概率论与数理统计(本科)02(§1)
[指南]怎样学好《概率论与数理统计》(1):预备知识
怎样学好《概率论与数理统计》(1):预备知识怎样学好《概率论与数理统计》(1):预备知识《概率论与数理统计》是研究和揭示随机现象的统计规律性的数学学科,是理工、经管、文各专业本科生必修的公共基础课,是考研数学的重要组成部分。
该课程需要《高等数学》(或称为《微积分》)的基础,又为高年级的有关专业课和硕士、博士阶段的数学课做知识准备,一般在第三学期开设。
以盛骤等编著的《概率论与数理统计》(高教出版社,第四版)为例,考研的基本要求是前七章及第八章中关于参数的假设检验这部分。
不同学校、专业因学时多少的不同而对教学内容各有侧重或延伸。
如果你《高等数学》(或称为《微积分》)的基础不是很扎实,最好开课前做好相关复习(如果来不及,至少把复习分散到学习各章之前),否则微积分会成为你学习概率统计的拦路虎。
其实,用到的都是微积分中非常基本的知识和运算。
下面是《概率统计》各章所需要的预备知识,供大家参考。
第一章“概率论的基本概念”用到集合的关系与运算,以及排列、组合的知识。
第二章“随机变量及其分布”用到定积分(包括无穷区间上的广义积分)的基本运算,定积分对积分区间的可加性,特别要熟悉被积函数是分段函数时的定积分运算。
第三章“多维随机变量及其分布”用到二重积分的基本运算,二重积分对积分区域的可加性,特别要熟悉化二重积分为二次积分时如何确定积分上、下限。
第四章“随机变量的数字特征” 用到数项级数求和,定积分(包括无穷区间上的广义积分)、二重积分的基本运算。
讲到n维随机变量时会用到《线性代数》中矩阵运算的记号,但只是稍稍提及,是为日后深入学习做准备的,一般不作为考试重点。
第五章“大数定律及中心极限定理”用到极限的概念,是借助于数列极限来定义随机变量序列的收敛、以及函数序列的收敛。
第六章“样本及抽样分布”基本用不到《高等数学》(或称为《微积分》)的知识。
第七章“参数估计”中矩估计部分用到数项级数求和,定积分(包括无穷区间上的广义积分),最大似然估计部分用到对数运算的性质、求导(包括求偏导)、求极值点的基本运算。
概率论与数理统计复习资料(二) (1)
<概率论>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为 (必须写出分布的参数)。
2.设),(~2σμN X ,而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为 。
3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 。
4.已知2)20,8(1.0=F ,则=)8,20(9.0F 。
5.θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计。
6.设样本的频数分布为则样本方差2s =_____________________。
7.设总体X~N (μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D (X )=________________________。
8.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。
若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________。
9.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x 1,x 2, …,x n )落入W 的概率为0.15,则犯第一类错误的概率为_____________________。
10.设样本X 1,X 2,…,X n 来自正态总体N (μ,1),假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H 0成立的条件下,对显著水平α,拒绝域W 应为______________________。
11.设总体服从正态分布(,1)N μ,且μ未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则μ的置信水平为1α-的置信区间公式是 ;若已知10.95α-=,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取__ __。
概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案
概率论与数理统计练习题系 专业 班 姓名 学号第六章 随机变量数字特征一.填空题1. 若随机变量X 的概率函数为1.03.03.01.02.043211pX-,则=≤)2(X P ;=>)3(X P ;=>=)04(X X P .2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413≈--e.3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=⋅==-k c k X P k则=c1516. 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.(13) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.(12) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __.(k 33(=,0,1,2k!P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为140000λ=的指数分布,则此种电器的平均使用寿命为____________小时.(40000)10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为11.若随机变量X 的概率密度为)(,1)(2+∞<<-∞+=x xa x f ,则=a π1;=>)0(X P ;==)0(X P 0 .12.若随机变量)1,1(~-U X ,则X 的概率密度为 1(1,1)()2x f x ⎧∈-⎪=⎨⎪⎩其它13.若随机变量)4(~e X ,则=≥)4(X P ;=<<)53(X P .14..设随机变量X 的可能取值为0,1,2,相应的概率分布为 , ,,则()E X =15.设X 为正态分布的随机变量,概率密度为2(1)8()x f x +-=,则2(21)E X -= 916.已知X ~B (n,p ),且E (X )=8,D (X )=,则n= 。
《概率论与数理统计》课件-第2章随机变量及其分布 (1)
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
泊松分布的应用
“稠密性”问题(一段时间内,电话交换中心接到的呼叫次 数,公共汽车车站候车的乘客数,售票窗口买票的人数, 原子放射的粒子数,保险公司在一定时期内被索赔的次 数等)都服从泊松分布.
