具有轴向推力和弯矩作用下的轴系的校中分析
船舶轴系校中计算书
尾管斜膛孔数据
尾管后轴承长度 艉管后轴承支点距后端面距离 尾管后轴承间隙 艉管最大斜度 艉管平均斜度
艉管不需进行斜膛孔
:
1000.0
:
1275.0
:
1.1
:
1.1E+00
: 5.14E-02
轴承 序号
2
mm mm mm mm mm
Ver.0601 70088 浙江欣海船舶
COMPASS
SRM04
船舶轴系校中计算程序 ( Ver. 0201 ) - 70088
变位 ( mm )
0.0000 0.0000 -0.3450 -0.3700
转角 ( rad )
1.5018E-04 -1.3249E-04 -7.4741E-05 -5.8285E-05
反力 ( k.N )
22.678 8.277 3.952 7.231
20%轴段重量 ( k.N )
1.909 3.530 2.593 0.226
单元材料 序号
3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ver.0601 70088 浙江欣海船舶
F
0.00
0
材料数据
材料序号
1 2 3
弹性模量(N/mm^2)
2.060E+11 2.060E+11 2.060E+11
PAGE 3
单元 号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
轴系设计与分析实验报告
轴系设计与分析实验报告轴系设计与分析实验报告引言:轴系设计与分析是机械工程领域中一个重要的研究方向。
轴系是机械传动中的关键组成部分,其设计合理与否直接影响到机械系统的性能和寿命。
本实验旨在通过对轴系的设计与分析,深入了解轴系的工作原理和设计要点,为机械工程师提供参考和指导。
一、实验目的本实验的主要目的是通过设计和分析轴系,掌握轴系设计的基本原理和方法,深入理解轴系的工作原理和设计要点。
二、实验原理1. 轴系的基本概念轴系是由轴、轴承、传动装置等组成的机械传动系统。
轴承是轴系中的重要组成部分,其作用是支撑轴的转动并承受轴上的载荷。
2. 轴系的设计要点轴系的设计要点包括轴的材料选择、轴的尺寸计算、轴的受力分析等。
轴的材料选择应考虑其强度、刚度和耐磨性等因素;轴的尺寸计算应根据轴上的载荷和转速等参数进行;轴的受力分析可以通过有限元分析等方法进行。
三、实验步骤1. 确定轴系的工作条件和参数,包括载荷、转速等。
2. 根据轴系的工作条件和参数,选择合适的轴材料。
3. 根据轴系的工作条件和参数,计算轴的尺寸。
4. 进行轴的受力分析,包括静态受力分析和动态受力分析。
5. 根据轴的受力分析结果,对轴进行优化设计。
6. 检验轴的设计是否满足要求,包括强度、刚度和耐磨性等方面。
四、实验结果与分析通过实验,我们设计了一台用于传动的轴系,并对其进行了分析。
根据轴系的工作条件和参数,我们选择了合适的轴材料,并计算出了轴的尺寸。
通过有限元分析,我们得到了轴的受力分析结果,并对轴进行了优化设计。
最后,我们对轴进行了检验,结果表明轴的设计满足了要求。
五、实验总结通过本次实验,我们深入了解了轴系的设计原理和方法,掌握了轴系设计的基本要点和步骤。
实验结果表明,轴系的设计对机械系统的性能和寿命有着重要影响,合理的轴系设计可以提高机械系统的工作效率和可靠性。
因此,在实际工程应用中,我们应该重视轴系的设计与分析,确保机械系统的正常运行和长期稳定性。
船舶轴系校中
轴系校中船舶建造和轴系修理时,均有轴系安装和轴系校中工作,轴系的安装和校中质量直接关系到主机推进系统运转的可靠性和船舶航行的安全性。
轴系的安装与校中都是依轴系理论中心线为依据的。
轴系的理论中心线是船舶设计的确定的轴系中心线。
它是有首、尾两个基准点确定的,首基准点一般在前隔舱壁上或主机某处;尾基准点一般在后隔舱壁或舵系中心线后某处。
理论中心线的高低由基准点的高度确定。
单轴系的船舶的理论中心线位于船体的中纵剖面上;双轴系的中心线按船体纵剖面对称分布。
1、轴系校中的实质轴系校中就是要按一定的要求和方法把轴系安装成一定的状态,在此种状态下轴系的各轴段内的应力和所有轴承上的负荷,都在允许的范围之内或具有合理的数值,从而使轴系能可靠地运转。
轴系校中的实质就是准确地确定船轴机器轴承的位置。
船舶轴系是否能可靠地运转,不仅取决于轴系的结构设计、材料和制造,而且更重要的是取决于轴系的安装质量。
轴系校中、安装质量不佳,会造成轴承发热,尾轴承过度磨损、密封装置损坏和轴系振动等。
因此,轴系校中是按照一定的原理和方法,将轴系布置成某种轴线状态,使各轴承上的负荷,各轴段内的应力、弯矩、转角等尽可能在允许值的范围内或取得合理的数值,从而保证轴系安全、可靠地运转。
2、轴系校中的原理和方法轴系校中可以分为以下3种:1)直线校中根据轴系的理论中心线,将轴系各轴承中心布置成一条直线,这一过程称为直线校中。
仅此原理的校中方法在产生中采用以下方法进行:1)按法兰上严格规定的偏中值校中法。
按直线校中时,各轴的连线应为一条直线,即偏移值δ=0、曲折值ф=0,生产中规定:δ≤、ф≤m。
测量时,直尺—塞尺法或指针法。
(2)光学仪器校中法。
光学准直仪或投射仪校中轴系。
以光学仪器的光轴作为轴系理论中心线来校准人字架、尾轴管、中间轴承等轴系部件的位置,是这些部件的中心线与主光轴重合。
该法校中部件定位精度高、效率高。
多用于成批建造的中、小型船舶。
2)按轴承上允许负荷校中根据轴系的结构特点,确定轴承上允许的负荷的范围,校中时通过调节中间轴承的位置使轴系各轴承上的实际负荷在允许范围之内,这一过程称为按轴系允许负荷校中。
船舶轴系校中质量问题分析与解决对策
校 中 计 算 书 中 的轴 系 模 拟 计 算 结 果 包 括 开 口、偏 移值 ,轴 系 负荷值 ,还有 艉 管轴承 的倾 斜
值 。计 算书 的运 算条 件和 计 算结 果一 定要 准确 , 动 态模 拟计 算要 务 必接近 轴 系 的真 实运行 状态 ,
轴 系模 拟计 算所 要求 的后 续 检测条 件 要满足 船 厂 的实 际工 艺条件 ,最重 要 的是计 算书 一定 要取 得
变形 。以上情 况都会 使校 中数 据不准 确 ,从而 影 响轴 系 的校 中质量 。 1 3 轴系 安装 时其弯 曲状态 的影 响 . 由于 目前广 泛采 用 的挠性 理论计 算 出 的轴 系 安装 弯 曲状 态 ,主要 是使 各轴 承上 的负荷 合理分 配 ,在此 完全状 态 下所造 成 的附加 负荷和 轴 内弯 曲应 力都 应在 允许 的范 围 内,但在轴 系校 中时,
f) 理 的校 中计 算 是 获 得 合 理 轴 系 校 中 的 2合
必 要前提 。在 船舶 设计 阶段 ,轴系校 中计 算书 是 必 不可 少的 ,它是根 据 船舶各 基本动 力参 数对动
力轴 系 的静态 和动态 做 出的模 拟计算 ,从 而提供 船 上对 中时所 需 的数据 ,如各 轴系 法兰 间开 口和 偏 移值 ,还有 各轴 承 的负荷值 。因此 ,轴 系校 中 计 算 的结 果对船 上对 中影 响重大 。 12 船体 变形 的影响 . 船 体 结 构 变 形 是 由在 船 体 各 部 分 的 区 域 重 量 、浮力 分配 和温 差 引起 的。在对 中过程 中,轴 系 中心线 是随船 体 结构变 形 的 。船体 结 构的变 形 也取 决于船 型 ,对主 机尾 置 的散货船 、油船和集 装箱 船等 ,货舱 区 结构基 线 由空载 时 的上拱变 成 满载 时 的下挠 ,放置 主机 的船 尾部 分结 构基线 显
减速器轴系设计分析报告
减速器轴系设计分析报告一、引言减速器是机械传动系统中常见的一种装置,其作用是将原动机的高速旋转转化为输出轴的低速、高扭矩的旋转。
而减速器轴系作为减速器的核心组成部分之一,承担着传递转矩和旋转运动的重要任务。
因此,良好的减速器轴系设计对于减速器的性能和使用寿命具有重要意义。
为此,本文将对减速器轴系设计进行详细的分析和研究。
二、减速器轴系设计参数的确定减速器轴系设计的关键是确定合适的设计参数,包括轴材料、轴直径和轴长度等。
轴材料的选择应综合考虑其机械性能、成本和制造工艺等因素,常见的轴材料有碳钢、合金钢和不锈钢等。
轴直径的确定需要满足转矩传递的要求,一般采用典型的强度设计方法来计算。
轴长度的选择主要考虑减小过大的弯曲挠度和旋转惯量,同时要考虑制造工艺和成本的限制。
三、减速器轴系的受力分析减速器轴系在工作过程中会受到多种载荷作用,包括转矩载荷、弯矩载荷和轴向载荷等。
其中,转矩载荷是最主要的载荷,决定了轴系的设计强度。
弯矩载荷和轴向载荷通常较小,可以通过合理的轴结构设计进行解决。
在受力分析中,应利用力学知识和工程经验进行有效的计算和估算,以确保减速器轴系在工作过程中的可靠性和稳定性。
四、减速器轴系的轴承设计减速器轴系的轴承设计是减速器性能和寿命的关键因素之一。
轴承的类型和参数应根据减速器的工作条件、载荷特性和转速等因素来确定。
一般来说,采用滚动轴承可以满足较高的转速和较大的载荷要求,但在安装和维护方面略为复杂。
而滑动轴承则可以适应较低转速和较小载荷的要求,具有结构简单、维护方便的优点。
对于不同的减速器轴系设计方案,需要综合考虑轴承的选择和安装方式,以确保轴承的使用寿命和可靠性。
五、减速器轴系设计的优化方案针对减速器轴系设计中的一些常见问题,如弯曲挠度过大、传热不良等,可以采取一些优化方案来提高轴系的性能。
例如,在轴系的设计过程中,可以采用较大的直径或增加轴的螺纹长度来提高轴的刚度和扭转性能。
此外,通过采用合适的散热措施,可以有效地降低轴系的温度,提高轴系的使用寿命。
轴系结构设计实验报告
轴系结构设计实验报告轴系结构设计实验报告引言轴系结构是机械工程中的一个重要概念,它涉及到机械装置中的轴、轴承和传动装置等元件。
轴系结构的设计对于机械装置的稳定性和性能有着重要的影响。
本实验旨在通过设计和测试不同轴系结构的性能,探索轴系结构的设计原则和优化方法。
实验目的本实验的目的是研究不同轴系结构的设计对于机械装置性能的影响,具体包括以下几个方面:1. 了解不同轴系结构的基本原理和特点;2. 掌握轴系结构的设计方法和步骤;3. 测试和分析不同轴系结构的性能差异;4. 探索轴系结构的优化方法。
实验装置和方法本实验使用了一台模拟机械装置,包括轴、轴承和传动装置等元件。
实验过程如下:1. 选择不同类型的轴承,包括滚动轴承和滑动轴承,并安装在不同的轴上;2. 设计和制造不同类型的轴系结构,包括单支撑轴系、双支撑轴系和悬臂轴系等;3. 测试不同轴系结构的转动摩擦力、刚度和振动等性能指标;4. 分析和比较不同轴系结构的性能差异;5. 根据实验结果,进行轴系结构的优化设计。
实验结果和讨论通过实验测试和数据分析,我们得到了以下结果和讨论:1. 不同类型的轴承对轴系结构的性能有着显著的影响。
滚动轴承具有较小的摩擦力和较高的刚度,适用于高速和高负荷的工况;而滑动轴承具有较大的摩擦力和较低的刚度,适用于低速和低负荷的工况。
2. 不同类型的轴系结构对机械装置的性能也有着显著的影响。
单支撑轴系具有较大的刚度和较小的振动,适用于要求较高精度和稳定性的工况;双支撑轴系具有较小的刚度和较大的振动,适用于要求较高速度和动态响应的工况;悬臂轴系则适用于较小负荷和较简单的工况。
3. 轴系结构的优化设计需要综合考虑不同性能指标之间的矛盾和平衡。
例如,在追求较大刚度的同时,需要注意振动的控制和减小摩擦力的影响。
结论通过本实验,我们深入了解了轴系结构的设计原理和方法,并通过实验测试和数据分析,探索了不同轴系结构的性能差异和优化设计。
我们发现不同类型的轴承和轴系结构对机械装置的性能有着重要的影响,需要根据具体工况和要求进行选择和设计。
