【精品原创】四年级奥数培优教程讲义第16讲 定义新运算(教师版)

合集下载

奥数-新定义运算知识分享

奥数-新定义运算知识分享

奥数-新定义运算奥数定义新运算我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。

除此之外,还会有什么别的运算吗?现在我们就来研究这个问题。

这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。

一、定义1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。

注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。

(2)我们还要知道,这是一种人为的运算形式。

它是使用特殊的运算符号,如:*、▲、★、◎、 、Δ、◆、■等来表示的一种运算。

(3)新定义的算式中,有括号的,要先算括号里面的。

2、一般的解题步骤是:一是认真审题,深刻理解新定义的内容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。

二、初步例题诠释例1、对于任意数a,b,定义运算“*”:a*b=a×b-a-b。

求12*4的值。

分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。

12*4=12×4-12-4=48-12-4=32例2、假设a ★ b = ( a + b )÷ b 。

求 8 ★ 5 。

分析与解:该题的新运算被定义为: a ★ b等于两数之和除以后一个数的商。

这里要先算括号里面的和,再算后面的商。

这里a代表数字8,b代表数字5。

8 ★ 5 = (8 + 5)÷ 5 = 2.6例3、如果a◎b=a×b-(a+b)。

求6◎(9◎2)。

分析与解:根据定义,要先算括号里面的。

这里的符号“◎”就是一种新的运算符号。

6◎(9◎2)=6◎[9×2-(9+2)]=6◎7=6×7-(6+7)=42-13=29例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。

