可知斜边长的平方的等于两直角边长平方的和,故C选项正确;D、过三角形角平分线的交点作各边的垂线,则三角形分成3对小三角形,其中各顶点所在的两个直角三角形全等,即过角平分线作的高线相等,故D选项正确;即B选项中命题为假命题,故选:B.2.解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.3.解:∵∠ACB=90°,AC=8,AB=10,∴BC==6,△ABC的面积=×AB×CD=×AC×BC,即×10×CD=×8×6,解得,CD=,故选:C.4.解:当长为4和5的两边都是直角边时,斜边是:=;当长是5的边是斜边时,第三边是:=3.第三边长是:或3.故选:C.5.解:∵AE=5,BE=12,即12和5为两条直角边长时,小正方形的边长=12﹣5=7,∴EF=;故选:C.6.解:A、12+22=5≠32,不是勾股数,故本选项不符合题意.B、22+32=13≠42,不是勾股数,故本选项不符合题意.C、32+42=52,是勾股数,故本选项符合题意.D、42+52=41≠62,不是勾股数,故本选项不符合题意.故选:C.7.解:如图所示,连接CC′,根据对称的性质可知CC′⊥AB,且CC′=2CE,∵AC×BC=AB×CE,∴CE=,∴CC′=2×CE=.故选:D.8.解:如图所示:S△ABC=×BC×AE=×BD×AC,∵AE=4,AC==5,BC=4即×4×4=×5×BD,解得:BD=.故选:C.9.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为: ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.10.解:由题意得,在Rt△ABC中,AC=8,AB=10,所以BC==6.故选:C.11.解:由题意,可得这只烧杯的直径是:=6(cm).故选:D.12.解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.二.填空题(共10小题)13.解:当这个直角三角形的两直角边分别为3cm,4cm时,则该三角形的斜边的长为:=5(cm).当这个直角三角形的一条直角边为3cm,斜边为4cm时,则该三角形的另一条直角边的长为:=(cm).故答案为:5或.14.解:∵(a﹣b)(a2+b2﹣c2)=0,∴a=b或a2+b2=c2.当只有a=b成立时,是等腰三角形.当只有第二个条件成立时:是直角三角形.当两个条件都成立时:是等腰直角三角形.15.解:在直角三角形中,(1)若a+4b为斜边,则(a+4b)2=(a+b)2+9a2∴9a2﹣6ab﹣15b2=0,(a+b)(3a﹣5b)=0∵a+b≠0,且a,b互质,∴a=5,b=3.三条边长分别为8,15,17,a+b=8.(2)若3a为斜边,则9a2=(a+b)2+(a+4b)2,∴7a2﹣10ab﹣17b2=0,∴(a+b)(7a﹣17b)=0.∵a+b≠0,∴7a=17b,a,b互质,∴a=17,b=7.三条边长分别为24,45,51,a+b=24.综上得a+b=8.或a+b=24.16.解:点D为AC的中点故AD=DC=AC=2,S△ABD=S△BDC=S△ABC=12,由勾股定理得BC==4,过D点作DF垂直于BC于F点,DF===,BD2=AD2+AB2=12+48=60,BD=2,由勾股定理得BF ===3,由射影定理得BD 2=BF •BE ,∴BE ===CE =BC ﹣BE =4﹣=,S△CDE =×CE ×DF =××=2.故答案为:2.17.解:符合a 2+b 2=c 2即可,例如5,12,13;8,15,17;9,40,41.(答案不唯一) 18.解:∵∠B =30°,∠ACB =90°,AB =20cm , ∴AC =10cm .∵∠AED =∠ACB =90°, ∴BC ∥ED ,∴∠AFC =∠ADE =45°, ∴AC =CF =10cm .故S △ACF =×10×10=50(cm 2). 故答案为50.19.解:∵2ab =(a +b )2﹣c 2, ∴2ab =a 2+2ab +b 2﹣c 2, ∴a 2+b 2=c 2,∵三角形的三边长a ,b ,c 满足2ab =(a +b )2﹣c 2, ∴此三角形是直角三角形, 故答案为:直角.20.解:∵3,4,a 和5,b ,13是两组勾股数, ∴a =5,b =12, ∴a +b =17, 故答案为:17.21.