北师大初中数学中考总复习:特殊三角形--知识讲解(提高)【推荐】.doc
特殊三角形知识点归纳及练习
特殊三角形知识点归纳及练习三角形是几何学中的重要概念,它有许多种类和特殊性质。
在学习三角形时,特殊三角形的知识点是我们必须掌握的内容之一。
本文将对特殊三角形的知识点进行归纳总结,并提供一些练习题供读者巩固所学知识。
一、等腰三角形等腰三角形是指两边相等的三角形,它具有以下特点:1. 两个底角相等,即底边上的两个角度相等。
2. 两个底边的中线相等。
3. 两个底边的高相等。
练习题:1. 已知等腰三角形ABC中,AB = AC,AB的中线DE = 6cm,求底边BC的长。
2. 在等腰三角形ABC中,BC = 8cm,角A的度数为60°,求角B 的度数。
二、等边三角形等边三角形是指三个边都相等的三角形,它具有以下特点:1. 三个内角都是60°。
2. 三条高、三条中线、三条角平分线均相等且重合。
1. 在等边三角形ABC中,AB = 6cm,求高的长度。
2. 在等边三角形ABC中,三个内角的度数分别为60°,求三条角平分线的长度。
三、直角三角形直角三角形是指其中一个角度为90°的三角形,它具有以下特点:1. 有且仅有一个直角(90°)。
2. 两条边的平方和等于第三边的平方,即勾股定理。
练习题:1. 在直角三角形ABC中,角A = 90°,BC = 5cm,AC = 13cm,求AB的长。
2. 在直角三角形ABC中,角C = 90°,AC = 7cm,BC = 24cm,求角A的度数。
四、等腰直角三角形等腰直角三角形是指既是等腰三角形又是直角三角形的三角形,它具有以下特点:1. 具有一个直角(90°)和两个底角相等。
2. 两个等边相等。
1. 在等腰直角三角形ABC中,AB = AC,角C = 90°,AC = 10cm,求AB的长。
2. 在等腰直角三角形ABC中,AB = BC,角A的度数为45°,求AC的长。
五、等腰锐角三角形等腰锐角三角形是指既是等腰三角形又是锐角三角形的三角形,它具有以下特点:1. 两个底角相等且小于90°。
【数学】初中数学中的特殊三角形、特殊四边形中重要知识点总结
【数学】初中数学中的特殊三角形、特殊四边形中重要知识点总结01特殊三角形一、等腰三角形1、定义:有两边相等的三角形是等腰三角形。
2、性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”)(2)等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)(3)等腰三角形的两底角的平分线相等。
(两条腰上的中线相等,两条腰上的高相等)(4)等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。
(5)等腰三角形的一腰上的高与底边的夹角等于顶角的一半(6)等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)(7)等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
二、等边三角形1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。
(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。
2、性质:⑴等边三角形的内角都相等,且均为60度。
⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。
3、判定:⑴三边相等的三角形是等边三角形。
⑵三个内角都相等的三角形是等边三角形。
⑶有一个角是60度的等腰三角形是等边三角形。
⑷有两个角等于60度的三角形是等边三角形。
三、直角三角形全等1、直角三角形全等的判定有5种:(1)两角及其夹边对应相等的两个三角形全等;(ASA)(2)两边及其夹角对应相等的两个三角形全等;(SAS)(3)三边对应相等的两个三角形全等;(SSS)(4)两角及其中一角的对边对应相等的两个三角形全等;(AAS)(5)斜边及一条直角边对应相等的两个三角形全等;(HL)2、在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半3、在直角三角形中,斜边上的中线等于斜边的一半4、垂直平分线:垂直于一条线段并且平分这条线段的直线。
中考复习:特殊三角形
中考内容中考要求ABC等腰三角形与直角三角形了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题 会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题⎧⎧⎧⎪⎪⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩定义等边对等角等腰三角形性质三线合一等腰三角形判定定义特殊三角形等边三角形性质判定定义直角三角形性质判定一、 等腰三角形1、定义:有两边相等的三角形是等腰三角形.相等的两边叫做腰,第三边为底.2、性质:(1)轴对称性:等腰三角形是轴对称图形,有1条对称轴. (2)定理1:等腰三角形的两个底角相等,简称“等边对等角”.(3)定理2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,简称“三线合一”. 3、判定:如果一个三角形有两角相等,那么这两个角所对的边也相等,简称“等角对等边”.知识精讲中考大纲 特殊三角形知识网络图【补充】1、等腰三角形两腰上的高相等;2、等腰三角形两腰上的中线相等;3、等腰三角形两底角的平分线相等;二、等边三角形1、定义:三边相等的三角形是等边三角形.2、性质:(1)轴对称性:等边三角形是轴对称图形,有3条对称轴.(2)等边三角形的各角都相等,并且每一个角都等于60°.3、判定:(1)判定1:三个角都相等的三角形是等边三角形.(2)判定2:有一个角等于60°的等腰三角形是等边三角形.三、线段的垂直平分线1、定义:经过线段中点并且垂直于这条线段的直线叫做这条线段的垂直平分线,简称中垂线.2、性质:线段垂直平分线上的点与这条线段两个端点的距离相等.3、判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4、实质构成:线段的垂直平分线可以看作到线段两个端点距离相等的所有点的集合.四、直角三角形1、直角三角形30°角所对的边等于斜边的一半.2、直角三角形斜边的中线等于斜边的一半.解题方法技巧1、等腰三角形一腰上的高与底边的夹角等于顶角的一半.AC 2、等腰三角形顶角的外角平分线与底边平行3、等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.如图,即DE DF BG +=.本结论可以用面积列等式推得.ABCABCDE F G4、等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高.5、要证明一个三角形是等腰三角形,必须得到两边相等,得到两边相等的方法主要有:(1)通过等角对等边;(2)通过三角形全等得两边相等;(3)利用垂直平分线的性质得到两边相等.1、遇到等腰三角形的问题时,注意边有腰与底之分,角有底角和顶角之分.2、遇到高线的问题要考虑高在形内和形外两种情况.3、等腰三角形三线合一定理没有逆定理,定理的逆推论需要用全等去证明.易错点辨析题型一:等腰三角形的性质与判定【例1】 已知ABC △中,AB AC =.36A ∠=︒,则C ∠______. 【例2】 等腰三角形一个底角为75°,它的另外两个角为_______. 【例3】 等腰三角形一个角为70°,它的另外两个角为__________. 【例4】 已知等腰三角形的周长为24cm ,一腰长是底边长的2倍,则腰长是( ) A .4.8cm B .9.6cm C .2.4cm D .1.2cm【例5】 在等腰ABC △中,AB AC =,其周长为20cm ,则AB 边的取值范围是__________.(2014年玉林中考)【例6】 如图,在ABC △中,AB AC =,且D 为BC 上一点,CD AD =,AB BD =,则B ∠的度数为__________.(2014年南充中考)DCBA【例7】 如图,在Rt ABC △中,D E ,为斜边AB 上的两个点,且BD BC AE AC ==,,则DCE ∠的大小为__________.(2014年天津)EDCBA【例8】 如图,ABC ∆中,30A ∠=︒,CD 是BCA ∠的平分线,ED 是CDA ∠的平分线,EF 是DEA ∠的平分线,DF FE =,求B ∠.ABCDEF特殊三角形习题集课堂练习【例9】 如图,P 为等腰三角形ABC 的底边AB 上的任意一点,PE AC ⊥于点E ,PF ⊥BC 于点F ,AD BC ⊥点D ,求证:PE PF AD +=.ABCE D PF【例10】 如图,点P 为等腰三角形ABC 的底边BA 的延长线上的一点,PE CA ⊥的延长线于点E ,PF BC⊥于点F ,AD BC ⊥于点D .PE 、PF 、AD 之间存在着怎样的数量关系?ABCEDP F【例11】 如图所示,已知ABC △中,D 、E 为BC 边上的点,且AD AE =,BD EC =,求证:AB AC =.AB CD E【例12】 如图,请在下列四个等式中,选出两个作为条件,推出AED △是等腰三角形,并予以证明.(写出一种即可)等式:①AB DC =,②BE CE =,③B C ∠=∠,④BAE CDE ∠=∠. 已知:____________________ 求证:AED △是等腰三角形. 证明:【例13】 如图1,已知矩形ABED ,点C 是边DE 的中点,且2AB AD =.(1)判断ABC △的形状,并说明理由;(2)保持图1中ABC △固定不变,绕点C 旋转DE 所在的直线MN 到图2中(当垂线段AD 、BE 在直线MN 的同侧),试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明; (3)保持图2中ABC △固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(当垂线段AD 、BE 在直线MN 的异侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明.(2010年临沂)题型二:等腰三角形的作图题【例14】 已知ABC ∆中,90A ∠=︒,67.5B ∠=︒.请画一条直线,把这个三角形分割成两个等腰三角形.(请你利用下面给出的备用图,画出两种不同的分割方法.只需画图,不必说明理由,但要在图中标出相等两角的度数).CB ACB A【例15】 已知菱形ABCD 中,72A ∠=︒,请设计两种不同的分法,将菱形ABCD 分割成四个三角形,使得分割成的每个三角形都是等腰三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,例如第20题图,不要求写出画法,不要求证明.)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.36︒36︒36︒18︒18︒54︒72︒72︒72︒54︒DCBAA分A BC D分法2A BC D分法1题型三:等边三角形的性质【例16】 如图,DAC △和EBC △均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:① ACE DCB △≌△;②CM CN =;③AC DN =.其中正确结论的个数是_____ A . 3个 B .2个 C .1个 D .0个NM ED BA【例17】 如图,在等边ABC △中,点D E ,分别在边BC AB ,上,BD AE =,AD 与CE 交于点F .(1)求证:AD CE =; (2)求DFC ∠的度数.FE DCBA【例18】 如图,已知ABC △为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的.F EDCBA【例19】 已知,如图,延长ABC △的各边,使得BF AC =, AE CD AB ==,顺次连接D ,E ,F ,得到DEF △为等边三角形.求证:(1)AEF △≌CDE △; (2)ABC △为等边三角形.F DECB A【例20】 如下图,ABC ∆是等边三角形,122CBF ACD BAE ∠∠∠=∶∶∶∶,38DEF DFE ∠-∠=︒.求出DEF∆的每个内角度数.FEDCBA【例21】 如图,三角形ABC 中,AB BC CA ==,AE CD =,AD ,BE 相交于P ,BQ 垂直AD 于Q ,求证:2BP PQ =.P QA BC DE【例22】 如图,在等边ABC △中,点D E ,分别在边BC AB ,上,BD AE =,AD 与CE 交于点F .(1)求证:AD CE =;(2)求DFC ∠的度数.FE DCBA题型四:直角三角形的性质与判定【例23】 在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,6cm BC AB +=,则AB =_______cm .【例24】 如图,在Rt ABC ∆中,9060B ACB D ∠=︒∠=︒,,是BC 延长线上一点,且AC CD =,则:BC CD =_________.DCBA【例25】 若AD 为ABC ∆的高,且1AD =,1BD =,DC BAC ∠=____________.【例26】 已知:如图,在ABC △中,AB BC =,90ABC ∠=︒.F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接AE 、EF 和CF . (1)求证:AE CF =;(2)若30CAE ∠=︒,求EFC ∠的度数.FECBA【例27】 如图,在ABC ∆中,BF AC ⊥于F ,CG AB ⊥于G D E ,,分别是BC FG ,的中点.求证:DE GF ⊥.GFE D CB A【练1】 等腰三角形的一边长为3cm ,另一边长为4cm ,则它的周长是 ___________.【练2】 如图,ABC ∆和BDE ∆都是等边三角形,AB BD <,若ABC ∆不 动,将BDE ∆绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( ).A . AE CD =B . AE CD >C . AE CD < D . 无法确定EDCBA【练3】 MON ∠是一个钢架,10MON ∠=︒,在其内部添加一些钢管BC ,CD ,DE ,EF ,FG ,…添加的钢管长度都与OB 相等.(1)当添加到第五根钢管时,求FGM ∠的度数.(2)假设OM 、ON 足够长,能无限地添加下去吗?如果能,请说明理由.如果不能,则最多能添加几根?D NMFEO CBG【练4】 如图,在ABC ∆中,AB AC =,D 是ABC ∆外的一点,且60ABD ∠=,60ACD ∠=.求证:BD DC AB +=.DCBA课后作业【练5】 如图,在Rt ABC ∆中,90BAC ∠=,CA BA =,15DAC DCA ∠=∠=,求证:BA BD =.DACB【练6】 如图ABC △中,AD 平分BAC ∠,DG BC ⊥且平分BC ,DE AB ⊥于E ,DF AC ⊥于F .⑴说明BE CF =的理由;⑵如果AB a =,AC b =,求AE ,BE 的长.GFE DC BA。
北师大初中数学中考总复习:几何初步及三角形--知识讲解(提高)【精品】.doc