【小学四年级奥数讲义】定义新运算

【小学四年级奥数讲义】定义新运算

【小学四年级奥数讲义】定义新运算一、知识重点:运算方式不一样,本质上是对应法例不一样。

一种运算本质就是两个数与一个数的一种对应方法。

经过这个法例都有一个独一确立的数与它们对应。

这一讲,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不同样的。

二、精讲精练例 1:设 a、b 都表示数,规定: a△b 表示 a 的 3 倍减去 b 的 2 倍,即: a△b = a×3-b×2。

试计算:(1)5△6;(2)6△5。

练习一1、设 a、b 都表示数,规定: a○b=6×a-2×b。

试计算 3○4。

2、设 a、b 都表示数,规定: a*b=3×a+2×b。

试计算:(1)( 5*6)*7(2)5*(6*7)例 2:关于两个数 a 与 b,规定 a⊕b=a×b+a+b,试计算 6⊕2。

练习二1、关于两个数 a 与 b,规定: a⊕b=a×b-( a+b)。

计算 3⊕5。

2、关于两个数 A 与 B,规定: A☆B=A×B÷2。

试算 6☆4。

例 3:假如 2△3=2+3+4,5△4=5+6+7+8,按此规律计算3△5。

练习三1、假如 5▽2=5×6,2▽3=2×3×4,计算: 3▽6。

2、假如 2▽4=24÷( 2+4),3▽6=36÷( 3+6),算 8▽4。

例 4:于两个数 a 与 b,定 a□b=a+ (a+1)+(a+2)+ ⋯(a+b -1) 。

已知 x□6=27,求 x。

四1、假如 2□3=2+3+4=9,6□5=6+7+8+9+10=40。

已知 x□3=5973,求 x。

2、于两个数 a 与 b,定 a□b=a+(a+1)+(a+2)+ ⋯+(a+b-1) ,已知 95□x=585,求 x。

三、后作1、有两个整数是A、B,A▽B 表示 A 与 B 的均匀数。

四年级奥数定义新运算

四年级奥数定义新运算

定义新运算例1:设a、b都表示数,规定:a△b表示a的3倍减去b的2倍,即:a△b = a×3-b×2。

试计算:(1)5△6;(2)6△5。

显然,本例定义的运算不满足交换律,计算中不能将△前后的数交换。

练习一1,设a、b都表示数,规定:a○b=6×a-2×b。

试计算3○4。

2,设a、b都表示数,规定:a*b=3×a+2×b。

试计算:(1)(5*6)*7 (2)5*(6*7)3,有两个整数是A、B,A▽B表示A与B的平均数。

已知A▽6=17,求A。

例2:对于两个数a与b,规定a⊕b=a×b+a+b,试计算6⊕2。

练习二1,对于两个数a与b,规定:a⊕b=a×b-(a+b)。

计算3⊕5。

2,对于两个数A与B,规定:A☆B=A×B÷2。

试算6☆4。

3,对于两个数a与b,规定:a⊕b= a×b+a+b。

如果5⊕x=29,求x。

例3:如果2△3=2+3+4,5△4=5+6+7+8,按此规律计算3△5。

练习三1,如果5▽2=2×6,2▽3=2×3×4,计算:3▽4。

2,如果2▽4=24÷(2+4),3▽6=36÷(3+6),计算8▽4。

3,如果2△3=2+3+4,5△4=5+6+7+8,且1△x=15,求x。

例4:对于两个数a与b,规定a□b=a+(a+1)+(a+2)+…(a+b-1)。

已知x□6=27,求x。

练习四1,如果2□3=2+3+4=9,6□5=6+7+8+9+10=40。

已知x□3=5973,求x。

2,对于两个数a与b,规定a□b=a+(a+1)+(a+2)+…+(a+b-1),已知95□x=585,求x。

3,如果1!=1,2!=1×2=2,3!=1×2×3=6,按此规律计算5!。

例5:2▽4=8,5▽3=13,3▽5=11,9▽7=25。

奥数《定义新运算》微课(教案)人教版数学四年级上册

奥数《定义新运算》微课(教案)人教版数学四年级上册

奥数《定义新运算》微课(教案)人教版数学四年级上册一、教学目标1. 让学生掌握定义新运算的方法和步骤。

2. 培养学生运用新运算解决问题的能力。

3. 培养学生的逻辑思维能力和创新意识。

二、教学内容1. 定义新运算的概念。

2. 定义新运算的方法和步骤。

3. 运用新运算解决问题。

三、教学重点与难点1. 教学重点:定义新运算的方法和步骤。

2. 教学难点:运用新运算解决问题。

四、教学过程1. 导入新课通过一个有趣的故事引入新课,激发学生的学习兴趣。

2. 讲解定义新运算的概念解释定义新运算的含义,让学生明白定义新运算的意义。

3. 讲解定义新运算的方法和步骤通过具体的例子,讲解定义新运算的方法和步骤,让学生掌握定义新运算的技巧。

4. 操练定义新运算给出一些题目,让学生进行练习,巩固所学知识。

5. 讲解运用新运算解决问题通过具体的例子,讲解如何运用新运算解决问题,让学生学会运用新运算。

6. 操练运用新运算解决问题给出一些实际问题,让学生运用新运算进行解决,提高学生解决问题的能力。

7. 总结与反思对本节课的内容进行总结,让学生明白定义新运算的重要性,并引导学生进行反思。

五、课后作业1. 完成课后练习题。

2. 思考如何将新运算运用到实际生活中。

六、教学评价1. 通过课后练习题的完成情况,评价学生对定义新运算的掌握程度。

2. 通过学生的课堂表现,评价学生的逻辑思维能力和创新意识。

七、教学资源1. 教材:人教版数学四年级上册。

2. 教学课件:包含故事、例子、练习题等。

八、教学建议1. 在教学过程中,注重学生的参与,引导学生积极思考。

2. 在讲解定义新运算的方法和步骤时,要详细讲解,确保学生能够理解。

3. 在讲解运用新运算解决问题时,要注重实际例子的选择,让学生能够更好地理解。

4. 在课后作业的布置上,要注重练习题的质量,确保学生能够巩固所学知识。

需要重点关注的细节是“讲解定义新运算的方法和步骤”。

这个部分是教学的核心,学生能否理解和掌握定义新运算的方法和步骤,直接影响到他们能否在实际问题中灵活运用新运算。

小学奥数-定义新运算

小学奥数-定义新运算

定义新运算教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合例题精讲模块一、直接运算型【例1】若*A B表示()()+⨯+,求5*7的值。

A B A B3【巩固】定义新运算为a△b=(a+1)÷b,求的值。

6△(3△4)【巩固】设a △2b a a b =⨯-⨯,那么,5△6=______,(5△2)△3=_____.【巩固】P 、Q 表示数,*P Q 表示2P Q +,求3*(6*8)【巩固】已知a ,b 是任意自然数,我们规定:a ⊕b =a +b -1,2a b ab ⊗=-,那么[]4(68)(35)⊗⊕⊕⊗=.【巩固】M N *表示()2,(20082010)2009M N +÷**____=【巩固】规定运算“☆”为:若a >b ,则a ☆b =a +b ;若a =b ,则a ☆b =a -b +1;若a <b ,则a ☆b =a ×b 。