随机变量的分布函数
1.定义: 设X为一随机变量, x为任意实数, 称函数 F(x)=P{X≤x}为X的分布函数.
注: ① F(x)是一普通函数, 其定义域为 ,; ② F x的值为事件X x的概率; ③ F x可以完全地描述随机变量取值的规律性.
例如: Pa X b PX b PX a
连续型随机变量及概率密度函数
1.定义: 设X ~ F(x), 若存在一个非负可积的函数 f (x),
使 x R, 有
F ( x)
PX
x
x
f
(t)dt
,
则称X为连续型随机变量, f (x) 称为X的概率密度函数或
分布密度函数.
2.几何意义:
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
二、随机变量的概念
定义: 设试验E的样本空间为 , 若对于每个样本
点 , 均有一个实数 X ()与之对应, 这样就得
到一个定义在 上的单值函数 X X () , 称X为随
机变量.
X
样本空间
实数
注: ① 随机变量是一个定义在样本空间上的实函数, 它取值的随机性是由样本点的随机性引起的;
x 1
x0
0 x x
不是 (不满足规范性)
概率论与数理统计(经管类)复习要点 第1章 随机事件与概率
第一章随机事件与概率1. 从发生的必然性角度区分,现象分为确定性现象和随机现象。
随机现象:在一定条件下,可能出现这样的结果,也可能出现那样的结果,预先无法断言。
统计规律性:在大量重复试验或观察中所呈现的固有规律性。
概率论与数理统计就是研究和揭示随机现象统计规律的一门数学学科,随机现象是概率论与数理统计的主要对象。
(1)概率论:从数量上研究随机现象的统计规律性的科学。
(2)数理统计:从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理。
2. (1)试验的可重复性——可在相同条件下重复进行;(2)一次试验结果的随机性——一次试验之前无法确定具体是哪种结果出现,但能确定所有的可能结果;(3)全部试验结果的可知性——所有可能的结果是预先可知的。
在概率论中,将具有上述三个特点的试验成为随机试验,简称试验,记作E。
样本点:试验的每一个可能出现的结果称为一个样本点,记为ω。
样本空间:试验的所有可能结果所组成的集合称为试验E的样本空间,记为Ω。
3. 在一次试验中可能出现也可能不出现的事件,统称为随机事件,记作A,B,C或A1,A2,…随机事件:样本空间Ω的任意一个子集称, 简称“事件”,记作A、B、C等。
事件发生:在一次试验中,当这一子集中的一个样本点出现时。
基本事件:样本空间Ω仅包含一个样本点ω的单点子集{ω}。
两个特殊事件:必然事件Ω、不可能事件φ样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生,称为必然事件。
空集φ不包含任何样本点,它也作为样本空间Ω的子集,在每次试验中都不发生,称为不可能事件。
4. 随机事件的关系与运算(1)事件的包含与相等设A,B为两个事件,若A发生必然导致B发生,则称事件B包含A,或称事件A包含在B中,记作B⊃A,A⊂B。
①φ⊂A⊂Ω②若A⊂B且B⊂A,则称A与B相等,记作A=B。
事实上,A和B在意义上表示同一事件,或者说A和B 是同一事件的不同表述。
(2)和事件称事件“A,B中至少有一个发生”为事件A与事件B的和事件,也称为A与B的并,记作A∪B或A+B。
概率论与数理统计ppt课件(完整版)
第一章 概率论的基本概念 前言
1. 确定性现象和不确定性现象. 2. 随机现象: 在个别试验中其结果呈现出不确定性, 在 大量重复试验中其结果又具有统计规律性.
3. 概率与数理统计的广泛应用.