中考总复习:几何初步及三角形—知识讲解(提高)【考纲要求】1.了解直线、射线、线段的概念和性质以及表示方法,掌握三者之间的区别和联系,会解决与线段有关的实际问题;2.了解角的概念和表示方法,会把角进行分类以及进行角的度量和计算;3.掌握相交线、平行线的定义,理解所形成的各种角的特点、性质和判定;4.了解命题的定义、结构、表达形式和分类,会简单的证明有关命题;5.了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性.【知识网络】【考点梳理】考点一、直线、射线和线段1.直线代数中学习的数轴和一张纸对折后的折痕等都是直线,直线可以向两方无限延伸.(直线的概念是一个描述性的定义,便于理解直线的意义).要点诠释:1).直线的两种表示方法:(1)用表示直线上的任意两点的大写字母来表示这条直线,如直线AB,其中A、B是表示直线上两点的字母;(2)用一个小写字母表示直线,如直线a.2).直线和点的两种位置关系(1)点在直线上(或说直线经过某点);(2)点在直线外(或说直线不经过某点).3).直线的性质:过两点有且只有一条直线(即两点确定一条直线).2.射线直线上一点和它一旁的部分叫做射线.射线只向一方无限延伸.要点诠释:(1)用表示射线的端点和射线上任意一点的大写字母来表示这条射线,如射线OA,其中O是端点,A是射线上一点;(2)用一个小写字母表示射线,如射线a.3.线段直线上两点和它们之间的部分叫做线段,两个点叫做线段的端点.要点诠释:1).线段的表示方法:(1)用表示两个端点的大写字母表示,如线段AB,A、B是表示端点的字母;(2)用一个小写字母表示,如线段a.2).线段的性质:所有连接两点的线中,线段最短(即两点之间,线段最短).3).线段的中点:线段上一点把线段分成相等的两条线段,这个点叫做线段的中点.4).两点的距离:连接两点间的线段的长度,叫做两点的距离.考点二、角1.角的概念:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,两条射线分别叫做角的边.(2)定义二:一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.射线旋转时经过的平面部分是角的内部,射线的端点是角的顶点,射线旋转的初始位置和终止位置分别是角的两条边. 要点诠释:1).角的表示方法:(1)用三个大写字母来表示,注意将顶点字母写在中间,如∠AOB;(2)用一个大写字母来表示,注意顶点处只有一个角用此法,如∠A;(3)用一个数字或希腊字母来表示,如∠1,∠.2).角的分类:(1)按大小分类:锐角----小于直角的角(0°<<90°);直角----平角的一半或90°的角(=90°);钝角----大于直角而小于平角的角(90°<<180°).(2)平角:一条射线绕着端点旋转,当终止位置与起始位置成一条直线时,所成的角叫做平角,平角等于180°.(3)周角:一条射线绕着端点旋转,当终止位置又回到起始位置时,所成的角叫做周角,周角等于360°.(4)互为余角:如果两个角的和是一个直角(90°),那么这两个角叫做互为余角.(5)互为补角:如果两个角的和是一个平角(180°),那么这两个角叫做互为补角.3).角的度量:(1)度量单位:度、分、秒;(2)角度单位间的换算:1°=60′,1′=60″(即:1度=60分,1分=60秒);(3)1平角=180°,1周角=360°,1直角=90°.4).角的性质:同角或等角的余角相等,同角或等角的补角相等.2.角的平分线:如果一条射线把一个角分成两个相等的角,那么这条射线叫做这个角的平分线.考点三、相交线1.对顶角(1)定义:如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.(2)性质:对顶角相等.2.邻补角(1)定义:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.(2)性质:邻补角互补.3.垂线(1)定义:当两条直线相交所得的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,它们的交点叫做垂足.垂直用符号“⊥”来表示.要点诠释:①过一点有且只有一条直线与已知直线垂直.②连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.(2)点到直线的距离定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.4.同位角、内错角、同旁内角(1)基本概念:两条直线(如a、b)被第三条直线(如c)所截,构成八个角,简称三线八角,如图所示:∠1和∠8、∠2和∠7、∠3和∠6、∠4和∠5是同位角;∠1和∠6、∠2和∠5是内错角;∠1和∠5、∠2和∠6是同旁内角.(2)特点:同位角、内错角、同旁内角都是由三条直线相交构成的两个角.两个角的一条边在同一直线(截线)上,另一条边分别在两条直线(被截线)上.考点四、平行线1.平行线定义:在同一平面内,不相交的两条直线叫做平行线.平行用符号“∥”来表示,.如直线a与b平行,记作a∥b.在几何证明中,“∥”的左、右两边也可能是射线或线段.2.平行公理及推论:(1)经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.3.性质:(1)平行线永远不相交;(2)两直线平行,同位角相等;(3)两直线平行,内错角相等;(4)两直线平行,同旁内角互补;(5)如果两条平行线中的一条垂直于某直线,那么另一条也垂直于这条直线,可用符号表示为:若b∥c,b⊥a,则c⊥a.4.判定方法:(1)定义;(2)平行公理的的推论;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行;(5)同旁内角互补,两直线平行;(6)垂直于同一条直线的两条直线平行.考点五、命题、定理、证明1.命题:(1)定义:判断一件事情的语句叫命题.(2)命题的结构:题设+结论=命题;(3)命题的表达形式:如果……那么……;若……则……;(4)命题的分类:真命题和假命题;(5)逆命题:原命题的题设是逆命题的结论,原命题的结论是逆命题的题设.2.公理、定理:(1)公理:人们在长期实践中总结出来的能作为判断其他命题真假依据的真命题叫做公理.(2)定理:经过推理证实的真命题叫做定理.3.证明:用推理的方法证实命题正确性的过程叫做证明.考点六、三角形的概念及其性质1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类(1)按边分类:(2)按角分类:3.三角形的内角和外角(1)三角形的内角和等于180°.(2)三角形的任意一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边. 6.三角形具有稳定性.考点七、三角形的“四心”和中位线三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.1.内心:三角形角平分线的交点,是三角形内切圆的圆心,它到各边的距离相等.2.外心:三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离相等.3.重心:三角形三条中线的交点,它到每个顶点的距离等于它到对边中点距离的2倍.4.垂心:三角形三条高线的交点.5.三角形的中位线:连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.要点诠释:(1)三角形的内心、重心都在三角形的内部.(2)钝角三角形的垂心、外心都在三角形的外部.(3)直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点.(4)锐角三角形的垂心、外心都在三角形的内部.【典型例题】类型一、几何初步1.判断下列语句是不是命题①延长线段AB( ).②两条直线相交,只有一交点( ).③画线段AB的中点( ).④若|x|=2,则x=2( ).⑤角平分线是一条射线( ).【思路点拨】判断语句是否是命题有两个关键,首先观察是不是一个完整的句子,再观察是否作出判断.【答案与解析】①③两个语句都没有作出判断,所以①不是②是③不是④是⑤是.【总结升华】本题考查学生对命题概念的理解.举一反三:【变式】命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( ) A.1个 B.2个 C.3个 D.4个【答案】B.类型二、三角形2.(2015春•盱眙县期中)四边形ABCD是任意四边形,AC与BD交点O.求证:AC+BD>(AB+BC+CD+DA).证明:在△OAB中有OA+OB>AB在△OAD中有,在△ODC中有,在△中有,∴OA+OB+OA+OD+OD+OC+OC+OB>AB+BC+CD+DA即:,即:AC+BD>(AB+BC+CD+DA)【思路点拨】直接根据三角形的三边关系进行解答即可.【答案与解析】证明:∵在△OAB中OA+OB>AB在△OAD中有OA+OD>AD,在△ODC中有OD+OC>CD,在△OBC中有OB+OC>BC,∴OA+OB+OA+OD+OD+OC+OC+OB>AB+BC+CD+DA即2(AC+BD)>AB+BC+CD+DA,即AC+BD>(AB+BC+CD+DA).故答案为:OA+OD>AD;OD﹣OC>CD;OBC;OB+OC>BC;2(AC+BD)>AB+BC+CD+DA.【总结升华】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.举一反三:【变式】【答案】50°.3.如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.【思路点拨】分别写出前三个图形的正三角形的个数,并观察出后一个图形比前一个图形多分割出四个小的正三角形,依此类推即可写出第n个图形的正三角形的个数,进而得出第5个图中正三角形的个数.【答案与解析】图①有1个正三角形;图②有(1+4)个正三角形;图③有(1+4+4)个正三角形;图④有(1+4+4+4)个正三角形;图⑤有(1+4+4+4+4)个正三角形;….所以共有17个.【总结升华】这是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.举一反三:【变式】一个三角形的内心在它的一条高线上,则这个三角形一定是( ).A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形【答案】B.4.(2015·陕西校级期末)到三角形三个顶点距离相等的点是三角形( )的交点.A.三个内角平分线B. 三边垂直平分线C.三条中线D.三条高【思路点拨】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【答案】B.【解析】三角形三边垂直平分线的交点是外心,是三角形外接圆的圆心,到三角形三个顶点距离相等.【总结升华】考点:线段垂直平分线的定理.举一反三:【变式】【答案】A.类型三、综合运用5.如图:已知,△ABC中,∠A=50°(1)如图(1),点O是∠ABC和∠ACB的平分线交点,则∠BOC=_____;(2)如图(2),点P是∠ABC和外角∠ACE的平分线交点,则∠BPC=____;(3)如图(3),点M是外角∠BCE和∠CBF的平分线交点,则∠BMC=____.【思路点拨】本题涉及知识点是三角形内角和定理;三角形的外角性质.【答案与解析】图(1)中,∠BOC=180°-(∠OBC+∠OCB)图(2)中,∠BPC=∠PCE-∠PBC图(3)中,∠BMC=180°-(∠MBC+∠MCB).【总结升华】本题考查角平分线,三角形内角和,外角和内角关系等多个知识点,常采用建立方程或直接推理的方法.6.探索在如图-1至图-3中,△ABC的面积为a.(1)如图-1,延长△ABC的边BC到点D,使CD=BC,连结DA,若△ACD的面积为S1,则S1=____(用含a的代数式表示);(2)如图-2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连结DE,若△DEC 的面积为S2,则S2=____(用含a的代数式表示),并写出理由;(3)在图-2的基础上延长AB到点F,使BF=AB,连结FD,FE,得到△DEF(如图-3),若阴影部分的面积为S3,则S3=____(用含a的代数式表示);(4)像上面那样,将△ABC各边均顺次延长一倍,连结所得端点,得到△DEF(如图-3),此时,我们称△ABC向外扩展了一次,可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的____倍.【思路点拨】灵活运用等底同高的两三角形面积相等来解决问题.【答案与解析】(1)∵BC=CD,∴△ACD和△ABC是等底同高的,即S1=a;(2)2a;连接AD,∵CD=BC,AE=CA,∴S△DAC=S△DAE=S△ABC=a,∴S2=2a;(3)结合(2)得:S3=2a×3=6a;(4)扩展一次后得到的△DEF的面积是6a+a=7a,即是原来三角形的面积的7倍.【总结升华】本题的探索过程由简到难,运用类比方法可依次求出.从而使考生在身临数学的情境中潜移默化,逐渐感悟到数学思维的力量,使学生对知识的发生及发展过程,解题思想方法的感悟,体会得淋漓尽致,是一道新课标理念不可多得的好题.举一反三:【变式】去年在面积为10m2的△ABC空地上栽种了某种花卉,今年准备扩大种植规模,把△ABC向外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH(如图),求这两次扩展的区域(即阴影部分)面积共为多少m2?【答案】第一次扩展后的阴影面积为6a=6×10=60(m2)第二次扩展后的阴影面积为42a=42×10=420(m2)两次扩展后阴影部分面积共为480 m2.。
【精编】北师大初中数学中考总复习:几何初步及三角形--知识讲解(基础)
中考总复习:几何初步及三角形—知识讲解(基础)【考纲要求】1.了解直线、射线、线段的概念和性质以及表示方法,掌握三者之间的区别和联系,会解决与线段有关的实际问题;2.了解角的概念和表示方法,会把角进行分类以及进行角的度量和计算;3.掌握相交线、平行线的定义,理解所形成的各种角的特点、性质和判定;4.了解命题的定义、结构、表达形式和分类,会简单的证明有关命题;5.了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性.【知识网络】【考点梳理】考点一、直线、射线和线段1.直线代数中学习的数轴和一张纸对折后的折痕等都是直线,直线可以向两方无限延伸.(直线的概念是一个描述性的定义,便于理解直线的意义).要点诠释:1).直线的两种表示方法:(1)用表示直线上的任意两点的大写字母来表示这条直线,如直线AB,其中A、B是表示直线上两点的字母;(2)用一个小写字母表示直线,如直线a.2).直线和点的两种位置关系(1)点在直线上(或说直线经过某点);(2)点在直线外(或说直线不经过某点).3).直线的性质:过两点有且只有一条直线(即两点确定一条直线).2.射线直线上一点和它一旁的部分叫做射线.射线只向一方无限延伸.要点诠释:(1)用表示射线的端点和射线上任意一点的大写字母来表示这条射线,如射线OA,其中O是端点,A是射线上一点;(2)用一个小写字母表示射线,如射线a.3.线段直线上两点和它们之间的部分叫做线段,两个点叫做线段的端点.要点诠释:1).线段的表示方法:(1)用表示两个端点的大写字母表示,如线段AB,A、B是表示端点的字母;(2)用一个小写字母表示,如线段a.2).线段的性质:所有连接两点的线中,线段最短(即两点之间,线段最短).3).线段的中点:线段上一点把线段分成相等的两条线段,这个点叫做线段的中点.4).两点的距离:连接两点间的线段的长度,叫做两点的距离.考点二、角1.角的概念:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,两条射线分别叫做角的边.(2)定义二:一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.射线旋转时经过的平面部分是角的内部,射线的端点是角的顶点,射线旋转的初始位置和终止位置分别是角的两条边.要点诠释:1).角的表示方法:(1)用三个大写字母来表示,注意将顶点字母写在中间,如∠AOB;(2)用一个大写字母来表示,注意顶点处只有一个角用此法,如∠A;(3)用一个数字或希腊字母来表示,如∠1,∠.2).角的分类:(1)按大小分类:锐角----小于直角的角(0°<<90°);直角----平角的一半或90°的角(=90°);钝角----大于直角而小于平角的角(90°<<180°);(2)平角:一条射线绕着端点旋转,当终止位置与起始位置成一条直线时,所成的角叫做平角,平角等于180°.(3)周角:一条射线绕着端点旋转,当终止位置又回到起始位置时,所成的角叫做周角,周角等于360°.(4)互为余角:如果两个角的和是一个直角(90°),那么这两个角叫做互为余角.(5)互为补角:如果两个角的和是一个平角(180°),那么这两个角叫做互为补角.3).角的度量:(1)度量单位:度、分、秒;(2)角度单位间的换算:1°=60′,1′=60″(即:1度=60分,1分=60秒);(3)1平角=180°,1周角=360°,1直角=90°.4).角的性质:同角或等角的余角相等,同角或等角的补角相等.2.角的平分线:如果一条射线把一个角分成两个相等的角,那么这条射线叫做这个角的平分线.考点三、相交线1.对顶角(1)定义:如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.(2)性质:对顶角相等.2.邻补角(1)定义:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.(2)性质:邻补角互补.3.垂线(1)定义:当两条直线相交所得的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,它们的交点叫做垂足.垂直用符号“⊥”来表示.要点诠释:①过一点有且只有一条直线与已知直线垂直.②连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.(2)点到直线的距离定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.4.同位角、内错角、同旁内角(1)基本概念:两条直线(如a、b)被第三条直线(如c)所截,构成八个角,简称三线八角,如图所示:∠1和∠8、∠2和∠7、∠3和∠6、∠4和∠5是同位角;∠1和∠6、∠2和∠5是内错角;∠1和∠5、∠2和∠6是同旁内角.(2)特点:同位角、内错角、同旁内角都是由三条直线相交构成的两个角.