四年级奥数知识点:定义新运算

四年级奥数知识点:定义新运算

四年级奥数知识点:定义新运算2 3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的+ ,- ,,运算不相同.我们先通过具体的运算来了解和熟悉定义新运算 .例1 设a、b都表示数,规定a△b=3 a 2 b,①求3△2,2△3;②这个运算△有交换律吗?③求(17△6)△2,17△(6△2);④这个运算△有结合律吗?⑤如果已知4△b=2,求b.分析解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:①3△2= 3 3-2 2=9-4= 52△3=3 2-2 3=6-6=0.②由①的例子可知△没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3 17-2 6=39;再计算第二步39△2=3 39-2 2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3 6-2 2=14,其次17△14=3 17-2 14=23,所以17△(6△2)=23.④由③的例子可知△也没有结合律.⑤因为4△b=3 4-2 b=12-2b,那么12-2b=2,解出b=5.例2 定义运算※为a※b=a b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算※有交换律、结合律吗?④如果3※(5※x)=3,求x.解:①5※7=5 7-(5+7)=35-12=23,7※5= 7 5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3 4-(3+4)=5,再计算第二步12※5=12 5-(12+5)=43,所以12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12 3-(12+3)=21,其次21※4=21 4-(21+4)=59,所以(12※3)※4=59.③由于a※b=a b-(a+b);b※a=b a-(b+a)=a b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此※有交换律.由②的例子可知,运算※没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)= 8x- 13那么8x-13=3解出x=2.③这个运算有交换律和结合律吗?的观察,找到规律:例5 x、y表示两个数,规定新运算* 及△如下:x*y=mx+ny,x△y=kxy,其中m、n、k均为自然数,已知1*2=5,(2*3)△4=64,求(1△2)*3的值.分析我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据△的定义:1△2=k 1 2=2k,由于k的值不知道,所以首先要计算出k的值.k值求出后,l△2的值也就计算出来了,我们设1△2=a.(1△2)*3=a*3,按* 的定义:a*3=ma+3n,在只有求出m、n时,我们才能计算a*3的值.因此要计算(1△2)* 3的值,我们就要先求出k、m、n的值.通过1*2 =5可以求出m、n的值,通过(2*3)△4=64求出k的值.解:因为1*2=m 1+n 2=m+2n,所以有m+2n=5.又因为m、n均为自然数,所以解出:①当m=1,n=2时:(2*3)△4=(1 2+2 3)△4=8△4=k 8 4=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(3 2+1 3)△4 =9△4=k 9 4=36k所以m=l,n=2,k=2. (1△2)*3=(2 1 2)*3=4*3=1 4+2 3=10.在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.11。

四年级奥数第16讲定义新运算(教师版)

四年级奥数第16讲定义新运算(教师版)

四年级奥数第16讲定义新运算(教师版)教学目标λ学会理解新定义的内容;λ理解新定义内容的基础上能够解决用新定义给出的题目;λ学会自己总结解题技巧。

知识梳理一、知识概念1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。

注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。

(2)我们还要知道,这是一种人为的运算形式。

它是使用特殊的运算符号,如:*、▲、★、◎、⊗、Δ、◆、■等来表示的一种运算。

(3)新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

2、一般的解题步骤是:一是认真审题,深刻理解新定义的内容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。

典例分析例1、对于任意数a,b,定义运算“*”:a*b=a×b-a-b。

求12*4的值。

【解析】根据题目定义的运算要求,直接代入后用四则运算即可。

12*4=12×4-12-4=48-12-4=32例2、假设a ★ b = ( a + b )÷ b 。

求8 ★ 5 。

【解析】该题的新运算被定义为: a ★ b 等于两数之和除以后一个数的商。

这里要先算括号里面的和,再算后面的商。

这里a 代表数字8,b 代表数字5。

8 ★ 5 = (8 + 5)÷ 5 = 2.6例3、如果a ◎b=a×b-(a+b)。

求6◎(9◎2)。

【解析】根据定义,要先算括号里面的。

这里的符号“◎”就是一种新的运算符号。

6◎(9◎2)=6◎[9×2-(9+2)]=6◎7=6×7-(6+7)=42-13=29例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。