2021/3/25
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。
不可能事件:空集φ不包含任何样本点, 它在每次试验中 都不发生,称为不可能事件。
2021/3/25
6
例1. 试确定试验E2中样本空间, 样本点的个数, 并给出如
下事件的元素: 事件A1=“第一次出现正面”、事件A2=“ 恰好出现一次正面”、事件A3=“至少出现一次正面”.
即A, B中至少有一个发生, 称为A与B的和, 记A B.
可列个事件A1, A2 , 的和事件记为 Ak .
k 1
3.积事件: 事件A B={x|x A 且 x B}称A与B的
积,即事件A与BA同时发生. A B 可简记为AB.
类似地,
事件
SA
k 1
K
为可列B 个事件A1,
A2,
...的积事件.
2021/3/25
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率的古典定义:
对于古典概型, 样本空间S={1, 2, … , n}, 设事件A包 含S的 k 个样本点,则事件A的概率定义为
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况. E2: 将一枚硬币抛三次,观察正反面出现的情况. E3: 将一枚硬币抛三次,观察出现正面的情况. E4: 电话交换台一分钟内接到的呼唤次数. E5: 在一批灯泡中任取一只, 测试它的寿命.
概率论与数理统计第二章课后习题及参考答案
于是, X 的分布律为
P ( X k ) p k 1 (1 p ) (1 p ) k 1 p , k 2,3, .
7.随机变量 X 服从泊松分布,且 P ( X 1) P ( X 2) ,求 P ( X 4) 及 P ( X 1) .
3
解: P ( X 1) P ( X 2) ,
(3) 方法 1: P (1 X 3) P ( X 1) P ( X 1) P ( X 2) 1 . 方法 2: P (1 X 3) F (3) F (1 0) 1 0 1 . 4.一制药厂分别独立地组织两组技术人员试制不同类型的新药.若每组成功的 概率都是 0.4,而当第一组成功时,每年的销售额可达 40000 元;当第二组成 功时,每年的销售额可达 60000 元,若失败则分文全无.以 X 记这两种新药 的年销售额,求 X 的分布律. 解:设 Ai {第 i 组取得成功}, i 1,2 , 由题可知, A1 , A2 相互独立,且 P ( A1 ) P ( A2 ) 0.4 . 两组技术人员试制不同类型的新药, 共有四种可能的情况:A1 A2 ,A1 A2 ,A1 A2 ,
2
P ( X 0) P ( A1 A2 ) P ( A1 ) P ( A2 ) 0.36 ,
60000 0.24
40000 0.24
0 0.36
5.对某目标进行独立射击,每次射中的概率为 p ,直到射中为止,求: (1) 射击次数 X 的分布律;(2) 脱靶次数 Y 的分布律. 解:(1) 由题设, X 所有可能的取值为 1,2,…, k ,…, 设 Ak {射击时在第 k 次命中目标},则
1 ln 3) ;(3) 分布函数 F ( x) . 2
茆诗松概率论与数理统计教程课件第一章 (2)
4. 求概率的几何方法
例四. 设有N件产品,其中D件次品,从中任取n件,求 其中恰有k(k≤D)件次品的概率.
解 : 样本空间就是从 N个产品中取 n件的不同 方式, 样本点数就是方式数
n CN
所求事件是 n个产品中有 k件次品 , 这个事件可以 通过两个步骤完成 :
k (1)从D件次品里取 k件, 方式数为 C D
n k (2)从N D个正品中取 n k件, 方式数为C N D
概率的定义并没有告诉人们如何去求概率, 也没有 说一个特定的样本空间对应一个特定的概率, 只 是告诉人们以任何方式定义的概率必须满足的条 件.
概率的求法, 根据问题的特点, 分别采取以下 的不同途径进行:
• 频率方法
• 古典方法
• 几何方法
2. 求概率的频率方法
事实上, 人们很早就开始了这方面的思考. 例如, “频 率”早就被引入来描述事件发生的频繁程度. 为了研究女婴出生的可能性, 统计学家克 拉梅(1893-1985) 利用瑞典1935年的官 方资料, 测得女婴出生的频率在0.482左 右摆动, 从而得出女婴出生的概率为 0.482.
分房模型在统计物理学里也有应用. 在那里将本例 中的“人”理解成“粒子”, “房间”理解成不同 的“能级”.
