2021年中考数学模拟试题汇编专题18:图形的展开与叠折
数学图形的展开和叠折真题整理
数学图形的展开和叠折真题整理一.选择题1.(2021德州)如图给定的是纸盒的外表面,下面能由它折叠而成的是()A. B. C. D.考点:展开图折叠成几何体。
专题:探究型。
分析:将A、B、C、D分别展开,能和原图相对应的即为正确答案.解答:解:A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.2.(2021广安)如图是一个正方体的表面展开图,则原正方体中与建字所在的面相对的面上标的字是()A. 美B. 丽C. 广D. 安考点:专题:正方体相对两个面上的文字。
分析:这种展开图是属于1,4,1的类型,其中,上面的1和下面的1是相对的2个面.解答:解:由正方体的展开图特点可得:建和安相对;设和丽相对;美和广相对;3.(2021德阳)某物体的侧面展开图如图所示,那么它的左视图为()A. B. C. D.4.(2021遵义)把一张正方形纸片如图①、图②对折两次后,再如图③挖去一个三角形小孔,则展开后图形是()A. B. C. D.【解析】结合空间思维,解析折叠的过程及剪菱形的位置,注意图形的对称性,易知展开的形状.解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.故选C.【答案】C【点评】本题要紧考查了学生的立体思维能力即操作能力.错误的要紧缘故是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平常生活中多加培养.5. (2021宁波)如图是老年活动中心门口放着的一个招牌,那个招牌是由三个特大号的骰子摞在一起而成的,每个骰子的六个面的点数分别是1到6,其中可看到7个面,其余11个面是看不见的,则是看不见的面上的点数总和是(A)41 (B)40 (C )39 (D)38【解析】每个骰子点数总和=1+2+3+4+5+6=21,三个骰子点数总和为2 13=63,露在别处的点数和为24,63-24=39,故选C【答案】C【点评】本题旨在考查学生的空间观念,整体处理是个最好的方法,假如一个一个地去数则比较苦恼。
全国各地中考数学试卷试题分类汇编第19章《图形的展开与叠折》
全国各地中考数学试卷试题分类汇编
第19章 图形的展开与叠折
1. (山东德州16,4分)长为1,宽为a 的矩形纸片(12
1<<a ),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为
正方形,则操作终止.当n =3时,
a 的值为_____________.
【答案】
35或34
2. (浙江绍兴,15,5分) 取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,那剪下的①这部分展开,平铺在桌面上,若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为
.
【答案】3:2
3. (甘肃兰州,分)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。
已知第一个矩形的面积为1,则第n 个矩形的面积为 。
【答案】
1
14n -
……
第一次操作
第二次操作
4. (四川绵阳17,4)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长为_____cm.
【答案】25。
九年级数学全国各地中考数学试题分类汇编(第一期) 专题18 图形的展开与叠折(含解析)
图形的展开与叠折一.选择题1.(2019,山西,3分)某正方体的每个面上都有一个汉字,如图是它的一中展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是()A.青B.春C.梦D.想【解析】这是一个正方体的平面展开图,共有六个面,其中面“点”与面“春”相对,面“亮”与面“想”相对,而面“青”与面“梦”相对.故选B2.(2019,四川成都,3分)将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=30°,则∠2的度数为()A.10°B.15°C.20°D.30°【解析】此题考查平行线的性质(两直线平行内错角相等)以及等腰直角三角形的性质,故选B3.(2019,四川巴中,4分)如图是由一些小立方体与圆锥组合成的立体图形,它的主视图是()A.B.C.D.【分析】根据实物的特点以及主视图的定义判断即可.【解答】解:如图所示,它的主视图是:.故选:C.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.4.(2019▪贵州毕节▪3分)由下面正方体的平面展开图可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦【分析】正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.【解答】解:根据正方体相对的面的特点,“中”字所在的面的对面的汉字是“的”,故选:B.【点评】本题考查了正方体侧面展开图,熟记正方体侧面展开图对面和相邻的面是解题的关键.5 (2019•江苏连云港•3分)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【分析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.