求6Δ5。

【解析】仔细观察发现“Δ”前面的数字是加数每个数位上的数字,而加数分别是一位数,二位数,三位数,……“Δ”后面的数字是几,就有几个加数。

奥数新定义运算(精)

奥数新定义运算(精)
(1)8▽1.25 (2(4▽2.5▽7
【例2】已知2*3=2+22+222=246,3*4=3+33+333+3333=3702.
求:(13*3;(24*5;(3若1*x=123,求x.
【分析与解】观察两个已知等式可以发现,“*”定义的是连加运算,第一个加数是“*”前边的数,且后一个加数都比前一个加数多一位,但数字相同,而“*”后边的数恰好是加数的个数。
以上运算的意思是羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了,小朋友总是希望羊能战胜狼。所以我们规定另一种运算,用符号“☆”表示:羊☆羊=羊,羊☆狼=羊,狼☆羊=羊,狼☆狼=狼。
这个运算的意思是羊和羊在一起还是羊,狼和狼在一起还是狼,但由于羊能战胜狼,当狼和羊在一起时,它便被羊赶走而剩下羊了。
【理一理】
新定义运算注意的问题:
(1新定义运算一般不满足运算定律
如:a△b≠b△a a△(b△c≠(a△b△c
(a*b△c≠(a△c*(b△c
(2“+”“-”“×”“÷”仍然是通常的运算符号,完全符合四则运算顺序.
四、练一练
1、规定a*b=4a-3b,计算:(1.5*0.8)*0.5
2、设a,b都表示自然数,规定a☆b=3a+b÷2,计算:
=[20÷2] △29 =[5△9] △6
=10△29 =[(5+9÷2] △6
=(10+29÷2 =7△6
=39÷2 =(7+6÷2
=19.5 =6.5
【试一试】
1、A,B表示两个数,定义A*B=2×A-B.试求:
(1(8.5×6.9*5 (2(119.8-29.8*(13.65+12.35

小学四年级奥数ppt:定义新运算

小学四年级奥数ppt:定义新运算

• 例5: 2▽4=8,5▽3=13,3▽5=11, 9▽7=25。按此规律计算:10▽12。
•练习五
• 1,有一个数学运算符号“▽”,使下列算 式成立:6▽2=12,4▽3=13,3▽4=15, 5▽1=8。按此规律计算:8▽4。


• 2,对于两个数a、b,规定a▽b=b×x- a×2,并且已知82▽65=31,计算:29▽57。
B的平均数。已知A▽6=17,求A。
• 例2:对于两个数a与b,规定 a⊕b=a×b+a+b,试计算6⊕2。

•练 习 二 • 1,对于两个数a与b,规定:
a⊕b=a×b-(a+b)。计算 3⊕5。
• 例3:如果2△3=2+3+ 4,5△4=5+6+7+8, 按此规律计算3△5。

1,如果5▽2=5×6, 2▽3=2×3×4,计算:3▽4。
• 练习四
• 1,如果2□3=2+3+4=9,6□5=6+7+8+9+ 10=40。已知x□3=5973,求x。

• 2,对于两个数a与b,规定 a□b=a+(a+1)+(a+2)+…+(a+b-1),已知95□x=585, 求x。

• 3,如果1!=1,2!=1×2=2, 3!=1×2×3=6,按此规律计 算5!。
• 例1:设a、b都表示数,规定:a△b表示a的3倍减 去b的2倍,即:a△b = a×3-b×2。
• 试计算:(1)5△6;(2)6△5。


