复数的几何意义(二)
复数的基本概念和几何意义
复数的基本概念和几何意义复数是数学中的一个重要概念,它包含实数和虚数部分,可以用a+bi的形式表示,其中a是实数部分,bi是虚数部分,i是虚数单位,它满足i^2 = -复数的几何意义可以通过复平面来理解。
复平面是一个二维平面,横轴表示实数轴,纵轴表示虚数轴。
复数可以在复平面上表示为一个点。
实数部分决定了复数的横坐标,虚数部分决定了复数的纵坐标。
复数的模长表示复数到原点的距离,即复数的绝对值,用,z,表示。
复数的几何意义可以表现在以下几个方面:1.向量:复数可以看作是向量,实部表示向量在横轴上的投影,虚部表示向量在纵轴上的投影。
复数的加减法对应了向量的加减法,复数的乘法对应了向量的缩放和旋转。
2. 极坐标:复数可以用极坐标表示,在复平面上,复数z可以表示为z = r(cosθ + isinθ),其中r表示模长,θ表示与正实数轴的夹角。
复数的极坐标形式可以简化复数的运算。
3.旋转:复数的乘法可以表示复平面中的旋转。
如果复数z1表示一个向量,复数z2代表一个旋转角度,那么z1×z2的结果就表示了z1绕原点旋转z2对应的角度后的位置。
4.平移:将一个向量加上一个复数的结果就是将这个向量沿着复平面的一些方向平移。
平移是复数的加法对应的几何意义。
5. 共轭复数:共轭复数是将复数的虚数部分取负得到的,即z的共轭复数为z* = a - bi。
在复平面中,共轭复数对应于复数关于实数轴的对称点。
复数的几何意义在多个学科中都得到了广泛的应用。
在工程和物理学中,复数用于描述交流电路的电压和电流,光学中的波长和波矢也可以用复数表示。
在信号处理和通信领域,复数被用于分析和处理信号的频谱特性。
在数学中,复数进一步推广了实数域,使得更多的方程和函数都能够得到解析解。
而在几何学中,复数以及复数的扩展形式,如四元数和八元数等,被用于描述高维空间中的旋转和变换。
总之,复数不仅是数学中的重要概念,也具有丰富的几何意义。
它不仅可以用于解决实数域无法处理的问题,还能够用于表示各种向量、旋转和变换等几何概念。
5.5交大附中2017届第一轮复习20-复数第2讲-复数的几何意义与复数方程
复数第2讲 复数的几何意义与复数方程【知识点归纳】 1、复数的几何形式:复数集与平面上的点集一一对应,可用平面上的点来表示复数,一般地,可用(,)Z a b 表示复数(,)a bi a b R +∈,或用向量OZ 表示复数(,)a bi a b R +∈。
特别提醒:除了原点外,虚轴上的点都表示纯虚数。
2、复数z 对应点的轨迹及相应的复数方程①两点间的距离公式:12d z z =-; ②线段的中垂线:12z z z z -=-; ③圆的方程:z p r -=(以点p 为圆心,r 为半径);④椭圆:122z z z z a -+-=(2a 为正常数,122a z z >-); ⑤双曲线:122z z z z a ---=(2a 为正常数,122a z z <-); ⑥圆的内部:z p r -<(以点p 为圆心,r 为半径);⑦闭圆环:12r z p r -≤≤(以点p 为圆心,12rr ,为半径)。
3、复系数一元二次方程及性质:(1)实系数一元二次方程20(ax bx c a b c ++=∈R ,,且0)a ≠及性质①0∆≥时,方程有实根:12x =,0∆<时,在复数集C 中,方程有一对共轭虚数根12x =,②根与系数的关系:无论0∆≥还是0∆<,总有112b c x x x x a a+=-=,. ③虚根成对出现的性质:当∆<0时,12x x =且221212c x x x x a===. (2)虚系数一元二次方程20(0ax bx c a a b c ++=≠,,,至少有一个为虚数)及性质 ①求根公式122b x a-+∆=,的平方根适用;②韦达定理仍适用;③判别式判断实根情况失效;④虚根成对出现的性质失效.如x 2-ix-2=0,△=7>0,但该方程并无实根。
但韦达定理以及求根公式仍适用。
【例题讲解】例1、已知z 为复数,z +2i 和2zi-均为实数,其中i 是虚数单位. (1)求复数z ;(2)若复数2()z ai +在复平面上对应的点在第一象限,求实数a 的取值范围. 解: (1)设复数z =a +bi (a ,b ∈R ),由题意,22(2)z i a bi i a b i +=++=++∈R ,∴b +2=0,即b=-2. 又()(2)222555z a bi i a b b a i i ++-+==+∈-R ,∴2b +a =0,即a =-2b =4. ∴42z i =-.(2)由(1)可知42z i =-,∵2222()(42)[4(2)]16(2)8(2)z ai i ai a i a a i +=-+=+-=--+-对应的点在复平面的第一象限,∴216(2)0,8(2)0,a a ⎧-->⎨->⎩解得a 的取值范围为26a <<.例2、(1)根据复数的几何意义及向量表示,在复平面内以),(b a 为圆心,以r 为半径的圆的复数方程是______________; r bi a z =--||(2)△ABC 三个顶点所对应的复数分别为z 1,z 2,z 3,复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 所对应的点是△ABC 的_____________(填 内心、外心、重心、垂心等) 外心; (3)已知复数z 满足2|43|=++i z ,则||z 的最大值是_______ 7 (4)已知1=z ,则i z 43-+的最大值是________ 6(5)若复数z 满足|z-4-3i|≤3,则|z|的取值范围是_______________ ]8,2[(6)已知虚数(2)(,)x yi x y R -+∈,则yx的取值范围是__________ 解:z 在圆22(2)3(0)x y y -+=≠上,y x 表示圆上的点与原点连线斜率,y x∈[⋃。
高二数学复数的几何意义2
以点(2, -3)为圆心,
1为半径的圆上
复数减法的几何意义的运用 设复数z=x+yi,(x,y∈R),在下列条 件下求动点Z(x,y)的轨迹.
1.| z- 2|= 1 2. | z- i|+ | z+ i|=4
3. | z- 2|= | z+ 4|
y Z Z
o
2
x
Z Z
当| z- z1|=r时, 复数z对应的点的轨迹是以 Z1对应的点为圆心,半径为r的圆.
z1+ z2=OZ1 +OZ2 = OZ 符合 向量 加法 的平 行四 边形 法则.
y
Z2(c,d)
Z(a+c,b+d)
Z1(a,b)
o
x
2.复数减法运算的几何意义?
复数z2-z1
y
向量Z1Z2
符合 向量 减法 的三 角形 法则.
Z2(c,d)
Z1(a,b)
o
|z1-z2|表示什么?
x
表示复平面上两点Z1 ,Z2的距离
已知复数z对应点A,说明下列各 式所表示的几何意义.
(1)|z-(1+2i)|
点A到点(1,2)的距离
(2)|z+(1+2i)|
点A到点(-1, -2)的距离
(3)|z-1|
点A到点(1,0)的距离 (4)|z+2i|
点A到点(0, -2)的距离
练习:已知复数m=2-3i,若复数z
满足不等式|z-m|=1,则z所对应 的点的集合是什么图形?
y Z 1 o -1 Z Z x
|z-z1|+|z-z2|=2a
|z1-z2|<2a
|z2-z1|=2a |z2-z1|>2a
3.1.2 复数的几何意义
|a+bi|(a,b∈R).
(2)求法:|z|=|������������|= ������2 + ������2(a,b∈R).
(3)模的几何意义:复数 z 的模就是复数 z=a+bi(a,b∈R)所对应
的点 Z(a,b)到原点(0,0)的距离.
名师点拨 1.实数 0 与零向量对应,故复数 0 的模为 0.
探究一
探究二
探究三
思想方法 当堂检测
数形结合思想在复数中的应用(1) 典例 已知复数z=3+ai,且|z|<4,求实数a的取值范围.
解:法一:∵z=3+ai(a∈R), ∴|z|= 32 + ������2,
由已知得 32+a2<42,
∴a2<7, ∴a∈(- 7, 7).