两个角的一条边在同一直线(截线)上,另一条边分别在两条直线(被截线)上.考点四、平行线1.平行线定义:在同一平面内,不相交的两条直线叫做平行线.平行用符号“∥”来表示,.如直线a与b平行,记作a∥b.在几何证明中,“∥”的左、右两边也可能是射线或线段.2.平行公理及推论:(1)经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.3.性质:(1)平行线永远不相交;(2)两直线平行,同位角相等;(3)两直线平行,内错角相等;(4)两直线平行,同旁内角互补;(5)如果两条平行线中的一条垂直于某直线,那么另一条也垂直于这条直线,可用符号表示为:若b∥c,b⊥a,则c⊥a.4.判定方法:(1)定义;(2)平行公理的的推论;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行;(5)同旁内角互补,两直线平行;(6)垂直于同一条直线的两条直线平行.考点五、命题、定理、证明1.命题:(1)定义:判断一件事情的语句叫命题.(2)命题的结构:题设+结论=命题;(3)命题的表达形式:如果……那么……;若……则……;(4)命题的分类:真命题和假命题;(5)逆命题:原命题的题设是逆命题的结论,原命题的结论是逆命题的题设.2.公理、定理:(1)公理:人们在长期实践中总结出来的能作为判断其他命题真假依据的真命题叫做公理.(2)定理:经过推理证实的真命题叫做定理.3.证明:用推理的方法证实命题正确性的过程叫做证明.考点六、三角形的概念及其性质1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类(1)按边分类:(2)按角分类:3.三角形的内角和外角(1)三角形的内角和等于180°.(2)三角形的任意一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边. 6.三角形具有稳定性.7. 三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.要点诠释:三角形的中位线:连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.【典型例题】类型一、直线、射线及线段1.数轴上有两点A、B分别表示实数a、b,则线段AB的长度是( )A.a-bB.a+bC.│a-b│D.│a+b│【思路点拨】根据数轴上两点之间的距离公式即可解决问题.【答案】C.【解析】本类题目注意线段长度是非负数,若有字母注意使用绝对值.根据题意,画图.数轴上两点间的距离公式为:│a-b│或│b-a│.【总结升华】解决本例类型的题目应结合图形,即数形结合,这样做起来简捷.2.有一段火车路线,含这段铁路的首尾两站在内共有5个车站(如图),图中共有几条线段?在这段线路上往返行车,需印制几种车票(每种车票要印出上车站与下车站)?【思路点拨】先求得单程的车票数,再求出往返的车票数即可.【答案与解析】线段有10条;车票需要2×10=20种.【总结升华】在直线上确定线段的条数公式为: (其中n为直线上点的个数).在求从一个顶点引出的n条射线所形成的小于平角的角的个数也可用此公式.举一反三:【变式】如图,点A、B、C在直线上,则图中共有______条线段.【答案】3.类型二、角3.如图,已知∠COE=∠BOD=∠AOC=90°,则图中互余的角有______对,互补的角有______对.【思路点拨】先要确定等角,再根据角的性质进行判断.【答案与解析】互余的角有:∠COD和∠DOE、∠COD和∠BOC、∠AOB和∠DOE、∠AOB和∠BOC,共4对;互补的角有:∠EOD和∠AOD、∠BOC和∠AOD、∠AOB和∠BOE、∠COD和∠BOE、∠AOC和∠COE、∠AOC和∠BOD、∠COE和∠BOD,共7对.【总结升华】在本题目中,当图中的角比较多时,就将图形的角进行归类,找出每种相等的角,按照同角或等角的余角相等,同角或等角的补角相等的性质解决问题,注意要不重不漏.举一反三:【变式】【答案】70°.类型三、相交线与平行线4.(2015春•南京校级月考)如图,AB∥CD,则∠α、∠β、∠γ之间的等量关系为.【思路点拨】通过观察图形,可作出一条辅助线即平行线,从而把问题化难为易.【答案】∠α+∠β﹣∠γ=180°.【解析】解:如图,过点E作EF∥AB,∴∠1+∠γ=∠β,∵AB∥CD,∴EF∥CD,∴∠1+∠α=180°,∴∠α﹣∠γ=180°﹣∠β,∴∠α+∠β﹣∠γ=180°.故答案为:∠α+∠β﹣∠γ=180°.【总结升华】本题考点:平行线的性质.举一反三:【变式】(1)两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交【答案】B.类型四、三角形5.(2014•怀化模拟)三角形三边长分别是6,2a﹣2,8,则a的取值范围是()A.1<a<2 B.<a<2 C.2<a<8 D.1<a<4【思路点拨】本题考查了三角形的三边关系.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.【答案】C.【解析】解:由于在三角形中任意两边之和大于第三边,∴2a﹣2<6+8,即a<8,任意两边之差小于第三边,∴2a﹣2>8﹣6,即a>2,∴2<a<8,故选:C.【总结升华】涉及到三角形三边关系时,尽可能简化运算,注意运算的准确性.举一反三:【变式】已知a,b,c为△ABC的三条边,化简得_________.【答案】∵a,b,c为△ABC的三条边∴a-b-c<0,b-a-c<0∴=(b+c-a)+(a+c-b)=2c.6. 下列命题:(1)等边三角形也是等腰三角形;(2)三角形的外角等于两个内角的和;(3)三角形中最大的内角不能小于60°;(4)锐角三角形中,任意两内角之和必大于90°,其中错误的个数是( )A.0 个B.1个C.2个D.3个【思路点拨】认真阅读各小题提供的已知条件,依据三角形的分类方法,然后根据三角形内角和为180°进行分析解答.【答案】B.【解析】(2)中应强调三角形的外角等于不相邻的两个内角的和;三角形中最大的内角若小于60°,则三个角的和就小于180°,不符合三角形内角和定理,故(3)正确;(4)三角形中,任意两内角之和若不大于90°,则另一个内角就大于或等于90°,就不能是锐角三角形.所以只有(2)错,故选B.【总结升华】本题的解题关键是要理解定义,掌握每种三角形中角的度数的确定.举一反三:【变式】【答案】15°.。
北师大初中数学中考总复习:特殊三角形--知识讲解(基础)【推荐】.doc
中考总复习:特殊三角形—知识讲解(基础)【考纲要求】1.了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定;2.能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题;3.会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题.【知识网络】【考点梳理】考点一、等腰三角形1.等腰三角形:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质.(2)两底角相等(等边对等角)(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)(4)等边三角形的各角都相等,且都等于60°.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.考点二、直角三角形1.直角三角形:有一个角是直角的三角形叫做直角三角形.2性质:(1)直角三角形中两锐角互余.(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半.3.判定:(1)有两内角互余的三角形是直角三角形.(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形.(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.【典型例题】类型一、等腰三角形1.如图,等腰三角形一腰上的高与底边所成的角等于( )A.顶角的2倍B.顶角的一半C.顶角D.底角的一半【思路点拨】等角的余角相等.【答案】B.【解析】如图,△ABC中,AB=AC,BD⊥AC于D,所以∠ABC=∠C,∠BDC=90°,所以∠DBC=90°-∠C= 90°-(180-∠A)= ∠A,【总结升华】本题适用于任何一种等腰三角形,可以试着证明在钝角三角形中结论一样成立;总结规律,等腰三角形一腰上的高与底边所成的角等于顶角的一半.举一反三:【变式】如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有()A.5个B.4个 C.3个 D.2个【答案】A.2.(2015秋•南通校级月考)如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=30cm,DE=2cm,则BC= cm.【思路点拨】作出辅助线后根据等腰三角形的性质得出BE=30,DE=2,进而得出△BEM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【答案】32;【解析】解:延长ED交BC于M,延长AD交BC于N,作DF∥BC,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=30,DE=2,∴DM=28,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=14,∴BN=16,∴BC=2BN=32,故答案为32.【总结升华】本题主要考查了等腰三角形的性质和等边三角形的性质,能求出MN的长是解决问题的关键.类型二、直角三角形3.将一张矩形纸片如图所示折叠,使顶点落在点.已知,,则折痕的长为( )A. B. C. D.【思路点拨】直角三角形是常见的几何图形,在习题中比较多的利用数形结合解决相应的问题.常用的是两锐角互余,三边满足勾股定理和直角三角形中,30°角所对的边等于斜边的一半.【答案】C.【解析】由折叠可知,∠CED=∠C′ED =30°,因为在矩形ABCD中,∠C等于90°,CD=AB=2,所以在Rt△DCE中,DE=2CD=4.故选C.【总结升华】折叠题型一定要注意对应的边相等,对应的角相等.【变式】如图,一张直角三角形纸片,两直角边AC=4cm,BC=8cm,将△ABC折叠,点B与点A重合,折痕为DE,则DE的长为( ).A. B. C. D.5【答案】B.解析:由折叠可知,AD=BD,DE⊥AB,∴BE=AB设BD为x,则CD=8-x∵∠C=90°,AC=4,BC=8,∴AC2+BC2=AB2∴AB2=42+82=80,∴AB=,∴BE=在Rt△ACD中,AC2+CD2=AD2 ,∴42+(8-x)2=x2,解得x=5在Rt△BDE中,BE2+DE2=BD2,即()2+DE2=52,∴DE=,故选B.4.已知:在直角△ABC 中,∠C=90°,BD 平分∠ABC 且交AC 于D.(1)若∠BAC=30°,求证: AD=BD ;(2)若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.图1 图2【思路点拨】(1)利用直角三角形两锐角互余,求得∠ABD=∠A=30°,得出AD=BD.(2)利用三角形内角和及角平分线定义或利用三角形外角性质.【答案与解析】(1)证明:∵∠BAC=30°,∠C=90°,∴∠ABC=60°又∵ BD 平分∠ABC , ∴∠ABD=30°,∴ ∠BAC =∠ABD ,∴BD=AD ;(2)解法一: ∵∠C=90°,∴∠BAC+∠ABC=90°∴=45°∵ BD 平分∠ABC ,AP 平分∠BAC∠BAP=,∠ABP=即∠BAP+∠ABP=45°∴∠APB=180°-45°=135°解法二: ∵∠C=90°,∴∠BAC+∠ABC=90°∴=45°∵BD 平分∠ABC ,AP 平分∠BAC∠DBC=,∠PAC=∴∠DBC+∠PAD=45° ∴∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C=45°+90°=135°.【总结升华】本题利用了:1、直角三角形的性质,两锐角互余,2、角的平分线的性质,3、三角形的外角与内角的关系.类型三、综合运用5 . 已知ABC 的两边AB 、AC 的长是关于x 的一元二次方程x 2-(2k+3)x+k 2+3k+2=0的两个实数根,第三边BC 的长为5. (1)k 为何值时,ΔABC 是以BC 为斜边的直角三角形?(2)k 为何值时,ΔABC 是等腰三角形?并求出ΔABC 的周长。
北师大初中数学中考总复习:几何初步及三角形--知识讲解(基础)【精品】.doc
中考总复习:几何初步及三角形—知识讲解(基础)【考纲要求】1.了解直线、射线、线段的概念和性质以及表示方法,掌握三者之间的区别和联系,会解决与线段有关的实际问题;2.了解角的概念和表示方法,会把角进行分类以及进行角的度量和计算;3.掌握相交线、平行线的定义,理解所形成的各种角的特点、性质和判定;4.了解命题的定义、结构、表达形式和分类,会简单的证明有关命题;5.了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性.【知识网络】【考点梳理】考点一、直线、射线和线段1.直线代数中学习的数轴和一张纸对折后的折痕等都是直线,直线可以向两方无限延伸.(直线的概念是一个描述性的定义,便于理解直线的意义).要点诠释:1).直线的两种表示方法:(1)用表示直线上的任意两点的大写字母来表示这条直线,如直线AB,其中A、B是表示直线上两点的字母;(2)用一个小写字母表示直线,如直线a.2).直线和点的两种位置关系(1)点在直线上(或说直线经过某点);(2)点在直线外(或说直线不经过某点).3).直线的性质:过两点有且只有一条直线(即两点确定一条直线).2.射线直线上一点和它一旁的部分叫做射线.射线只向一方无限延伸.要点诠释:(1)用表示射线的端点和射线上任意一点的大写字母来表示这条射线,如射线OA,其中O是端点,A是射线上一点;(2)用一个小写字母表示射线,如射线a.3.线段直线上两点和它们之间的部分叫做线段,两个点叫做线段的端点.要点诠释:1).线段的表示方法:(1)用表示两个端点的大写字母表示,如线段AB,A、B是表示端点的字母;(2)用一个小写字母表示,如线段a.2).线段的性质:所有连接两点的线中,线段最短(即两点之间,线段最短).3).线段的中点:线段上一点把线段分成相等的两条线段,这个点叫做线段的中点.4).两点的距离:连接两点间的线段的长度,叫做两点的距离.考点二、角1.角的概念:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,两条射线分别叫做角的边.(2)定义二:一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.射线旋转时经过的平面部分是角的内部,射线的端点是角的顶点,射线旋转的初始位置和终止位置分别是角的两条边. 要点诠释:1).角的表示方法:(1)用三个大写字母来表示,注意将顶点字母写在中间,如∠AOB;(2)用一个大写字母来表示,注意顶点处只有一个角用此法,如∠A;(3)用一个数字或希腊字母来表示,如∠1,∠.2).角的分类:(1)按大小分类:锐角----小于直角的角(0°<<90°);直角----平角的一半或90°的角(=90°);钝角----大于直角而小于平角的角(90°<<180°);(2)平角:一条射线绕着端点旋转,当终止位置与起始位置成一条直线时,所成的角叫做平角,平角等于180°.(3)周角:一条射线绕着端点旋转,当终止位置又回到起始位置时,所成的角叫做周角,周角等于360°.(4)互为余角:如果两个角的和是一个直角(90°),那么这两个角叫做互为余角.(5)互为补角:如果两个角的和是一个平角(180°),那么这两个角叫做互为补角.3).角的度量:(1)度量单位:度、分、秒;(2)角度单位间的换算:1°=60′,1′=60″(即:1度=60分,1分=60秒);(3)1平角=180°,1周角=360°,1直角=90°.4).角的性质:同角或等角的余角相等,同角或等角的补角相等.2.角的平分线:如果一条射线把一个角分成两个相等的角,那么这条射线叫做这个角的平分线.考点三、相交线1.对顶角(1)定义:如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.(2)性质:对顶角相等.2.邻补角(1)定义:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.(2)性质:邻补角互补.3.垂线(1)定义:当两条直线相交所得的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,它们的交点叫做垂足.垂直用符号“⊥”来表示.要点诠释:①过一点有且只有一条直线与已知直线垂直.②连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.