分析与解答:解这类题的关键是抓住定义的本
质。这道题规定的运算本质是:运算符号前面的数
的3倍减去符号后面的数的2倍。
• 5△6=5×3-6×2=3

人教版【精选】小学四年级奥数__定义新运算

人教版【精选】小学四年级奥数__定义新运算

人教版【精选】小学四年级奥数__定义新运算一、拓展提优试题1.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.2.三个连续自然数的乘积是120,它们的和是.3.有一个数学运算符号“⊙”,使下列算式成立:2⊙4=8,4⊙6=14,5⊙3=13,8⊙7=23.按此规定,9⊙3=.4.某列车通过285米的隧道用24秒,通过245米的大桥用22秒.若该车与另一列长135米,速度为每秒10米的货车相遇,两列车从碰上到全错开用秒.5.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.6.某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是.7.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.8.4名工人3小时可以生产零件108个,现在要在8小时内生产504个零件,需增加工人名.9.如图,小明从A走到B再到C再到D,走了38米,小马从B到C再到D再到A,走了31米,此问长方形ABCD的周长多少米?10.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?11.如图是长方形,将它分成7部分,至少要画条直线.12.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.13.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.14.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.15.甲、乙、丙、丁四人参加了一次考试,甲、乙的成绩比丙、丁的成绩和高17分,甲比乙低4分,丙比丁高5分.四人中最高分比最低分高分.【参考答案】一、拓展提优试题1.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.2.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.解:120=2×2×2×3×5=(2×2)×(2×3)×5,2×2=4,2×3=6,5,即,三个连续自然数的乘积是120,这三个数是4、5、6,所以,和是:4+5+6=15.故答案为:15.【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.3.解:9⊙3=9×2+3=21;故答案为:21.4.解:列车速度为:(285﹣245)÷(24﹣22)=40÷2,=20(米);列车车身长为:20×24﹣285=480﹣285,=195(米);列车与货车从相遇到离开需:(195+135)÷(20+10),=330÷30,=11(秒).答:列车与货车从相遇到离开需11秒.5.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.6.【分析】先假设男生和女生一样多,则男生有4人,女生有4人,因为女生比男生多,所以男生的人数一定小于4人,然后写出即可.解:8÷2=4(人),因为女生比男生多,所以男生的人数一定小于4人,所以男生可能是1人,2人或3人;故答案为:1人,2人或3人.【点评】解答此题的关键:先假设男、女生一样多,求出男生人数,进而根据题意,进行分析、继而得出结论.7.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.8.解:504÷8÷(108÷3÷4)﹣4,=504÷8÷9﹣4,=63÷9﹣4,=7﹣4,=3(名),答:需增加3名,故应填:3.9.解:长方形长比宽多:38﹣31=7(米),长方形宽:(38﹣7×2)÷3,=24÷3,=8(米),长:8+7=15(米),(15+8)×2,=23×2,=46(米),答:长方形ABCD的周长46米.10.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,其中只有495符合要求,954﹣459=495.答:这个三位数A是495..11.【分析】两条直线把正方形分成4部分,第三条直线与前两条直线相交多出3部分,共分成7部分;第四条直线与前3条直线相交,又多出4部分.共11部分,第五条直线与前4条直线相交,又多出5部分,如下图所示.解:1+1+2+3=7答:在一个长方形上画上3条直线,最多能把长方形分成7部分.故答案为:3.【点评】此题考查了图形的拆拼.使直线间相互交叉,交点越多,则分割的空间越多.每多第几条直线,就加几个部分.12.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.13.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.14.【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.解:设从家到学校若每分钟走60米,x分钟到学校,6时53分﹣6时45分=8分钟60x=(x﹣8)×7560x=75x﹣60015x=600x=40;6时53分﹣40分=6时13分;答:洋洋从家里出发的时刻是6:13.故答案为:6:13.【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.15.解:设乙得了x分,则甲得了x﹣4分,丙得了y分,则丁得了y﹣5分,所以(x+x﹣4)﹣(y+y﹣5)=17,整理,可得:2x﹣2y+1=17,所以2x﹣2y=16,所以x﹣y=8,所以乙比丙得分高;因为x﹣y=8,所以(x﹣4)﹣(y﹣5)=9,所以甲比丁得分高,所以乙得分最高,丁得分最低,所以四人中最高分比最低分高:x﹣(y﹣5)=x﹣y+5=8+5=13(分)答:四人中最高分比最低分高13分.故答案为:13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第16讲定义新运算教学目标学会理解新定义的内容;理解新定义内容的基础上能够解决用新定义给出的题目;学会自己总结解题技巧。