课堂篇探究学习
探究一
探究二
所以������������=(1,7),������������=(2,3),
由平行四边形的性质得������������ = ������������ + ������������=(3,10),而������������=(0,-3),
于是 D(3,7).
探究一
探究二
探究三
思想方法 当堂检测
3.1.2 复数的几何意义
-1-
学习目标
思维脉络
1.了解复平面的概念,理解复数的 几何意义. 2.理解复数、复平面内的点、复
平面内的向量之间的对应关系.
3.掌握复数模的概念,会求复数的 模.
课前篇自主预习
1.复平面 (1)复平面:建立了平面直角坐标系来表示复数的平面叫复平面; (2)实轴:坐标系中的x轴叫实轴,在它上面的点都表示实数; (3)虚轴:坐标系中的y轴叫虚轴,除去原点外,在它上面的点都表示 纯虚数. 2.复数的几何意义 (1)复数与复平面内的点一一对应:
3.3复数的几何意义(2)
3.3复数的几何意义(2)【典型例题】例1. 在复平面上,设点A 、B 、C ,对应的复数分别为,1,42i i +。
过A 、B 、C 做平行四边形ABCD ,求此平行四边形的对角线BD 的长。
例2设,C z ∈满足下列条件的复数z 所对应的点z 的集合表示什么图形 .12141log 21->--+-z z例3.已知复数21,z z ,21z z +在复平面上分别对应点O C B A ,,,为复平面的原点.(1)若i z 21231+=,向量OA 逆时针旋转90°,模变为原来的2倍后与向量OC 重合,求2z ;(2)若(221i z z =-)21z z +,试判断四边形OACB 的形状.★基础训练★ 1.已知向量AB 对应的复数为i +1,若A 点的坐标为(1,3),则B 点的坐标为_________.2、在复平面内,若复数z 满足|1|||z z i +=-,则z 所对应的点的集合构成的图形是 。
3.已知复数)()3(2)()1(223R a i a i a i z ∈--+=,且32=z ,则a =___________.4.已知方程0222=+-m x x的两个虚根为βα,,且3=-βα,则实数m 的值为____.5.当复数21,z z 满足212-=i z z ,而1z 在复平面内的对应点在曲线1022=++-z z 上运动,则2z 在平面内的对应点的轨迹方程式是________________(用普通方程表示).6.设z 为复数,则“1=z ”是“R zz ∈+1”的 ( ) (A)充分非必要条件 (B)必要非充分条件(C)充要条件 (D)既不充分又不必要条件7.设C z ∈,由复数222,,,,,,,z z z z z z z z z 所构成的集合中最多有几个元素(A)4个 (B)5个 (C)6个 (D)7个 ( )8.已知{}622=-++=z z z M ,{}11=+=z z N ,则N M ,的关系是( ) (A)N M ⊂ (B) N M ⊃ (C) M N M =⋃ (D) ∅=⋂N M二解答题:9.求虚数z ,使R z z∈+4,且22=-z .10.设βα,是关于x 的方程)(022R m m x x∈=++的两个根,求βα+的值.11、(11分)已知复数z 满足|4||4|,z z i -=-且141z z z -+-为实数,求z 。
高二数学复数的几何意义2
一一对应
一一对应
平面向量 OZ
y
z=a+bi
Z(a,b)
b
a
o
x
复数的模的几何意义
对应平面向量 OZ 的模|OZ |,即复数
z=a+bi在复平面上对应的点Z(a,b)到原点的
距离。
|z|=
y z=a+bi
Z (a,b)
| z || z | a2 b2
O
x
在同一时间谈论,上面有表示时间、度数等的刻度或数字。 【边门】biānmén名旁门。【梐】bì[梐枑](bìhù)名古代官署前拦住行人的东西,③
新课讲解 1.复数加法运算的几何意义?
符合向量加法 的平行四边形
法则.
Z1+ Z2=OZ1 +OZ2 = OZ
y
Z(a+c,b+d)
Z2(c,d)
Байду номын сангаас
Z1(a,b)
o
x
2.复数减法运算的几何意义?
符合向量减 法的三角形
法则.
复数z1-z2
y
Z2(c,d)
向量Z2Z1
Z1(a,b)
o
x
表示复平面上两点Z1 ,Z2的距离
以点(2, -3)为圆心, 1为半径的圆上
3、复数加减法的几何意义
(1) |z1|= |z2| 平行四边形OABC是 菱形
(2) | z1+ z2|= | z1- z2|
平行四边形OABC是 矩形 o
C
z2 z2-z1
z1 A
(3) |z1|= |z2|,| z1+ z2|= | z1- z2| 平行四边形OABC是 正方形
复数的几何意义 课件(2)-人教A版高中数学必修第二册(共25张PPT)
[跟踪训练 2]
1、在复平面内,A,B,三点对应的复数分别为1,2+i,-1+2i. (1)求向量 ―A→B ,―A→C ,―B→C 对应的复数; (2)若ABCD为平行四边形,求D对应的复数.
解析(1)设 O 为坐标原点,由复数的几何意义知: ―O→A =(1,0),―O→B =(2,1),―O→C =(-1,2), 所以―A→B =―O→B -―O→A =(1,1), ―A→C =―O→C -―O→A =(-2,2),―B→C =―O→C -―O→B =(-3,1), 所以―A→B ,―A→C ,―B→C 对应的复数分别为 1+i,-2+2i,-
[跟踪训练 1]
1、实数 x 取什么值时,复平面内表示复数 z=x2+x-6 +(x2-2x-15)i 的点 Z: (1)位于第三象限; (2)位于直线 x-y-3=0 上.
解析 因为 x 是实数,所以 x2+x-6,x2-2x-15 也是实数.
x2+x-6<0,
(1)当实数 x 满足
即-3<x<2 时,点 Z 位于第
自主预习,回答问题
阅读课本70-72页,思考并完成以下问题
1、复平面是如何定义的,复数的模如何求出? 2、复数与复平面内的点及向量的关系如何?复数的模是实 数还是虚数?
要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问 题。
知识清单
1.复平面
2.复数的几何意义
(1)复数 z=a+bi(a,b∈R) 2复数 z=a+bia,b∈R
x2-2x-15<0,
三象限.
(2)当实数 x 满足(x2+x-6)-(x2-2x-15)-3=0,即 3x+6=0,
x=-2 时,点 Z 位于直线 x-y-3=0 上.
3.1.2复数的几何意义
| z | = a 2 b2
z=a+bi Z (a,b)
O
| z || z | a2Fra bibliotek b2x
例1 在复平面内,分别用点和向量表示下列复数: 4,2+i,-i,-1+3i,3-2i 例2 已知复数 z1
3 4i, z 2 1 5i
试比较它们模的大小。
y
满足|z|=2(z∈C) 的复数z对应的点在 复平面上将构成怎 样的图形?
点A到点(-1, -2)的距离
分层训练:
必做题:
1.P114练习3,4,5
2.已知复数m=2-3i,若复数z满足不等式|z-m|=1,
则z所对应的点的集合是什么图形? 以点(2, -3)为圆心,
选做题:P115 习题7 作业:P115 习题1,2,4
1为半径的圆上
–2
2
2 O x
–2
图形: 以原点为圆心,2为半径的圆上
y
满足2<|z|<3(z∈C) 的复数z对应的点在 复平面上将构成怎样 的图形? –3
3
2
–2
O
5
2
3 x
–2
–3
图形: 以原点为圆心, 半径2至3的圆环内
1.复数加法运算的几何意义
z1+ z2=OZ1 +OZ2 = OZ 符合 向量 加法 的平 行四 边形 法则.
3.什么叫做复数的模?它是怎样定义的?它与实数的什 么概念可以类比?
4. 两个复数的差的模的几何意义是什么?
自主检测:P114 练习1、2
复数的几何意义(一)
复数z=a+bi (数) z=a+bi Z(a,b)
a b
复数的几何意义
例2:用复数表示下图中的阴影部分.
解.(1)|z|<3,且Im(z)<-1, (2)|z|≥3,且Re(z)≤-1. (3) |z|≤3,且-2≤Re(z)≤2.