例七.(生日问题) 某班级有n个人 (n≤365), 问至少 有两个人的生日在同一天的概率有多大? 解: 假定一年按365天计算, 把365天当作365个“房间”,
那么问题类比于例五. 这时, 事件“n个人生日全不相同”就相当于例五中 的(2):“恰有n个房间, 其中各住一人”. 令A={n个人中至少有两个人的生日在同一天}, 则其 对立事件是{n个人的生日全不相同}. 根据例五(2)知
概率论与数理统计整理(一二章)
一、随机事件和概率考试内容:随机事件(可能发生可能不发生的事情)与样本空间(包括所有的样本点) 事件的关系(包含相等和积差互斥对立)与运算(交换分配结合德摸根对差事件文氏图) 完全事件组(所有基本事件的集合) 概率的概念概率的基本性质(非负性规范性可列可加性) 古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求:1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率(弄清几何意义),掌握概率的加法公式(PAUB=PA+PB--PAB)、减法公式(P(A--B)=PA--PAB)、乘法公式(PAB=PA*PB|A)、全概率公式(关键是对S进行正确的划分),以及贝叶斯公式.3.理解事件的独立性(PAB=PA*PB)的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.整理重点:1. 随机事件:可能发生也可能给不发生的事件。
0<概率<1。
2. 样本空间:实验中的结果的每一个可能发生的事件叫做实验的样本点,实验的所有样本点构成的集合叫做样本空间,大写字母S表示。
3. 事件的关系:(1)包含:事件A发生必然导致事件B发生,称事件B包含事件A。
(2)相等:事件A包含事件B且事件B包含事件A。
(3)和:事件的并,记为A∪B。
(4)差:A-B称为A与B的差,A发生而B不发生,A-B=A-AB。
(5)积:事件的交,事件A与B都发生,记为AB或A∩B。
(6)互斥:事件A与事件B不能同时发生,AB=空集。
(7)对立:A∪B=S。
4. 集合的运算:(1)交换律:A∪B=B∪A AB=BA (2结合律:(A∪B)∪C=A∪(B∪C) (AB)C=A(B C) (3)分配率:A (B∪C)=AB∪AC A∪(BC)=(A∪B)(A∪C) (4)德*摩根定律5. 完全事件组:如果n个事件中至少有一个事件一定发生,则称这n个事件构成完全事件组(特别地:互不相容的完全事件组)。
明德概率论与数理统计第二章第一节(1)
即任一分布函数处处右连续.
如:对例1,
0 , x 0, 1 F ( x ) , 0 x 1, 2 1, x 1.
1
1 2
F (x )
o
1
x
一个函数若具有上述性质, 则此函数一定是某个随 机变量的分布函数.
例2: 已知随机变量X 在整个实轴上取值, 其分布
X x
x
x
F ( x ) P ( X x ),
F(x) 是随机变量 X 取值不大于 x 的概率.
用分布函数计算 X 落在( a ,b ] 里的概率:
P ( a X b) P ( X b) P ( X a )
] (
a
]
b
请 填 空
P ( X a ) F (a ) F (a 0) P ( X a ) 1 P ( X a ) 1 F (a ) P (a X b) F (b) F (a 0)
而X在xk(k=1,2, · )处的概率就是F(x) · ·
在这些间断点处的跃度.