船舶轴系校中的三弯矩计算法探讨
轴 段 在 i 座 引 起 的转 角 之 和 。 支
由均 载 引起 的 转 角 为
日 t
,
' i q
一
24 I E
由 弯 矩
引起 的转 角 为
一
畿
一1
受 的重 力 乘 以 系 数 0 8 . 7或 0 9 .。 ② 桨 轴 螺 帽 、 套 均 作 为 均 布 载 荷 计 入 相 应 轴 轴
计 算 模 型 。然 后 用 三 弯 矩 法 先 计 算 轴 系 成 直 线 校 中
状 态 时 , 支 座 处 轴 的弯 矩 、 角 、 度 及支 座 反 力 。 各 转 挠 糊 因 素 进 行 了量 化 , 计 算 的 方 法 确 定 了一 定 模 糊 用 条 件 下 许 用 安 全 系 数 的 数 值 , 免 了 经 验 取 法 中 的 避
防 工业 出版 社 ,942 9 26 1 9 , 2 ~ 5
张 乐 天 . 用 船 舶 动 力 装 置 . 京 : 民交 通 出 版 社 , 民 北 人
1 985 .14 6~ 1 53
主观 因 素 的 干扰 。上 述 方 法 也 可 用 于船 舶 传 动 轴 系
的 甲 间轴 、 力 轴 及 其 他 类 似 机 械 零 部 件 强 度 计 算 推
・
5
20 00. 3l~ 35
杨 伦 标 . 糊 数学 原 理 及应 用, 模 广 : 南 理 工 大 学 出 版 华
社 ,98 16 1 3 1 9 . 4 ~ 5
2 2・
趸
■
— 2年 第 4 ( 第 2 8 ) o 期 总 4期
维普资讯
式 中 L 为 后艉 牟 承 衬 长 度 。 虫 ( ) 旋 桨 的 质 量 。作 集 中 载 荷 处 理 , 大 小应 2螺 兵
船舶轴系校中计算方法分析
船舶轴系校中计算方法分析作者:周广岭来源:《广东造船》2017年第05期摘要:本文从建立船舶轴系对中计算坐标系开始,分别介绍三弯矩法、传递矩阵法、有限元法三种计算方法的基本原理及其要点,并对三种方法进行简要的比较分析。
关键词:轴系;校中计算;分析中图分类号:U664.2 文献标识码:AShip’s Shafting Alignment Calculation MethodsZHOU Guangling( Guangzhou Shipyard International Co., Ltd. Guangzhou 511462 )Abstract:Starting from building coordinate system for ship’s shafting alignment calculation,this paper introduces the basic principles and key points of the three-moment, transfer matrix and finite element methods of the shafting alignment calculation respectively, compares and analyzes the three methods briefly.Key words: Shafting; Alignment calculation; Analysis1 前言目前轴系校中计算方法基本都采用静态校中方法,它假定轴系各个轴承为刚性支点,推进轴系视为刚性铰支上的连续梁。
其使用较为广泛的计算方法有三种:三弯矩法;传递矩阵法;有限元法。
2 坐标系及模型的简化处理2.1 坐标系的建立选取船舶螺旋桨末端作为坐标系原点;选取船舶校中轴系的理论中心线作为x轴,其正向指向船首;过原点垂直x轴的作为z轴,其正方向向上;规定y轴以面向船首指向右舷为正方向。
01-CCS轴系校中计算书
COMPASS船舶轴系校中计算程序SRM04 ( Ver. 0201 )控制号:SP08D008船名:47,000DWT 散货船设计:上海瀚顺船舶设计有限公司制造:浙江合兴船厂计算:金银三日期:2009-03-15中国船级社Ver.0601 17074623 上海瀚顺船舶轴 系 数 据单 元 单 元 单元位置 长 度左边直径 右边直径 内部直径 单元材料序 号 名 称 ( mm ) ( mm ) ( mm ) ( mm ) ( mm ) 序 号 1 290.0 290.0 300.0 300.0 0.0 3 2 780.0 490.0 371.0 395.0 0.0 3 3 1290.0 510.0 395.0 420.0 0.0 3 4 1670.0 380.0 420.0 420.0 0.0 3 5 1710.0 40.0 440.0 440.0 0.0 2 6 BRNG 1910.0 200.0 440.0 440.0 0.0 2 7 2260.0 350.0 440.0 440.0 0.0 2 8 2610.0 350.0 440.0 440.0 0.0 2 9 2650.0 40.0 440.0 440.0 0.0 2 10 3159.0 509.0 420.0 420.0 0.0 2 11 3668.0 509.0 420.0 420.0 0.0 2 12 4177.0 509.0 420.0 420.0 0.0 2 13 4686.0 509.0 420.0 420.0 0.0 2 14 4728.0 42.0 445.0 445.0 0.0 2 15 BRNG 4933.0 205.0 445.0 445.0 0.0 2 16 5138.0 205.0 445.0 445.0 0.0 2 17 5548.0 410.0 445.0 445.0 0.0 2 18 JACK 5792.0 244.0 420.0 420.0 0.0 1 19 6024.0 232.0 420.0 420.0 0.0 1 20 FLNG 6104.0 80.0 840.0 840.0 0.0 1 21 6184.0 80.0 840.0 840.0 0.0 1 22 6884.0 700.0 350.0 350.0 0.0 1 23 7584.0 700.0 350.0 350.0 0.0 1 24 7799.0 215.0 380.0 380.0 0.0 1 25 BRNG 7944.0 145.0 380.0 380.0 0.0 1 26 8089.0 145.0 380.0 380.0 0.0 1 27 8224.0 135.0 380.0 380.0 0.0 1 28 JACK 8424.0 200.0 350.0 350.0 0.0 1 29 9214.0 790.0 350.0 350.0 0.0 1 30 10204.0 990.0 350.0 350.0 0.0 1 31 11194.0 990.0 350.0 350.0 0.0 1 32 11644.0 450.0 350.0 350.0 0.0 1 33 12184.0 540.0 350.0 350.0 0.0 1 34 FLNG 12264.0 80.0 756.0 756.0 0.0 1 35 12334.0 70.0 756.0 756.0 0.0 1 36 12376.0 42.0 903.0 903.0 0.0 1 37 BRNG 12602.0 226.0 473.0 473.0 85.0 1 38 12844.0 242.0 473.0 473.0 85.0 1 39 12937.0 93.0 984.0 984.0 85.0 1 40 13053.0 116.0 984.0 984.0 85.0 1 41 13103.0 50.0 1114.0 1114.0 85.0 1 42 BRNG 13350.0 247.0 472.0 472.0 85.0 1 43 13548.0 198.0 274.0 274.0 0.0 4 44 13724.0 176.0 274.0 274.0 0.0 4 45 13900.0 176.0 274.0 274.0 0.0 4 46 BRNG 14098.0 198.0 274.0 274.0 0.0 4 47 14296.0 198.0 274.0 274.0 0.0 4 48 14472.0 176.0 274.0 274.0 0.0 4 49 14648.0 176.0 274.0 274.0 0.0 4 50 BRNG 14846.0 198.0 274.0 274.0 0.0 4 51 15044.0 198.0 274.0 274.0 0.0 4 52 15220.0 176.0 274.0 274.0 0.0 4 53 15396.0 176.0 274.0 274.0 0.0 4 54 BRNG 15594.0 198.0 274.0 274.0 0.0 4 55 15792.0 198.0 274.0 274.0 0.0 4 56 15968.0 176.0 274.0 274.0 0.0 4 57 16144.0 176.0 274.0 274.0 0.0 4 58 BRNG16342.0198.0274.0274.00.0 4轴 系 总 重 量 = 142.003 k.NVer.0601 17074623 上海瀚顺船舶轴 系 布 置 图JK JKFLFLFFFF F F F16 ( m )0.001.11( m )材 料 数 据材料序号弹性模量(N/mm^2) 泊 松 比密 度(Kg/m^3) 1 2.060E+11 0.3 7850.0 2 2.060E+11 0.3 7065.0 3 2.060E+11 0.3 6830.0 42.060E+110.30.0轴 承 数 据轴 承 单 元 支承位置 轴承长度 轴承刚度 序 号 号 ( mm ) ( mm ) ( N/m ) 1 6 1910.0 900.0 STIFF. 2 15 4933.0 410.0 STIFF. 3 25 7944.0 290.0 STIFF. 4 37 12602.0 168.0 STIFF. 5 42 13350.0 168.0 STIFF. 6 46 14098.0 168.0 STIFF. 7 50 14846.0 168.0 STIFF. 8 54 15594.0 168.0 STIFF. 95816342.0168.0STIFF.轴 系 外 载 荷载 荷 单 元 载荷位置 分布载荷 集中载荷 弯 矩 号 序 号 ( mm ) ( N/m ) ( N ) ( N.m ) 1 2 780.0 0.0 100573.0 0.0 2 36 12376.0 0.0 19866.0 0.0 3 39 12937.0 0.0 -51000.0 0.0 4 44 13724.0 0.0 50600.0 0.0 5 48 14472.0 0.0 50600.0 0.0 6 52 15220.0 0.0 50600.0 0.0 75615968.00.050600.00.0轴承反力影响系数 ( k.N/mm )I.E. 轴承升高 1 mm 时产生的反力Diff = 最后两列差值Sum = 最后两行代数和No. 