例3:在复平面内,满足下列复数 形式方程的动点Z的轨迹是什么. (1)|z-1-i|=|z+2+i|; (2)|z+i|+|z-i|=4; (3)|z+2|-|z-2|=2.
一.复数的几何意义:复数z=a+bi对应 于直角坐标平面上的点Z(a,b),复 数也可以看成向量。 有了这种一一对应关系后,我们常把 复数z=a+bi说成点Z(a,b),或说 成向量 oz . 二.复数模的几何意义:复平面上复 数表示的点到原点的距离。 |z|=|OZ|=| oz |
复数的加、减法几 何意义即为向量的 加、减法。 |Z1-Z2|表示平面上两 点的距离
3
4
(3)这个方程可以写成 |z-(-2)|-|z-2|=2,所以表示到 两个定点F1(-2,0),F2(2,0)距离 差2a等于2的点的轨迹,这个轨 迹是双曲线右半支.
x y 即双曲线: 1(x>0) 1 3
2
2
例4:△ABC的三个顶点对应的 复数分别是z1,z2,z3,若复数z满 足 |z-z1|=|z-z2|=|z-z3| , 则 z 对应的点为△ABC的( D ) A. 内心; B.垂心; C.重心; D.外心;
解:(1)方程可以看成 |z-(1+i)|=|z-(-2-i)|, 表示的是到两个定点A(1,1)和 B(-2,-1)距离相等的动点轨迹.所 以是线段AB的的垂直平分线。 即:直线6x+4y+3=0。
复数的几何意义
复数的几何意义在数学中,我们经常会遇到复数的概念和使用。
虽然复数在代数学中有着重要的作用,但它们在几何学中也具有深远的意义。
本文将探讨复数在几何学中的意义,并展示它们在平面几何中的应用。
1. 复数的定义复数是由一个实数和一个虚数组成的数,通常表示为"a+bi"的形式,其中a是实部,bi是虚部,而i是虚数单位,满足i^2 = -1。
复数可以用平面上的点来表示,实部对应点的x坐标,虚部对应点的y坐标。
2. 复数的模和参数复数的模表示复数到原点的距离,可以使用勾股定理来计算,即模=√(a^2 + b^2)。
复数的参数表示复数与正实轴之间的夹角,可以使用反三角函数来计算,即参数=arctan(b/a)。
3. 复数的几何表示复数可以用向量来表示,向量的起点为原点,终点为该复数对应的点。
因此,复数的几何表示就是平面上的一个向量。
通过调整实部和虚部的数值,可以得到不同的向量。
4. 复数的加法和减法复数的加法可以看作是向量的相加,即将两个复数的向量相加,得到一个新的向量。
减法可以看作是向量的相减,即将两个复数的向量相减,得到一个新的向量。
这两个操作在平面几何中对应着向量的平移。
5. 复数的乘法和除法复数的乘法可以看作是向量的旋转和缩放,即将一个复数的向量旋转一定角度,并将向量的长度乘以一个因子,得到一个新的向量。
除法可以看作是向量的反向旋转和缩放,即将一个复数的向量旋转一定角度,并将向量的长度除以一个因子,得到一个新的向量。
6. 复数的共轭复数的共轭表示将复数的虚部取相反数,保持实部不变。
共轭的几何意义是将复数表示的向量关于实轴反射得到的新向量。
7. 复数在平面几何中的应用复数在平面几何中有广泛的应用。
例如,可以使用复数来表示平移、旋转和缩放等变换。
复数的乘法和除法可以用来进行向量的旋转和缩放操作。
此外,复数还可以表示平面上的点,通过复数的运算可以得到点之间的距离和夹角等信息。
总结:复数在几何学中有着重要的意义,可以用来表示平面上的向量和点。
19-20版 第3章 3.1 3.1.1 3.1.2 第2课时 复数的几何意义
第2课时复数的几何意义一、复数的几何意义及复数的模1.复平面(1)定义:建立了直角坐标系来表示复数的平面叫做复平面;(2)实轴:在复平面内,x轴叫做实轴,单位是1,实轴上的点都表示实数;(3)虚轴:在复平面内,y 轴叫做虚轴,单位是i ,除原点外,虚轴上的点都表示纯虚数;(4)原点:原点(0,0)表示实数0. 2.复数的几何意义(1)复数z =a +b i(a ,b ∈R )―――→一一对应复平面内的点Z (a ,b ). (2)复数z =a +b i(a ,b ∈R ) ―――→一一对应平面向量OZ→. 为方便起见,我们常把复数z =a +b i 说成点Z 或说成向量OZ →,并且规定,相等的向量表示同一个复数.3.复数的模向量OZ →的长度叫做复数z =a +b i 的模,记作|z |或|a +b i|,且|a +b i|=a 2+b 2. 二、共轭复数 1.定义如果两个复数的实部相等,而虚部互为相反数,则这两个复数叫做互为共轭复数.2.表示复数z 的共轭复数用z 表示,即当z =a +b i(a ,b ∈R )时,则z =a -b i.1.判断(正确的打“√”,错误的打“×”) (1)在复平面内,对应于实数的点都在实轴上. ( ) (2)复数的模一定是正实数.( )(3)复数z 1>z 2的充要条件是|z 1|>|z 2|. ( )[解析] (1)正确.根据实轴的定义,x 轴叫实轴,实轴上的点都表示实数,反过来,实数对应的点都在实轴上,如实轴上的点(2,0)表示实数2.(2)错误.复数的模一定是实数但不一定是正实数,如:0也是复数,它的模为0不是正实数.(3)错误.两个复数不一定能比较大小,但两个复数的模总能比较大小. [答案] (1)√ (2)× (3)×2.复数z =cos θ+isin θ(i 为虚数单位)其中θ∈⎝ ⎛⎭⎪⎫π,32π,则复数z 在复平面上所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] ∵θ∈⎝ ⎛⎭⎪⎫π,32π,∴cos θ<0且sin θ<0,∴该复数所对应的点位于复平面上第三象限. [答案] C3.若x -2+y i 和3x -i 互为共轭复数,则实数x 与y 的值分别是________,________.[解析] ∵x -2+y i 和3x -i 互为共轭复数, ∴⎩⎨⎧ x -2=3x ,y =1,解得⎩⎨⎧x =-1,y =1. [答案] -1 1对应的点满足下列条件时,求a的值(或取值范围).(1)在实轴上;(2)在第三象限;(3)在抛物线y2=4x上.[思路探究]解答本题可先确定复数z的实部、虚部,再根据要求列出关于a的方程(组)或不等式(组)求解.[解]复数z=(a2-1)+(2a-1)i的实部为a2-1,虚部为2a-1,在复平面内对应的点为(a2-1,2a-1).(1)若z对应的点在实轴上,则有2a -1=0,解得a =12.(2)若z 对应的点在第三象限,则有 ⎩⎨⎧a 2-1<0,2a -1<0,解得-1<a <12. (3)若z 对应的点在抛物线y 2=4x 上,则有(2a -1)2=4(a 2-1),即4a 2-4a +1=4a 2-4, 解得a =54.复数集与复平面内所有的点组成的集合之间存在着一一对应关系.每一个复数都对应着一个有序实数对,复数的实部、虚部分别对应点的横坐标、纵坐标,从而讨论复数对应点在复平面内的位置,关键是确定复数的实、虚部,由条件列出相应的方程(或不等式)组.1.在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i 对应点:(1)在虚轴上;(2)在第二象限;(3)在直线y =x 上,分别求实数m 的值或取值范围.[解] 复数z =(m 2-m -2)+(m 2-3m +2)i 的实部为m 2-m -2,虚部为m 2-3m +2.(1)由题意得m 2-m -2=0, 解得m =2或m =-1. (2)由题意得⎩⎨⎧m 2-m -2<0,m 2-3m +2>0,∴⎩⎨⎧-1<m <2,m >2或m <1, ∴-1<m <1.(3)由已知得m 2-m -2=m 2-3m +2, ∴m =2.