2º P{a X b}
F ( b 0) F ( a 0) F (b) F (a )
例3 一盒内装有5个乒乓球,其中2个旧的,
3个新的,从中任取2个,求取得的新球 个数X的分布律与分布函数,并计算: P{0 X 2}, P{0 X 2}. 解 X={ 取得的新球个数 },其分布律为
方法1. P{0 X 2}
P{ X 1} P{ X 2}
0.6 0.3 0.9
P{0 X 2} P{ X 0} P{ X 1}
F ( x) 0.7, 1 x 2 1, x2
概率论与数理统计人大版本
概率论与数理统计人大版本
一、概率论与数理统计的概述
概率论是研究随机现象的理论体系,它通过对随机现象的规律性进行研究,为我们预测和决策提供依据。
数理统计则是一种基于数据的研究方法,它通过对数据的分析和处理,提取出数据背后的信息,为实际问题的解决提供支持。
二、概率论与数理统计的基本概念
在概率论中,随机事件是指在一定条件下可能发生的事件,而样本空间则包含了所有可能的结果。
概率分布描述了随机变量取值的概率规律,而概率密度函数则用于描述连续型随机变量的概率分布。
三、常见概率分布及其应用
常见的概率分布有二项分布、泊松分布和正态分布等。
二项分布用于描述一系列伯努利试验的结果,泊松分布用于描述单位时间内随机事件的次数,正态分布则广泛应用于自然科学、社会科学和工程技术领域。
四、数理统计的基本方法
数理统计的基本方法包括描述性统计、推断性统计等。
描述性统计用于概括和描述数据的集中趋势、离散程度等信息,而推断性统计则通过抽样数据对总体参数进行估计和检验。
五、参数估计与假设检验
参数估计是通过对样本数据的研究,估计总体参数的值。
常见的点估计方法有最大似然估计、矩估计等,区间估计则通过构建置信区间来估计参数。
假
设检验则是通过检验统计量与临界值之间的关系,对总体参数进行推断。
六、应用领域与发展趋势
概率论与数理统计在自然科学、社会科学和工程技术等领域具有广泛的应用。
随着大数据时代的到来,概率论与数理统计的研究方法和技术也在不断发展,包括机器学习、数据挖掘等领域。
在我国,概率论与数理统计的研究和应用也取得了显著成果,为各个领域的创新发展提供了有力支持。
(完整版)概率论与数理统计知识点总结
p k q nk
其中 q 1 p,0 p 1, k 0,1,2,, n ,
则称随机变量 X 服从参数为 n , p 的二项分布。记为
X ~ B(n, p) .
当 n 1时, P(X k) pk q1k , k 0.1,这就是(0—1)分布,
所以(0-1)分布是二项分布的特例。
泊 松 设随机变量 X 的分布律为
1
(完整版)概率论与数理统计知识点总结
A—B,也可表示为 A—AB 或者 AB ,它表示 A 发生而 B 不发生的事
件.
A、B 同时发生:A B,或者 AB。A B=Ø ,则表示 A 与 B 不可能 同时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是
互不相容的.
—A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A .它表 示 A 不发生的事件。互斥未必对立。
P(A)= (1) (2 ) (m ) = P(1) P(2 ) P(m )
m n
A所包含的基本事件数 基本事件总数
(6)几 若随机试验的结果为无限不可数并且每个结果出现的可能性均
1
(完整版)概率论与数理统计知识点总结
何概型 匀,同时样本空间中的每一个基本事件可以使用一个有界区域 来描述,则称此随机试验为几何概型。对任一事件 A,
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
5° P(X x) F(x) F(x 0) .
对于离散型随机变量, F(x) pk ; xk x x
对于连续型随机变量, F(x) f (x)dx .
概型 用 p 表示每次试验 A 发生的概率,则 A 发生的概率为1 p q ,用
概率论与数理统计第二章习题与答案
概率论与数理统计习题 第二章 随机变量及其分布习题2-1 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X 表示取出的3只球中的最大,写出X 随机变量的分布律.解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101习题2-2 进行重复独立试验,设每次试验成功的概率为p ,失败的概率为p -1)10(<<p .(1)将试验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律.(此时称X 服从以p 为参数的几何分布.)(2)将试验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律.(此时称Y 服从以p r ,为参数的巴斯卡分布.)(3)一篮球运动员的投篮命中率为%45.以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率.解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111Λ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }=Λ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P习题2-3 一房间有同样大小的窗子,其中只有一扇是打开的。
概率论与数理统计2-1 一维随机变量及其分布 (3)
五、连续型随机变量 六、典型的连续型 随机变量及其分布
回
停 下
五、连续型随机变量 连续型随机变量
1. 密度函数 对于随机变量X, 定义 对于随机变量 ,若存在非负可积函 使得X 数 p(x) ( x∈R), 使得 的分布函数 ∈
F ( x) = ∫
或概率密度. 数,或概率密度 或概率密度
1 , 2 ≤ x ≤ 5, p( x ) = 3 0, 其它.
表示“ 设 A 表示“对 X 的观测值大于 3”, 即 A={ X >3 }.