1 2 3 4 5 6 7 81 1.849E+01-4.072E+01 2.601E+01-1.270E+01 9.273E+00-4.357E-01 1.162E-01-2.905E-02 2-4.072E+01 9.853E+01-7.513E+01 5.839E+01-4.264E+01 2.004E+00-5.343E-01 1.336E-013 2.601E+01-7.513E+01 7.809E+01-1.195E+02 9.398E+01-4.416E+00 1.178E+00-2.944E-01 4-1.270E+01 5.839E+01-1.195E+02 8.405E+02-1.324E+03 7.070E+02-1.885E+02 4.713E+01 5 9.273E+00-4.264E+01 9.398E+01-1.324E+03 2.729E+03-2.076E+03 7.716E+02-1.929E+02 6-4.357E-01 2.004E+00-4.416E+00 7.070E+02-2.076E+03 2.453E+03-1.580E+03 5.993E+02 7 1.162E-01-5.343E-01 1.178E+00-1.885E+02 7.716E+02-1.580E+03 1.947E+03-1.304E+03 8-2.905E-02 1.336E-01-2.944E-01 4.713E+01-1.929E+02 5.993E+02-1.304E+03 1.347E+03 9 4.841E-03-2.226E-02 4.906E-02-7.856E+00 3.215E+01-9.989E+01 3.535E+02-4.969E+02 Sum-2.421E-02 1.113E-01-2.453E-01 3.928E+01-1.607E+02 4.994E+02-9.503E+02 8.504E+02 No. 9 Diff.1 4.841E-03-3.389E-022-2.226E-02 1.558E-013 4.906E-02-3.434E-014-7.856E+00 5.499E+015 3.215E+01-2.250E+026-9.989E+01 6.992E+027 3.535E+02-1.657E+038-4.969E+02 1.844E+039 2.190E+02-7.159E+02Sum-2.779E+02 1.128E+03千斤顶顶举系数千斤顶单元千斤顶位置千斤顶轴承序号号 ( mm )顶举系数序号1 18 5792.0 0.884 22 28 8424.0 0.999 3轴承实际反力 = (千斤顶负荷) X (顶举系数)Ver.0601 17074623 上海瀚顺船舶Ver.0601 17074623 上海瀚顺船舶直线校中计算结果单 元 截面处 截面处 截面处 截面处 截面处 号 位置(mm) 挠度(mm) 转角(rad) 弯矩(N.m) 剪力(k.N) 0.0 -8.9680E-01 5.1788E-04 0.0000E+00 0.0000E+00 1 290.0 -7.4663E-01 5.1764E-04 -1.9915E+02 -1.3735E+00 2 780.0 -4.9330E-01 5.1574E-04 -1.7989E+03 -1.0573E+02 3 1290.0 -2.3958E-01 4.6245E-04 -5.6857E+04 -1.1019E+02 4 1670.0 -8.0127E-02 3.6823E-04 -9.9398E+04 -1.1371E+02 5 1710.0 -6.5611E-02 3.5750E-04 -1.0395E+05 -1.1413E+02 6 1910.0 6.2528E-15 2.9658E-04 -1.2699E+05 -1.1624E+02 7 2260.0 8.4488E-02 1.8960E-04 -1.0492E+05 6.1224E+01 8 2610.0 1.3503E-01 1.0241E-04 -8.4135E+04 5.7536E+01 9 2650.0 1.3895E-01 9.3650E-05 -8.1842E+04 5.7114E+01 10 3159.0 1.5683E-01 -1.5899E-05 -5.4015E+04 5.2227E+01 11 3668.0 1.3006E-01 -8.2446E-05 -2.8675E+04 4.7339E+01 12 4177.0 7.9512E-02 -1.1001E-04 -5.8236E+03 4.2452E+01 13 4686.0 2.3997E-02 -1.0263E-04 1.4541E+04 3.7564E+01 14 4728.0 1.9720E-02 -1.0100E-04 1.6109E+04 3.7112E+01 15 4933.0 8.5815E-15 -9.0749E-05 2.3490E+04 3.4902E+01 16 5138.0 -1.7346E-02 -7.8430E-05 2.4092E+04 1.8294E+00 17 5548.0 -4.4375E-02 -5.3445E-05 2.3936E+04 -2.5901E+00 18 5792.0 -5.5176E-02 -3.5211E-05 2.2986E+04 -5.1934E+00 19 6024.0 -6.1418E-02 -1.8778E-05 2.1494E+04 -7.6686E+00 20 6104.0 -6.2906E-02 -1.8442E-05 2.0744E+04 -1.1083E+01 21 6184.0 -6.4369E-02 -1.8120E-05 1.9721E+04 -1.4497E+01 22 6884.0 -5.1162E-02 4.6657E-05 7.7579E+03 -1.9683E+01 23 7584.0 -1.3880E-02 4.7873E-05 -7.8355E+03 -2.4870E+01 24 7799.0 -4.6453E-03 3.7089E-05 -1.3384E+04 -2.6747E+01 25 7944.0 7.4801E-15 2.6530E-05 -1.7354E+04 -2.8014E+01 26 8089.0 3.0258E-03 1.5505E-05 -1.4737E+04 1.7415E+01 27 8224.0 4.5154E-03 6.8052E-06 -1.2466E+04 1.6236E+01 28 8424.0 4.3728E-03 -7.5503E-06 -9.3669E+03 1.4754E+01 29 9214.0 -1.3657E-02 -2.9987E-05 -2.2890E+01 8.9013E+00 30 10204.0 -3.5885E-02 -9.2855E-06 5.1585E+03 1.5663E+00 31 11194.0 -2.8704E-02 2.1532E-05 3.0783E+03 -5.7687E+00 32 11644.0 -1.7621E-02 2.6070E-05 -2.6776E+02 -9.1028E+00 33 12184.0 -5.5478E-03 1.5090E-05 -6.2635E+03 -1.3104E+01 34 12264.0 -4.3471E-03 1.4924E-05 -7.4224E+03 -1.5869E+01 35 12334.0 -3.3082E-03 1.4755E-05 -8.6180E+03 -1.8289E+01 36 12376.0 -2.6897E-03 1.4698E-05 -9.4296E+03 -4.0226E+01 37 12602.0 -7.1150E-13 8.4020E-06 -1.8855E+04 -4.3186E+01 38 12844.0 9.5392E-04 -4.8158E-07 -1.8394E+04 3.1908E-01 39 12937.0 9.0073E-04 -6.6272E-07 -1.8616E+04 4.5913E+01 40 13053.0 8.1185E-04 -8.5952E-07 -1.3681E+04 3.9171E+01 41 13103.0 7.6783E-04 -9.0041E-07 -1.1816E+04 3.5440E+01 42 13350.0 -9.6098E-13 -4.6307E-06 -3.4601E+03 3.2220E+01 43 13548.0 -1.5841E-03 -8.7295E-06 1.1004E+03 2.3033E+01 44 13724.0 -2.4543E-03 9.2739E-07 5.1541E+03 -2.7567E+01 45 13900.0 -1.3299E-03 9.3520E-06 3.0229E+02 -2.7567E+01 46 14098.0 -1.9471E-12 9.2117E-07 -5.1560E+03 -2.7567E+01 47 14296.0 -9.9070E-04 -7.8970E-06 7.9335E+01 2.6441E+01 48 14472.0 -1.9375E-03 -4.6680E-07 4.7330E+03 -2.4159E+01 49 14648.0 -1.1186E-03 7.5836E-06 4.8105E+02 -2.4159E+01 50 14846.0 -4.5766E-12 9.4604E-07 -4.3024E+03 -2.4159E+01 51 15044.0 -7.7024E-04 -6.0893E-06 2.5208E+02 2.3002E+01 52 15220.0 -1.4067E-03 9.3982E-07 4.3005E+03 -2.7598E+01 53 15396.0 -5.1269E-04 6.7202E-06 -5.5671E+02 -2.7598E+01 54 15594.0 -1.0448E-11 -4.7053E-06 -6.0211E+03 -2.7598E+01 55 15792.0 -2.2454E-03 -1.4153E-05 5.8215E+02 3.3350E+01 56 15968.0 -4.0464E-03 -3.2925E-06 6.4517E+03 -1.7250E+01 57 16144.0 -3.1477E-03 1.1942E-05 3.4156E+03 -1.7250E+01 5816342.0-2.0910E-111.7875E-05-7.9687E-07-1.7250E+01轴承总反力 = 413.842 k.N轴 承 变 位 转 角 反 力 20%轴段重量 轴承比压序 号 ( mm ) ( rad ) ( k.N ) ( k.N ) ( N/mm^2 ) 1 0.0000 2.9658E-04 181.155 9.136 0.457 2 0.0000 -9.0749E-05 -30.863 12.413 -0.169 3 0.0000 2.6530E-05 46.695 14.811 0.424 4 0.0000 8.4020E-06 46.674 12.854 0.587 5 0.0000 -4.6307E-06 -9.187 4.454 -0.116 6 0.0000 9.2117E-07 54.009 0.000 1.173 7 0.0000 9.4604E-07 47.161 0.000 1.025 8 0.0000 -4.7053E-06 60.947 0.000 1.324 90.00001.7875E-0517.2500.000 0.375尾管后轴承处转角: 2.966E-04rad 柴油机输出法兰的弯矩 : -7.422E+00k.Nm 柴油机输出法兰的剪力 : -1.587E+01k.N 螺旋桨轴的最大弯曲应力 : 1.519E+01N/mm^2中间轴的最大弯曲应力 : 