【例2】 已知平面直角坐标系中O 是原点,向量OA ,OB 对应的复数分别为2-3i ,-3+2i ,求向量BA→对应的复数.[思路探究] 复数→求向量OA →,OB →的坐标→ 计算向量BA→的坐标→确定对应的复数[解] 向量OA→,OB →对应的复数分别为2-3i ,-3+2i ,根据复数与复平面内的点一一对应,可得向量OA→=(2,-3),OB →=(-3,2).由向量减法的坐标运算可得向量BA →=OA →-OB →=(2+3,-3-2)=(5,-5),根据复数与复平面内的点一一对应,可得向量BA→对应的复数是5-5i.1.根据复数与平面向量的对应关系,可知当平面向量的起点为原点时,向量的终点对应的复数即为向量对应的复数.反之,复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.2.解决复数与平面向量一一对应的题目时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.2.在复平面内,O 是原点,向量OA→对应的复数为2+i.(1)如果点A 关于实轴的对称点为点B ,求向量OB→对应的复数;(2)如果(1)中的点B 关于虚轴的对称点为点C ,求点C 对应的复数. [解] (1)设向量OB →对应的复数为z 1=x 1+y 1i(x 1,y 1∈R ),则点B 的坐标为(x 1,y 1),由题意可知,点A 的坐标为(2,1).根据对称性可知:x 1=2,y 1=-1,故z 1=2-i. (2)设点C 对应的复数为z 2=x 2+y 2i(x 2,y 2∈R ),则点C 的坐标为(x 2,y 2),由对称性可知:x 2=-2,y 2=-1,故z 2=-2-i.1.若z ∈C ,则满足|z |=2的点Z 的集合是什么图形?[提示] 因为|z |=2,即|OZ →|=2,所以满足|z |=2的点Z 的集合是以原点为圆心,2为半径的圆,如图所示.2.若z ∈C ,则满足2<|z |<3的点Z 的集合是什么图形? [提示] 不等式2<|z |<3可化为不等式组⎩⎨⎧|z |>2,|z |<3,不等式|z |>2的解集是圆|z |=2外部所有的点组成的集合, 不等式|z |<3的解集是圆|z |=3内部所有的点组成的集合,这两个集合的交集就是上述不等式组的解集.因此,满足条件2<|z |<3的点Z 的集合是以原点为圆心、分别以2和3为半径的两个圆所夹的圆环,但不包括圆环的边界,如图所示.【例3】 已知复数z 1=-3+i ,z 2=-12-32i. (1)求|z 1|与|z 2|的值,并比较它们的大小;(2)设复平面内,复数z 满足|z 2|≤|z |≤|z 1|,复数z 对应的点Z 的集合是什么? [思路探究] (1)利用复数模的定义来求解.若z =a +b i(a ,b ∈R ),则|z |=a 2+b 2.(2)先确定|z |的范围,再确定点Z 满足的条件,从而确定点Z 的图形. [解] (1)|z 1|=(-3)2+12=2.|z 2|=⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫-322=1. ∵2>1,∴|z 1|>|z 2|.(2)由(1)知|z 2|≤|z |≤|z 1|,则1≤|z |≤2.因为不等式|z |≥1的解集是圆|z |=1上和该圆外部所有点的集合,不等式|z |≤2的解集是圆|z |=2上和该圆的内部所有点组成的集合,所以满足条件1≤|z |≤2的点Z 的集合是以原点O 为圆心,以1和2为半径的两圆所夹的圆环,且包括圆环的边界.1.两个复数不全为实数时不能比较大小;而任意两个复数的模均可比较大小.2.复数模的意义是表示复数对应的点到原点的距离,这可以类比实数的绝对值,也可以类比以原点为起点的向量的模来加深理解.3.|z 1-z 2|表示点Z 1,Z 2两点间的距离,|z |=r 表示以原点为圆心,以r 为半径的圆.3.如果复数z=1+a i满足条件|z|<2,那么实数a的取值范围是________.[解析] 由|z |<2知,z 在复平面内对应的点在以原点为圆心,以2为半径的圆内(不包括边界),由z =1+a i 知z 对应的点在直线x =1上,所以线段AB (除去端点)为动点Z 的集合,由图可知-3<a < 3.[答案] (-3, 3)1.在复平面内,若OZ →=(0,-5),则OZ →对应的复数为() A .0 B .-5C .-5iD .5[解析] OZ →对应的复数z =0-5i =-5i.[答案] C2.在复平面内,复数z =sin 2+icos 2对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限[解析] ∵π2<2<π,∴sin 2>0,cos 2<0.故z =sin 2+icos 2对应的点在第四象限.[答案] D3.已知复数z =2-3i ,则复数的模|z |是( )A .5B .8C .6 D.11[解析] |z |=(2)2+(-3)2=11.[答案] D4.若复数z 1=3+a i ,z 2=b +4i(a ,b ∈R ),且z 1与z 2互为共轭复数,则z =a +b i 的模为________.[解析] ∵z 1=3+a i ,z 2=b +4i 互为共轭复数,∴⎩⎨⎧ 3=b ,a =-4,∴z =-4+3i ,∴|z |=(-4)2+32=5.[答案] 55.已知复数z 满足z +|z |=2+8i ,求复数z .[解] 设z =a +b i(a ,b ∈R ),则|z |=a 2+b 2,代入方程得,a +b i +a 2+b 2=2+8i ,∴⎩⎨⎧ a +a 2+b 2=2,b =8,解得⎩⎨⎧a =-15,b =8. ∴z =-15+8i. 课时分层作业(九)(建议用时:40分钟)[基础达标练]一、选择题1.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i[解析] 由题意知A (6,5),B (-2,3),则AB 中点C (2,4)对应的复数为2+4i.[答案] C2.复数z =1+3i 的模等于( )A .2B .4C.10 D .2 2[解析] |z |=|1+3i|=12+32=10,故选C.[答案] C3.复数z 1=a +2i ,z 2=-2+i ,如果|z 1|<|z 2|,则实数a 的取值范围是( )A .(-1,1)B .(1,+∞)C .(0,+∞)D .(-∞,-1)∪(1,+∞)[解析] ∵|z 1|=a 2+4,|z 2|=5, ∴a 2+4<5,∴-1<a <1.[答案] A4.在复平面内,O 为原点,向量OA→对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB→对应的复数为( ) A .-2-iB .-2+iC .1+2iD .-1+2i[解析] 因为A (-1,2)关于直线y =-x 的对称点为B (-2,1),所以向量OB→对应的复数为-2+i.[答案] B5.已知复数z 对应的点在第二象限,它的模是3,实部为-5,则z 为( )A .-5+2iB .-5-2iC .-5+3iD .-5-3i[解析] 设z =-5+b i(b ∈R ),由|z |=(-5)2+b 2=3,解得b =±2,又复数z 对应的点在第二象限,则b =2, ∴z =-5+2i.[答案] A二、填空题6.在复平面内,复数z 与向量(-3,4)相对应,则|z |=________.[解析] 由题意知z =-3+4i ,∴|z |=(-3)2+42=5.[答案] 57.已知复数x 2-6x +5+(x -2)i 在复平面内对应的点在第三象限,则实数x 的取值范围是________.