【解答】解:由题意可知,该几何体为四棱锥,所以它的底面是四边形.故选:B.【点评】本题主要考查了几何体的展开图,熟练掌握棱锥的展开图是解答本题的关键.6(2019•湖南邵阳•3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC 上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°【分析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC =∠C=54°,利用三角形内角和定理求出∠ADC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠BED=∠BAD+∠ADF=108°.【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.7.(2019•浙江金华•3分)如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B.C.D.【答案】D【考点】圆锥的计算【解析】【解答】解:设BD=2r,∵∠A=90°,∴AB=AD= r,∠ABD=45°,∵上面圆锥的侧面积S= ·2πr·r=1,∴r2= ,又∵∠ABC=105°,∴∠CBD=60°,又∵CB=CD,∴△CBD是边长为2r的等边三角形,∴下面圆锥的侧面积S= ·2πr·2r=2πr2=2π×= .故答案为:D.【分析】设BD=2r,根据勾股定理得AB=AD= r,∠ABD=45°,由圆锥侧面积公式得·2πr·r=1,求得r2= ,结合已知条件得∠CBD=60°,根据等边三角形判定得△CBD是边长为2r的等边三角形,由圆锥侧面积公式得下面圆锥的侧面积即可求得答案. 8(2019•广东深圳•3分)下列哪个图形是正方体的展开图()【答案】B【考点】立体图形的展开.9(2019•广西贵港•3分)将一条宽度为2cm的彩带按如图所示的方法折叠,折痕为AB,重叠部分为△ABC(图中阴影部分),若∠ACB=45°,则重叠部分的面积为()A.2cm2B.2cm2C.4cm2D.4cm2【分析】过B作BD⊥AC于D,则∠BDC=90°,依据勾股定理即可得出BC的长,进而得到重叠部分的面积.【解答】解:如图,过B作BD⊥AC于D,则∠BDC=90°,∵∠ACB=45°,∴∠CBD=45°,∴BD=CD=2cm,∴Rt△BCD中,BC==2(cm),∴重叠部分的面积为×2×2=2(cm),故选:A.【点评】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10(2019•浙江金华•3分)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF 的面积相等,则的值是()A. B. -1 C. D.【答案】A【考点】剪纸问题【解析】【解答】解:设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,如图,依题可得:NM= a,FM=GN= ,∴NO= = ,∴GO= = ,∵正方形EFGH与五边形MCNGF的面积相等,∴x2= + a2,∴a= x,∴= = .故答案为:A.【分析】设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,根据题意可得,NM= a,FM=GN= ,NO= = ,根据勾股定理得GO= ,由题意建立方程x2= + a2,解之可得a= x,由,将a= x代入即可得出答案.11. (2019•山东省济宁市•3分)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.【考点】几何体的展开图【分析】由平面图形的折叠及几何体的展开图解题,注意带图案的一个面不是底面.【解答】解:选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.故选:B.【点评】本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.二.填空题1 (2019•甘肃•3分)如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为.【分析】设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10,所以AF=8,BF=AB﹣AF=10﹣8=2,在Rt△BEF中,BE2+BF2=EF2,即(6﹣x)2+22=x2,解得x=.【解答】解:设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10,在Rt△DAF中,AD=6,DF=10,∴AF=8,∴BF=AB﹣AF=10﹣8=2,在Rt△BEF中,BE2+BF2=EF2,即(6﹣x)2+22=x2,解得x=,故答案为.【点评】本题考查了矩形,熟练掌握矩形的性质以及勾股定理是解题的关键.2. (2019•广西贵港•3分)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.【分析】利用弧长=圆锥的周长这一等量关系可求解.【解答】解:连接AB,过O作OM⊥AB于M,∵∠AOB=120°,OA=OB,∴∠BAO=30°,AM=,∴OA=2,∵=2πr,∴r=故答案是:【点评】本题运用了弧长公式和圆的周长公式,建立准确的等量关系是解题的关键.三.