3.222E+00N/mm^2推力轴的最大弯曲应力:3.195E+00N/mm^2Ver.0601 17074623 上海瀚顺船舶轴 系 挠 度 曲 线16 (m)-0.897( mm )Ver.0601 17074623 上海瀚顺船舶合理校中计算结果 - ( 冷 态 工 况 )单 元 截面处 截面处 截面处 截面处 截面处 号 位置(mm) 挠度(mm) 转角(rad) 弯矩(N.m) 剪力(k.N) 0.0 -1.0823E+00 6.1501E-04 0.0000E+00 0.0000E+00 1 290.0 -9.0398E-01 6.1478E-04 -1.9915E+02 -1.3735E+00 2 780.0 -6.0306E-01 6.1288E-04 -1.7989E+03 -1.0573E+02 3 1290.0 -2.9980E-01 5.5958E-04 -5.6857E+04 -1.1019E+02 4 1670.0 -1.0344E-01 4.6536E-04 -9.9398E+04 -1.1371E+02 5 1710.0 -8.5037E-02 4.5463E-04 -1.0395E+05 -1.1413E+02 6 1910.0 1.9016E-15 3.9372E-04 -1.2699E+05 -1.1624E+02 7 2260.0 1.1809E-01 2.8339E-04 -1.1215E+05 4.0549E+01 8 2610.0 1.9990E-01 1.8618E-04 -9.8608E+04 3.6860E+01 9 2650.0 2.0714E-01 1.7585E-04 -9.7142E+04 3.6439E+01 10 3159.0 2.5912E-01 3.3036E-05 -7.9839E+04 3.1551E+01 11 3668.0 2.4518E-01 -8.3797E-05 -6.5023E+04 2.6664E+01 12 4177.0 1.7754E-01 -1.7868E-04 -5.2695E+04 2.1776E+01 13 4686.0 6.6333E-02 -2.5562E-04 -4.2855E+04 1.6889E+01 14 4728.0 5.5502E-02 -2.6013E-04 -4.2155E+04 1.6436E+01 15 4933.0 1.0625E-15 -2.8109E-04 -3.9012E+04 1.4226E+01 16 5138.0 -5.9593E-02 -2.9985E-04 -3.3641E+04 2.5100E+01 17 5548.0 -1.8897E-01 -3.2962E-04 -2.4256E+04 2.0680E+01 18 5792.0 -2.7153E-01 -3.4656E-04 -1.9527E+04 1.8077E+01 19 6024.0 -3.5349E-01 -3.5948E-04 -1.5621E+04 1.5602E+01 20 6104.0 -3.8226E-01 -3.5972E-04 -1.4509E+04 1.2187E+01 21 6184.0 -4.1105E-01 -3.5994E-04 -1.3671E+04 8.7734E+00 22 6884.0 -6.8226E-01 -4.1163E-04 -9.3446E+03 3.5870E+00 23 7584.0 -9.8463E-01 -4.5174E-04 -8.6489E+03 -1.5993E+00 24 7799.0 -1.0827E+00 -4.6080E-04 -9.1946E+03 -3.4771E+00 25 7944.0 -1.1500E+00 -4.6732E-04 -9.7906E+03 -4.7435E+00 26 8089.0 -1.2182E+00 -4.7292E-04 -6.5303E+03 2.1851E+01 27 8224.0 -1.2823E+00 -4.7617E-04 -3.6600E+03 2.0672E+01 28 8424.0 -1.3778E+00 -4.7834E-04 3.2620E+02 1.9190E+01 29 9214.0 -1.7454E+00 -4.4119E-04 1.3174E+04 1.3337E+01 30 10204.0 -2.1274E+00 -3.2006E-04 2.2747E+04 6.0021E+00 31 11194.0 -2.3664E+00 -1.6017E-04 2.5059E+04 -1.3329E+00 32 11644.0 -2.4219E+00 -8.7485E-05 2.3709E+04 -4.6670E+00 33 12184.0 -2.4474E+00 -8.8804E-06 2.0108E+04 -8.6679E+00 34 12264.0 -2.4481E+00 -8.4027E-06 1.9304E+04 -1.1433E+01 35 12334.0 -2.4486E+00 -8.0027E-06 1.8419E+04 -1.3853E+01 36 12376.0 -2.4490E+00 -7.8895E-06 1.7794E+04 -3.5790E+01 37 12602.0 -2.4500E+00 -1.7937E-06 9.3707E+03 -3.8750E+01 38 12844.0 -2.4501E+00 5.7829E-07 4.1352E+02 -3.8598E+01 39 12937.0 -2.4500E+00 5.6392E-07 -3.4274E+03 6.9968E+00 40 13053.0 -2.4499E+00 5.2535E-07 -3.0068E+03 2.5428E-01 41 13103.0 -2.4499E+00 5.1561E-07 -3.0874E+03 -3.4768E+00 42 13350.0 -2.4500E+00 -1.2823E-06 -4.3439E+03 -6.6971E+00 43 13548.0 -2.4512E+00 -7.9361E-06 5.1320E+02 2.4531E+01 44 13724.0 -2.4521E+00 3.1466E-07 4.8306E+03 -2.6069E+01 45 13900.0 -2.4511E+00 8.1473E-06 2.4241E+02 -2.6069E+01 46 14098.0 -2.4500E+00 2.3653E-08 -4.9193E+03 -2.6069E+01 47 14296.0 -2.4511E+00 -8.1100E-06 2.3669E+02 2.6040E+01 48 14472.0 -2.4520E+00 -3.0283E-07 4.8198E+03 -2.4560E+01 49 14648.0 -2.4512E+00 7.9067E-06 4.9730E+02 -2.4560E+01 50 14846.0 -2.4500E+00 1.1877E-06 -4.3655E+03 -2.4560E+01 51 15044.0 -2.4507E+00 -6.0307E-06 2.0984E+02 2.3108E+01 52 15220.0 -2.4514E+00 8.9667E-07 4.2768E+03 -2.7492E+01 53 15396.0 -2.4505E+00 6.6326E-06 -5.6182E+02 -2.7492E+01 54 15594.0 -2.4500E+00 -4.7744E-06 -6.0053E+03 -2.7492E+01 55 15792.0 -2.4523E+00 -1.4174E-05 5.9376E+02 3.3328E+01 56 15968.0 -2.4541E+00 -3.2839E-06 6.4596E+03 -1.7272E+01 57 16144.0 -2.4532E+00 1.1970E-05 3.4198E+03 -1.7272E+01 5816342.0-2.4500E+001.7910E-05-1.0204E-06-1.7272E+01轴承总反力 = 413.842 k.N轴 承 变 位 转 角 反 力 20%轴段重量 轴承比压序 号 ( mm ) ( rad ) ( k.N ) ( k.N ) ( N/mm^2 ) 1 0.0000 3.9372E-04 160.479 9.136 0.405 2 0.0000 -2.8109E-04 13.083 12.413 0.072 3 -1.1500 -4.6732E-04 27.861 14.811 0.253 4 -2.4500 -1.7937E-06 3.321 12.854 0.042 5 -2.4500 -1.2823E-06 31.228 4.454 0.394 6 -2.4500 2.3653E-08 52.110 0.000 1.132 7 -2.4500 1.1877E-06 47.667 0.000 1.036 8 -2.4500 -4.7744E-06 60.821 0.000 1.321 9-2.45001.7910E-0517.2720.000 0.375尾管后轴承处转角: 3.937E-04rad 柴油机输出法兰的弯矩 : 1.930E+01k.Nm 柴油机输出法兰的剪力 : -1.143E+01k.N 螺旋桨轴的最大弯曲应力 : 1.519E+01N/mm^2中间轴的最大弯曲应力 : 5.953E+00N/mm^2推力轴的最大弯曲应力:3.199E+00N/mm^2Ver.0601 17074623 上海瀚顺船舶轴 系 挠 度 曲 线16 (m)-2.454( mm )Ver.0601 17074623 上海瀚顺船舶合理校中计算结果 - ( 热 态 工 况 )单 元 截面处 截面处 截面处 截面处 截面处 号 位置(mm) 挠度(mm) 转角(rad) 弯矩(N.m) 剪力(k.N) 0.0 -1.0891E+00 6.1855E-04 0.0000E+00 0.0000E+00 1 290.0 -9.0972E-01 6.1832E-04 -1.9915E+02 -1.3735E+00 2 780.0 -6.0706E-01 6.1642E-04 -1.7989E+03 -1.0573E+02 3 1290.0 -3.0200E-01 5.6312E-04 -5.6857E+04 -1.1019E+02 4 1670.0 -1.0429E-01 4.6890E-04 -9.9398E+04 -1.1371E+02 5 1710.0 -8.5745E-02 4.5817E-04 -1.0395E+05 -1.1413E+02 6 1910.0 4.7281E-15 3.9726E-04 -1.2699E+05 -1.1624E+02 7 2260.0 1.1932E-01 2.8681E-04 -1.1242E+05 3.9795E+01 8 2610.0 2.0227E-01 1.8923E-04 -9.9136E+04 3.6107E+01 9 2650.0 2.0963E-01 1.7884E-04 -9.7700E+04 3.5685E+01 10 3159.0 2.6285E-01 3.4819E-05 -8.0780E+04 3.0798E+01 11 3668.0 2.4938E-01 -8.3846E-05 -6.6348E+04 