由于 P ( A) = P { X > 3} = ∫
51
3
2 dx = , 3 3
进行3次独立观测中 设Y 表示对 X进行 次独立观测中 观测值大于 进行 次独立观测中, 3的次数 的次数, 的次数 则
P {a < X ≤ b} = P { a < X < b } = P{a ≤ X < b}
= P{a ≤ X ≤ b}
连续型随机变量的概率与区间的开闭无关 3º
P( A) = 0 P( A) = 1
A= ∅ A= Ω
的分布函数为: 例1 设连续型随机变量X的分布函数为: F( x) = A+ Barctan x − ∞ < x < ∞
1 x − 1 − e 2000 , F ( x) = 0,
x ≥ 0, x < 0.
(1) P { X > 1000}= 1 − P { X ≤ 1000} = 1 − F (1000)
1 − 1 − e 2000x , x ≥ 0, F ( x) = 0, x < 0.
(完整版)概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案
概率论与数理统计练习题系 专业 班 姓名 学号第六章 随机变量数字特征一.填空题1. 若随机变量X 的概率函数为1.03.03.01.02.043211pX-,则=≤)2(X P 0.6 ;=>)3(X P 0.1 ;=>=)04(X X P 0.125 .2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413≈--e.3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=⋅==-k c k X P k则=c1516. 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则()P AB =____________.(0.18)5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB 0.16. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.(13) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.(12) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __.(k 33(=,0,1,2k!P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为140000λ=的指数分布,则此种电器的平均使用寿命为____________小时.(40000)10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为11.若随机变量X 的概率密度为)(,1)(2+∞<<-∞+=x x a x f ,则=a π1;=>)0(X P 0.5 ;==)0(X P 0 .12.若随机变量)1,1(~-U X ,则X 的概率密度为 1(1,1)()2x f x ⎧∈-⎪=⎨⎪⎩其它13.若随机变量)4(~e X ,则=≥)4(X P ;=<<)53(X P .14..设随机变量X 的可能取值为0,1,2,相应的概率分布为0.6 , 0.3 ,0.1,则()E X = 0.515.设X为正态分布的随机变量,概率密度为2(1)8()x f x +-=,则2(21)E X -= 916.已知X ~B (n,p ),且E (X )=8,D (X )=4.8,则n= 。
概率论与数理统计第二章习题 (1)
这样, 我们对随机事件的研究就可以转化成对随机 变量的研究.
正如研究随机试验那样, 我们不仅要知道随机试验可能 出现哪些结果, 更要了解这些结果出现的概率有多大.
同样对随机变量, 我们不仅要知道它取哪些值, 还要知道它取这些值的概率, 也就是该随机变量 的概率分布.
概率分布的定义
随机变量X的可能取值和它取这些值的概率称为X 的概率分布. 本章的重点就是考察随机变量的概率分布. 概率分 布由于随机变量的特点有不同的表达方式, 下面首 先介绍一个通用的工具:随机变量的分布函数.
当1≤x<2时, F(x)=P(X≤x)=P(X=0)+P(X=1)=1/2 当2≤x<3时, F(x)=P(X≤x)=P(X=0)+P(X=1)+P(X=2)=7/8
当x≥3时, F(x)=P(X≤x)=P(X=0)+P(X=1)+P(X=2)+P(X=3)=1 综上所述, X的分布函数为:
0 1/8 F ( x ) 1/2 7 /8 1 当 x 0 当0 x 1 当1 x 2 当2 x 3 当3 x
P ( x i 1 X x i )
i 1
[ F ( x i ) F ( x i 1 )]
i 1
F ( x1 ) l imF ( x n )
n
所以,
F ( x0 ) lim F ( xn ) F ( x0 0) .
n
从例二中X的F(x)图象, 可以清楚地看出分布函数的 这三条性质.
因为一个离散随机变量只取有限个或可列无限个值, 所以我 们可以定义其取每个值的概率, 即给出该变量的概率分布列.