解:过B 作BG ⊥AC ,交AC 于点G , 在Rt △ACF 中,AF =2,CF =1,根据勾股定理得:AC ==,∵S △ABC =S 正方形AFED ﹣S △BCE ﹣S △ABD ﹣S △ACF =4﹣×1×1﹣2××2×1=,S △ABC =AC •BG ,∴×BG =,则BG =.故答案为:22.解:直角三角形直角边的较短边为=3,正方形EFGH的面积=5×5﹣4×3÷2×4=25﹣24=1.故答案为:1.三.解答题(共5小题)23.解:如图所示:设AB=x,则BC=x﹣1,故在Rt△ACB中,AB2=AC2+BC2,故x2=52+(x﹣1)2,解得;x=13,即AB=13.∴BC=12,∴S△ABC=•AC•BC=×5×12=30.24.解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.25.解:分别用4张直角三角形纸片,拼成如图2、图3的形状,观察图2、图3可发现,图2中的两个小正方形的面积之和等于图3中的小正方形的面积,即S2+S3=S1,这个结论用关系式可表示为a2+b2=c2.26.解:根据图表,由图可得规律:,解得.所以b=84;c=85.∵132+842=7225,852=7225,∴13,84,85是勾股数.27.解(1)由图可得:,整理得:,整理得:a2+b2=c2;(2)当a=2,b=4时,根据勾股定理得:;如图1:则四边形的最大周长为2b+2c=.。
2020-2021年度人教版八年级数学下册 第17章勾股定理 章末综合培优训练(附答案)
2020-2021年度人教版八年级数学下册第17章勾股定理章末综合培优训练(附答案)1.若把直角三角形的三边都增加同样的长度,则新三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定2.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形3.如图是一个6×6的网格,在△ABC、△A'B'C'、△A″B″C″三个三角形中有()直角三角形.A.3个B.2个C.1个D.0个4.如图,在4×5的方格中,A、B为两个格点,再选一个格点C,使∠ACB为直角,则满足条件的点C个数为()A.3B.4C.5D.65.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有()A.1个B.2个C.3个D.无穷多个6.已知:如图,在方格图中∠AOB=()A.40°B.45°C.50°D.无法确定7.如图,在四边形ABCD中,AB=12cm,BC=3cm,CD=4cm,∠C=90°,当AD为多少时,∠ABD=90°()A.13B.6C.12D.68.一架长25dm的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7dm,如果梯子的顶端沿墙下滑4dm,那么梯足将滑()A.9 dm B.15 dm C.5 dm D.8 dm9.若三角形的三边长分别为3、4、5,则它最短边上的高为()A.2.4B.2.5C.3D.410.在一次课外社会实践中,王强想知道学校旗杆的高,他发现旗杆上的绳子垂到地面上还多1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A.13 m B.12 m C.4 m D.10 m11.已知线段a=3,b=4,若线段c能和a,b构成直角三角形,则c的长度是.12.小明家有一块如图所示的地,其中阴影部分是两个正方形,其他的是两个直角三角形和一个正方形,大直角三角形的斜边和一条直角边的长分别为34米,30米,小明家打算在阴影部分的土地上种花生,则种花生的面积为米2.13.小明从A出发沿东南方向前进50米到B地,再从B地向正西方向走200米到达C 地,此时小明离A地米.14.在平静的湖面上,有一支红莲,高出水面1m,﹣阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m,求这里的水深为米.15.一棵高9米的树从离地面4米处折断,树旁有一个身高为1米的小孩,则小孩至少离开这棵树米才是安全的.16.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3m.则点B到地面的垂直距离BC是.17.