2.5910E+01 12 4177.0 1.8111E-01 -1.8118E-04 -5.4404E+04 2.1023E+01 13 4686.0 6.7876E-02 -2.6120E-04 -4.4947E+04 1.6135E+01 14 4728.0 5.6806E-02 -2.6592E-04 -4.4279E+04 1.5682E+01 15 4933.0 5.6631E-15 -2.8802E-04 -4.1291E+04 1.3473E+01 16 5138.0 -6.1126E-02 -3.0782E-04 -3.5363E+04 2.7812E+01 17 5548.0 -1.9405E-01 -3.3880E-04 -2.4866E+04 2.3392E+01 18 5792.0 -2.7890E-01 -3.5595E-04 -1.9476E+04 2.0789E+01 19 6024.0 -3.6301E-01 -3.6860E-04 -1.4940E+04 1.8314E+01 20 6104.0 -3.9251E-01 -3.6883E-04 -1.3612E+04 1.4899E+01 21 6184.0 -4.2202E-01 -3.6904E-04 -1.2556E+04 1.1485E+01 22 6884.0 -6.9679E-01 -4.1121E-04 -6.3317E+03 6.2990E+00 23 7584.0 -9.9297E-01 -4.3304E-04 -3.7376E+03 1.1126E+00 24 7799.0 -1.0865E+00 -4.3680E-04 -3.7003E+03 -7.6511E-01 25 7944.0 -1.1500E+00 -4.3940E-04 -3.9030E+03 -2.0315E+00 26 8089.0 -1.2139E+00 -4.4111E-04 -1.0896E+03 1.8770E+01 27 8224.0 -1.2734E+00 -4.4101E-04 1.3647E+03 1.7591E+01 28 8424.0 -1.3613E+00 -4.3696E-04 4.7346E+03 1.6109E+01 29 9214.0 -1.6888E+00 -3.8319E-04 1.5149E+04 1.0256E+01 30 10204.0 -2.0103E+00 -2.5914E-04 2.1671E+04 2.9206E+00 31 11194.0 -2.1957E+00 -1.1622E-04 2.0931E+04 -4.4144E+00 32 11644.0 -2.2345E+00 -5.7831E-05 1.8195E+04 -7.7485E+00 33 12184.0 -2.2498E+00 -1.8094E-06 1.2930E+04 -1.1749E+01 34 12264.0 -2.2499E+00 -1.5085E-06 1.1880E+04 -1.4515E+01 35 12334.0 -2.2500E+00 -1.2681E-06 1.0779E+04 -1.6935E+01 36 12376.0 -2.2501E+00 -1.2031E-06 1.0024E+04 -3.8872E+01 37 12602.0 -2.2500E+00 1.2643E-06 9.0476E+02 -4.1831E+01 38 12844.0 -2.2498E+00 2.6040E-07 -5.2277E+03 -2.6925E+01 39 12937.0 -2.2497E+00 1.9601E-07 -7.9831E+03 1.8669E+01 40 13053.0 -2.2497E+00 1.0997E-07 -6.2085E+03 1.1927E+01 41 13103.0 -2.2497E+00 9.0898E-08 -5.7054E+03 8.1957E+00 42 13350.0 -2.2500E+00 -2.2866E-06 -4.0788E+03 4.9754E+00 43 13548.0 -2.2513E+00 -8.1741E-06 6.8932E+02 2.4081E+01 44 13724.0 -2.2522E+00 4.9844E-07 4.9276E+03 -2.6519E+01 45 13900.0 -2.2512E+00 8.5087E-06 2.6037E+02 -2.6519E+01 46 14098.0 -2.2500E+00 2.9285E-07 -4.9903E+03 -2.6519E+01 47 14296.0 -2.2511E+00 -8.0461E-06 1.8949E+02 2.6161E+01 48 14472.0 -2.2520E+00 -3.5201E-07 4.7938E+03 -2.4439E+01 49 14648.0 -2.2512E+00 7.8098E-06 4.9243E+02 -2.4439E+01 50 14846.0 -2.2500E+00 1.1152E-06 -4.3466E+03 -2.4439E+01 51 15044.0 -2.2508E+00 -6.0482E-06 2.2251E+02 2.3076E+01 52 15220.0 -2.2514E+00 9.0961E-07 4.2839E+03 -2.7524E+01 53 15396.0 -2.2505E+00 6.6588E-06 -5.6029E+02 -2.7524E+01 54 15594.0 -2.2500E+00 -4.7537E-06 -6.0100E+03 -2.7524E+01 55 15792.0 -2.2523E+00 -1.4168E-05 5.9028E+02 3.3335E+01 56 15968.0 -2.2541E+00 -3.2864E-06 6.4572E+03 -1.7265E+01 57 16144.0 -2.2532E+00 1.1962E-05 3.4185E+03 -1.7265E+01 5816342.0-2.2500E+001.7899E-05-9.5749E-07-1.7265E+01轴承总反力 = 413.842 k.N轴 承 变 位 转 角 反 力 20%轴段重量 轴承比压序 号 ( mm ) ( rad ) ( k.N ) ( k.N ) ( N/mm^2 ) 1 0.0000 3.9726E-04 159.726 9.136 0.403 2 0.0000 -2.8802E-04 16.549 12.413 0.091 3 -1.1500 -4.3940E-04 22.068 14.811 0.200 4 -2.2500 1.2643E-06 18.075 12.854 0.227 5 -2.2500 -2.2866E-06 19.106 4.454 0.241 6 -2.2500 2.9285E-07 52.679 0.000 1.144 7 -2.2500 1.1152E-06 47.516 0.000 1.032 8 -2.2500 -4.7537E-06 60.859 0.000 1.322 9-2.25001.7899E-0517.2650.000 0.375尾管后轴承处转角: 3.973E-04rad 柴油机输出法兰的弯矩 : 1.188E+01k.Nm 柴油机输出法兰的剪力 : -1.451E+01k.N 螺旋桨轴的最大弯曲应力 : 1.519E+01N/mm^2中间轴的最大弯曲应力 : 5.148E+00N/mm^2推力轴的最大弯曲应力:3.197E+00N/mm^2Ver.0601 17074623 上海瀚顺船舶轴 系 挠 度 曲 线16 (m)-2.254( mm )Ver.0601 17074623 上海瀚顺船舶轴 系 数 据 - ( 安 装 工 况 )单 元 单 元单元位置 长 度 左边直径 右边直径 内部直径 单元材料序 号 名 称( mm ) ( mm ) ( mm ) ( mm ) ( mm ) 序 号 1290.0 290.0 300.0 300.0 0.0 3 2780.0 490.0 371.0 395.0 0.0 3 31290.0 510.0 395.0 420.0 0.0 3 41670.0 380.0 420.0 420.0 0.0 3 51710.0 40.0 440.0 440.0 0.0 2 6 BRNG1910.0 200.0 440.0 440.0 0.0 2 72260.0 350.0 440.0 440.0 0.0 2 82610.0 350.0 440.0 440.0 0.0 2 92650.0 40.0 440.0 440.0 0.0 2 103159.0 509.0 420.0 420.0 0.0 2 113668.0 509.0 420.0 420.0 0.0 2 124177.0 509.0 420.0 420.0 0.0 2 134686.0 509.0 420.0 420.0 0.0 2 144728.0 42.0 445.0 445.0 0.0 2 15 BRNG4933.0 205.0 445.0 445.0 0.0 2 165138.0 205.0 445.0 445.0 0.0 2 175548.0 410.0 445.0 445.0 0.0 2 185792.0 244.0 420.0 420.0 0.0 1 196024.0 232.0 420.0 420.0 0.0 1 20 FLNG6104.0 80.0 840.0 840.0 0.0 1 216184.0 80.0 840.0 840.0 0.0 1 226884.0 700.0 350.0 350.0 0.0 1 237584.0 700.0 350.0 350.0 0.0 1 247799.0 215.0 380.0 380.0 0.0 1 25 BRNG7944.0 145.0 380.0 380.0 0.0 1 268089.0 145.0 380.0 380.0 0.0 1 278224.0 135.0 380.0 380.0 0.0 1 288424.0 200.0 350.0 350.0 0.0 1 299214.0 790.0 350.0 350.0 0.0 1 3010204.0 990.0 350.0 350.0 0.0 1 3111194.0 990.0 350.0 350.0 0.0 1 32 T S11644.0 450.0 350.0 350.0 0.0 1 3312184.0 540.0 350.0 350.0 0.0 1 34 FLNG12264.0 80.0 756.0 756.0 0.0 1 3512334.0 70.0 756.0 756.0 0.0 1 3612376.0 42.0 903.0 903.0 0.0 1 37 BRNG12602.0 226.0 473.0 473.0 85.0 1 3812844.0 242.0 473.0 473.0 85.0 1 3912937.0 93.0 984.0 984.0 85.0 1 4013053.0 116.0 984.0 984.0 85.0 1 4113103.0 50.0 1114.0 1114.0 85.0 1 42 BRNG13350.0 247.0 472.0 472.0 85.0 1 4313548.0 198.0 274.0 274.0 0.0 4 4413724.0 176.0 274.0 274.0 0.0 4 4513900.0 176.0 274.0 274.0 0.0 4 46 BRNG14098.0 198.0 274.0 274.0 0.0 4 4714296.0 198.0 274.0 274.0 0.0 4 4814472.0 176.0 274.0 274.0 0.0 4 4914648.0 176.0 274.0 274.0 0.0 4 50 BRNG14846.0 198.0 274.0 274.0 0.0 4 5115044.0 198.0 274.0 274.0 0.0 4 5215220.0 176.0 274.0 274.0 0.0 4 5315396.0 176.0 274.0 274.0 0.0 4 54 BRNG15594.0 198.0 274.0 274.0 0.0 4 5515792.0 198.0 274.0 274.0 0.0 4 5615968.0 176.0 274.0 274.0 0.0 4 5716144.0 176.0 274.0 274.0 0.0 4 58 BRNG 16342.0 198.0 274.0 274.0 0.0 4轴 系 总 重 量 = 142.003 k.NVer.0601 17074623 上海瀚顺船舶轴 系 布 置 图 - (安 装 工 况 )TSFLFL F F F FF F F F016 ( m )0.001.11( m )轴 承 数 据 - ( 安 装 工 况 )轴 承 单 元 支承位置 轴承长度 轴承刚度 序 号号 ( mm ) ( mm ) ( N/m ) 16 1910.0 900.0 STIFF. 