解答题1 (2019•湖南岳阳•10分)操作体验:如图,在矩形ABCD中,点E.F分别在边A D.BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF上一动点(不与E.F重合),过点P分别作直线BE.BF的垂线,垂足分别为点M 和N,以PM、PN为邻边构造平行四边形PMQN.(1)如图1,求证:BE=BF;(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;(3)类比探究:若DE=a,CF=b.①如图3,当点P在线段EF的延长线上运动时,试用含A.b的式子表示QM与QN之间的数量关系,并证明;②如图4,当点P在线段FE的延长线上运动时,请直接用含A.b的式子表示QM与QN之间的数量关系.(不要求写证明过程)【分析】(1)证明∠BEF=∠BFE即可解决问题(也可以利用全等三角形的性质解决问题即可).(2)如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形.利用面积法证明PM+PN=EH,利用勾股定理求出AB即可解决问题.(3)①如图3中,连接BP,作EH⊥BC于H.由S△EBP﹣S△BFP=S△EBF,可得BE•PM﹣•BF•PN=•BF•EH,由BE=BF,推出PM﹣PN=EH=,由此即可解决问题.②如图4,当点P在线段FE的延长线上运动时,同法可证:QM﹣QN=PN﹣PM=.【解答】(1)证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠EFB,由翻折可知:∠DEF=∠BEF,∴∠BEF=∠EFB,∴BE=BF.(2)解:如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形,EH=A B.∵DE=EB=BF=5,CF=2,∴AD=BC=7,AE=2,在Rt△ABE中,∵∠A=90°,BE=5,AE=2,∴AB==,∵S△BEF=S△PBE+S△PBF,PM⊥BE,PN⊥BF,∴•BF•EH=•BE•PM+•BF•PN,∵BE=BF,∴PM+PN=EH=,∵四边形PMQN是平行四边形,∴四边形PMQN的周长=2(PM+PN)=2.(3)①证明:如图3中,连接BP,作EH⊥BC于H.∵ED=EB=BF=a,CF=b,∴AD=BC=a+b,∴AE=AD﹣DE=b,∴EH=AB=,∵S△EBP﹣S△BFP=S△EBF,∴BE•PM﹣•BF•PN=•BF•EH,∵BE=BF,∴PM﹣PN=EH=,∵四边形PMQN是平行四边形,∴QN﹣QM=(PM﹣PN)=.②如图4,当点P在线段FE的延长线上运动时,同法可证:QM﹣QN=PN﹣PM=.【点评】本题属于四边形综合题,考查了矩形的性质和判定,翻折变换,等腰三角形的性质,平行四边形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,学会利用面积法证明线段之间的关系,属于中考压轴题.2 (2019•湖南衡阳•12分)如图,在等边△ABC中,AB=6cm,动点P从点A出发以lcm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.【分析】(1)当BQ=2BP时,∠BPQ=90°,由此构建方程即可解决问题.(2)如图1中,连接BF交AC于M.证明EF=2EM,由此构建方程即可解决问题.(3)证明DE=AC即可解决问题.(4)如图3中,连接AM,AB′.根据AB′≥AM﹣MB′求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∴当BQ=2BP时,∠BPQ=90°,∴6+t=2(6﹣t),∴t=3,∴t=3时,△BPQ是直角三角形.(2)存在.理由:如图1中,连接BF交AC于M.∵BF平分∠ABC,BA=BC,∴BF⊥AC,AM=CM=3cm,∵EF∥BQ,∴∠EFM=∠FBC=∠ABC=30°,∴EF=2EM,∴t=2•(3﹣t),解得t=3.(3)如图2中,作PK∥BC交AC于K.∵△ABC是等边三角形,∴∠B=∠A=60°,∵PK∥BC,∴∠APK=∠B=60°,∴∠A=∠APK=∠AKP=60°,∴△APK是等边三角形,∴P A=PK,∵PE⊥AK,∴AE=EK,∵AP=CQ=PK,∠PKD=∠DCQ,∠PDK=∠QDC,∴△PKD≌△QCD(AAS),∴DK=DC,∴DE=EK+DK=(AK+CK)=AC=3(cm).(4)如图3中,连接AM,AB′∵BM=CM=3,AB=AC,∴AM⊥BC,∴AM==3,∵AB′≥AM﹣MB′,∴AB′≥3﹣3,∴AB′的最小值为3﹣3.【点评】本题属于四边形综合题,考查了等边三角形的性质,平行四边形的判定和性质,翻折变换,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
部分省市中考数学试题分类汇编图形的展开与叠折
部分省市中考数学试题分类汇编图形的睁开与叠折1.(福建晋江 )如图是正方体的睁开图,则原正方体相对两个面上的数字和最小的是 ( ).A.4B.6C.7D.8124 356第5题图2.(四川省眉山)以下四个图中,是三棱锥的表面睁开图的是A.B.C.D.【要点词】几何体的表面睁开图【答案】 B3.(台湾省)将图(六 )的正方形色纸沿此中一条对角线对折后,再沿原正方形的另一条对角线对折,如图 ( 七 )所示。
最后将图 (七) 的色纸剪下一纸片,如图 (八 )所示。