如图,某校A距离公路3千米,又与该公路旁上的某车站D的距离为5千米,现在公路边建一个商店C,使之与该校A及车站D的距离相等,则商店与车站的距离为千米.18.如图,要在两幢楼房的房顶A、B间拉一根光缆线(按线段计算),则至少米.19.如果三条线段的长度分别为8cm、xcm、18cm,这三条线段恰好能组成一个直角三角形,那么以x为边长的正方形的面积为.20.如图所示,小刚准备测量一条河的深度,他把一根竹竿插到离岸边1.5米远的水底,竹竿高出水面0.5米,再把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐;推断河水的深度为米.21.一块钢板形状如图所示,量得AB=3,BC=4,AC=5,CD=12,AD=13,请你计算一下这块钢板的面积.22.新园小区有一块直角三角形绿地,量得两直角边长分别BC=6m,AC=8m,现在要将绿地扩充成等腰三角形,且扩充部分是以AC为直角边的直角三角形,求扩充后整个等腰三角形绿地的面积.(要求画出简单的示意图,标明数据,写出过程,图2,图3备用)23.某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80m,BC=60m.线段CD是一条水渠,且D点在边AB上,已知水渠的造价为1000元/m,问:当水渠的造价最低时,CD长为多少米?最低造价是多少元?24.一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?25.如图,D为△ABC的BC边上的一点,AB=10,AD=6,DC=2AD,BD=DC.(1)求BC的长;(2)求△ABC的面积.26.如图,AD是△ABC的中线,AD=12,AB=13,BC=10,(1)求AC的长;(2)若AC边上的高为BH,求出BH的长.27.如图,有两条公路OM,ON相交成30°角.沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.参考答案1.解:设增加同样的长度为x,原三边长为a、b、c,且c2=a2+b2,c为最大边;新的三角形的三边长为a+x、b+x、c+x,知c+x为最大边,其对应角最大.而(a+x)2+(b+x)2﹣(c+x)2=x2+2(a+b﹣c)x>0,由余弦定理知新的三角形的最大角的余弦=>0,则为锐角,那么它为锐角三角形.另法:设增加同样的长度为x,原三边长为a、b、c,且c2=a2+b2,c为最大边;新的三角形的三边长为a+x、b+x、c+x,知c+x为最大边,其对应角最大.而(a+x)2+(b+x)2﹣(c+x)2=x2+2(a+b﹣c)x>0,∴(a+x)2+(b+x)2>(c+x)2,∴新三角形为锐角三角形,故选:A.2.解:∵(n2﹣1)2+(2n)2=(n2+1)2,∴三角形为直角三角形,故选:D.3.解:由图可知:AC=,BC=,AB=,即AB2=AC2+BC2,所以△ABC是直角三角形,A'C'=,B'C'=,A'B'=,即A'C'2≠A'B'2+B'C'2,所以△A'B'C'不是直角三角形,A“C“=2,B“C“=,A“B“=3,即B“C“2=A“B“2+A“C“2,所以△A″B″C″是直角三角形,故选:B.4.解:如图,根据勾股定理知AB2=12+32=10.∵12+32=10,+=10,+=10,∴符合条件的点C有6个.5.解:设直角三角形的两条直角边长为a,b(a≤b),则(a,b,k均为正整数),化简,得(ka﹣4)(kb﹣4)=8,∵a,b,k均为正整数.则ka﹣4和kb﹣4一定是整数,则一定是8的约数.∴或.解得或或即有3组解.故选:C.6.解:连接AB,由图可知:OA=,AB=,OB=,∴OA2=AB2+OB2,∴△ABO是等腰直角三角形,∴∠AOB=45°,故选:B.7.解:在△BDC中,∠C=90°,BC=3cm,CD=4cm,根据勾股定理得,BD2=BC2+CD2,即BD==5cm.当∠ABD=90°时,AD2=BD2+AB2,其中AB=12cm,BD=5cm,则AD=cm=13cm,8.解:如下图所示:AB相当于梯子,△ABO是梯子和墙面、地面形成的直角三角形,△OCD是下滑后的形状,∠O=90°,即:AB=CD=25分米,OB=7分米,AC=4分米,BD是梯脚移动的距离.在Rt△AOB中,由勾股定理可得:AB2=AO2+BO2,AO==24分米.∴OC=AO﹣AC=24﹣4=20分米,在Rt△COD中,由勾股定理可得:CD2=OC2+OD2,OD=15分米,BD=OD﹣OB=15﹣7=8分米,故选:D.9.