215 4933.0 410.0 STIFF. 325 7944.0 290.0 STIFF. 432 11644.0 T. S. STIFF. 537 12602.0 168.0 STIFF. 642 13350.0 168.0 STIFF. 7 46 14098.0 168.0 STIFF. 850 14846.0 168.0 STIFF. 954 15594.0 168.0 STIFF. 10 58 16342.0 168.0 STIFF.轴 系 外 载 荷 - ( 安 装 工 况 )载 荷单 元 载荷位置 分布载荷 集中载荷 弯 矩 号序 号 ( mm ) ( N/m ) ( N ) ( N.m ) 12 780.0 0.0 100573.0 0.0 220 6104.0 0.0 10000.0 0.0 335 12334.0 0.0 19866.0 0.0 439 12937.0 0.0 -51000.0 0.0 544 13724.0 0.0 50600.0 0.0 648 14472.0 0.0 50600.0 0.0 752 15220.0 0.0 50600.0 0.0 8 56 15968.0 0.0 50600.0 0.0Ver.0601 17074623 上海瀚顺船舶 轴 承 反 力 影 响 系 数 ( k.N/mm ) - ( 安 装 工 况 )I.E. 轴 承 升 高 1 mm 时 产 生 的 反 力Diff = 最 后 两 列 差 值Sum = 最 后 两 行 代 数 和No.1 2 3 4 5 6 7 8 11.860E+01-4.125E+012.724E+01-1.304E+01 1.270E+01-4.412E+00 2.073E-01-5.528E-02 2-4.125E+01 1.009E+02-8.080E+01 5.998E+01-5.841E+01 2.029E+01-9.533E-01 2.542E-01 32.724E+01-8.080E+01 9.140E+01-1.408E+02 1.547E+02-5.373E+01 2.524E+00-6.732E-01 4-1.304E+01 5.998E+01-1.408E+02 1.489E+03-2.899E+03 1.562E+03-7.339E+01 1.957E+01 51.270E+01-5.841E+01 1.547E+02-2.899E+03 6.486E+03-4.366E+03 8.499E+02-2.267E+02 6-4.412E+00 2.029E+01-5.373E+01 1.562E+03-4.366E+03 4.368E+03-2.153E+03 7.921E+02 72.073E-01-9.533E-01 2.524E+00-7.339E+01 8.499E+02-2.153E+03 2.457E+03-1.581E+03 8-5.528E-02 2.542E-01-6.732E-01 1.957E+01-2.267E+02 7.921E+02-1.581E+03 1.947E+03 91.382E-02-6.355E-02 1.683E-01-4.893E+00 5.666E+01-1.980E+02 5.996E+02-1.304E+03 10-2.303E-03 1.059E-02-2.805E-02 8.155E-01-9.444E+00 3.301E+01-9.993E+01 3.535E+02 Sum1.152E-02-5.296E-02 1.402E-01-4.077E+00 4.722E+01-1.650E+02 4.996E+02-9.504E+02No.9 10 Diff. 11.382E-02-2.303E-03 1.612E-02 2-6.355E-02 1.059E-02-7.415E-02 31.683E-01-2.805E-02 1.963E-01 4-4.893E+00 8.155E-01-5.708E+00 55.666E+01-9.444E+006.611E+01 6-1.980E+02 3.301E+01-2.310E+02 75.996E+02-9.993E+016.995E+02 8-1.304E+03 3.535E+02-1.657E+03 91.347E+03-4.969E+02 1.844E+03 10-4.969E+02 2.190E+02-7.159E+02 Sum 8.504E+02-2.779E+02 1.128E+03法 兰 开 口 和 偏 移 值法 兰法兰位置开口(GAP )偏移(SAG ) 左边开口 右边开口 左边偏移 右边偏移序 号( mm ) ( mm ) ( mm ) ( mm ) ( mm ) ( mm ) ( mm ) 16.104E+03 1.664E-017.063E-01-2.176E-01-5.118E-02-2.919E-01-9.982E-01 2 1.226E+04 1.331E-01 5.470E-01-1.287E-01 4.419E-03-1.905E+00-2.452E+00安 装 状 态 下 轴 承 反 力轴承序号单元号轴承变位值( mm )轴承反力( k.N ) 16 0.000 166.126 215 0.000 5.249 325 -1.150 35.055 432 -1.800 16.427 537 -2.450 14.326 642 -2.450 7.926 746 -2.450 53.204 850 -2.450 47.375 954 -2.450 60.894 10 58 -2.450 17.259轴 系 挠 度 曲 线 (安装状态)16 (m)-2.454( mm )一、从计算结果得出下列结论:1. 螺旋桨轴和中间的轴承比压均小于许用值。
船舶轴系校中的原理及方法分析
船舶轴系校中的原理及方法分析【摘要】船舶轴系是船舶动力装置的重要组成部分之一。
本论文对影响轴系校中质量有关发面进行了分析,同时介绍了轴系校中的一些方法。
最后以水下轴系校中为例,从中提出轴系校中工艺方面的意见,确保整个轴系在安装过程中,尽可能接近轴系校中计算书所计算出的状态。
【关键词】船舶;轴系;校中;安装;工艺1.影响船舶轴系校中质量优劣的因素主要有1.1传动轴的加工精度传动轴(包括艉轴、中间轴、推力轴)是组成轴系的主要部件,在加工制造时必须按照规定的精度要求进行加工。
若加工误差过大,传动轴对轴系校中的质量会造成不良的影响。
1.2轴系的安装弯曲在安装轴系时,为获得良好的校中质量,往往将轴系按一定的弯曲状态敷设,也就是轴系的安装弯曲。
但,当轴系存在安装弯曲时,在各支承轴承上就会造成附加负荷,该附加负荷的大小及方向由轴系的弯曲度及方向所决定。
1.3船体变形船体在安装轴系范围内发生变形则会造成安装在其上的轴系随之发生弯曲。
轴系的这种弯曲是附加的,且往往使难以控制。
1.4轴法兰端的下垂各轴端因自重或其他载荷的作用而引起轴系的下垂,以至造成主机和基座高度的改变,或重镗尾轴管。
影响轴系校中质量的因素,除上述几种之外,还包括轴系的结构设计、尾轴管轴承中的油膜、海水或润滑油压力的影响,螺旋桨水动力不平衡力矩及推力中心偏心所形成力矩的影响,减速齿轮箱运转时温升的影响等。
在研究轴系校中质量时,这些因素均应予以考虑或研究。
2.船舶轴系校中指导2.1轴系校中方法轴系校中的方法一般有三种:平轴法、负荷法、合理校中法。
修船从前向后,造船从后向前,平轴法用于中小型船舶,对于螺旋桨>300mm的船舶,我国船级社要求按合理校中法校中。
轴系合理校中是通过校中计算确定各轴承的合理变位,使支撑螺旋桨的艉管后轴承的负荷减为最小;把轴承的负荷限制在某个最大与最小值间的范围内;把轴的弯曲应力也限制在允许值内;使施加到柴油机输出法兰的弯矩与剪力在允许范围内等。
轴系校中的三弯矩计算法求解程序编制
维普资讯
维普资讯
中计算 。在读 入 原始 数据 时 , 可事 先 将 轴段 外径 、 内
径 、 距 、 中载荷 、 跨 集 实支 座 、 时支 座和 法 兰处代 号 临
以后 , 即可 运 用 三 弯 矩 的计 算 公 式 及其 边 界 条件 列
出2 个方 程组 。 N 方程 组 可用 一 个二 维数组 储存 , : 如
d u l fn c e g 2 , 2 o be a g h n F N, N+1 ;其 中行 代表 第 几 1 [ ]。
个 方程 , 列 到第 N一1 代表 各截 面 的弯 矩 M 的 第0 列
d t[ 中 。 aa ] 读 入 原始 数据 函数如 下 :
v d r a da a( oi e d— t )
在 储 存 方 程 数 据 之 前 , 将 方 程 组 fn c e g 可 a ghn [N] 2 2 [ N十 1 全 部 置 0 然 后 将 计 算 出 的各 项 系 数 ] ,
p i t c n n t o e a a X .\r ; x t rn f( a o p n d t .t t l ) e i
( ; 0) }
f r i 0;< N ;+ + ) o (一 i i
f r j 0;< 一 2*N ;+ 十 ) o (一 j j
{ cn (p d 8 tF] ) f a ff , s ,daa i. ; fcn (p, f %f f , ̄ tt I] D, sa f f %f %f -aa i. -
+ 1 0 d t +1 . ) . / aa i ] L ; L
性矩 可通 过计 算 得 出 , 保 存 在 d t [ 中 。 函数 并 aa N] 其
船舶推进轴系校中三弯矩计算法的理论探讨
是将触
没 并
加 了计算量 , 但这
量 刚增
来说 , 根本不算什么困难・
2 翌 蔫 不定问题的方法 , 计算轴 系备 叉.州 弓 白 、 一
图 1 支座受力图
1 2 计 . : 弯矩 法 计 t 来自僦 桨 、 及轴 系等结构 主机
.