(2)点到直线的距离定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.4.同位角、内错角、同旁内角(1)基本概念:两条直线(如a、b)被第三条直线(如c)所截,构成八个角,简称三线八角,如图所示:∠1和∠8、∠2和∠7、∠3和∠6、∠4和∠5是同位角;∠1和∠6、∠2和∠5是内错角;∠1和∠5、∠2和∠6是同旁内角.(2)特点:同位角、内错角、同旁内角都是由三条直线相交构成的两个角.两个角的一条边在同一直线(截线)上,另一条边分别在两条直线(被截线)上.考点四、平行线1.平行线定义:在同一平面内,不相交的两条直线叫做平行线.平行用符号“∥”来表示,.如直线a与b平行,记作a∥b.在几何证明中,“∥”的左、右两边也可能是射线或线段.2.平行公理及推论:(1)经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.3.性质:(1)平行线永远不相交;(2)两直线平行,同位角相等;(3)两直线平行,内错角相等;(4)两直线平行,同旁内角互补;(5)如果两条平行线中的一条垂直于某直线,那么另一条也垂直于这条直线,可用符号表示为:若b∥c,b⊥a,则c⊥a.4.判定方法:(1)定义;(2)平行公理的的推论;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行;(5)同旁内角互补,两直线平行;(6)垂直于同一条直线的两条直线平行.考点五、命题、定理、证明1.命题:(1)定义:判断一件事情的语句叫命题.(2)命题的结构:题设+结论=命题;(3)命题的表达形式:如果……那么……;若……则……;(4)命题的分类:真命题和假命题;(5)逆命题:原命题的题设是逆命题的结论,原命题的结论是逆命题的题设.2.公理、定理:(1)公理:人们在长期实践中总结出来的能作为判断其他命题真假依据的真命题叫做公理.(2)定理:经过推理证实的真命题叫做定理.3.证明:用推理的方法证实命题正确性的过程叫做证明.考点六、三角形的概念及其性质1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类(1)按边分类:(2)按角分类:3.三角形的内角和外角(1)三角形的内角和等于180°.(2)三角形的任意一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边. 6.三角形具有稳定性.7. 三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.要点诠释:三角形的中位线:连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.【典型例题】类型一、直线、射线及线段1.数轴上有两点A、B分别表示实数a、b,则线段AB的长度是( )A.a-bB.a+bC.│a-b│D.│a+b│【思路点拨】根据数轴上两点之间的距离公式即可解决问题.【答案】C.【解析】本类题目注意线段长度是非负数,若有字母注意使用绝对值.根据题意,画图.数轴上两点间的距离公式为:│a-b│或│b-a│.【总结升华】解决本例类型的题目应结合图形,即数形结合,这样做起来简捷.2.有一段火车路线,含这段铁路的首尾两站在内共有5个车站(如图),图中共有几条线段?在这段线路上往返行车,需印制几种车票(每种车票要印出上车站与下车站)?【思路点拨】先求得单程的车票数,再求出往返的车票数即可.【答案与解析】线段有10条;车票需要2×10=20种.【总结升华】在直线上确定线段的条数公式为: (其中n为直线上点的个数).在求从一个顶点引出的n条射线所形成的小于平角的角的个数也可用此公式.举一反三:【变式】如图,点A、B、C在直线上,则图中共有______条线段.【答案】3.类型二、角3.如图,已知∠COE=∠BOD=∠AOC=90°,则图中互余的角有______对,互补的角有______对.【思路点拨】先要确定等角,再根据角的性质进行判断.【答案与解析】互余的角有:∠COD和∠DOE、∠COD和∠BOC、∠AOB和∠DOE、∠AOB和∠BOC,共4对;互补的角有:∠EOD和∠AOD、∠BOC和∠AOD、∠AOB和∠BOE、∠COD和∠BOE、∠AOC和∠COE、∠AOC和∠BOD、∠COE和∠BOD,共7对.【总结升华】在本题目中,当图中的角比较多时,就将图形的角进行归类,找出每种相等的角,按照同角或等角的余角相等,同角或等角的补角相等的性质解决问题,注意要不重不漏.举一反三:【变式】【答案】70°.类型三、相交线与平行线4.(2015春•南京校级月考)如图,AB∥CD,则∠α、∠β、∠γ之间的等量关系为.【思路点拨】通过观察图形,可作出一条辅助线即平行线,从而把问题化难为易.【答案】∠α+∠β﹣∠γ=180°.【解析】解:如图,过点E作EF∥AB,∴∠1+∠γ=∠β,∵AB∥CD,∴EF∥CD,∴∠1+∠α=180°,∴∠α﹣∠γ=180°﹣∠β,∴∠α+∠β﹣∠γ=180°.故答案为:∠α+∠β﹣∠γ=180°.【总结升华】本题考点:平行线的性质.举一反三:【变式】(1)两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交【答案】B.类型四、三角形5.(2014•怀化模拟)三角形三边长分别是6,2a﹣2,8,则a的取值范围是()A.1<a<2 B.<a<2 C.2<a<8 D.1<a<4【思路点拨】本题考查了三角形的三边关系.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.【答案】C.【解析】解:由于在三角形中任意两边之和大于第三边,∴2a﹣2<6+8,即a<8,任意两边之差小于第三边,∴2a﹣2>8﹣6,即a>2,∴2<a<8,故选:C.【总结升华】涉及到三角形三边关系时,尽可能简化运算,注意运算的准确性.举一反三:【变式】已知a,b,c为△ABC的三条边,化简得_________.【答案】∵a,b,c为△ABC的三条边∴a-b-c<0, b-a-c<0∴=(b+c-a)+(a+c-b)=2c.6. 下列命题:(1)等边三角形也是等腰三角形;(2)三角形的外角等于两个内角的和;(3)三角形中最大的内角不能小于60°;(4)锐角三角形中,任意两内角之和必大于90°,其中错误的个数是( )A.0 个B.1个C.2个D.3个【思路点拨】认真阅读各小题提供的已知条件,依据三角形的分类方法,然后根据三角形内角和为180°进行分析解答.【答案】B.【解析】(2)中应强调三角形的外角等于不相邻的两个内角的和;三角形中最大的内角若小于60°,则三个角的和就小于180°,不符合三角形内角和定理,故(3)正确;(4)三角形中,任意两内角之和若不大于90°,则另一个内角就大于或等于90°,就不能是锐角三角形.所以只有(2)错,故选B. 【总结升华】本题的解题关键是要理解定义,掌握每种三角形中角的度数的确定.举一反三:【变式】【答案】15°.。
特殊三角形知识点总结
特殊三角形知识点总结特殊三角形是指在三角形中具有特殊性质的三角形,包括等边三角形、等腰三角形和直角三角形。
这些特殊三角形在数学中具有重要的地位和应用,在几何学、三角学等学科中都有广泛的运用。
我们来看等边三角形。
等边三角形是指三条边的长度相等的三角形,也可以理解为三个角都是60度的三角形。
等边三角形具有以下特点:三个内角都是60度;三个边长相等;三条高线、中线和角平分线重合;等边三角形的外接圆和内切圆都与三角形的边相切。
等边三角形在几何学中常用于建筑设计、工程测量等领域,具有稳定性和对称性。
接下来,我们探讨等腰三角形。
等腰三角形是指两条边的长度相等的三角形,也可以理解为两个角相等的三角形。
等腰三角形具有以下特点:两个底角相等;两条底边相等;两条底边上的高线相等;等腰三角形的顶角是两个底角的平分角。
等腰三角形在几何学中经常出现,并且具有许多重要的性质和应用。
例如,在三角函数中,等腰三角形可以用于计算三角函数值;在三角形的相似性质中,等腰三角形是常用的模型。
我们研究直角三角形。
直角三角形是指其中一个角是90度的三角形。
直角三角形具有以下特点:一个角是直角;两个直角边的平方和等于斜边的平方(即勾股定理);直角三角形的高线、中线和角平分线有特殊性质。
直角三角形是最基本的三角形之一,在三角函数中有重要的应用。
例如,正弦、余弦和正切等三角函数是通过直角三角形的边长比值来定义的。
直角三角形也在物理学和工程学中有广泛的应用,例如用于测量高度、计算力的分解等。
特殊三角形在数学中具有重要的地位和应用,不仅有丰富的性质和特点,还在实际问题中有广泛的应用。
通过研究特殊三角形,可以帮助我们深入理解三角形的性质和三角函数的应用,为解决实际问题提供数学工具和方法。
因此,我们应该加强对特殊三角形的学习和理解,提高数学应用能力和解决问题的能力。
中考复习专用 三角形与特殊三角形
中考复习专用三角形与特殊三角形三角形是初中数学中的重要内容,而特殊三角形更是其中的重点和难点。
在中考中,三角形与特殊三角形的相关知识点经常出现,掌握好这些知识对于取得好成绩至关重要。
一、三角形的基本概念首先,让我们来了解一下三角形的定义。
三角形是由三条线段首尾顺次相接所组成的封闭图形。
这三条线段叫做三角形的边,相邻两边的公共端点叫做三角形的顶点,相邻两边所组成的角叫做三角形的内角,简称角。
三角形的内角和为 180 度,这是一个非常重要的性质。
我们可以通过多种方法来证明这个性质,比如剪拼法、作平行线等。
三角形的外角是指三角形的一边与另一边的延长线所组成的角。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的分类也是需要掌握的知识点。
按照角的大小,可以分为锐角三角形、直角三角形和钝角三角形;按照边的关系,可以分为等边三角形、等腰三角形和不等边三角形。
二、三角形的三边关系三角形的三边关系是指:三角形任意两边之和大于第三边,任意两边之差小于第三边。
这个关系在判断三条线段能否组成三角形时非常有用。
例如,给出三条线段的长度分别为 3、4、5,我们可以先比较较短两边之和 3 + 4 = 7,大于第三边 5,再比较较长两边之差 5 3 = 2,小于第三边 4,所以这三条线段可以组成三角形。
三、三角形的高、中线与角平分线三角形的高是从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
三角形有三条高。
中线是连接三角形顶点和它对边中点的线段。
三角形的三条中线相交于一点,这点叫做三角形的重心。
角平分线是三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
三角形的三条角平分线也相交于一点。
四、特殊三角形之等腰三角形等腰三角形是指至少有两边相等的三角形。
相等的两条边称为这个三角形的腰,另一边叫做底边。
两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
等腰三角形的性质有很多。
特殊三角形基本知识点整理
特殊三角形基本知识点整理一、特殊三角形的定义与分类特殊三角形是指具有特殊性质和特点的三角形。
常见的特殊三角形主要包括等腰三角形、等边三角形和直角三角形。
等腰三角形是指至少有两边相等的三角形。
相等的两条边称为这个三角形的腰,另一边则称为底边。
两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
等边三角形是一种特殊的等腰三角形,它的三条边都相等,三个角也都相等,并且每个角都是 60 度。
直角三角形则是指其中一个角为直角(90 度)的三角形。
直角所对的边称为斜边,其余两条边称为直角边。
二、等腰三角形的性质1、两腰相等这是等腰三角形最基本的性质,也是其名称的由来。
2、两底角相等即等腰三角形的两个底角大小相等。
这一性质可以通过三角形内角和定理以及等边对等角的原理来证明。
3、三线合一等腰三角形底边上的高、底边上的中线、顶角平分线相互重合,简称“三线合一”。
这是等腰三角形非常重要的一个性质,在解决与等腰三角形相关的几何问题时经常会用到。
4、轴对称性等腰三角形是轴对称图形,对称轴是底边上的高(或顶角平分线、底边上的中线)所在的直线。
三、等腰三角形的判定1、有两条边相等的三角形是等腰三角形。
这是最直接的判定方法。
2、有两个角相等的三角形是等腰三角形。
此判定方法基于等角对等边的原理。
四、等边三角形的性质1、三边相等这是等边三角形最显著的特征。
2、三个角都相等,且都为 60 度由于三角形内角和为180 度,所以等边三角形的每个角都是60 度。
3、具有等腰三角形的一切性质因为等边三角形是特殊的等腰三角形,所以等腰三角形的性质它都具备。
4、是轴对称图形,有三条对称轴分别是三条边的高所在的直线。
五、等边三角形的判定1、三条边都相等的三角形是等边三角形。
这是最直观的判定方法。
2、三个角都相等的三角形是等边三角形。
3、有一个角是 60 度的等腰三角形是等边三角形。
六、直角三角形的性质1、直角三角形两直角边的平方和等于斜边的平方这就是著名的勾股定理,例如,如果直角三角形的两条直角边分别为 a 和 b,斜边为 c,那么 a²+ b²= c²。
三角形七年级知识点北师版
三角形七年级知识点北师版本文介绍了七年级数学中关于三角形的知识点,基于北师版教材内容。
主要包括三角形的定义、分类、性质以及常见的勾股定理。
在阅读本文前,建议读者已经掌握了初中数学中的基本几何概念,如线段、角度等。
一、三角形的定义与分类三角形是由三条线段所围成的平面图形。
在三条线段中,任意两条之和必须大于第三条,否则无法形成三角形。
根据三角形的角度和边长特征,可以将三角形分为以下三类:1.等腰三角形:两条边的长度相等,另一条边称为底边。
等腰三角形的两个底角(即等于底边两侧的角)也相等。
2.等边三角形:三条边的长度均相等,每个角度为60度。
3.直角三角形:其中一个角度为90度,被称为直角。
直角三角形的另外两个角度称为锐角和钝角,分别小于90度和大于90度。
二、三角形的性质三角形有许多有趣的性质。
1.三角形的三条角度之和为180度。
因此,如果三个角度已知,则可以确定剩余角度的大小。
2.等腰三角形的顶角(即等于两腰之间夹角)及其对边(即底边两侧的角)相等。
3.等边三角形的每个角度均为60度。
4.直角三角形中,勾股定理成立,即直角边平方之和等于斜边平方。
例如,若直角三角形的直角边长度分别为a和b,斜边长度为c,则有a^2+b^2=c^2。
5.三角形的面积可以通过海伦公式(只需要知道三边长度)或通过半周长公式(需要知道三边半周长)计算。
三、常见勾股定理勾股定理是指,在直角三角形中,直角边平方之和等于斜边平方。
而且,斜边一定是直角边中最长的那一条。
常见的勾股定理包括以下几种:1.勾股定理一:3、4、5三角形。
在一个3、4、5的直角三角形中,斜边的长度是5,直角两边的长度分别是3和4。
2.勾股定理二:5、12、13三角形。
在一个5、12、13的直角三角形中,斜边的长度是13,直角两边的长度分别是5和12。
3.勾股定理三:7、24、25三角形。
在一个7、24、25的直角三角形中,斜边的长度是25,直角两边的长度分别是7和24。
北师大七年级三角形知识点梳理
一、三角形的基本概念1.三角形的定义和符号表示:三角形是由三条线段所围成的图形,用∆ABC表示,其中∆表示三角形,A、B、C分别为三个角。
2.三角形的边和角:三角形的三条边及其对应的三个角分别为AB、BC、CA和∠A、∠B、∠C。
3.三角形的顶角和底边:三角形任意两条边所对应的角称为顶角,顶角所对应的边称为顶边,没有被顶角所对应的边称为底边。
4.三角形的对称性:三角形具有对称性,即三个角相等的两个三角形具有相等对边、相等对角和相等对于对边的对旁定理。
二、三角形的分类1.根据角度分类:-三角形的锐角三边比例:三角形的三个内角都小于90°。
-三角形的直角三边比例:三角形的一个内角为90°,另外两个内角一个为锐角一个为钝角。
-三角形的钝角三边比例:三角形的一个内角大于90°。
2.根据边长分类:-三角形的等腰三边比例:三角形的两条边相等。
-三角形的等边三边比例:三角形的三条边都相等。
-三角形的一般三边比例:三角形的三条边都不相等。
三、三角形的性质1.三角形的角度关系:-三角形内角和定理:三角形的三个内角的和等于180°。
-底角和顶角关系:三角形的底角和顶角互补,即底角+顶角=180°。
2.三角形的边长关系:-三角形两边之和大于第三边定理:三角形的两边之和大于第三边。
-三角形两边之差小于第三边定理:三角形的两边之差小于第三边。
3.三角形的中线关系:-三角形的中线定理:三角形的三个中线交于一点,并且交点是各中线长度的一半。
四、三角形的重要线段和关系1.三角形的中线:-三角形外接圆的半径和边长关系。
-三角形内心与重心的关系。
-三角形的重心与外心的关系。
2.三角形的高:-高到底和定理:三角形的高是从顶点到底边垂直的线段。
-高度定理:三角形的面积等于底边与高的乘积的一半。
3.三角形的角平分线:-角平分线的性质:角平分线把一个角分成两个相等的角。
-角平分线的交点:三角形的角平分线的交点称为三角形的内心,内心到三边的距离相等。
(完整word)北师大版七年级数学下册三角形重点知识汇总,推荐文档