概率论与数理统计第二章习题解答
《概率论与数理统计》第二章习题解答(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为 投保一年内因其他原因死亡:5万,概率为投保一年内没有死亡:的分布律为:2、一袋中有53、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5P :106,103,1013、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。
解:任取三只,其中新含次品个数X 可能为0,1,2个。
3522)0(315313===C C X P 3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表 X : 0, 1, 2P : 351,3512,352224、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1)(1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。
(此时称X 服从以p 为参数的几何分布。
)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。
(此时称Y 服从以r, p 为参数的巴斯卡分布。
)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.完备事件组
JINSW 本科 2
如果n个事件A1,A2, ,An满足: (1)Ai A j 1 i j n (2)A1 A2 An 则称A1,A2, ,An构成一个完备事件组。
A1
An
A2 A3
An 1
24
*事件的运算律 (1)交换律 (2)结合律 (3)分配律
1 , 2 , 3 , 4
10
随机试验中任意一个事件就是样本空间的一 个子集。 基本事件是由一个样本点组成的单元集。 由于概率统计的研究对象是随机现象。为了 认识一个随机现象,很重要的一点是搞清它的样 本空间。而样本空间是一个集合,所以可以从集 合角度来描述随机事件。
JINSW 本科 2
i 1
n
i
17
*例5:某产品要经过两道工序加工,只要有一 道工序加工不合格,产品就不合格。
JINSW 本科 2
设A பைடு நூலகம்产品不合格
设C 产品合格
Bk 第k道工序加工不合格 , (k 1,2) A B1 B2或A B1 B2 Dk 第k道工序加工合格, k 1, 2 ,
JINSW 本科 2
E 1 : 投一枚硬币3次,观察正面出现的次数 1 {0,1, 2,3} 有限样本空间
E 2 : 观察总机9~10点接到的电话次数
2 { 0 ,1, 2 ,3 , , N } E3 : 观察某地区每天最低与最高温度
3 {( x, y ) T1 x y T2 } 无限样本空间
C D1 D2或C D1 D2
18
3.事件的交(积) ▲定义: A B { | A且 B}
JINSW 本科 2
A B 或 AB
--A与B的积事件
A
B
A B 发生
事件A与事件 B同时发生
A B
n
A1 , A2 , , An 的积事件--
A
i 1
11
*例2:接连投掷三次硬币,观察各次正反面出 3 现的情况。 2 8 A1 正, 正, 正, A2 正, 正, 反, A3 正, 反, 正, A4 反, 正, 正, A5 正, 反, 反, A6 反, 正, 反, A 反, 反, 正, A 反, 反, 反 8 7
③不可能事件 ④A B
④随机事件
② 2.设 A, B 为两事件,则 A B ___。
③ AB
② ③A ④A B ① 填空题: 互不相容(或互斥) 4.若事件 A, B 满足 AB ,则称与___________________。 5.事件 A, B 的并 A B 与差 A B 分别指___的事件。
JINSW 本科 2
A B B A或A B B A A B B A或AB BA
A B C A B C AB C ABC A B C AC BC AB C A C B C
JINSW 本科 2
立信会计学院
数统系 数统系
1
概率论与 数理统计
2
JINSW 本科 2
Jinsw
2
JINSW 本科 2
第一章
随机事件的概率
3
*随机现象与统计规律性 确定性现象 大量重复试验中,其结 随机现象-- 果有统计规律性的现象
JINSW 本科 2
在相同的条件下进行大量观察或试验时, 出现的结果有一定的规律性--统计规律性 *例:观察投掷一枚质地均匀的硬币的结果。 当投掷的次数很大时,出现正面的次数与 出现反面的次数大致相同,几乎为总投掷次数 的一半。
③ 3.设 A, B 为两事件,则 AB A B ___。
A B表示 A, B中至少一个发生; A B表示 A发生而 B不发生
多项选择题: ②④ 6.事件 A B 又可表示为___。 ① AB ② AB ③ AB ④ A AB ⑤ AB A B
33
9