Ke o d : ; hfig ain n ;trem m n to yw rs s sat l m t he— o e t h d n ge e m
所谓 “ 轴系校 中” 就是 按 照校 中计 算 的要求 和 , 方法 , 将轴系调整成某种状 态 ( 线或 曲线 ) 处 于这 直 , 种状态 的轴 系 , 各 轴段 内的应 力 和各 轴 承上 的负 其
m ls eut frhe— m n m t dw rpe n di tippr h e i t do ai i lc u d c d o tr m et h e r et s ae ad e e o o e e s e n h .T e hc n m h b r gds ae c k ge o f e n p —
( o 74R sac ntu , SC, h nhi 00 hn ) N .0 eerhIstt C I S aga 2 0 3 ,C i ie 1 a
A s a tTr — o e t e o kn o poei atgai m n cl l i .P i ie n r bt c :he m m n m t dit e r r ln s fi l n etac a o r e h sa f s p lg h n g u t n r c la d o— np f
调整成 曲线状 态 , 使各 个 轴承上 的负荷 分 配合理 拉 .
船舶推进轴系校中计算理论简介和几个实际问题
取消舰管前轴承后也不需要高比压中间 轴承。 C 计算时, 要控制艇管前密封处轴的挠度 防止漏油。 J U 因为它的长度较长, 许用比 压较高。 虽然娓管后轴承的负荷( 比压) 也增大了 但不会产生问题的, 负荷加大后, 还是在许用范围内。 e .在工艺上, 校中时要在娓管前部( 或前面功口 一个临时工艺支撑( 假轴承) 它必须与娓管后轴承的 , 内 孔中心线等高, 这是可以做到的。 唯一的麻烦是校中 结束后要把它拆除, 娓管可能需要重新加油( 如果临 时工艺支撑在艇管前部) 。 我们相信: 随着这些单娓管轴承的轴系的使用经验的结累和临时工艺支撑的不断改进, 这种轴系会越 来越多。 尤其对于需要在下水后吊装很重的液化气罐, 容易造成船体娓部较大变形的液化气船, 娓管即 使 有较大变形, 对单娓管轴承的轴系影响不大。 而对于娓部较瘦的船型, 舰管较长的轴系,采用单舰管轴承 的轴系有一个明显的优点一一船舶下水后娓管的变形对单舰管轴承的轴系校中影响也不大。 今 舰管前、 后轴承之间的距离指舰管后 轴承前端到艇管前轴承后端的距离, 支点距离不同( 与 参见图1。 )
98 70 49 10 19 0 37
74 35
62 65
19 0 37
两种设计的各个轴承的负 荷及柴油机输出 法兰 的剪力、 弯矩见表 0 4 修改设计后柴油机输出法兰的剪力、 弯矩见图5 它们也在许用范围内的较好位置。 。 按修改方案建造的两艘船, 交付使用后, 推进轴系也没有发现任何轴承问 题。 对于 布比 轴承分 较均匀的轴系, 取消娓管前轴承后再适当 调整中间轴承位置, 也可以 得到满意的 设计。
GP - 。、 。1 , (后 一W ) ADH = 兰
SGY法_前兰 Y法 A =后兰
偏移值。计算者应根据船厂的 对一个轴系已确定各轴承高度的轴系 可以有无数组满足要求的开口、 日 日 日 目 目 任 习惯来选取 。 日 已 日 目口 曰日 甲
渔船推进轴系校中数值计算分析
渔船推进轴系校中数值计算分析作者:温小飞崔志刚沈学敏孙潇潇来源:《水运管理》2018年第04期【摘要】为使轴系校中计算结果更为准确,以渔船推进轴系为研究对象,采用传递矩阵法建立数学模型,通过计算轴系直线校中轴承负荷求解轴承负荷影响系数。
结合轴承变位-转角函数关系,对轴系校中各轴承变位情况及轴承负荷状况进行数值计算推导和分析。
结果表明,此模型的建立是合理和准确的,计算结果完全符合中国船级社的规定。
【关键词】船舶轴系;传递矩阵法;负荷影响数;合理校中0 引言良好的船舶轴系校中是保障船舶正常航行的前提条件之一。
为了使轴系校中计算结果更为准确,通常在船舶轴系相应的位置设定合理的支承点。
如果轴承状态发生变化,轴系轴承负荷也会随之改变,对轴段的挠度、转角、应力等都会产生影响。
因此,选择合理的校中数学模型和计算方法将会直接影响校中计算结果。
目前船级社和船厂在对轴系校中计算时大多数选用合理校中法,通过计算每个轴承的合理位置,使轴承负荷分配更加合理,满足轴系校中计算要求。
轴系合理校中的计算需要处理较多的工况数据,一般通过计算机数值运算来实现。
本文采用中国船级社COMPASS计算系统,以渔船推进轴系作为研究对象,对其推进轴系校中系统进行计算和分析。
1 船舶轴系校中计算方法常用的船舶轴系校中计算方法主要有三弯矩法、传递矩阵法和有限元法。
本文采用的是传递矩阵法,利用COMPASS软件对船舶轴系进行校中计算。
传递矩阵法是将复杂的弹性系统简化成若干简单系统,在考虑边界条件等因素的基础上,计算简单运动部件的截面状态矢量之间的传递关系,并通过传递矩阵的形式表达出来。
[1]2 数学模型的建立船舶推进系统的组成部分包括船舶主机和推进器等各种惯性元件和弹性元件。
为了确保船舶推进系统的正常运行,船舶轴系(包括中间轴承、艉轴和主机轴承等)的负荷计算和支反力计算是作为船舶合理校中的关键研究对象来处理的。
船舶推进轴系可以看作具有力学性质的一段梁结构,因此轴系校中计算的本质问题就是求解静不定梁的问题。
轴系结构分析实验指导
轴系结构分析实验报告1.轴系结构分析结论1)该轴上的传动件为 (直齿轮;斜齿轮;锥齿轮;蜗杆),传动件间的作用力有 (径向力;圆周力;轴向力)2)当轴工作时,两支点轴承受到的作用力有 (径向力;轴向力)。
3)左支点轴承的类型为,代号为,该类轴承(只能承受径向力;只能承受轴向力;既可承受径向力又可承受单向轴向力;既可承受径向力又可承受双向轴向力)。
右支点轴承的类型为,代号为,该类轴承(只能承受径向力;只能承受轴向力;既可承受径向力又可承受单向轴向力;既可承受径向力又可承受双向轴向力)。
该两轴承的安装属(正装;不分正反装;反装)。
左支点轴承的作用是限制轴向 (左;左和右;右)边的窜动,右支点轴承的作用是限制轴向 (左;左和右;右)边的窜动。
4)轴的支承方案为 (双固式;固游式;双游式),其中左支点为(单向固定;双向固定;游动)支点,右支点为 (单向固定;双向固定;游动)支点。
其靠轴承 (整体轴向移动;内外圈分离)来适应轴的热胀冷缩变形,以防轴承内发生严重的摩擦。
该支承方案适用 (长轴;短轴)和温度变化(较大;较小)的轴。
5)若本轴系中的齿轮采用齿轮箱中的润滑油润滑,则从结构上可以判断轴承采取的是(油;脂;油或脂)润滑,因为在轴承和齿轮之间 (无;有)挡油环。
挡油环的作用是 (将油和脂隔开;防止齿轮上的高温润滑油沿齿槽方向进入轴承)。
6)为了防止外部的灰尘进入减速箱内和内部的润滑剂泄漏,本轴系采取的密封方法是(接触式密封;非接触式密封)7)该轴系中齿轮在轴上的周向固定方式是,轴向固定方式是和。
8)轴系模型中齿轮与轴、轴承内圈与轴颈、联轴器与轴的配合都很松,有很大的大的间隙,这是为了实验装拆方便,在实际机器中它们应为 (过盈;间隙;过渡)配合。
2.思考题1)为什么大多数转轴要做成阶梯轴?2)在设计轴系时,安装齿轮的—端总要设计成轴肩(或轴环)结构,为什么此处不用轴套?3)为什么轴承端盖中心孔与外伸轴之间应留有足够的径向间隙?此处的泄漏问题如何解决?41。
轴系及受力分析资料
3、画出斜齿轮2和蜗杆3上作用的六个(Ft2、 Fr2、Fa2、Ft3、Fr3、Fa3)的方向。Ⅰ 1
3 Ⅱ
手柄
4 v
G
Ⅲ
2
蜗轮
卷筒
3 Ⅱ
1 Ⅰ
手柄
4 v G
Ⅲ 2
蜗轮
卷筒
精品课件!
精品课件!