[解析] 由已知得⎩⎨⎧ x 2-6x +5<0,x -2<0,∴⎩⎨⎧ 1<x <5,x <2,∴1<x <2.[答案] (1,2)8.已知△ABC 中,AB→,AC →对应的复数分别为-1+2i ,-2-3i ,则BC →对应的复数为________.[解析] 因为AB→,AC →对应的复数分别为-1+2i ,-2-3i , 所以AB→=(-1,2),AC →=(-2,-3). 又BC→=AC →-AB →=(-2,-3)-(-1,2)=(-1,-5),所以BC →对应的复数为-1-5i.[答案] -1-5i三、解答题9.若复数z =x +3+(y -2)i(x ,y ∈R ),且|z |=2,则点(x ,y )的轨迹是什么图形?[解] ∵|z |=2, ∴(x +3)2+(y -2)2=2,即(x +3)2+(y -2)2=4.∴点(x ,y )的轨迹是以(-3,2)为圆心,2为半径的圆.10.实数m 取什么值时,复平面内表示复数z =(m -3)+(m 2-5m -14)i 的点:(1)位于第四象限;(2)位于第一、三象限;(3)位于直线y =x 上.[解] (1)由题意得⎩⎨⎧m -3>0,m 2-5m -14<0,得3<m <7,此时复数z 对应的点位于第四象限.(2)由题意得⎩⎨⎧ m -3>0,m 2-5m -14>0,或⎩⎨⎧m -3<0,m 2-5m -14<0,∴m >7或-2<m <3,此时复数z 对应的点位于第一、三象限.(3)要使复数z 对应的点在直线y =x 上,只需m 2-5m -14=m -3,∴m 2-6m -11=0,∴m =3±25,此时,复数z 对应的点位于直线y =x 上.[能力提升练]1.已知a ∈R ,且0<a <1,i 为虚数单位,则复数z =a +(a -1)i 的共轭复数z 在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 [解析] ∵0<a <1,∴1-a >0,故复数z =a +(a -1)i 的共轭复数z =a +(1-a )i 在复平面内所对应的点(a,1-a )位于第一象限.[答案] A2.已知实数a ,x ,y 满足a 2+2a +2xy +(a +x -y )i =0,则点(x ,y )的轨迹是( )A .直线B .圆心在原点的圆C .圆心不在原点的圆D .椭圆 [解析] 因为a ,x ,y ∈R ,所以a 2+2a +2xy ∈R ,a +x -y ∈R .又a 2+2a +2xy +(a +x -y )i =0,所以⎩⎨⎧a 2+2a +2xy =0,a +x -y =0,消去a 得(y -x )2+2(y -x )+2xy =0,即x 2+y 2-2x +2y =0,亦即(x -1)2+(y +1)2=2,该方程表示圆心为(1,-1),半径为2的圆.[答案] C3.若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =________.[解析] 依题意可设复数z =a +2a i(a ∈R ),由|z |=5,得a 2+4a 2=5,解得a =±1,故z =1+2i 或z =-1-2i.[答案] 1+2i 或-1-2i4.已知O 为坐标原点,OZ 1→对应的复数为-3+4i ,OZ 2→对应的复数为2a +i(a ∈R ).若OZ 1→与OZ 2→共线,求a 的值. [解] 因为OZ 1→对应的复数为-3+4i , OZ 2→对应的复数为2a +i , 所以OZ 1→=(-3,4),OZ 2→=(2a,1). 因为OZ 1→与OZ 2→共线,所以存在实数k 使OZ 2→=kOZ 1→, 即(2a,1)=k (-3,4)=(-3k,4k ),所以⎩⎨⎧ 2a =-3k ,1=4k ,所以⎩⎪⎨⎪⎧ k =14,a =-38,即a 的值为-38.。
复数的几何意义
复数的几何意义引言复数是数学中一种常见的概念,用于描述带有虚部的数。
在复数的运算中,虚部通常用虚数单位i表示,其中i是一个满足i^2 = -1的数。
复数的几何意义是通过将复数表示为有序对的形式,将其在复平面上进行表示和解释。
本文将介绍复数的几何意义及其在实际应用中的作用。
复平面表示法复平面是由实数轴和虚数轴组成的平面。
实数轴水平表示实部,虚数轴垂直表示虚部。
复数可以通过将其表示为实部和虚部的有序对的形式来在复平面上进行表示。
例如,复数z = a + bi可以表示为 (a, b) 的点在复平面上的位置。
在复平面中,原点表示零,实数轴上的点表示实数,虚数轴上的点表示纯虚数,而其他点表示具有实部和虚部的复数。
复数的模复数的模表示复数到原点的距离,可以使用勾股定理计算。
复数z = a + bi的模可以表示为|z| = sqrt(a^2 + b^2)。
在复平面中,模可以视为复数对原点的径向距离。
由模的定义可知,复数的模为非负实数。
复数的辐角复数的辐角是复数到正实数轴的夹角,通常使用弧度制进行表示。
复数z = a +bi的辐角可以通过计算theta = arctan(b / a)获得。
在复平面中,辐角可以视为复数与正实数轴之间的倾斜角度。
需要注意的是,辐角只有在复数不等于零时才有意义。
复数的几何运算在复平面中,复数可以进行各种基本的几何运算,包括加法、减法、乘法和除法。
这些运算的结果可以用复数在复平面上的图形表示形式来解释。
复数的加法和减法复数的加法可以通过将两个复数对应的点在复平面上进行相加来实现。
例如,复数z1 = a1 + b1i和z2 = a2 + b2i的和为z = (a1 + a2) + (b1 + b2)i。
类似地,复数的减法也可以通过复数在复平面上的点相减来实现。
复数的乘法和除法复数的乘法可以通过将两个复数的模相乘、辐角相加来实现。
例如,复数z1 = |z1| (cos(theta1) + i * sin(theta1))* 和z2 = |z2| (cos(theta2) + i * sin(theta2))* 的乘积为z = |z1| |z2| * (cos(theta1 + theta2) + i * sin(theta1 + theta2))*。
复数的加减法几何意义2
复数的几何意义及应用
一、加法的几何意义: Z1+Z2 y
Z2
Z1
o
x
以复数z1与z2所对应的向量为一组邻边画平 行四边形,那么与这个平行四边形的对角线 所表示的向量OZ即为两复数Z1+Z2的和。
y Z2
Z1+Z2
Z1
o
x
C B
E D
A
AB+BC+CD+DE=AE
二、复数减法的几何意义:
y
Z2
Z1Z2
Z1
x
O
1、 两个复数的差z2-z1与连结两个向量终点并指向被减数的向量对应。 2、复平面上两点间的距离|Z1Z2|=|z2-z1|
1、2(|z1|2+|z2|2)=| z1+ z2|2+ | z1- z2|2
2、|z1|= |z2| 则平行四边形OABC是菱形
o 3、 | z1+ z2|= | z1- z2|
4、(1)若arg(-2-i)=α,arg(-3-i)=β,求α +β
(2)若z1=-2,z2=1+
√3 i,z3=1-i,求arg[(z1z2)/z3]
5、若|z1|=3,|z2|=5,|z1-z2|=7,求z1/z2
6.已知ABC的三个顶点A, B,C对应的复数分别为
z1,
z2 ,
z3 , 若
z2 z3
则平行四边形OABC是矩形;若z2≠0, 则(z1/z2)2<0
C
z2 z2-z1
z1 A
z1+z2
B
4、 |z1|= |z2|,| z1+ z2|= | z1- z2| 则平行四边形OABC是正方形
3.1.2 复数的几何意义(优秀经典公开课比赛教案).