*基本事件与样本空间 基本事件:不能分解的最简单的随机事件。
JINSW 本科 2
k 1, 2, 3, 4 上例: Ak 取到的是k号球 ,
随机试验中的每一种可能结果为一个 样本 点,用 或 e 表示。样本点的全体组成的集合称 为该随机试验的样本空间,记为 或 S 。
上例: Ak k (k 1, 2, 3, 4)
JINSW 本科 2
B 表示中文书 C 表示平装书
AB C --抽取的是非平装中文版数学书 C B --非平装书都是中文书 A B --非数学书都是中文版的,且中文版
的书都是非数学书
29
记号
概率论 样本空间, 必然事件 不可能事件 基本事件 事件 A的对立事件 事件A发生导致B发生 事件A与事件B相等 事件A与事件B至少有一个发生 事件A与事件B同时发生 事件A发生而事件B不发生 事件A和事件B互不相容
JINSW 本科 2
D 至多有二次正面 A2,A3,A4,A5,A6,A7,A8 E 至多有一次反面 A1,A2,A3,A4
B 恰好有二次正面 A2,A3,A4 C 至少有二次正面 A1 , A2 , A3 , A4
12
*例3:一组随机试验及相应的样本空间
A B
事件A发生必 导致事件B发生
A B A B且B A --事件的相等
15
*例4:袋中装有2只白球和1只黑球,现从中 依次摸出两球。设
JINSW 本科 2
C 第一次摸得白球且第二次也摸得白球
•A ?B •C ?B •A ?C
B 第一次摸得白球
A 两次都摸得白球
A B A B (4)对偶律 AB A B
25
*例6:利用事件关系和运算表达多个事件的 关系。
JINSW 本科 2
A,B,C都不发生:
A B C A B C
A,B,C不都发生:
ABC A B C
26
*例7:用图示法简化
( A B)(A B) AB
JINSW 本科 2
其中: T1 , T2 是该地区的最低与最高温度。
13
三.事件间的关系与运算 随机事件的关系和运算与集合的关系和运算 雷同。 文氏图(Venndiagram) A
JINSW 本科 2
14
1.事件的包含 ▲定义: A B A B
JINSW 本科 2
A B
--A包含于B
集合论 全集 空集 元素 子集 A的余集 A是B的子集 A与B的相等 A与B的和集 A与B的交集
JINSW 本科 2
A A A B AB A B AB A B AB
A与B的差集 A与B没有相同的元素
30
JINSW 单项选择题: 本科 1.对掷一粒骰子的试验,在概率论中将“出现偶数点”称为__。 2
4
*历史上投掷硬币试验的一些结果:
JINSW 本科 2
正面出现 抛掷次数 试验者 次数 n m 2048 1061 德摩根 4040 2048 蒲丰 12000 6019 K·皮尔逊 24000 12012 K·皮尔逊 30000 14994 维尼 39699 罗曼诺夫斯基 80640
正面出现 频率 m÷n 0.5180 0.5069 0.5016 0.5005 0.4998 0.4923
JINSW 本科 2
7
*例1:一袋中有编号分别为1、2、3、4 的四个球,从中任取一球。记:
JINSW 本科 2
C 取到的球的号码为偶数 D 取到的球的号码小于5
B 取到的球的号码不大于3
Ak 取到的是k号球, k 1, 2, 3, 4
E 取到的球的号码不小于5 不可能事件
必然事件
A1、A2、A3、A4、B、C、D、E都是随机事件
8
*必然事件与不可能事件 (1)必然事件:在试验中一定会发生的事 件,用Ω表示。 上例中的D。
JINSW 本科 2
(2)不可能事件:在试验中一定不会发生的 事件,用Φ表示。 上例中的E。 按照随机事件的定义,必然事件与不可能 事件都不是随机事件,为了讨论方便,一般将 它们看成特殊的随机事件。
称B为A的对立事件(逆事件), 记为 B A *注意:“A与B互相对立”与“A与B互斥” 是不同的概念。
22
AA ,A A A A,A A A ,A A
,
A
A
JINSW 本科 2
A B AB
A
A B
B
B
23
( A B ) B A
红色 区域
交
A
(AB)
A
B
黄色 区域
(AB)(AB) A
27
*例8:化简事件
JINSW 本科 2
( A B)C AC
AC BC AC
A(C C ) BC
A BC
A BC
28
*例9:在图书馆中随意抽取一本书, 事件:A 表示数学书
5
§1.1随机事件 一.随机试验与样本空间 *随机试验 对某事物特征进行观察--试验 若它有如下特点,则称为随机试验。 可在相同的条件下重复进行;
JINSW 本科 2
试验结果不止一个,但能明确所有结果; 试验前不能预知出现哪种结果。 随机试验用E表示。
6
二.随机事件 在随机试验中,可能出现的结果,称为随机事 件, 简称事件, 通常用大写字母 A、B、C 等表示。 *上例: E:观察投掷一枚质地均匀的硬币的结果 --试验 A={正面};B={反面}---事件 *注:仅满足 试验结果不止一个,但能明确所有结果; 试验前不能预知出现哪种结果。 ----不可重复随机事件