第三章三角形一•认识三角形1 •三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。
2、三角形分类按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。
3、关于三角形三条边的关系根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。
三角形三边关系的另一个性质:三角形任意两边之差小于第三边。
设三角形三边的长分别为a、b、c则:①一般地,对于三角形的某一条边a来说,一定有|b-c| v a v b+c成立;反之,只有|b-c| v a vb+c成立,a、b、c三条线段才能构成三角形;②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c| v a,那么这三条线段就能构成三角形。
4、关于三角形的内角和三角形三个内角的和为180°①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
5、关于三角形的角平分线、高线和中线①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图 1 ;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
、图形的全等能够完全重合的图形称为全等形。
全等图形的形状和大小都相同。
九年级数学中考第一轮复习—三角形北师大版知识精讲
九年级数学中考第一轮复习—三角形北师大版【本讲教育信息】一、教学内容:复习七:三角形1. 三角形的有关概念,三角形的角平分线、中线、高线、中位线的性质.2. 等腰三角形、等边三角形、直角三角形的有关性质和判定方法.3. 全等三角形的性质和判定方法.二、知识要点:1. 三角形的有关概念(1)三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形,三角形具有稳定性.(2)三角形中的三条重要线段:角平分线、中线、高.如下图所示.ABCDE F(3)三角形三条边的关系:三角形的两边之和大于第三边,三角形的两边之差小于第三边.(4)三角形内、外角的关系:三角形的内角和等于180°,外角和等于360°. 三角形的一个外角等于和它不相邻的两个内角之和. 三角形的一个外角大于任何一个和它不相邻的内角.(5)三角形的中位线:经过三角形两边中点的线段平行于第三边并且等于第三边的一半.(6)三角形的分类:按角分类:三角形⎩⎪⎨⎪⎧斜三角形⎩⎪⎨⎪⎧锐角三角形钝角三角形直角三角形2. 全等三角形(1)能够完全重合的两个三角形叫做全等三角形.(2)全等三角形的性质:全等三角形的对应边(角)相等;全等三角形的对应线段(角平分线、中线、高)相等,周长相等,面积相等.(3)两个三角形全等的条件:一般三角形有:SAS 、ASA 、AAS 、SSS . 直角三角形有:SAS 、ASA 、AAS 、HL . 3. 等腰三角形(1)等腰三角形的性质:两底角相等;顶角的角平分线、底边上的中线和底边上的高互相重合;等边三角形的各角都相等,并且都等于60°.(2)判定等腰三角形的条件:等角对等边;三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.4. 直角三角形(1)直角三角形的性质:直角三角形两个锐角互余;直角三角形斜边上的中线等于斜边的一半;在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;(2)勾股定理及其逆定理定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2.逆定理:如果三角形的三边长a、b、c有以下关系:a2+b2=c2,那么这个三角形是直角三角形.三、重、难点:本讲重点是三角形的有关概念、特殊三角形的有关性质和判定方法.难点是等腰三角形的判定和性质,以及三角形和四边形的综合问题.四、考点分析:纵观近几年全国各地的中考试题,三角形常出现的知识点有三角形的性质和概念,三角形内角和与外角和,三角形的三边关系,以及三角形全等的性质与判定.今后的命题趋势仍以考查以上知识点为主,以填空题和选择题为主要考查形式,并将三角形的全等融入平行四边形的证明和计算之中.【典型例题】例1.选择题(1)现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取()A.10cm的木棒B.20cm的木棒C.50cm的木棒D.60cm的木棒解析:这类试题只需根据“三角形两边之和大于第三边,两边之差小于第三边”就可解决,即设第三根木棒长为xcm.依题意有30-20<x<30+20,即10<x<50,满足10<x <50的只有B选项.(2)如图所示,在Rt△ABC中,∠C=90°,D、E分别为AC、AB的中点,连DE、CE,则下列结论中不一定正确的是()A.ED∥BC B.ED⊥ACC.∠ACE=∠BCE D.AE=CEABCDE解析:易知DE 为△ABC 的中位线,∴DE ∥BC ,∴ED ⊥AC ,又∵AD =CD ,∴AE =CE ,故选C .例2. 填空题(1)如图所示,已知∠1=100°,∠2=140°,那么∠3=__________.123解析:本题可先由两个外角求出两个内角的度数,再根据三角形的内角和来求得∠3的度数.∠3=60°.(2)已知直角三角形两边x 、y 的长度满足︱x 2-4︱+y 2-5y +6=0,则第三边的长为__________.解析:因为︱x 2-4︱+y 2-5y +6=0,由非负数的性质知,⎩⎪⎨⎪⎧x 2-4=0y 2-5y +6=0 ,解得⎩⎪⎨⎪⎧x 1=2,x 2=-2(舍去)y 1=2,y 2=3 ,当直角三角形的两边为2与2时,第三边的长=22+22=22;当直角三角形的两边为2与3且最长边(斜边)为3时,则第三边的长=32-22=5,当最长边(斜边)为第三边时,其长为32+22=9+4=13.所以第三边长为22或5或13.例3. 如图所示,一根长2a 的木棍(AB )斜靠在与地面(OM )垂直的墙(ON )上,设木棍的中点为P ,若木棍A 端沿墙下滑,且B 端沿地面向右滑行.(1)请判断木棍滑动的过程中,点P 到点O 的距离是否变化,并简述理由;(2)在木棍滑动的过程中,当滑动到什么位置时,△AOB 的面积最大?简述理由,并求出面积的最大值.解:(1)不变化.理由:∵∠AOB =90°,P 为AB 的中点,∴OP =12AB .(2)设OA =x ,OB =y ,∵x 2+y 2=(2a )2=4a 2,又∵S △AOB =12xy ,且x 2+y 2≥2xy ,即xy ≤x 2+y 22,∴12xy ≤a 2,∴x =y =2a 时△AOB 的面积最大为a 2. 评析:本题考查直角三角形斜边上的中线与面积两个知识点,能够熟练掌握直角三角形的性质并构建直角三角形模型是解题的关键;问题(1)考虑不到斜边上的中线为斜边的一半,易认为变化.问题(2)容易想到当OA =OB 时面积最大,但说理时易错,不知道运用当(x -y )2≥0时,可以看作x 2+y 2≥2xy ,即xy ≤x 2+y 22来说明理由.例4. 已知:如图所示,延长△ABC 的各边,使BF =AC ,AE =CD =AB ,顺次连接D 、E 、F ,得到△DEF 为等边三角形. 求证:(1)△AEF ≌△CDE ;(2)△ABC 为等边三角形.AB CDEF证明:(1)∵BF =AC ,AB =AE ,∴FA =EC . ∵△DEF 是等边三角形,∴EF =DE . 又∵AE =CD ,∴△AEF ≌△CDE .(2)由(1)知△AEF ≌△CDE ,∴∠FEA =∠EDC .∵∠BCA =∠EDC +∠DEC =∠FEA +∠DEC =∠DEF ,△DEF 是等边三角形, ∴∠DEF =60°,∴∠BCA =60°.同理可证∠BAC =60°.∴△ABC 是等边三角形.评析:解答此类题目一定要结合图形认真分析题意,选择适当的方法进行证明.例5. 已知:在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,(1)如图所示,E 、F 分别是AB 、AC 上的点,且BE =AF ,求证:△DEF 为等腰直角三角形.(2)若E 、F 分别为AB 、AC 延长线上的点,仍有BE =AF ,其他条件不变,那么,△DEF 是否仍为等腰直角三角形?证明你的结论.分析:要证明△DEF 为等腰直角三角形,需要证DE =DF ,连接AD ,利用全等可得这一结论.至于在延长线上,可利用同样的方法.ABCDE F证明:(1)如图所示,连接AD .∵AB =AC ,∠BAC =90°,D 为BC 的中点, ∴AD ⊥BC ,BD =AD .∴∠B =∠DAC =45°. 又BE =AF ,∴△BDE ≌△ADF (SAS ). ∴ED =FD ,∠BDE =∠ADF ,∴∠EDF =∠EDA +∠ADF =∠EDA +∠BDE =∠BDA =90°. ∴△DEF 为等腰直角三角形.ABCD E F(1)ABCD EF(2)(2)若E 、F 分别是AB 、CA 延长线上的点,如图所示,连接AD . ∵AB =AC ,∠BAC =90°,D 为BC 的中点, ∴AD =BD ,AD ⊥BC .∴∠DAC =∠ABD =45°.∴∠DAF =∠DBE =135°. 又AF =BE ,∴△DAF ≌△DBE (SAS ). ∴FD =ED ,∠FDA =∠EDB ,∴∠EDF =∠EDB +∠FDB =∠FDA +∠FDB =∠ADB =90°. ∴△DEF 仍为等腰直角三角形.评析:构造全等三角形证明线段相等,是本题的突破口,而AD 则是本题的生命线.大家可以观察图形具有的特点和辅助线,理解之所以这样做的原因才能提高解题能力.例6. 某小区现有一块等腰直角三角形形状的绿地,腰长为100米,直角顶点为A . 小区物业管委会准备把它分割成面积相等的两块,有如下的分割方法: 方法一:在底边BC 上找一点D ,连接AD 作为分割线; 方法二:在腰AC 上找一点D ,连接BD 作为分割线;方法三:在腰AB 上找一点D ,作DE ∥BC ,交AC 于点E ,DE 作为分割线;方法四:以顶点A 为圆心,AD 为半径作弧,交AB 于点D ,交AC 于点E ,弧DE 作为分割线.这些分割方法中分割线最短的是哪一个?ABC ABC ABC ABCD DDE DE 方法一方法二方法三方法四解:方法一中的分割线AD =1002=502(米);方法二中,要想将原三角形分成面积相等的两部分,D 应为AC 的中点,则分割线BD =1002+502=505(米);方法三中,如果所分得的三角形与等腰梯形的面积相等,则所分割的小等腰直角三角形与原等腰直角三角形的面积之比为1∶2,两三角形的相似比是1∶2,故DE =BC 2=10022=100(米);方法四中,当扇形的面积等于原直角三角形的面积的一半时,14π·AD 2=12AB 2,求得半径AD=1002π,故弧DE 的长为14·2π·AD =502π(米).分割线最短的是方法一.评析:在求图中分割线的长度时,主要的已知条件就是分割成的两部分的面积相等,也就是得到的一个规则图形的面积是原等腰直角三角形的面积的一半,求解分割线的长度时,应结合图形用较简便的方法求值.【方法总结】1. 在利用三角形三边关系判断线段能否构成三角形时,只需验证两条最短边之和是否大于最长的边即可.2. 有角平分线或中点时,常用到的辅助线(1)在角的两边截相等的线段,构成全等三角形;(2)过角平分线上一点向角的两边作垂线;(3)若有和角平分线垂直的线段时,常把它延长与角的两边相交构造等腰三角形;(4)有中线或有以线段的中点为端点的线段时,常给它们乘以整数倍,构造全等三角形.【预习导学案】(复习八:四边形)一、预习前知1. 多边形的内角和、外角和.2. 什么是平行四边形?什么是矩形、菱形、正方形、梯形?二、预习导学1. 用同一种正多边形可以镶嵌的正多边形是正三角形、__________和__________,不同的多边形只有满足在同一顶点各个内角和是__________才能镶嵌.2. 两组对边分别__________的四边形叫平行四边形;两组对边分别__________的四边形是平行四边形;一组对边__________且__________的四边形是平行四边形;对角线__________的四边形是平行四边形.3. 平行四边形的对角__________,对边__________,邻角__________,对角线__________,是__________对称图形.4. 矩形的四个角都是__________;矩形的对角线__________;矩形既是__________图形,也是中心对称图形.5. 有一个角是直角的__________叫做矩形.对角线__________的平行四边形是矩形;有三个角是直角的__________是矩形.6. 菱形的四条边都相等;菱形的两条对角线__________,并且每一条对角线平分一组对角;菱形是轴对称图形,菱形也是__________图形.7. 一组邻边相等的__________是菱形,对角线互相垂直平分的四边形是菱形;__________的四边形是菱形.8. 四条边都相等且四个角都是直角的四边形是正方形.__________的菱形是正方形;__________的矩形是正方形;对角线__________的四边形是正方形.9. 等腰梯形的两条对角线__________,在同一底上的两个角__________.反思:(1)各四边形概念之间有什么联系?(2)各类平行四边形有什么共性和特性?【模拟试题】(答题时间:50分钟)一、选择题1. 到三角形三条边的距离都相等的点是这个三角形的()A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点2. 下列判断错误的是()A. 有两角和一边对应相等的两个三角形全等B. 有两边和一角对应相等的两个三角形全等C. 有两边和其中一边上的中线对应相等的两个三角形全等D. 有一边对应相等的两个等边三角形全等3. 某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A. 9cm B. 12cm C. 15cm D. 12cm 或15cm4. 一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是( ) A. 直角三角形 B. 等腰三角形 C. 锐角三角形 D. 钝角三角形5. 如果三角形的两边分别为3和5,那么这个三角形的周长可以是( )A. 15B. 16C. 8D. 76. 如图所示,在正方形ABCD 中,点E 是CD 边上一点,连接AE ,交对角线BD 于点F ,连接CF ,则图中全等三角形共有( )ABC DEFA. 1对B. 2对C. 3对D. 4对7. 如图所示,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 交于一点P ,若∠A =50°,则∠BPC 的度数是( )ABCDEPA. 150°B. 130°C. 120°D. 100°*8. 如图所示,在△ABC 中,AB =AC =5,BC =6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于( )ABCMNA. 65B. 95C. 125D. 165**9. 如图所示,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,点P 是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD .要使点D 恰好落在BC 上,则AP 的长是( )AA. 4B. 5C. 6D. 8**10. 如图所示,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN .其中,结论正确的有( )ABC D EM NA. 3个B. 2个C. 1个D. 0个二、填空题1. 如图所示,OA =OB ,OC =OD ,∠O =60°,∠C =25°,则∠BED 等于__________度.OABCDE2. 由三角形三条中位线所围成的三角形的面积是原三角形面积的__________.3. 如图所示,AB =CD ,AD 、BC 相交于点O ,要使△ABO ≌△DCO .应添加的条件为__________.(添加一个条件即可)A BC DO4. 如图所示,△ABC 中,BD 平分∠ABC ,CD 平分∠ACE ,请你写出∠A 与∠D 的关系__________.ABCDE5. 如图所示,在△ABC 中,AB =AC ,CD 平分∠ACB 交AB 于D 点,AE ∥DC 交BC 的延长线于点E ,已知∠E =36°,则∠B =__________度.ABD E*6. 已知BD 、CE 是△ABC 的高,直线BD 、CE 相交所成的角中有一个角为50°,则∠A 等于__________度.*7. 已知等腰三角形ABC 中,AB =AC ,D 为BC 边上一点,连接AD ,若△ACD 和△ABD 都是等腰三角形,则∠C 的度数是__________.**8. 在△ABC 中,AB =2,AC =2,∠B =30°,则∠BAC 的度数是__________.