课题:3.1.2复数的几何意义学科:数学年级:高二班级:一、教材分析:复数的几何意义是学生在学完复数后的一节课,它在复数内容中起着承上启下的关键作用,它是我们研究复数运算的重要基础,故学好本节内容至关重要。
然而,在之前学生已经学过实数的几何意义,实数的绝对值的意义,所以通过类比学生很容易理解复数的几何意义。
二、教学目标:1.知识与技能理解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数模的概念及几何意义,会求复数的模.2.过程与方法渗透转化、数形结合等数学思想和方法,提高分析、解决问题的能力.3.情感、态度与价值观引导学生观察现象、发现问题、提出观点、验证结论、培养良好的学习思维品质.三、教学重点重点:复数的几何意义及复数的模.四、教学难点难点:复数的几何意义及模的综合应用.树立复数与坐标平面内的点的一一对应、复数与向量的一一对应的意识,是将复数由代数形式引向几何形式的关键环节,通过图形展示,让学生直观、形象的探索其内在联系,可以降低理解难度.五、教学准备1、课时安排:1课时2、教具选择:电子白板六、教学方法:建议本课在教师的指导下作小范围的必要的教学探索活动,使整个教学更有序,更有效,激发学生兴趣,锻炼学生毅力,兴趣是学习良好的开端,毅力是学习的保证.让学生由实数的绝对值的几何意义,类比复数模的几何意义,探索复数模的几何应用.可以利用多媒体教学,展示复数与坐标平面的对应关系及复数模的几何意义,引导学生利用数形结合的思想去分析问题、解决问题.七、教学过程:1、自主导学:阅读课本52—53页回答下列问题:(学生课前预习后提出疑惑,老师解答)【问题导思】1.复数z =a +b i(a ,b ∈R )与有序实数对(a ,b )有怎样的对应关系? 【提示】 一一对应.2.有序实数对与直角坐标平面内的点有怎样的对应关系? 【提示】 一一对应.3.复数集与平面直角坐标系中的点集之间能一一对应吗? 【提示】 一一对应.建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴,实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数.4.平面直角坐标系中的点Z 与向量→OZ有怎样的对应关系? 【提示】 一一对应.5.复数集与平面直角坐标系中以原点为起点的向量集合能一一对应吗? 【提示】 一一对应.(1)复数z =a +b i(a ,b ∈R )一一对应―→复平面内的点Z (a ,b ). (2)复数z =a +b i(a ,b ∈R )一一对应―→平面向量→OZ.为方便起见,我们常把复数z =a +b i 说成点Z 或说成向量→OZ,并且规定,相等的向量表示同一个复数.2、合作探究 (1)分组探究探究点1 复数的几何表示和探究点2 复数的向量表示、探究点3 实数绝对值的几何意义: 1.实数m 取什么值时,复平面内表示复数z =2m +(4-m 2)i 的点(1)位于虚轴上;(2)位于第三象限.【思路探究】 找出复数z 的实部、虚部,结合(1)(2)的要求写出满足的条件. 【自主解答】 复数z =2m +(4-m 2)i 对应复平面内点的坐标P 为(2m,4-m 2). (1)若P 在虚轴上,则4-m2≠0,2m =0,即m =0.(2)若点P 在第三象限,则4-m2<0,2m <0,解得m <-2. ∴当点P 位于第三象限时,实数m 的范围是(-∞,-2). 2.已知复数z 满足z +|z |=2+8i ,求复数z .【思路探究】 设z =a +b i(a ,b ∈R ),代入等式后,可利用复数相等的充要条件求出a ,b .【自主解答】 法一 设z =a +b i(a ,b ∈R ),则|z |=, 代入方程得a +b i +=2+8i , ∴b =8,a2+b2=2,解得b =8.a =-15,∴z =-15+8i.法二 原式可化为 z =2-|z |+8i , ∵|z |∈R ,∴2-|z |是z 的实部, 于是|z |=,即|z |2=68-4|z |+|z |2,∴|z |=17. 代入z =2-|z |+8i 得z =-15+8i.(2)教师点拨1.计算复数的模时,应先找出复数的实部和虚部,然后再利用模的公式进行计算,两个虚数不能比较大小,但它们的模可以比较大小.2.复数模的意义是表示复数对应的点到原点的距离,这可以类比实数的绝对值,也可以类比以原点为起点的向量的模来加深理解.3.|z 1-z 2|表示点z 1,z 2两点间的距离,|z |=r 表示以原点为圆心,以r 为半径的圆. 3、巩固训练1.求复数z 1=6+8i 及z 2=-21-i 的模,并比较它们的模的大小. 【解】 |z 1|==10,|z 2|=21 = +21=23,|z 1|>|z 2|.2.已知复数z 1=-+i ,z 2=-21-23i , (1)求|z 1|与|z 2|的值,并比较它们的大小.(2)设复平面内,复数z 满足|z 2|≤|z |≤|z 1|,复数z 对应的点Z 的集合是什么? 【思路探究】 (1)利用复数模的定义来求解.若z =a +b i(a ,b ∈R ),则|z |=.(2)先确定|z |的范围,再确定点Z 满足的条件,从而确定点Z 的图形. 【自主解答】 (1)|z 1|==2. |z 2|=3=1.∵2>1,∴|z 1|>|z 2|. (2)由(1)知|z 2|≤|z |≤|z 1|, 则1≤|z |≤2.因为不等式|z |≥1的解集是圆|z |=1上和该圆外部所有点的集合,不等式|z |≤2的解集是圆|z |=2上和该圆的内部所有点组成的集合,所以满足条件1≤|z |≤2的点Z 的集合是以原点O 为圆心,以1和2为半径的两圆及所夹的圆环.4、拓展延伸已知向量→OZ与实轴正向的夹角为45°,向量→OZ对应的复数z 的模为1,求z . 【思路探究】 设出z =a +b i(a ,b ∈R ),列出关于a ,b 的方程组. 【自主解答】 设z =a +b i(a ,b ∈R ). ∵→OZ与x 轴正向的夹角为45°,|z |=1, ∴a>0,=1,或a>0,=1,∴2或2∴z =22+22i 或z =22-22i. 5、师生合作总结1.复数的几何意义有两种:复数和复平面内的点一一对应,复数和复平面内以原点为起点的向量一一对应.2.研究复数的问题可利用复数问题实数化思想转化为复数的实虚部的问题,也可以结合图形利用几何关系考虑.八、课外作业1.(2013·福建高考)复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C.第三象限D.第四象限【解析】z=-1-2i在复平面内对应的点为(-1,-2),它位于第三象限.【答案】 C2.若→OZ=(0,-3),则→OZ对应的复数为( )A.0 B.-3C.-3i D.3【解析】由复数的几何意义可知→OZ对应的复数为-3i.【答案】 C3.已知3-4i=x+y i(x,y∈R),则|1-5i|,|x-y i|,|y+2i|的大小关系为________.【解析】由3-4i=x+y i(x,y∈R),得x=3,y=-4,而|1-5i|==,|x-y i|=|3+4i|==5,|y+2i|=|-4+2i|==.∵<5<,∴|y+2i|<|x-y i|<|1-5i|.【答案】|y+2i|<|x-y i|<|1-5i|4.在复平面内指出与复数z1=-1+i,z2=2-i,z3=-i,z4=+3i对应的点Z1,Z2,Z,Z4,然后在复平面内画出这4个复数对应的向量.3【解】由题意知Z1(-1,),Z(2,-1),Z3(0,-1),Z4(,3).如图所示,在复平面内,复数z1,z2,z3,z4对应2的向量分别为→OZ1,→OZ2,→OZ3,→OZ4.九、板书1.复数的几何意义有两种:复数和复平面内的点一一对应,复数和复平面内以原点为起点的向量一一对应.2.研究复数的问题可利用复数问题实数化思想转化为复数的实虚部的问题,也可以结合图形利用几何关系考虑.十、教学反思:根据发现的能力,让最后一个发现的学生最先讲,中途发现的学生中间讲,最先一个发现的学生最后讲,也就是由近及远地请学生一个一个地回答.所以从本节课的教学效果来看还是不错的。
3.1.2复数的几何意义
2.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的 ( C ) (A)必要不充分条件 (B)充分不必要条件 (C)充要条件 (D)不充分不必要条件
变式题:1.已知复数z=(m2+m-6)+(m2+m-2)i 求证:对一切实数m,此复数所对应的点不可能位 于第四象限. 表示复数的点所 转化 复数的实部与虚部所满 在象限的问题 足的不等式组的问题 (几何问题) (代数问题)
2.满足 z 2 z 3 0的复数z 在复平面内对应点的 轨迹为_____________. 以原点为圆心,以3为半径的圆
本课小结:
二个概念: (1)复平面
(2)复数的模
三种思想: (1)类比思想 (2)转化思想 (3)数形结合思想
作业: 课本 P 106A 组第 5 、6 题
| z | = a 2 b2
z =a +b i Z (a,b)
O
y
x
例2.求下列复数的模:
(1)z1=-5i
|Z1|=5
z3 5 2 (3)z3=5-5i 2 (4)z4=1+mi(m∈R) z4 1 m (5)z5=4a-3ai(a<0) |Z5|=-5a
(2)z2=-3+4i
|Z2|=5
复数的几何意义
实数的几何意义
在几何上,我 们用什么来表 示实数?
实数可以用数轴 上的点来表示。
一一对应
实数 (数)
数轴上的点 (形)
想 一 想 ︖
类比实数的表示, 可以用什么来表 示复数?
回 忆
复数的 一般形 式?
Z=a+bi(a, b∈R)
复数的加、减运算及其几何意义
我们规定,复数的加法法则如下: 设z1=a+bi,z2=c+di(a,b,c,d RR )是两个任意复数, 那么它们的和
(a+bi)+(c+di)=(a+c)+(b+d)i
说明:(1)复数的加法运算法则是一种规定.当b=0,d=0时, 与实数加法法则保持一致;
(2)两个复数的和仍然是一个复数,对于复数的加法 可以推广到多个复数相加的情形.