知识梳理一、知识概念1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。

注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。

(2)我们还要知道,这是一种人为的运算形式。

它是使用特殊的运算符号,如:*、▲、★、◎、 、Δ、◆、■等来表示的一种运算。

(3)新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

2、一般的解题步骤是:一是认真审题,深刻理解新定义的内容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。

典例分析例1、对于任意数a,b,定义运算“*”:a*b=a×b-a-b。

求12*4的值。

【解析】根据题目定义的运算要求,直接代入后用四则运算即可。

12*4=12×4-12-4=48-12-4=32例2、假设a ★ b = ( a + b )÷ b 。

求8 ★ 5 。

【解析】该题的新运算被定义为: a ★ b 等于两数之和除以后一个数的商。

这里要先算括号里面的和,再算后面的商。

这里a 代表数字8,b 代表数字5。

8 ★ 5 = (8 + 5)÷ 5 = 2.6例3、如果a ◎b=a×b-(a+b)。

求6◎(9◎2)。

【解析】根据定义,要先算括号里面的。

这里的符号“◎”就是一种新的运算符号。

6◎(9◎2)=6◎[9×2-(9+2)]=6◎7=6×7-(6+7)=42-13=29例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。

求6Δ5。

【解析】仔细观察发现“Δ”前面的数字是加数每个数位上的数字,而加数分别是一位数,二位数,三位数,……“Δ”后面的数字是几,就有几个加数。

因此可以按照这个规律进行解答。

6Δ5=6+66+666+6666+66666=74070例5、如果规定⊗2=1×2×3,⊗3=2×3×4,⊗4=3×4×5,…… 计算(21⊗-31⊗)×32⊗⊗。

【解析】该题看上去比较复杂,但仔细观察,我们可以发现,该题被定义为⊗X=(X-1)×X×(X+1)。

由于把数代入算式中计算比较麻烦,我们可以先化简算式后,再计算。

(21⊗-31⊗)×32⊗⊗ = 21⊗×32⊗⊗-31⊗×32⊗⊗ =31⊗-31⊗×32⊗⊗ =31⊗(1-32⊗⊗) = 4321⨯⨯×(1-432321⨯⨯⨯⨯)=4321⨯⨯×(1-41) =4321⨯⨯×43 =321 例6、规定a▲b=5a+21ab-3b 。

求(8▲5)▲X=264中的未知数。

【解析】根据新定义,应该先计算括号里面的,再计算括号外面的,然后解方程即可。

(8▲5)▲X=264(5×8 + 21×8×5-3×5)▲X=264 45▲X=264 5×45+21×45×X-3X=264 225+245X-26X =264 225+239X=264 239X=39 X=2➢ 课堂狙击1、A ,B 表示两个数,定义A △B 表示(A+B)÷2,求(1)(3△17) △29;(2)[(1△9) △9] △6。

【解析】定义新运算符号“△”表示A △B=(A+B)÷2,即两个数做“△”运算就是求这两个数的平均值。

如:3△17=(3+17)÷2=10,再用10与29做运算,10△29=(10+29)÷2=19.5(1)原式=[(3+17)÷2] △29 (2)原式={[(1+9)÷2] △9}△6=[20÷2] △29 =[5△9] △6=10△29 =[(5+9)÷2] △6=(10+29)÷2 =7△6 实战演练=39÷2 =(7+6)÷2=19.5 =6.52、A ,B 表示两个数,定义A*B=2×A-B 。

试求:(1)(8.5×6.9)*5 (2)(119.8-29.8)*(13.65+12.35)【解析】定义新运算符号“*”表示A*B=2×A-B ,即前面数的两倍与后面数之差;所以(1)原式=2×(8.5×6.9)-5 =17×6.9-5 =117.3-5 =112.33、已知a ,b 是任意自然数,我们规定:a ⊕b = a +b -1,2a b ab ⊗=-,那么[]4(68)(35)⊗⊕⊕⊗=?【解析】原式4[(681)(352)]4[1313]=⊗+-⊕⨯-=⊗⊕4[13131]425=⊗+-=⊗425298=⨯-=。

4、M N *表示()2,(20082010)2009M N +÷**____=【解析】原式()()200820102*20092009*20092009200922009=+÷==+÷=⎡⎤⎣⎦。