解:∵三角形三边长分别是3,4,5,∴32+42=52,∴此三角形是直角三角形,它的最短边上的高为4,故选:D.10.解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m.在Rt△ABC中,AB2+BC2=AC2,∴x2+52=(x+1)2,解得x=12,∴AB=12.∴旗杆的高12m.11.解:分两种情况,当c为斜边时,x==5,当长4的边为斜边时,c==(根据勾股定理列出算式).故填5和.12.解:两个阴影正方形的面积和为342﹣302=256(米2).故种花生的面积为256米2.故答案为:256.13.解:小明从A出发沿东南方向前进50米到B地,故AD=BD=AB÷=50米,CD=200﹣50=150米,所以AC==50米.故答案为:50.14.解:如图,AD是红莲高出水面部分,即AD=1,B是红莲入泥处(根部).设BD=x,则BA=1+x,所以BC=AB=1+x,在Rt△BCD中,CD2+BD2=BC2,即22+x2=(1+x)2,4+x2=1+2x+x2,2x=3∴x=.故这里的水深m.15.解:如图,BC即为大树折断处4m减去小孩的高1m,则BC=4﹣1=3m,AB=9﹣4=5m,在Rt△ABC中,AC===4米.即小孩至少离开这棵树4米才是安全的.故答案为:4.16.解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,AE=DE=3,∴AD2=AE2+DE2=36m,∴AD=6,即梯子的总长为6m.∴AB=AD=6m.在Rt△ABC中,∵∠BAC=60°,∴∠ABC=30°,∴AC=AB=3m,∴BC2=AB2﹣AC2=62﹣32=27m,∴BC=3m,故答案为:3m.17.解:如图所示:过点A作AE⊥DC,交DC延长线于点E,由题意可得:AE=3km,AD=4km,则ED==4(km),∵AC=DC,∴在Rt△AEC中,AE2+EC2=AC2,则32+(4﹣AC)2=AC2,解得:AC=,故商店与车站的距离为:km.故答案为:.18.解:如图:作BD⊥AC于点D,由题意知:AD=AC﹣CD=AC﹣BE=18﹣12=6米,根据勾股定理得:AB===10米,故答案为:10.19.解:当x为直角边时,18为斜边,根据勾股定理得,x2+82=182,解得:x2=260;当x为斜边时,根据勾股定理得,82+182=x2,解得:x2=388.即以xcm为边长的正方形面积是260cm2或289cm2.故答案为260cm2或289cm2.20.解:若假设竹竿长x米,则水深(x﹣0.5)米,由题意得,x2=1.52+(x﹣0.5)2解之得,x=2.5所以水深2.5﹣0.5=2米.故答案为:2.21.解:∵42+32=52,52+122=132,即AB2+BC2=AC2,故∠B=90°,同理,∠ACD=90°,∴S四边形ABCD=S△ABC+S△ACD=×3×4+×5×12=6+30=36.22.解:在Rt△ABC中,∵∠ACB=90°,AC=8m,BC=6m,∴AB=10m,(1)如图1,当AB=AD时,CD=6m,则△ABD的面积为:BD•AC=×(6+6)×8=48(m2);若延长AC到D,使CD=AC=8m,则则△ABD的面积为=AD×BC=48 (m2);(2)图2,当AB=BD时,CD=4m,则△ABD的面积为:BD•AC=×(6+4)×8=40(m2);(3)如图3,当DA=DB时,设AD=x,则CD=x﹣6,则x2=(x﹣6)2+82,∴x=,则△ABD的面积为:BD•AC=××8=(m2);答:扩充后等腰三角形绿地的面积是48m2或40m2或m2.23.解:当CD为斜边上的高时,CD最短,从而水渠造价最低,∵∠ACB=90°,AC=80米,BC=60米,∴AB==100米,∵CD•AB=AC•BC,即CD•100=80×60,∴CD=48米,∴在Rt△ACD中,AC=80,CD=48,∴AD==64米,所以,CD长为48米,水渠的造价最低,其最低造价为48000元.24.解:∵竹竿的长为x米,横着比城门宽4米,竖着比城门高2米.∴城门的长为(x﹣2)米,宽为(x﹣4)米,∴可列方程为(x﹣4)2+(x﹣2)2=x2,解得x1=10,x2=2(舍去).答:竹竿是10米.25.