知识一:复数的加法
探究:
设z1=a+bi,z2=c+di(a,b,c,d RR)是两个任意复数, 由于希望加法结合律成立,
z1+z2=(a+bi)+(c+di)=(a+c)+(bi+di)
由于希望乘法分配律成立,
z1+z2=(a+c)+(bi+di)=(a+c)+(b+d)i
这样就猜想出了复数的加法法则.
说明:(3)复数的加法法则:
(a+bi)+(c+di)=(a+c)+(b+d)i 如果将i 看作“变元”,a+bi中的实部和虚部 a,b看作常数,我们就可以将复数看成是 “一次二项式”,很容易发现两个复数相加与 两个一次二项式相加(合并同类项)一致. 这样,得到两个复数相加与两个多项式相加 相类似.
例题2
y
解:复平面内的点Z1(x1,y1),Z2(x2,y2) 对应的复数分别为z1=x1+y1i,z2=x2+y2i, 所以点Z1,Z2之间的距离为
Z2(x2,y2)
z2
z2-z1
Z1(x1,y1)
复数几何意义及运算知识点讲解+例题讲解(含解析)
复数几何意义及运算一、知识梳理1.复数的有关概念2.复数的几何意义复数集C和复平面内所有的点组成的集合是一一对应的,复数集C与复平面内所有以原点O为起点的向量组成的集合也是一一对应的,即(1)复数z=a+b i复平面内的点Z(a,b)(a,b∈R).(2)复数z=a+b i(a,b∈R)平面向量OZ→.3.复数的运算设z1=a+b i,z2=c+d i(a,b,c,d∈R),则(1)加法:z1+z2=(a+b i)+(c+d i)=(a+c)+(b+d)i;(2)减法:z1-z2=(a+b i)-(c+d i)=(a-c)+(b-d)i;(3)乘法:z1·z2=(a+b i)·(c+d i)=(ac-bd)+(ad+bc)i;(4)除法:z1z2=a+b ic+d i=(a+b i)(c-d i)(c+d i)(c-d i)=ac +bd +(bc -ad )i c 2+d 2(c +d i ≠0).小结:1.i 的乘方具有周期性i n=⎩⎨⎧1,n =4k ,i ,n =4k +1,-1,n =4k +2,-i ,n =4k +3(k ∈Z ).2.复数的模与共轭复数的关系 z ·z -=|z |2=|z -|2. 3.两个注意点(1)两个虚数不能比较大小;(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )解析 (1)虚部为b ;(2)虚数不可以比较大小. 答案 (1)× (2)× (3)√ (4)√2.若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( ) A.1B.2C.1或2D.-1解析 依题意,有⎩⎨⎧a 2-3a +2=0,a -1≠0,解得a =2,故选B.答案 B3.复数⎝ ⎛⎭⎪⎫52-i 2的共轭复数是( )A.2-iB.2+iC.3-4iD.3+4i解析 ⎝ ⎛⎭⎪⎫52-i 2=⎣⎢⎡⎦⎥⎤5(2+i )(2-i )(2+i )2=(2+i)2=3+4i ,所以其共轭复数是3-4i. 答案 C4.(2017·全国Ⅱ卷)3+i 1+i =( )A.1+2iB.1-2iC.2+iD.2-i解析3+i 1+i =(3+i )(1-i )(1+i )(1-i )=2-i. 答案 D5.(2018·北京卷)在复平面内,复数11-i的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限D.第四象限解析11-i =1+i 2=12+12i ,其共轭复数为12-12i ,∴复数11-i的共轭复数对应的点的坐标为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.答案 D6.(2019·青岛一模)已知复数z =-1+i(i 是虚数单位),则z +2z 2+z=________. 解析 ∵z =-1+i ,则z 2=-2i ,∴z +2z 2+z =1+i -1-i =(1+i )(-1+i )(-1-i )(-1+i )=-22=-1. 答案 -1考点一 复数的相关概念【例1】 (1)(2019·上海崇明区质检)已知z =2-ii ,则复数z 的虚部为( ) A.-iB.2C.-2iD.-2(2)已知在复平面内,复数z 对应的点是Z (1,-2),则复数z 的共轭复数z -=( ) A.2-i B.2+i C.1-2iD.1+2i(3)(2019·大连一模)若复数z =1+i1+a i为纯虚数,则实数a 的值为( ) A.1B.0C.-12D.-1解析 (1)∵z =2-i i =(2-i )(-i )i·(-i )=-1-2i ,则复数z 的虚部为-2.故选D.(2)∵复数z 对应的点是Z (1,-2),∴z =1-2i ,∴复数z 的共轭复数z -=1+2i ,故选D. (3)设z =b i ,b ∈R 且b ≠0, 则1+i 1+a i=b i ,得到1+i =-ab +b i , ∴1=-ab ,且1=b , 解得a =-1,故选D. 答案 (1)D (2)D (3)D【训练1】 (1)已知复数z 满足:(2+i)z =1-i ,其中i 是虚数单位,则z 的共轭复数为( ) A.15-35i B.15+35i C.13-iD.13+i(2)(2019·株洲二模)设i 为虚数单位,1-i =2+a i1+i ,则实数a =( )A.2B.1C.0D.-1解析 (1)由(2+i)z =1-i ,得z =1-i 2+i =(1-i )(2-i )(2+i )(2-i )=15-35i ,∴z -=15+35i.故选B. (2)∵1-i =2+a i1+i,∴2+a i =(1-i)(1+i)=2, 解得a =0.故选C. 答案 (1)B (2)C考点二 复数的几何意义【例2】 (1)已知i 是虚数单位,设复数z 1=1+i ,z 2=1+2i ,则z 1z 2在复平面内对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限(2)(2019·北京新高考调研考试)在复平面内,复数z 对应的点与21-i对应的点关于实轴对称,则z =( ) A.1+i B.-1-i C.-1+iD.1-i解析 (1)由题可得,z 1z 2=1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35-15i ,对应在复平面上的点的坐标为⎝ ⎛⎭⎪⎫35,-15,在第四象限.(2)∵复数z 对应的点与21-i =2(1+i )(1-i )(1+i )=1+i 对应的点关于实轴对称,∴z =1-i.故选D. 答案 (1)D (2)D【训练2】 (1)设i 是虚数单位,则复数11+i 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限(2)如图,若向量OZ→对应的复数为z ,则z +4z表示的复数为( )A.1+3iB.-3-iC.3-iD.3+i解析 (1)11+i =1-i (1+i )(1-i )=12-12i ,则复数z 对应的点为⎝ ⎛⎭⎪⎫12,-12,在第四象限,故选D.(2)由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +4(1+i )(1-i )(1+i )=1-i +4+4i2=1-i +2+2i =3+i.故选D.答案 (1)D (2)D考点三 复数的运算【例3】 (1)(2018·全国Ⅲ卷)(1+i)(2-i)=( ) A.-3-i B.-3+i C.3-iD.3+i(2)(2018·全国Ⅰ卷)设z =1-i1+i+2i ,则|z |=( ) A.0B.12C.1D.2(3)设复数z =1+2i ,则z 2+3z -1=( )A.2iB.-2iC.2D.-2(4)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________. 解析 (1)(1+i)(2-i)=2-i +2i -i 2=3+i.故选D.(2)∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =1-2i -12+2i =i ,∴|z |=|i|=1.故选C.(3)z 2+3z -1=(1+2i )2+31+2i -1=12+4i +4i 2+32i =4i 2i =2.故选C.(4)原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )(3+2i )(3)2+(2)2 =i 6+6+2i +3i -65=-1+i.答案 (1)D (2)C (3)C (4)-1+i【训练3】 (1)(2018·全国Ⅱ卷)i(2+3i)=( ) A.3-2i B.3+2i C.-3-2iD.-3+2i(2)已知i 为虚数单位,则1+i3-i =( )A.2-i 5B.2+i 5C.1-2i 5D.1+2i 5(3)设z =1+i(i 是虚数单位),则z 2-2z =( ) A.1+3i B.1-3i C.-1+3iD.-1-3i解析 (1)i(2+3i)=2i +3i 2=-3+2i ,故选D. (2)1+i 3-i =(1+i )(3+i )(3-i )(3+i )=1+2i5. (3)因为z =1+i ,所以z 2=(1+i)2=1+2i +i 2=2i ,2z =21+i =2(1-i )(1+i )(1-i )=2(1-i )1-i 2=2(1-i )2=1-i ,则z 2-2z =2i -(1-i)=-1+3i.故选C.答案 (1)D (2)D (3)C三、课后练习1.(2019·烟台检测)设a ,b ∈R ,a =3+b i3-2i(i 是虚数单位),则b =( )A.-2B.-1C.1D.2解析 因为a =3+b i 3-2i =(3+b i )(3+2i )(3-2i )(3+2i )=9-2b 13+(6+3b )i13,a ∈R ,所以6+3b13=0⇒b =-2,故选A. 答案 A2.设x ∈R ,i 是虚数单位,则“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的( )A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析 由复数z =(x 2-4)+(x +2)i 为纯虚数, 得⎩⎨⎧x 2-4=0,x +2≠0,解得x =2, 所以“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的充要条件,故选B. 答案 B3.计算⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=( )A.-2iB.0C.2iD.2解析 ∵1+i 1-i =(1+i )2(1+i )(1-i )=2i2=i ,1-i 1+i =-i ,∴⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=(i 4)504·i 3+[(-i)4]504·(-i)3=-i +i =0.答案 B4.(2019·湖南三湘名校联考)已知i 为虚数单位,复数z =3+2i2-i,则以下为真命题的是( )A.z 的共轭复数为75-4i5B.z 的虚部为85 C.|z |=3D.z 在复平面内对应的点在第一象限 解析 ∵z =3+2i 2-i =(3+2i )(2+i )(2-i )(2+i )=45+7i5, ∴z 的共轭复数为45-7i 5,z 的虚部为75, |z |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫752=655,z 在复平面内对应的点为⎝ ⎛⎭⎪⎫45,75,在第一象限,故选D. 答案 D。
02复数几何意义
思考1:实数a的绝对值|a|的几何意义?