三、解答题1. 如图所示,∠BAC =∠ABD ,AC =BD ,点O 是AD 、BC 的交点,点E 是AB 的中点.试判断OE 和AB 的位置关系,并给出证明.ABCDOE*2. 已知线段AC 与BD 相交于点O ,连结AB 、DC ,E 为OB 的中点,F 为OC 的中点,连结EF (如图所示).ODC ABEF(1)添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC . (2)分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是__________命题,命题2是__________命题(选择“真”或“假”填入空格). 3. 如图所示,在△ABC 中,D 、E 分别是AC 、AB 上的点,BD 与CE 交于点O ,给出下列三个条件:①∠EBO =∠DCO ;②∠BEO =∠CDO ;③BE =CD .(1)上述三个条件中,哪两个条件可判定△ABC 是等腰三角形(用序号写出所有情况); (2)选择第(1)小题中的一种情况,证明△ABC 是等腰三角形.ABCD E O**4. 已知:如图所示,在△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F .H 是BC 边的中点,连接DH 与BE 相交于点G . (1)求证:BF =AC ;(2)求证:CE =12BF ;(3)CE 与BG 的大小关系如何?试证明你的结论.A BCDE F G【试题答案】一、选择题1. D2. B3. C 【分两种情况:①当腰为3cm ,底为6cm 时,由于3+3=6,不能构成三角形;②当腰为6cm ,底为3cm ,由于3+6>6,可以组成三角形,它的周长为3+6+6=15cm ,故选C 】4. D 【这个三角形的最大角为180°×72+3+7>90°】5. A 【设三角形的第三边长为x ,则5-3<x <5+3,即2<x <8,所以,5+3+2<5+3+x <5+3+8,即10<三角形周长<16.故选A 】6. C 【因为由正方形的对称性可知:△ABD ≌△CBD ,△AFD ≌△CFD ,△ABF ≌△CBF ,故全等三角形有3对】7. B 【由于CD 、BE 分别是AB 、AC 边上的高,所以∠BEA =∠CDA =90°,由∠ABP +∠A =90°,∠ABP +∠BPD =90°知∠BPD =∠A =50°,因此∠BPC =180°-50°=130°,故选B .】8. C 【连接AM ,由等腰三角形三线合一知AM ⊥BC .MC =12BC =3.在Rt △AMC 中,AC =5,∴AM =4,S △AMC =12AM ·MC =12AC ·MN ,∴MN =4×35=125】9. C 【此题属探索性问题,难度较大.当点D 恰好落在BC 上时,OP =OD .∠A =∠C =60°,因为∠POD =60°,所以∠AOP =∠CDO ,故△AOP ≌△CDO ,所以AP =CO =6,选C .】10. B 【∵DC =AC ,∠ACE =∠DCB ,EC =BC ,∴△ACE ≌△DCB ,则∠AEC =∠DBC ,又∵EC =BC ,∠ECB =∠DCE ,∴△MCE ≌△NCB ,则MC =NC ,而由已知不能得出AC =ND ,故选B 】二、填空题 1. 70【由条件易得△OBC ≌△OAD ,所以∠D =25°,∠OBC =180°-∠O -∠C = 95,则∠BED =∠OBC -∠D =70°】2. 14【根据三角形中位线的意义及平行四边形的性质可以求得】 3. AB ∥CD (或∠B =∠C ,∠A =∠D )4. ∠D =12∠A 【∵∠DCE =∠D +∠DBC ,∠ACE =∠A +∠ABC ,∠ABC =2∠DBC ,∵∠ACE =2∠DCE ,∴∠D =12∠A 】5. 72【∵CD ∥AE ,∴∠EAC =∠DCA .∵CD 平分∠ACB ,∴∠ACB =2∠ACD =2∠EAC ,∵∠ACB =∠E +∠EAC ,∴∠EAC =∠E ,∴∠ACB =2∠E =72°.∵AB =AC ,∴∠B =∠ACB =72°.】6. 50或130【分为锐角三角形和钝角三角形两种情况考虑,再借助于内角和定理计算】7. 36°或45°【如图所示】ABC DABCD36°45°用心 爱心 专心 8. 15°或105°【如图所示,可分两种情况△ABC 和△ABC ’,作出高AD ,可得AD =1,可求得CD =C ’D =1.所以知∠ACD =∠AC ’D =45°,故∠BAC =15°或∠BAC ’=105°】AB C'D C三、解答题1. OE ⊥AB .证明:在△BAC 和△ABD 中,⎩⎪⎨⎪⎧AC =BD ∠BAC =∠ABD AB =BA,∴△BAC ≌△ABD .∴∠OBA =∠OAB ,∴OA =OB .又∵AE =BE ,∴OE ⊥AB .2. (1)证明:由已知条件得:OE =OF ,2OE =2OF ,所以OB =OC ,又∠A =∠D ,∠AOB =∠DOC .所以△ABO ≌△DCO ,所以AB =DC .(2)真,假3. (1)①③;②③.(1)①③.证明:∵∠EBO =∠DCO ,∠EOB =∠DOC ,BE =CD ,∴△BEO ≌△CDO .∴OB =OC ,∴∠OBC =∠OCB .∴∠EBO +∠OBC =∠DCO +∠OCB ,即∠ABC =∠ACB .∴AB =AC .∴△ABC 为等边三角形.4. (1)证明:∵CD ⊥AB ,∠ABC =45°,∴△BCD 是等腰直角三角形.∴BD =CD .在Rt △DFB 和Rt △DAC 中,∵∠DBF =90°-∠BFD ,∠DCA =90°-∠EFC ,且∠BDF =∠CDA =90°,BD =CD ,∴Rt △DFB ≌Rt △DAC ,∴BF =AC .(2)证明:在Rt △BEA 和Rt △BEC 中,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,又∵BE =BE ,∠BEA =∠BEC =︒90,∴Rt △BEA ≌Rt △BEC .∴CE =AE =12AC .又由(1)知BF =AC ,∴CE =12AC =12BF .(3)CE <BG .证明:连接CG .∵△BCD 是等腰直角三角形,∴BD =CD .又H 是BC 边的中点,∴DH 垂直平分BC ,∴BG =CG .在Rt △CEG 中,∵CG 是斜边,CE 是直角边,∴CE <CG .∴CE <BG .。
北师大初中数学中考总复习:几何初步及三角形--知识讲解(提高)【推荐】.doc
中考总复习:几何初步及三角形—知识讲解(提高)【考纲要求】1.了解直线、射线、线段的概念和性质以及表示方法,掌握三者之间的区别和联系,会解决与线段有关的实际问题;2.了解角的概念和表示方法,会把角进行分类以及进行角的度量和计算;3.掌握相交线、平行线的定义,理解所形成的各种角的特点、性质和判定;4.了解命题的定义、结构、表达形式和分类,会简单的证明有关命题;5.了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性.【知识网络】【考点梳理】考点一、直线、射线和线段1.直线代数中学习的数轴和一张纸对折后的折痕等都是直线,直线可以向两方无限延伸.(直线的概念是一个描述性的定义,便于理解直线的意义).要点诠释:1).直线的两种表示方法:(1)用表示直线上的任意两点的大写字母来表示这条直线,如直线AB,其中A、B是表示直线上两点的字母;(2)用一个小写字母表示直线,如直线a.2).直线和点的两种位置关系(1)点在直线上(或说直线经过某点);(2)点在直线外(或说直线不经过某点).3).直线的性质:过两点有且只有一条直线(即两点确定一条直线).2.射线直线上一点和它一旁的部分叫做射线.射线只向一方无限延伸.要点诠释:(1)用表示射线的端点和射线上任意一点的大写字母来表示这条射线,如射线OA,其中O是端点,A 是射线上一点;(2)用一个小写字母表示射线,如射线a.3.线段直线上两点和它们之间的部分叫做线段,两个点叫做线段的端点.要点诠释:1).线段的表示方法:(1)用表示两个端点的大写字母表示,如线段AB,A、B是表示端点的字母;(2)用一个小写字母表示,如线段a.2).线段的性质:所有连接两点的线中,线段最短(即两点之间,线段最短).3).线段的中点:线段上一点把线段分成相等的两条线段,这个点叫做线段的中点.4).两点的距离:连接两点间的线段的长度,叫做两点的距离.考点二、角1.角的概念:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,两条射线分别叫做角的边.(2)定义二:一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.射线旋转时经过的平面部分是角的内部,射线的端点是角的顶点,射线旋转的初始位置和终止位置分别是角的两条边.要点诠释:1).角的表示方法:(1)用三个大写字母来表示,注意将顶点字母写在中间,如∠AOB;(2)用一个大写字母来表示,注意顶点处只有一个角用此法,如∠A;(3)用一个数字或希腊字母来表示,如∠1,∠.2).角的分类:(1)按大小分类:锐角----小于直角的角(0°<<90°);直角----平角的一半或90°的角(=90°);钝角----大于直角而小于平角的角(90°<<180°).(2)平角:一条射线绕着端点旋转,当终止位置与起始位置成一条直线时,所成的角叫做平角,平角等于180°.(3)周角:一条射线绕着端点旋转,当终止位置又回到起始位置时,所成的角叫做周角,周角等于360°.(4)互为余角:如果两个角的和是一个直角(90°),那么这两个角叫做互为余角.(5)互为补角:如果两个角的和是一个平角(180°),那么这两个角叫做互为补角.3).角的度量:(1)度量单位:度、分、秒;(2)角度单位间的换算:1°=60′,1′=60″(即:1度=60分,1分=60秒);(3)1平角=180°,1周角=360°,1直角=90°.4).角的性质:同角或等角的余角相等,同角或等角的补角相等.2.角的平分线:如果一条射线把一个角分成两个相等的角,那么这条射线叫做这个角的平分线.考点三、相交线1.对顶角(1)定义:如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.(2)性质:对顶角相等.2.邻补角(1)定义:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.(2)性质:邻补角互补.3.垂线(1)定义:当两条直线相交所得的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,它们的交点叫做垂足.垂直用符号“⊥”来表示.要点诠释:①过一点有且只有一条直线与已知直线垂直.②连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.(2)点到直线的距离定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.4.同位角、内错角、同旁内角(1)基本概念:两条直线(如a、b)被第三条直线(如c)所截,构成八个角,简称三线八角,如图所示:∠1和∠8、∠2和∠7、∠3和∠6、∠4和∠5是同位角;∠1和∠6、∠2和∠5是内错角;∠1和∠5、∠2和∠6是同旁内角.(2)特点:同位角、内错角、同旁内角都是由三条直线相交构成的两个角.两个角的一条边在同一直线(截线)上,另一条边分别在两条直线(被截线)上.考点四、平行线1.平行线定义:在同一平面内,不相交的两条直线叫做平行线.平行用符号“∥”来表示,.如直线a与b平行,记作a∥b.在几何证明中,“∥”的左、右两边也可能是射线或线段.2.平行公理及推论:(1)经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.3.性质:(1)平行线永远不相交;(2)两直线平行,同位角相等;(3)两直线平行,内错角相等;(4)两直线平行,同旁内角互补;(5)如果两条平行线中的一条垂直于某直线,那么另一条也垂直于这条直线,可用符号表示为:若b∥c,b⊥a,则c⊥a.4.判定方法:(1)定义;(2)平行公理的的推论;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行;(5)同旁内角互补,两直线平行;(6)垂直于同一条直线的两条直线平行.考点五、命题、定理、证明1.命题:(1)定义:判断一件事情的语句叫命题.(2)命题的结构:题设+结论=命题;(3)命题的表达形式:如果……那么……;若……则……;(4)命题的分类:真命题和假命题;(5)逆命题:原命题的题设是逆命题的结论,原命题的结论是逆命题的题设.2.公理、定理:(1)公理:人们在长期实践中总结出来的能作为判断其他命题真假依据的真命题叫做公理.(2)定理:经过推理证实的真命题叫做定理.3.证明:用推理的方法证实命题正确性的过程叫做证明.考点六、三角形的概念及其性质1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类(1)按边分类:(2)按角分类:3.三角形的内角和外角(1)三角形的内角和等于180°.(2)三角形的任意一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边. 6.三角形具有稳定性.考点七、三角形的“四心”和中位线三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.1.内心:三角形角平分线的交点,是三角形内切圆的圆心,它到各边的距离相等.2.外心:三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离相等.3.重心:三角形三条中线的交点,它到每个顶点的距离等于它到对边中点距离的2倍.4.垂心:三角形三条高线的交点.5.三角形的中位线:连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.要点诠释:(1)三角形的内心、重心都在三角形的内部.(2)钝角三角形的垂心、外心都在三角形的外部.(3)直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点.(4)锐角三角形的垂心、外心都在三角形的内部.【典型例题】类型一、几何初步1.判断下列语句是不是命题①延长线段AB( ).②两条直线相交,只有一交点( ).③画线段AB的中点( ).④若|x|=2,则x=2( ).⑤角平分线是一条射线( ).【思路点拨】判断语句是否是命题有两个关键,首先观察是不是一个完整的句子,再观察是否作出判断. 【答案与解析】①③两个语句都没有作出判断,所以①不是②是③不是④是⑤是.【总结升华】本题考查学生对命题概念的理解.举一反三:【变式】命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( ) A.1个 B.2个 C.3个 D.4个【答案】B.类型二、三角形2.(2015春•盱眙县期中)四边形ABCD是任意四边形,AC与BD交点O.求证:AC+BD>(AB+BC+CD+DA).证明:在△OAB中有OA+OB>AB在△OAD中有,在△ODC中有,在△中有,∴OA+OB+OA+OD+OD+OC+OC+OB>AB+BC+CD+DA即:,即:AC+BD>(AB+BC+CD+DA)【思路点拨】直接根据三角形的三边关系进行解答即可.【答案与解析】证明:∵在△OAB中OA+OB>AB在△OAD中有OA+OD>AD,在△ODC中有OD+OC>CD,在△OBC中有OB+OC>BC,∴OA+OB+OA+OD+OD+OC+OC+OB>AB+BC+CD+DA即2(AC+BD)>AB+BC+CD+DA,即AC+BD>(AB+BC+CD+DA).故答案为:OA+OD>AD;OD﹣OC>CD;OBC;OB+OC>BC;2(AC+BD)>AB+BC+CD+DA.【总结升华】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.举一反三:【变式】【答案】50°.3.如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.【思路点拨】分别写出前三个图形的正三角形的个数,并观察出后一个图形比前一个图形多分割出四个小的正三角形,依此类推即可写出第n个图形的正三角形的个数,进而得出第5个图中正三角形的个数.【答案与解析】图①有1个正三角形;图②有(1+4)个正三角形;图③有(1+4+4)个正三角形;图④有(1+4+4+4)个正三角形;图⑤有(1+4+4+4+4)个正三角形;….所以共有17个.【总结升华】这是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.举一反三:【变式】一个三角形的内心在它的一条高线上,则这个三角形一定是( ).A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形【答案】B.4.(2015·陕西校级期末)到三角形三个顶点距离相等的点是三角形( )的交点.A.