解:(1)∵AD=6,DC=2AD,∴DC=12,∵BD=DC,∴BD=8,BC=BD+DC=8+12=20;(2)在△ABD中,AB=10,AD=6,BD=8,∵AB2=AD2+BD2,∴△ABD为直角三角形,即AD⊥BC,∵BC=BD+DC=8+12=20,AD=6,∴S△ABC=×20×6=60.26.解:(1)∵AD是BC的中线,BC=10,∴BD=CD=5,∵122+52=132,∴AD2+BD2=AB2,∴∠ADB=90°,∴∠ADC=90°,∴AC==13;(2)×10×12=60,60×2÷13=.答:BH的长是.27.解:(1)作AD⊥ON于D,∵∠MON=30°,AO=80m,∴AD=OA=40m,即对学校A的噪声影响最大时卡车P与学校A的距离40m.(2)如图以A为圆心50m为半径画圆,交ON于B、C两点,∵AD⊥BC,∴BD=CD=BC,在Rt△ABD中,BD===30m,∴BC=60m,∵重型运输卡车的速度为18千米/时=300米/分钟,∴重型运输卡车经过BC的时间=60÷300=0.2分钟=12秒,答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级下册数学
第17章勾股定理培优综合专练
1.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯多少米?
2.(1)如图4×4的方格,每个小格的顶点叫做格点,若每个小正方形边长为1单位,请在方格中作一个正方形,同时满足下列两个条件:
①所作的正方形的顶点,必须在方格上;②所作正方形的面积为8个平方单位
(2)在数轴上表示实数(保留作图痕迹)
3.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.琪琪同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.
(1)△ABC的面积为:.
(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.
4.观察、思考与验证
(1)如图1是一个重要公式的几何解释,请你写出这个公式;
(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;
(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.
5.中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA⊥OB,OA=36海里,OB=12海里,黄岩岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向黄岩岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.
(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.
6.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?
7.已知,如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2,求证:AB=BC.
8.在一次“构造勾股数”的探究性学习中,老师给出了下表:
m 2 3 3 4 …
n 1 1 2 3 …
a 22+1232+12 32+2242+32…
b 4 6 12 24 …
c 22﹣1232﹣1232﹣22 42﹣32…
其中m、n为正整数,且m>n.
(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.
(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b=,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.
9.如图,琪琪的家位于一条南北走向的河流MN的东侧A处,某一天琪琪从家出发沿南偏西30°方向走60m到达河边B处取水,然后沿另一方向走80m到达菜地C处浇水,最后沿第三方向走100m回到家A处.问琪琪在河边B处取水后是沿哪个方向行走的?并说明理由.
10.一写字楼发生火灾,消防车立即赶到距大楼9米的点A处.升起云梯到发生火灾的窗口点C处.已知云梯BC长15米,云梯底部B距地面A为2.2米.问发生火灾的窗口距地面有多少米?