思考1:实数a的绝对值|a|的几何意义?
2、复数的模(绝对值)
若 z a bi ,则 | a bi | 叫做复数 a bi 的模
思考2:复数的模有怎样的几何意义?
复数z=a+bi
一一对应
一一对应
直角坐标系中的点Z(a,b)
一一对应
平面向量 O Z
结论:实轴上的点都表示实数;虚轴
上点除原点外都表示纯虚数。
例1 已知复数z=(m2+m-6)+(m2+m-2)i在复平面 内所对应的点位于第二象限,求实数m允许的取 值范围。
m 2 m 6 0 解:由 2 m m 2 0
3 m 2 得 m 2 或 m 1
二、问题情境
实数
(数)
一一对应
数轴上的点
(形)
实数可以用数轴上的点来表示。
想 一 想 ?
类比实数,复数是否 也可以用点来表示呢?
三、数学建构
复数的 一般形 式?
Z=a+bi(a, b∈R)
实部!
虚部!
一个复数 由什么唯 一确定?
1、复数的几何意义
有序实数对(a,b) 复数z=a+bi (数) z=a+bi Z(a,b)
一一对应 一一对应
直角坐标系中的点Z(a,b)
一一对应
平面向量 O Z
• 2、复数模的几何意义:点Z到原点的距离 • 3、共轭复数的概念。
A 2.“a=0”是“复数a+bi (a , b∈R)是纯虚数”的( )。 (A)必要不充分条件 (B)充分不必要条件 (C)充要条件 (D)不充分不必要条件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数的几何意义练习题
撰稿:第一组 审稿:高二数学组 时间2010/3/24
1、分别写出下列各复数所对应的点的坐标。
())
84,80,6,,291,7,0
i i i i i -+--⨯
-
2、复数z 1=3+i,z 2=1-i,则z=z 1·z 2在复平面内的对应点位于第 象限
3、已知复数z 1=3+4i ,z 2=x-i 且21z z +=5,求x
4、求复数1i i
+在复平面中所对应的点到原点的距离
5、已知:,求实数x 。
6、若复数z ai z i z 且复数满足,1)1(+=-在复平面上对应的点位于第二象限,
求实数a 的取值范围
3.3 复数的几何意义二
一、学习要求
1、理解复数加法、减法的几何意义
2、要会运用复数运算的几何意义去解题,它包含两个方面:
(1)利用几何意义可以把几何图形的变换转化成复数运算去处理 (2)对于一些复数运算式也可以给以几何解释,使复数做为工具运用于几何之中。
二、知识链接
1、已知复数z 对应点为Z ,说出下列各式的几何意义
|z| |z-1| |z+2i| |z-(1+2i )| |z+(1+3i)| |z-2+3i| 2、已知复数z 对应点为Z ,若|z-z 0|=r ,则点Z 的轨迹是
若|z-i|=|z+3-i| ,则动点Z 的轨迹是 【课堂导学】
一、复数加法、减法的几何意义: 1、复数加法的几何意义:
设复数z 1=a +bi ,z 2=c +di ,(a 、b 、c 、d 为实数),在
复平面上所对应的向量为1OZ 、2OZ ,且,以1OZ 、2
OZ 为邻边作平行四边形OZ 1ZZ 2,则对角线OZ 对应的向量是OZ 就是与复数(a+c )+(b+d)i 对应的向量。
注:(1)1OZ 、2OZ 不共线。
(若它们共线呢,情况会如何?)
(2)向量与复数之间是对应关系,不能写成OZ =(a+c )+(b+d)i 2、 复数减法的几何意义:
若向量1OZ 、2OZ 分别与复数z 1、z 2对应,则它们的差z 1-z 2对应着向量1OZ -2OZ 即向量12Z Z 。
注:|z 1-z 2|=
2
2
d)
-(b c)-(a 即:两个复数的差的模就是复平面
内与这两个复数对应的两点间的距离。
3、几何意义的应用
活动1:已知复数z 1=2+i ,z 2=1+2i 在复平面内对应的点分别为A 、B ,求AB 对应的复数z ,且回答复数z 在平面内所对应的点在第几象限?
活动2:在复平面内,点A 、B 、C 分别对应复数z 1=1+i 、z 2=5+i 、z 3=3+3i 。
(1)以AB 、AC 为邻边作一平行四边形ABDC ,求D 点对应的复数z 4及AD 的长,
(2) 求线段AD 上的两个三等分点分别对应的复数
活动3:三个复数z 1、z 2、z 3,其中2
1
z i,3z += 是纯虚数,若这三个复数所对应的向量能构成等边三角形,试确定z 1、z 2的值。
活动4:集合{}{}N M P ,C z |,2-z ||i -1-z ||z N ,C z 1,|1-z ||z M ⋂∈==∈≤=集合=
(1)指出集合P 在复平面上所对应点集表示的图形; (2)求集合P 中复数模的最大值和最小值
变1:已知:|z+2-2i|=1,求|z|的最值。
2: 复数z 满足│z+i│+│z -i│=2 求│z+1+i│的最值。
3: 说明|Z+1|+|Z-2|=2a(a ∈R +)表示的曲线。
达标检测
1、已知复数z 1=2+i ,z 2=1+2i ,则复数z =z 2-z 1在复平面内所表示的点位于 象限
2、在复平面上复数-3-2i ,-4+5i ,2+i 所对应的点分别是A 、B 、C ,
求平行四边形ABCD 的对角线BD 所对应的复数。
3、已知复平面上△AOB 的顶点A 所对应的复数为1+2i ,其重心G 所对应的复数为1+i ,求以OA 、OB 为邻边的平行四边形的对角线长。
4、复平面上三点A 、B 、C 分别对应复数1,2i ,5+2i ,判断由A 、B 、C 所
构成的三角形的形状并求此三角形的面积
5、已知复数z 1=a 2-3+(a +5)i ,z 2=a -1+(a 2+2a -1)i (a ∈R )分别对应向量1OZ 、2
OZ (O 为原点),若向量2
1
Z Z 对应的复数为纯虚数,求a 的值.
6、已知复平面上正方形的三个顶点是A (1,2)、B (-2,1)、C (-1,-2),求它的第四个顶点D 对应的复数.
今天我的收获。