若以下有一图形为图 (八 )的睁开图,则此图为什么?图(六)图(七)图(八)(A)(B)(C)(D)【要点词】图形的折叠与睁开【答案】 B4.(江苏泰州, 4,3 分)下边四个几何体中,主视图与其余几何体的主视图不一样的是()A. B. C. D.【答案】 C【要点词】三视图5.(浙江台州市)以下立体图形中,侧面睁开图是扇形的是( ▲ )A.B.C.D.【要点词】图形的睁开【答案】 B6、(宁波市)骰子是一种特的数字立方体(见图),它切合规则:相对两面的点数之和老是7,下边四幅图中能够折成切合规则的骰子的是()A、B、C、D、【要点词】图形的睁开与叠折【答案】 C7.(福建省晋江市)如图是正方体的睁开图,则原正方体相对两个面上的数字和最小的是().A . 4 B. 6 C. 7 D.8 12 4【要点词】正方体的睁开问题3 5【答案】 B68(辽宁省丹东市)如下图的一组几何体的俯视图是()A.B.C.D.【要点词】俯视图【答案】 B9.(辽宁省丹东市)把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,翻开获得一个等腰梯形,剪掉部分的面积为6cm2,则翻开后梯形的周长是()3cm3cmA.( 10+213 )cm B.(10+13 )cm C.22cm D.18cm【要点词】折叠问题【答案】 A10.(浙江省东阳市)如图,D是AB边上的中点,将ABC 沿过D的直线折叠,A 使点 A落在 BC上 F处,若B 50 ,则 BDF __ ▲ __度.【要点词】三角形中位线和折叠问题DE 【答案】 80°B FC 11.(江苏泰州,15,3分)一个平均的正方体各面上分别标有数字1、 2、3、 4、 5、6,这个正方体的表面睁开图如下图.投掷这个正方体,则向上一面所标数字恰巧等于朝下一面所标数字的 3 倍的概率是.【答案】1 3【要点词】求简单事件发生的概率是近几年中考的要点内容. 简单的一步试验事件发生的概率等于事件包括的结果数k 除以全部等可能出现的结果数n ,P k. 此题就是用n 的值. n这个公式得出方程进而求出12.(山东省青岛市)把一张矩形纸片(矩形ABCD)按如图方式折叠,使极点B和点D重合,折痕为 EF.若 AB = 3 cm, BC = 5 cm,则重叠部分△ DEF的面积是cm 2.A'A E( B ')DB FC 【要点词】图形的叠折第 13题图【答案】 5.113、(宁波)十八世纪瑞士数学家欧拉证了然简单多面体中极点数(V)、面数(F)、棱数(E)之间存在的一个风趣的关系式,被称为欧拉公式。
2021年中考数学模拟试卷(含答案解析) (18)
2021年中考模拟试题数学一.选择题(共10小题,满分30分,每小题3分)1.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5B.﹣0.6C.+0.7D.+52.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个5.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC6.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°7.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个8.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.9.下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2B.由a>b,得|a|>|b|C.由a>b,得﹣2a<﹣2b D.由a>b,得a2>b210.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,则点E的坐标为()A.(5,8)B.(5,10)C.(4,8)D.(3,10)二.填空题(共8小题,满分24分,每小题3分)11.函数y=中,自变量x的取值范围是.12.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=.13.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.14.已知a2+a﹣1=0,则a3+2a2+2018=.15.如图,六边形ABCDEF的六个角都是120°,边长AB=1cm,BC=3cm,CD=3cm,DE=2cm,则这个六边形的周长是:.16.一组按规律排列的式子:,﹣,,﹣,…(a≠0),其中第10个式子是.17.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C 在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.18.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,则a的值为.三.解答题(共10小题,满分96分)19.(10分)(1)计算:(﹣1)(+1)+(﹣1)0﹣(﹣)﹣2.(2)化简:.(3)解方程:.20.(8分)解不等式组:,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.21.(8分)一艘轮船由南向北航行,如图,在A处测得小岛P在北偏西15°方向上,两个小时后,轮船在B处测得小岛P在北偏西30°方向上,在小岛周围18海里内有暗礁,问若轮船按20海里/时的速度继续向北航行,有无触礁的危险?22.