例题
2
n2
Ⅱ
Fa2
І
n1
1
右旋
4
n4
Fr 2
Ft 2
Ft1
Fr1
Fr4
Ft4
Fa4
Ft 3
Fa3
Fr 3
33、Fa3)的方向。Ⅰ 1
3 Ⅱ
手柄
4 v
G
Ⅲ
2
蜗轮
卷筒
3 Ⅱ
1 Ⅰ
手柄
4 v G
Ⅲ 2
蜗轮
卷筒
受力分析:在图示的手动提升机构中,重物G悬 挂于钢丝绳上,转动手柄可提升重物。试:
1、在图中画出提升重物时手柄的转向;
2、若要求Ⅱ轴上所受的轴向力较小,确定斜齿 轮2的轮齿螺旋线方向;
按序号说明错误原因并将图中的错误结构改正如下图所示为一未设计完成的轴系结构轴上零件位置已定
轴系及受力分析
例题1答案:
例题2:
例题2答案:
例3:齿轮用油润滑,轴承采用脂润滑。按序 号说明错误原因,并将图中的错误结构改正
例题3答案:
例题3答案:
• ⑴ 转动件与静止件接触:图中标号为 1、2、14处;
Fa1
3
结论:为使Ⅱ轴轴向
力小, Ⅱ轴上两齿轮
同旋向。
• 试求:(1)为使中间轴轴向力相反(小),试确 定蜗轮旋向、蜗杆转向及齿轮3的旋向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
具有轴向推力和弯矩作用下的轴系的校中分析摘要船舶轴系作为船舶的重要组成部分,在船舶的建造过程中,轴系校中是极为重要的环节。
随着船舶大型化及推进效率的更高要求,船舶轴系校中的研究和应用,具有更加现实的意义。
为此,本文针对某一具体的船舶轴系,采用了力法、三弯矩法和有限元方法对其作了详细的校中分析,并给出了轴系简化处理方法、计算简图和实际参数,同时比较了各种方法的优劣,包括计算量及计算精度等。
在第四章中利用工程分析软件ANSYS做了静力学分析,给出了船舶推进轴系的受力变形图,支座反力及固支端弯矩。
文章最后是结构的优化设计工作,通过改变轴系的受力情况,使得轴系的稳定性与安全性得到极大的提高。
【关键词】船舶轴系轴系校中三弯矩法有限元方法优化设计【论文类型】应用型NO: 2012-Title: Alignment of the shaft with axial thrust and bending moment Major: Engineering MechanicsName: Wang Gang Signature: Supervisor: Li Ming Signature:ABSTRACTShip shaft is the only parts to transfer host power and make the ship sailing, as an important part of the ship, in the process of ship building, shaft alignment is a very important link. The quality of ship shaft, will directly related to the long-term operation and safety of the ship and of course the life safety of the crew. As the ship that built later will become larger and the higher requirements of efficiency, alignment of the shipping shaft system , will have more realistic significance.In this paper, for a specific ship shaft, the force method, finite element method and three bending moment method which is detailed in shaft alignment, and gives the method to simplify shaft, calculation diagram and practical parameters, at the same time, by using the engineering analysis software ANSYS do the analysis. The final, optimization of the structure design makes the stress of the shaft is more reasonable.【Key Words】shipping shaft system shaft alignment three-bending moment method finite element method optimal design【Type of Thesis】Application Research摘要 (1)ABSTRACT (2)1 绪论 (6)1.1 研究的背景及意义 (6)1.1.1引言 (6)1.1.2 船舶轴系校中的目的及方法 (7)1.2 国内外的研究现状 (8)1.3 本文的主要内容 (10)2 船舶轴系力学模型的建立、简化及理论分析 (11)2.1 力学模型的建立 (11)2.1.1 模型的简化 (11)2.1.2 某实际船型相关参数及尺寸 (12)2.1.3 载荷及约束 (13)2.1.4 坐标系定义 (13)2.1.5 简化后的力学模型 (14)2.2 力法在船舶轴系校中方面的应用 (14)2.2.1 力法简介 (14)2.2.2 力法的理论分析 (15)2.3 三弯矩方法在船舶轴系校中方面的应用 (18)2.3.1 三弯矩方法简介 (18)2.3.2 力学模型的建立 (18)2.3.3 理论分析 (19)2.3 力矩分配法法在船舶轴系校中方面的应用 (21)2.3.1 力矩分配法简介 (21)2.3.2 力矩分配法解析 (21)2.4 小结 (22)3 工程软件的数值分析 (24)3.1 有限元方法 (24)3.1.1有限元法的概念、应用领域及优点 (24)3.1.2 有限元法分析过程 (26)3.2 ANSYS结构分析 (26)3.4 小结 (28)4 轴系结构的优化....................... 错误!未定义书签。
4.1 结构优化的含义及发展 (30)4.2 优化结构的模型建立 (30)4.4 总结 (32)5 总结与展望 (33)5.1总结 (33)5.2 展望 (34)致谢................................... 错误!未定义书签。
1 绪论在船舶的建造过程中,世界各大船厂都多次出现过轴系校中的问题,导致轴承高温、振动过大甚至造成轴承、轴颈损坏的恶性事故。
究其原因,有计算模型建立过程考虑不周,也有别的一些影响因素:支座刚度、船体变形、轴系振动等。
所以说船舶轴系的合理校中对于整个船舶来说显得尤为重要[1]。
1.1 研究的背景及意义1.1.1引言船舶轴系是唯一传递主机动力,使船舶航行的系统组装部件。
船舶推进轴系是在推进装置中从发动机(机组)的输出法兰到推器之间以传动轴为主的一整套设备,主要由用来传递主机功率的传动轴(中间轴、推力轴、螺旋桨轴或尾轴)、支撑部件(推力轴承、中间轴承及尾管内的尾轴承)、轴系附体(用于连接传动轴的联轴器;联轴器外缘上安装的制动器;艉密闭装置等)及其它附件组成[2]。
在其运转的过程中船舶轴系承受着复杂的应力和载荷,主要有:螺旋桨的扭矩和它所产生的扭应力、螺旋桨的推力及压应力、轴系安装时的误差或船体变形(遭受碰撞)时所引起的附加载荷等。
船舶轴系的结构较为简单,但作用十分重大。
其基本任务是:连接主机(机组)与螺旋桨,将主机输出的功率传递给螺旋桨,同时有奖螺旋桨所产生的推力通过推力轴承传给船体,以实现推进船舶的使命。
由此可见螺旋桨是否持续正常运转,在很大程度上决定于轴系工作的可靠性。
因此轴系校中的质量,不仅直接影响到船舶的安全、性能和使用寿命,而且也直接影响船舶运行的经济效益。
因此,如果轴系校中计算有误或者校中的方法不合理,将会导致轴承负荷分配不均,进而引起轴承的超负荷,使得轴承过度磨损,甚至造成轴系开裂。
随着船舶大型化、高速化,以及人们对于船舶安全性、舒适性的更高要求,使得船舶轴系校中的研究和应用,有着极其重要的现实意义。
1.1.2 船舶轴系校中的目的及方法轴系校中即按照某种特定的计算要求和方法,将轴系安装成某种状态,使得轴系在这种状态下,轴承的负载以及各轴段的内的应力均在规范所允许的范围内,从而保证轴系能够持续稳定的工作。
在船舶的建造过程中,轴系校中的方法可谓是多种多样,按其基本理论来划分大致可分为三种:按直线性校中原理、按轴承上许负载荷原理、按轴承上合理负载校中原理。
其中合理校中原理是轴系安装所普遍采用的办法,它是通过计算来确定各个轴承间的合理尺寸,以此将支持螺旋桨的艉管后轴承的荷载减为最小,把轴承的负载限制在一定的范围内,同时也要把轴承的弯曲应力限制在所允许的范围内。
这样作为唯一传递主机动力的机构,船舶轴系便可以保证稳定的运行,而且与之相连接发动机和齿轮箱也不会因轴系校中的质量而受到有害影响。
轴系的合理校中又分为:静态校中、动态校中、运转状态校中。
本文的主要内容是船舶轴系的静态校中。
在船舶设计建造的过程中,轴系校中的计算方法有很多,常用的方法有三弯矩法(一种简洁、高效的用来解决连续梁超静定问题的方法)、力矩分配法(以位移法为基础,逐次渐近地求解结构刚结点力矩的一种数值方法)、有限元法(一种将连续体离散化为若干个有限大小的单元体的集合,以求解连续体力学问题的数值方法)、力法、传递力矩法等。
每种方法都具有各自的侧重点,例如计算精度、计算速度等。
随着计算机技术的发展,各种工程分析软件(ANSYS、Cfdesiqn)也都可以用于船舶轴系的校中计算,使得计算精度有了很大程度的提高,满足了实际应用的要求。
1.2 国内外的研究现状随着航海科学技术的进步,船舶向着大型化、专业化、高速化、自动化的方向发展。
人们对于船舶更高的要求使得一些有关船舶轴系校中的研究越来越受重视。
从上个世纪60年代起,国外便开始了轴系动态校中技术的研究。
一些研究机构和船级社在船舶轴系校中方面做了大量的工作,并提出了适合于各类船舶推进轴系校中的计算模型和计算方法。
我国对于船舶轴系校中的研究起步较晚,在80年代才开始进行船舶轴系校中方面的研究。
经历了直线校中,曲线校中,再到后来的合理校中。
在船舶轴系校中的理论方面我们已经可以和发达国家相比,然而将技术转化为实际应用的却不多。
最初的轴系校中一般采用直线对中的方式,就是将各轴的中心线尽量布置在一条直线上。
它的工艺比较简单,但轴系中各轴承的负荷往往成不合理分配。
由于直线对中存在不足,于是人们在轴系校中的过程中,就试图根据轴承的允荷来进行分析,它是根据轴系的特点,确定各轴承上负荷的允许范围,在校中过通过调节轴承的位置,使各轴承上的实际负荷都处在允许范围之内。
由于只考虑到上的负荷,没有考虑到其它的约束问题,如轴的弯曲应力、主机输出法兰的弯矩和以及轴承允许的最大变位等等,因此这一方法还存在一定的缺陷。
上个世纪五十年代中期以来,国外开始研究平顺曲线校中理论,将轴系看成是由多个支承的柔性梁,同时轴承位置可以在竖直方向进行调节,平顺曲线校中理论就是基一假定而提出的,在此基础上,人们入优化计算方法,按照顺曲线轴系校中原理,通过调整轴承在竖直方向上的位置成了现在的合理校中(又称最佳校中)计算方法,经过几十年的研究与实践,合理校中引起了人们的广泛重视,并在船舶轴系的校中过程中得到了普遍的应用[3-4]。
随着船舶逐渐向高速、重载化发展,船舶航行的动态性能越来越受到人们的传统的推进系统静态校中技术已不能满足轴系安全运行的需要,在轴系合理校中的上,船舶界又在进行轴系动态校中技术的研究。