答案
1.解:在直角三角形AOB中,根据勾股定理,得:
OB==6m,
根据题意,得:OB′=6+2=8m.
又∵梯子的长度不变,
∴在Rt△A′OB′中,根据勾股定理,得:OA′==6(m).
则AA′=8﹣6=2(m).
答:梯顶离路灯2米.
2.解:(1)如图,四边形ABCD即为所求的正方形;
(2)以A为圆心、AB为半径做弧交数轴于点E,点E即为所求.
3.解:(1)△ABC的面积=3×3﹣×2×1﹣×3×1﹣×2×3,
=9﹣1﹣1.5﹣3,
=9﹣5.5,
=3.5,
故答案为3.5;
(2)△DEF如图2所示;
面积=2×4﹣×1×2﹣×2×2﹣×1×4,
=8﹣1﹣2﹣2,
=8﹣5,
=3.
4.(1)解:这个公式是完全平方公式:(a+b)2=a2+2ab+b2;理由如下:
∵大正方形的边长为a+b,
∴大正方形的面积=(a+b)2,
又∵大正方形的面积=两个小正方形的面积+两个矩形的面积=a2+b2+ab+ab=a2+2ab+b2,∴(a+b)2=a2+2ab+b2;
故答案为:(a+b)2=a2+2ab+b2;
(2)证明:∵△ABC≌△CDE,
∴∠BAC=∠DCE,
∵∠ACB+∠BAC=90°,
∴∠ACB+∠DCE=90°,
∴∠ACE=90°;
(3)证明:∵∠B=∠D=90°,
∴∠B+∠D=180°,
∴AB∥DE,即四边形ABDE是梯形,
∴四边形ABDE的面积=(a+b)(a+b)=ab+c2+ab,
整理得:a2+b2=c2.
5.解:(1)作AB的垂直平分线与OA交于点C;
(2)连接BC,
由作图可得:CD为AB的中垂线,则CB=CA.
由题意可得:OC=36﹣CA=36﹣CB.
∵OA⊥OB,
∴在Rt△BOC中,BO2+OC2=BC2,
即:122+(36﹣BC)2=BC2,
解得BC=20.
答:我国海监船行驶的航程BC的长为20海里.
6.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.
设AC为x,则OC=9﹣x,
由勾股定理得:OB2+OC2=BC2,
又∵OA=9,OB=3,
∴32+(9﹣x)2=x2,
解方程得出x=5.
∴机器人行走的路程BC是5cm.
7.证明:∵∠ABC=90°,
∴AB2+BC2=AC2,
∵CD⊥AD,
∴∠ADC=90°,
∴AD2+CD2=AC2,
∵AD2+CD2=2AB2,
∴AC2=2AB2,
∴AB2+BC2=2AB2,
∴AB2=BC2,
∴AB=BC.
8.解:(1)当m=2,n=1时,a=5、b=4、c=3,
∵32+42=52,
∴a、b、c的值能为直角三角形三边的长;
(2)观察得,a=m2+n2,b=2mn,c=m2﹣n2;
(3)以a,b,c为边长的三角形一定为直角三角形,
∵a2=(m2+n2)2=m4+2m2n2+n4,
b2+c2=m4﹣2m2n2+n4+4m2n2=m4+2m2n2+n4,
∴a2=b2+c2,
∴以a,b,c为边长的三角形一定为直角三角形.
9.解:∵AB=60,BC=80,AC=100,
∴AB2+BC2=AC2,
∴∠ABC=90°,
∴AD∥NM,
∴∠NBA=∠BAD=30°,
∴∠MBC=180°﹣90°﹣30°=60°,
∴琪琪在河边B处取水后是沿南偏东60°方向行走的.
10.解:由题意可得:DC===12(m),
则CH=DC+DH=12+2.2=14.2(m),
答:发生火灾的窗口距地面有14.2米.。