三个内角平分线B. 三边垂直平分线C.三条中线D.三条高【思路点拨】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【答案】B.【解析】三角形三边垂直平分线的交点是外心,是三角形外接圆的圆心,到三角形三个顶点距离相等.【总结升华】考点:线段垂直平分线的定理.举一反三:【变式】【答案】A.类型三、综合运用5.如图:已知,△ABC中,∠A=50°(1)如图(1),点O是∠ABC和∠ACB的平分线交点,则∠BOC=_____;(2)如图(2),点P是∠ABC和外角∠ACE的平分线交点,则∠BPC=____;(3)如图(3),点M是外角∠BCE和∠CBF的平分线交点,则∠BMC=____.【思路点拨】本题涉及知识点是三角形内角和定理;三角形的外角性质.【答案与解析】图(1)中,∠BOC=180°-(∠OBC+∠OCB)图(2)中,∠BPC=∠PCE-∠PBC图(3)中,∠BMC=180°-(∠MBC+∠MCB).【总结升华】本题考查角平分线,三角形内角和,外角和内角关系等多个知识点,常采用建立方程或直接推理的方法.6.探索在如图-1至图-3中,△ABC的面积为a.(1)如图-1,延长△ABC的边BC到点D,使CD=BC,连结DA,若△ACD的面积为S1,则S1=____(用含a 的代数式表示);(2)如图-2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连结DE,若△DEC的面积为S2,则S2=____(用含a的代数式表示),并写出理由;(3)在图-2的基础上延长AB到点F,使BF=AB,连结FD,FE,得到△DEF(如图-3),若阴影部分的面积为S3,则S3=____(用含a的代数式表示);(4)像上面那样,将△ABC各边均顺次延长一倍,连结所得端点,得到△DEF(如图-3),此时,我们称△ABC向外扩展了一次,可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的____倍.【思路点拨】灵活运用等底同高的两三角形面积相等来解决问题.【答案与解析】(1)∵BC=CD,∴△ACD和△ABC是等底同高的,即S1=a;(2)2a;连接AD,∵CD=BC,AE=CA,∴S△DAC=S△DAE=S△ABC=a,∴S2=2a;(3)结合(2)得:S3=2a×3=6a;(4)扩展一次后得到的△DEF的面积是6a+a=7a,即是原来三角形的面积的7倍.【总结升华】本题的探索过程由简到难,运用类比方法可依次求出.从而使考生在身临数学的情境中潜移默化,逐渐感悟到数学思维的力量,使学生对知识的发生及发展过程,解题思想方法的感悟,体会得淋漓尽致,是一道新课标理念不可多得的好题.举一反三:【变式】去年在面积为10m2的△ABC空地上栽种了某种花卉,今年准备扩大种植规模,把△ABC向外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH(如图),求这两次扩展的区域(即阴影部分)面积共为多少m2?【答案】第一次扩展后的阴影面积为6a=6×10=60(m2) 第二次扩展后的阴影面积为42a=42×10=420(m2)两次扩展后阴影部分面积共为480 m2.。
北师大初中数学中考总复习:几何初步及三角形--知识讲解(提高).doc
中考总复习:几何初步及三角形—知识讲解(提高)【考纲要求】1.了解直线、射线、线段的概念和性质以及表示方法,掌握三者之间的区别和联系,会解决与线段有关的实际问题;2.了解角的概念和表示方法,会把角进行分类以及进行角的度量和计算;3.掌握相交线、平行线的定义,理解所形成的各种角的特点、性质和判定;4.了解命题的定义、结构、表达形式和分类,会简单的证明有关命题;5.了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性.【知识网络】【考点梳理】考点一、直线、射线和线段1.直线代数中学习的数轴和一张纸对折后的折痕等都是直线,直线可以向两方无限延伸.(直线的概念是一个描述性的定义,便于理解直线的意义).要点诠释:1).直线的两种表示方法:(1)用表示直线上的任意两点的大写字母来表示这条直线,如直线AB,其中A、B是表示直线上两点的字母;(2)用一个小写字母表示直线,如直线a.2).直线和点的两种位置关系(1)点在直线上(或说直线经过某点);(2)点在直线外(或说直线不经过某点).3).直线的性质:过两点有且只有一条直线(即两点确定一条直线).2.射线直线上一点和它一旁的部分叫做射线.射线只向一方无限延伸.要点诠释:(1)用表示射线的端点和射线上任意一点的大写字母来表示这条射线,如射线OA,其中O是端点,A是射线上一点;(2)用一个小写字母表示射线,如射线a.3.线段直线上两点和它们之间的部分叫做线段,两个点叫做线段的端点.要点诠释:1).线段的表示方法:(1)用表示两个端点的大写字母表示,如线段AB,A、B是表示端点的字母;(2)用一个小写字母表示,如线段a.2).线段的性质:所有连接两点的线中,线段最短(即两点之间,线段最短).3).线段的中点:线段上一点把线段分成相等的两条线段,这个点叫做线段的中点.4).两点的距离:连接两点间的线段的长度,叫做两点的距离.考点二、角1.角的概念:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,两条射线分别叫做角的边.(2)定义二:一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.射线旋转时经过的平面部分是角的内部,射线的端点是角的顶点,射线旋转的初始位置和终止位置分别是角的两条边.要点诠释:1).角的表示方法:(1)用三个大写字母来表示,注意将顶点字母写在中间,如∠AOB;(2)用一个大写字母来表示,注意顶点处只有一个角用此法,如∠A;(3)用一个数字或希腊字母来表示,如∠1,∠.2).角的分类:(1)按大小分类:锐角----小于直角的角(0°<<90°);直角----平角的一半或90°的角(=90°);钝角----大于直角而小于平角的角(90°<<180°).(2)平角:一条射线绕着端点旋转,当终止位置与起始位置成一条直线时,所成的角叫做平角,平角等于180°.(3)周角:一条射线绕着端点旋转,当终止位置又回到起始位置时,所成的角叫做周角,周角等于360°.(4)互为余角:如果两个角的和是一个直角(90°),那么这两个角叫做互为余角.(5)互为补角:如果两个角的和是一个平角(180°),那么这两个角叫做互为补角.3).角的度量:(1)度量单位:度、分、秒;(2)角度单位间的换算:1°=60′,1′=60″(即:1度=60分,1分=60秒);(3)1平角=180°,1周角=360°,1直角=90°.4).角的性质:同角或等角的余角相等,同角或等角的补角相等.2.角的平分线:如果一条射线把一个角分成两个相等的角,那么这条射线叫做这个角的平分线.考点三、相交线1.对顶角(1)定义:如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.(2)性质:对顶角相等.2.邻补角(1)定义:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.(2)性质:邻补角互补.3.垂线(1)定义:当两条直线相交所得的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,它们的交点叫做垂足.垂直用符号“⊥”来表示.要点诠释:①过一点有且只有一条直线与已知直线垂直.②连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.(2)点到直线的距离定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.4.同位角、内错角、同旁内角(1)基本概念:两条直线(如a、b)被第三条直线(如c)所截,构成八个角,简称三线八角,如图所示:∠1和∠8、∠2和∠7、∠3和∠6、∠4和∠5是同位角;∠1和∠6、∠2和∠5是内错角;∠1和∠5、∠2和∠6是同旁内角.(2)特点:同位角、内错角、同旁内角都是由三条直线相交构成的两个角.两个角的一条边在同一直线(截线)上,另一条边分别在两条直线(被截线)上.考点四、平行线1.平行线定义:在同一平面内,不相交的两条直线叫做平行线.平行用符号“∥”来表示,.如直线a与b平行,记作a∥b.在几何证明中,“∥”的左、右两边也可能是射线或线段.2.平行公理及推论:(1)经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.3.性质:(1)平行线永远不相交;(2)两直线平行,同位角相等;(3)两直线平行,内错角相等;(4)两直线平行,同旁内角互补;(5)如果两条平行线中的一条垂直于某直线,那么另一条也垂直于这条直线,可用符号表示为:若b∥c,b⊥a,则c⊥a.4.判定方法:(1)定义;(2)平行公理的的推论;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行;(5)同旁内角互补,两直线平行;(6)垂直于同一条直线的两条直线平行.考点五、命题、定理、证明1.命题:(1)定义:判断一件事情的语句叫命题.(2)命题的结构:题设+结论=命题;(3)命题的表达形式:如果……那么……;若……则……;(4)命题的分类:真命题和假命题;(5)逆命题:原命题的题设是逆命题的结论,原命题的结论是逆命题的题设.2.公理、定理:(1)公理:人们在长期实践中总结出来的能作为判断其他命题真假依据的真命题叫做公理.(2)定理:经过推理证实的真命题叫做定理.3.证明:用推理的方法证实命题正确性的过程叫做证明.考点六、三角形的概念及其性质1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类(1)按边分类:(2)按角分类:3.三角形的内角和外角(1)三角形的内角和等于180°.(2)三角形的任意一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边. 6.三角形具有稳定性.考点七、三角形的“四心”和中位线三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.1.内心:三角形角平分线的交点,是三角形内切圆的圆心,它到各边的距离相等.2.外心:三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离相等.3.重心:三角形三条中线的交点,它到每个顶点的距离等于它到对边中点距离的2倍.4.垂心:三角形三条高线的交点.5.三角形的中位线:连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.要点诠释:(1)三角形的内心、重心都在三角形的内部.(2)钝角三角形的垂心、外心都在三角形的外部.(3)直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点.(4)锐角三角形的垂心、外心都在三角形的内部.【典型例题】类型一、几何初步1.判断下列语句是不是命题①延长线段AB( ).②两条直线相交,只有一交点( ).③画线段AB的中点( ).④若|x|=2,则x=2( ).⑤角平分线是一条射线( ).【思路点拨】判断语句是否是命题有两个关键,首先观察是不是一个完整的句子,再观察是否作出判断.【答案与解析】①③两个语句都没有作出判断,所以①不是②是③不是④是⑤是.【总结升华】本题考查学生对命题概念的理解.举一反三:【变式】命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( ) A.1个 B.2个 C.3个 D.4个【答案】B.类型二、三角形2.(2015春•盱眙县期中)四边形ABCD是任意四边形,AC与BD交点O.求证:AC+BD>(AB+BC+CD+DA).证明:在△OAB中有OA+OB>AB在△OAD中有,在△ODC中有,在△中有,∴OA+OB+OA+OD+OD+OC+OC+OB>AB+BC+CD+DA即:,即:AC+BD>(AB+BC+CD+DA)【思路点拨】直接根据三角形的三边关系进行解答即可.【答案与解析】证明:∵在△OAB中OA+OB>AB在△OAD中有OA+OD>AD,在△ODC中有OD+OC>CD,在△OBC中有OB+OC>BC,∴OA+OB+OA+OD+OD+OC+OC+OB>AB+BC+CD+DA即2(AC+BD)>AB+BC+CD+DA,即AC+BD>(AB+BC+CD+DA).故答案为:OA+OD>AD;OD﹣OC>CD;OBC;OB+OC>BC;2(AC+BD)>AB+BC+CD+DA.【总结升华】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.举一反三:【变式】【答案】50°.3.如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.【思路点拨】分别写出前三个图形的正三角形的个数,并观察出后一个图形比前一个图形多分割出四个小的正三角形,依此类推即可写出第n个图形的正三角形的个数,进而得出第5个图中正三角形的个数.【答案与解析】图①有1个正三角形;图②有(1+4)个正三角形;图③有(1+4+4)个正三角形;图④有(1+4+4+4)个正三角形;图⑤有(1+4+4+4+4)个正三角形;….所以共有17个.【总结升华】这是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.举一反三:【变式】一个三角形的内心在它的一条高线上,则这个三角形一定是( ).A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形【答案】B.4.(2015·陕西校级期末)到三角形三个顶点距离相等的点是三角形( )的交点.A.三个内角平分线B. 三边垂直平分线C.三条中线D.三条高【思路点拨】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【答案】B.【解析】三角形三边垂直平分线的交点是外心,是三角形外接圆的圆心,到三角形三个顶点距离相等.【总结升华】考点:线段垂直平分线的定理.举一反三:【变式】【答案】A.类型三、综合运用5.如图:已知,△ABC中,∠A=50°(1)如图(1),点O是∠ABC和∠ACB的平分线交点,则∠BOC=_____;(2)如图(2),点P是∠ABC和外角∠ACE的平分线交点,则∠BPC=____;(3)如图(3),点M是外角∠BCE和∠CBF的平分线交点,则∠BMC=____.【思路点拨】本题涉及知识点是三角形内角和定理;三角形的外角性质.【答案与解析】图(1)中,∠BOC=180°-(∠OBC+∠OCB)图(2)中,∠BPC=∠PCE-∠PBC图(3)中,∠BMC=180°-(∠MBC+∠MCB).【总结升华】本题考查角平分线,三角形内角和,外角和内角关系等多个知识点,常采用建立方程或直接推理的方法.6.探索在如图-1至图-3中,△ABC的面积为a.(1)如图-1,延长△ABC的边BC到点D,使CD=BC,连结DA,若△ACD的面积为S1,则S1=____(用含a的代数式表示);(2)如图-2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连结DE,若△DEC 的面积为S2,则S2=____(用含a的代数式表示),并写出理由;(3)在图-2的基础上延长AB到点F,使BF=AB,连结FD,FE,得到△DEF(如图-3),若阴影部分的面积为S3,则S3=____(用含a的代数式表示);(4)像上面那样,将△ABC各边均顺次延长一倍,连结所得端点,得到△DEF(如图-3),此时,我们称△ABC向外扩展了一次,可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的____倍.【思路点拨】灵活运用等底同高的两三角形面积相等来解决问题.【答案与解析】(1)∵BC=CD,∴△ACD和△ABC是等底同高的,即S1=a;(2)2a;连接AD,∵CD=BC,AE=CA,∴S△DAC=S△DAE=S△ABC=a,∴S2=2a;(3)结合(2)得:S3=2a×3=6a;(4)扩展一次后得到的△DEF的面积是6a+a=7a,即是原来三角形的面积的7倍.【总结升华】本题的探索过程由简到难,运用类比方法可依次求出.从而使考生在身临数学的情境中潜移默化,逐渐感悟到数学思维的力量,使学生对知识的发生及发展过程,解题思想方法的感悟,体会得淋漓尽致,是一道新课标理念不可多得的好题.举一反三:【变式】去年在面积为10m2的△ABC空地上栽种了某种花卉,今年准备扩大种植规模,把△ABC向外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH(如图),求这两次扩展的区域(即阴影部分)面积共为多少m2?【答案】第一次扩展后的阴影面积为6a=6×10=60(m2)第二次扩展后的阴影面积为42a=42×10=420(m2)两次扩展后阴影部分面积共为480 m2.。
特殊三角形基本知识点整理