5、已知2*3=2+22+222=246,3*4=3+33+333+3333=3702.求:(1)3*3;(2)4*5;(3)若1*x=123,求x.【解析】观察两个已知等式可以发现,“*”定义的是连加运算,第一个加数是“*”前边的数,且后一个加数都比前一个加数多一位,但数字相同,而“*”后边的数恰好是加数的个数。

(1)3*3=3+33+333=369(2)4*5=4+44+444+4444+44444=49380(3)提示:因为1* x=1+11+111+…=123所以倒着算:123-1=122 122-11=111 111-111=0即:1+11+111=1*3=123从而可知x=36、已知5△3=5×6×7,3△6=3×4×5×6×7×8,按此规定计算:(1)(4△3)+(6△2) (2)(3△2)×(4△3)【解析】观察两个已知等式可以发现,“△”定义为由前面的数开始称后面数一次加1,相乘个数为“△”之后(2)原式=90*26=2×90-26 =180-26=154(1)原式=4×5×6+6×7=120+42=162(2)原式=(3×4)×(4×5×6)=12×120=14407、设A ⊕B=2×(A+B )-2×(A÷B ),计算:(1)(12⊕4)⊕13; (2)70⊕(18⊕4)。

【解析】观察已知等式可知:“⊕”定义表示的是两个数和的2倍与商的2倍的差。

如:12⊕4=2×(12+4)-2×(12÷4)=26(1)原式=[2×(12+4)-2×(12÷4)] ⊕13=[2×16-2×3] ⊕13=26⊕13=2×(26+13)-2×(26÷13)=2×39-2×2=78-4=74(2)原式=70⊕[2×(18+4)-2×(18÷4)]=70⊕[2×22-2×4.5]=70⊕35=2×(70+35)-2×(70÷35)=2068、规定a ⊙b=(a+b) ÷(a-b),按此规定计算:(1)21⊙15 (2)(18⊙9) ⊙2【解析】观察已知等式可以发现,“⊙”定义为两数之和与两数只差的商,即a ⊙b=(a+b) ÷(a-b);所以有(1)原式=(21+15)÷(21-15) =36÷6=6 9、小辉用电脑设计了A ,B ,C ,D 四种装置,将一个数输入一种装置后,会输出另一个数.装置A:将输入的数加上5;装置B:将输入的数除以2;装置C:将输入的数减去4;装置D:将输入的数乘3.这些装置可以连接,如果装置A 后面连接装置B ,就写成A·B ,输入1后,经过A·B 输出了3.那么,输入9,经过A·B·C·D (2)原式={(18+9)÷(18-9)}⊙2=3⊙2 =(3+2)÷(3-2) =5【解析】A·B·C·D=[(9+5)÷2-4]×3=9所以输出的是9➢ 课堂反击1、定义新运算为a △b =(a +1)÷b ,求的值。

6△(3△4)。

【解析】所求算式是两重运算,先计算括号,所得结果再计算。

由a △b =(a +1)÷b 得,3△4=(3+1)÷4=4÷4=1;6△(3△4)=6△1=(6+1)÷1=7。

2、P 、Q 表示数,*P Q 表示2P Q +,求3*(6*8) 【解析】68373*(6*8)3*()3*7522++====。

3、如果&10a b a b =+÷,那么2&5= 。

【解析】2&5=2+5÷10=2.5。

4、如果a ⊙b 表示32a b -,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x = 。

【解析】根据题意x ⊙5-5⊙x =(3x -2×5)-(3×5-2x)=5x -25,由5x -25=5,解得x =6.5、对于任意的两个自然数a 和b ,规定新运算*:(1)(2)(1)a b a a a a b *=+++-L ,其中a 、b 表示自然数.如果(3)23660x **=,那么x 等于几?【解析】方法一:由题中所给定义可知,b 为多少,则就有多少个乘数。

36606061=⨯,即:60*23660=,则360x *=;60345=⨯⨯,即3*360=,所以3x =。

方法二:可以先将(x *3)看作一个整体y ,那么就是y *23660=,y *2(1)36606061y y =+==⨯,所以60y =,那么也就有x *360=,60345=⨯⨯,即3*360=,所以x 3=。

6、对于非零自然数a 和b ,规定符号⊗的含义是:a ⊗b =2m a b a b ⨯+⨯⨯(m 是一个确定的整数)。

相关文档
最新文档