(8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.征文比赛成绩频数分布表分数段频数频率60≤m<70380.3870≤m<80a0.3280≤m<90b c90≤m≤100100.1合计1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.23.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.24.(8分)已知:如图,在⊙O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD=30°,且BE=2,求弦CD的长.25.(9分)已知:如图,正方形ABCD,BM、DN分别是正方形的两个外角平分线,∠MAN=45°,将∠MAN绕着正方形的顶点A旋转,边AM、AN分别交两条角平分线于点M、N,联结MN.(1)求证:△ABM∽△NDA;(2)联结BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.26.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…152025…y/件…252015…已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?27.(13分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.28.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a <b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【解答】解:|+5|=5,|﹣3.5|=3.5,|+0.7|=0.7,|﹣2.5|=2.5,|﹣0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是﹣0.6,故选:B.【点评】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.2.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.4.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.6.【分析】由旋转性质知△ABC≌△DEC,据此得∠ACB=∠DCE=30°、AC=DC,继而可得答案.【解答】解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.7.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.【分析】根据小李距家3千米,路程随着时间的增大而增大确定合适的函数图象即可.【解答】解:∵小李距家3千米,∴离家的距离随着时间的增大而增大,∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C符合,故选:C.【点评】本题考查了函数图象,比较简单,了解横、总坐标分别表示什么是解题的关键.9.【分析】根据不等式的性质进行分析判断.【解答】解:A、在不等式a>b的两边同时减去2,不等式仍成立,即a﹣2>b﹣2,故本选项错误;B、当a>b>0时,不等式|a|>|b|成立,故本选项错误;C、在不等式a>b的两边同时乘以﹣2,不等式的符号方向改变,即﹣2a<﹣2b成立,故本选项正确;D、当a>b>0时,不等式a2>b2成立,故本选项错误;故选:C.【点评】考查了不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D 点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标即可.【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF===8,在Rt△OCF中,∵OC=10,CF=8,∴OF===6,∴C(6,8),∵点D是线段AC的中点,∴D点坐标为(,),即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),∵CF=8,∴直线CB的解析式为y=8,∴,解得:,∴E点坐标为(4,8).【点评】此题考查了反比例函数图象上点的坐标特征,菱形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.二.填空题(共8小题,满分24分,每小题3分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,把x12+x22+3x1x2变形为(x1+x2)2+x1x2,然后利用整体代入的方法计算;【解答】解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.13.【分析】根据题意,使用列举法可得从4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】将已知条件变形为a2=1﹣a、a2+a=1,然后将代数式a3+2a2+2018进一步变形进行求解.【解答】解:∵a2+a﹣1=0,∴a2=1﹣a、a2+a=1,∴a3+2a2+3,=a•a2+2(1﹣a)+2018,=a(1﹣a)+2﹣2a+2020,=a﹣a2﹣2a+2020,=﹣a2﹣a+2020,=﹣(a2+a)+2020,=﹣1+2020,=2019.