特殊三角形的定义、性质及判定等腰三角形1. 有两条边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形。
2. 等腰三角形的性质:(1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
3. 等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
4. 等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°。
5. 等边三角形的判定:(1)三个角都相等的三角形是等边三角形;(2)有一个角是60°的等腰三角形是等边三角形。
6. 含30°角的直角三角形的性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
等边三角形(1)等边三角形的定义:三条边都相等的三角形叫等边三角形.(2)等边三角形的性质:①等边三角形的三个角都相等,并且每个角都是60°;②等边三角形具有等腰三角形的所有性质,并且每一条边上都有三线合一,因此等边三角形是轴对称图形,它有三条对称轴;而等腰三角形只有一条对称轴. (3)等边三角形的判定①三条边都相等的三角形是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③有两个角都等于60°的三角形是等边三角形;④三个角都相等的三角形是等边三角形.(4)两个重要结论①在直角三角形中,如果一个锐角是30°,那么它所对的直角边等于斜边的一半.②在直角三角形中,如果一条直角边是斜边的一半,那么它所对的锐角等于30°.两个重要结论的数学解释:已知:如图4,在△ABC中,∠C=90°,则:①如果AB=2BC,那么∠A=30°;②如果∠A=30°,那么AB=2BC.直角三角形1. 认识直角三角形。
学会用符号和字母表示直角三角形。
按照角的度数对三角形进行分类:如果三角形中有一个角是直角,那么这个三角形叫直角三角形。
(word版)北师大版七年级数学下册三角形重点知识汇总
第三章三角形一.认识三角形1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
注意:①组成三角形的三条线段要“不在同一直线上〞;如果在同一直线上,三角形就不存在;②三条线段“首尾是顺次相接〞,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。
2、三角形分类按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。
3、关于三角形三条边的关系根据公理“连结两点的线中,线段最短〞可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。
三角形三边关系的另一个性质:三角形任意两边之差小于第三边。
设三角形三边的长分别为a、b、c那么:①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;②特殊地,如果线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形。
4、关于三角形的内角和三角形三个内角的和为180°①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
5、关于三角形的角平分线、高线和中线①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
A CB F AEFCB DC AD B E钝角三角形D直角三角形锐角三角形鹏翔教图1二、图形的全等能够完全重合的图形称为全等形。
北师大版初二 数学 第一单元 三角形中特殊三角形的性质 复习
教学目标 要求熟悉并掌握第一章三角形及线段、角平分线的性质,并会灵活应用教学重点 第一章的直角三角形,等腰、等边三角形的性质、线段垂直平分线、角平分线的性质 教学难点三角形性质与角平分线、垂直平分线的综合应用教学准备 讲义教学过程课前回顾1、等腰三角形的性质和判定2、等边三角形的性质和判定3、线段垂直平分线的性质和判定4、角平分线的性质和判定5、线段垂直平分线的画图方法、角平分线的画图方法 错题重现2、(2013初二上期中人民大学附属中学)如图,平面直角坐标系中,O 为坐标原点,A 为第一象限内一点,线段OA 与x 轴正半轴的夹角为30度,点B 在坐标轴上,且使得△AOB 为等腰三角形,则这样的点B 有 ( )A .4个B .5个C .6个D .7个4、(2012初一下期中人大附中)在等腰ABC ∆中,AB AC =,一腰中线BD 将三角形周长分为15和21两部分,则这个三角形的底边长为__________知识详解一、主要知识点1、 证明三角形全等的判定方法(SSS,SAS,ASA,AAS,证直角三角形全等除上述外还有HL)及全等三角形的性质是对应边相等,对应角相等。
2、等腰三角形的有关知识点。
等边对等角;等角对等边;等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。
(三线合一)3、等边三角形的有关知识点。
判定:有一个角等于60°的等腰三角形是等边三角形;三条边都相等的三角形是等边三角形;三个角都是60°的三角形是等边三角形;有两个叫是60°的三角形是等边三角形。
性质:等边三角形的三边相等,三个角都是60°。
4、反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法二、重点例题分析例1:如下图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,交∠ABC的平分线于点D,求证:MD=M A.例2 如右图,已知△ABC和△BDE都是等边三角形,求证:AE=CD.例3:如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证: ① AC=AD;②CF=DF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考总复习:特殊三角形—知识讲解(提高)【考纲要求】1.了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定.2. 能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题.3. 会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题.【知识网络】【考点梳理】考点一、等腰三角形1.等腰三角形:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质;(2)两底角相等(等边对等角);(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一);(4)等边三角形的各角都相等,且都等于60°.要点诠释:等边三角形中高线,中线,角平分线三线合一,共有三条.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.考点二、直角三角形1.直角三角形:有一个角是直角的三角形叫做直角三角形.2.性质:(1)直角三角形中两锐角互余;(2)直角三角形中,30°锐角所对的直角边等于斜边的一半;(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方;(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形;(6)直角三角形中,斜边上的中线等于斜边的一半.要点诠释:(1)直角三角形中,S Rt△ABC=ch=ab,其中a、b为两直角边,c为斜边,h为斜边上的高;(2)圆内接三角形,当一条边为直径时,该三角形是直角三角形.3.判定:(1)两内角互余的三角形是直角三角形;(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形;(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.【典型例题】类型一、等腰三角形1.(2014秋•自贡期末)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当a为多少度时,△AOD是等腰三角形?【思路点拨】(1)首先根据已知条件可以证明△BOC≌△ADC,然后利用全等三角形的性质可以求出∠ADO的度数,由此即可判定△AOD的形状;(2)利用(1)和已知条件及等腰三角形的性质即可求解.【答案与解析】解:(1)∵△OCD是等边三角形,∴OC=CD,而△ABC是等边三角形,∴BC=AC,∵∠ACB=∠OCD=60°,∴∠BCO=∠ACD,在△BOC与△ADC中,∵,∴△BOC≌△ADC,∴∠BOC=∠ADC,而∠BOC=α=150°,∠ODC=60°,∴∠ADO=150°﹣60°=90°,∴△ADO是直角三角形;(2)∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,a+d=50°∠DAO=50°,∴b﹣d=10°,∴(60°﹣a)﹣d=10°,∴a+d=50°,即∠CAO=50°,①要使AO=AD,需∠AOD=∠ADO,∴190°﹣α=α﹣60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO,∴α﹣60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD,∴190°﹣α=50°,∴α=140°.所以当α为110°、125°、140°时,三角形AOD是等腰三角形.【总结升华】此题主要考查了等边三角形的性质与判定,以及等腰三角形的性质和旋转的性质等知识,根据旋转前后图形不变是解决问题的关键.举一反三:【变式】把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是________.【答案】.2.已知: 如图, 菱形ABCD中, E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF.(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.【思路点拨】菱形的定义和性质.【答案与解析】(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D ,又∵BE=DF,∴≌.∴AE=AF.(2)连接AC, ∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD,∵AB=BC=CD=DA ,∴△ABC和△ACD都是等边三角形.∴, .∴.又∵AE=AF ∴是等边三角形.【总结升华】此题涉及到三角形全等的判定与性质,等边三角形的判定与性质.举一反三:【变式】如图,△ABC为等边三角形,延长BC到D,延长BA到E,使AE=BD,连接CE、DE. 求证:CE=DE.【答案】延长BD到F,使DF=BC,连接EF,∵等边△ABC,∴AB=BC=AC,∠B=60.∵BF=BD+DF,BE=AB+AE,AE=BD,BC=DF,∴BF=BE,∴等边△BEF,∴EF=BE,∠F=∠B,∴△BCE≌△FDE(SAS).∴CE=DE.类型二、直角三角形3.(2015秋•东海县校级期中)如图,△ABC中,CF⊥AB,垂足为F,M为BC的中点,E为AC上一点,且ME=MF.(1)求证:BE⊥AC;(2)若∠A=50°,求∠FME的度数.【思路点拨】(1)根据直角三角形斜边上的中线等于斜边的一半可得MF=BM=CM=BC,再求出ME=BM=CM=BC,再根据直角三角形斜边上的中线等于斜边的一半证明;(2)根据三角形的内角和定理求出∠ABC+∠ACB,再根据等腰三角形两底角相等求出∠BMF+∠CME,然后根据平角等于180°列式计算即可得解.【答案与解析】(1)证明:∵CF⊥AB,垂足为F,M为BC的中点,∴MF=BM=CM=BC,∵ME=MF,∴ME=BM=CM=BC,∴BE⊥AC;(2)解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵ME=MF=BM=CM,∴∠BMF+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB)=360°﹣2(∠ABC+∠ACB)=360°﹣2×130°=100°,在△MEF中,∠FME=180°﹣100°=80°.【总结升华】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的判定与性质,熟记性质是解题的关键,难点在于(2)中整体思想的利用.4.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.【思路点拨】△ACD和△BCE都是等腰直角三角形,为证明全等提供了等线段的条件.【答案与解析】猜测 AE=BD,AE⊥BD.理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.∵△ACD和△BCE都是等腰直角三角形,∴AC=CD,CE=CB.∴△ACE≌△DCB(SAS).∴AE=BD,∠CAE=∠CDB.∵∠AFC=∠DFH,∴∠DHF=∠ACD=90°,∴AE⊥BD.【总结升华】两条线段的关系包括数量关系和位置关系两种.举一反三:【变式】 .以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n=________.【答案】.类型三、综合运用5 .(2012•牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴ABP S △=12AB•PE,ACP S △=12AC•PF,ABC S △=12AB•CH. 又∵ABP ACP ABC S S S +=△△△, ∴12AB•PE+12AC•PF=12AB•CH.∵AB=AC,∴PE+PF=CH. (1)如图②,P 为BC 延长线上的点时,其它条件不变,PE 、PF 、CH 又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC 的面积为49,点P 在直线BC 上,且P 到直线AC 的距离为PF ,当PF=3时,则AB 边上的高CH=______.点P 到AB 边的距离PE=________.【思路点拨】运用面积证明可使问题简便,(2)中分情况讨论是解题的关键.【答案与解析】(1)如图②,PE=PF+CH .证明如下:∵PE⊥AB,PF⊥AC,CH⊥AB,∴ABP S △=12AB•PE,ACP S △=12AC•PF,ABC S △=12AB•CH, ∵ABP S △=ACP S △+ABC S △,∴12AB•PE=12AC•PF+12AB•CH, 又∵AB=AC,∴PE=P F+CH ;(2)∵在△ACH 中,∠A=30°,∴AC=2CH.∵ABC S △=12AB•CH,AB=AC , ∴12×2CH•CH=49, ∴CH=7.分两种情况:①P 为底边BC 上一点,如图①.∵PE+PF=CH,∴PE=CH -PF=7-3=4;②P 为BC 延长线上的点时,如图②.∵PE=PF+CH, ∴PE=3+7=10.故答案为7;4或10.【总结升华】本题考查了等腰三角形的性质与三角形的面积,难度适中.6.在△ABC中,AC=BC ,,点D 为AC 的中点.(1)如图1,E 为线段DC 上任意一点,将线段DE 绕点D 逆时针旋转90°得到线段DF ,连结CF ,过点F作 ,交直线AB 于点H .判断FH 与FC 的数量关系并加以证明.(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.【思路点拨】根据条件判断FH=FC,要证FH=FC一般就要证三角形全等.【答案与解析】(1)FH与FC的数量关系是:.延长交于点G,由题意,知∠EDF=∠ACB=90°,DE=DF.∴DG∥CB.∵点D为AC的中点,∴点G为AB的中点,且.∴DG为的中位线.∴.∵AC=BC,∴DC=DG.∴DC- DE =DG- DF.即EC =FG.∵∠EDF =90°,,∴∠1+∠CFD =90°,∠2+∠CFD=90°.∴∠1 =∠2.∵与都是等腰直角三角形,∴∠DEF =∠DGA = 45°.∴∠CEF =∠FGH = 135°.∴△CEF ≌△FGH.∴ FH=FC.(2)FH与FC仍然相等.【总结升华】对于特殊三角形的判定及性质要记住并能灵活运用,注重积累解题思路和运用数学思想和方法解决问题的能力和培养.举一反三:【变式】如图, △ABC 和△CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC ; ②S ⊿ABC +S ⊿CDE ≥S ⊿ACE ; ③BM ⊥DM;④BM=DM.正确结论的个数是( )A.1个 B.2个 C.3个 D.4个【答案】D.M E D C B A。