故答案为:2019.【点评】本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.15.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴GC=BC=3cm,DH=DE=2cm.∴GH=3+3+2=8cm,FA=PA=PG﹣AB﹣BG=8﹣1﹣3=4cm,EF=PH﹣PF﹣EH=8﹣4﹣2=2cm.∴六边形的周长为1+3+3+2+4+2=15cm.故答案为:15cm.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.16.【分析】式子的符号:第奇数个是正号.偶数个是负号,分子等于序号的平方,分母中a的指数是:序号的3倍减去1,据此即可求解.【解答】解:∵=(﹣1)1+1•,﹣=(﹣1)2+1•,=(﹣1)3+1•,…第10个式子是(﹣1)10+1•=.故答案是:.【点评】本题主要考查了式子的特征,正确理解式子的规律是解题的关键.17.【分析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正切等于对边比邻边列式计算即可得解.【解答】解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.18.【分析】根据题目中的函数解析式可以求得该函数的对称轴,然后根据当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,可以判断a的正负,得到关于a的方程,从而可以求得a的值.【解答】解:∵二次函数y=ax2+2ax+3a2+3=a(x+1)2+3a2﹣a+3,∴该函数的对称轴为直线x=﹣1,∵当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,∴a<0,当x=﹣1时,y=7,∴7=a(x+1)2+3a2﹣a+3,解得,a1=﹣1,a2=(舍去),故答案为:﹣1.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.三.解答题(共10小题,满分96分)19.【分析】(1)根据零指数幂和负整数指数幂的意义得到原式=3﹣1+1﹣9,然后进行加减运算;(2)先把分母因式分解和除法运算化为乘法运算,然后约分后进行同分母的加法运算;(3)先去分母得到整式方程,再解整式方程,然后检验即可.【解答】解:(1)原式=3﹣1+1﹣9=﹣6;(2)原式=+•=+=;(4)x(x+2)+6(x﹣2)=(x﹣2)(x+2),x2+2x+6x﹣12=x2﹣4,x=1,经检验,x=1是原方程的解.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.20.【分析】先求出两个不等式的解集,再求其公共解,即可求得正整数解.【解答】解:解不等式①,得x<4,解不等式②,得x≥﹣2,所以,原不等式组的解集是﹣2≤x<4在数轴上表示如下:所以,原不等式组的正整数解是1,2,3.【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.【分析】作PD⊥AB交AB延长线于D点,依据直角三角形的性质求得PD的长,即可得出结论.【解答】解:如图,作PD⊥AB交AB延长线于D点,∵∠PBC=30°,∴∠PAB=15°,∴∠APB=∠PBC﹣∠PAB=15°,∴PB=AB=20×2=40 (海里),在Rt△BPD中,∴PD=PB=20(海里),∵20>18,∴不会触礁.【点评】此题考查了等腰三角形的判定与性质,三角形的外角性质,以及含30°直角三角形的性质,其中轮船有没有危险由PD的长与18比较大小决定.22.【分析】(1)依据1﹣0.38﹣0.32﹣0.1,即可得到c的值;(2)求得各分数段的频数,即可补全征文比赛成绩频数分布直方图;(3)利用80分以上(含80分)的征文所占的比例,即可得到全市获得一等奖征文的篇数.【解答】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案为:0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).【点评】本题考查了频数(率)分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有9种等可能的结果数,再找出小红和小亮诵读两个不同材料的结果数,然后根据概率公式计算.【解答】解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.【分析】连接OD,设⊙O的半径为r,则OE=r﹣2,再根据圆周角定理得出∠DOE=60°,由直角三角形的性质可知OD=2OE,由此可得出r的长,在Rt△OED中根据勾股定理求出DE 的长,进而可得出结论.【解答】解:连接OD,设⊙O的半径为r,则OE=r﹣2,∵∠BAD=30°,∴∠DOE=60°,∵CD⊥AB,∴CD=2DE,∠ODE=30°,∴OD=2OE,即r=2(r﹣2),解得r=4;∴OE=4﹣2=2,∴DE===2,∴CD=2DE=4.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.25.【分析】(1)由正方形ABCD,BM、DN分别是正方形的两个外角平分线,可证得∠ABM=∠ADN=135°,又由∠MAN=45°,可证得∠BAM=∠AND=45°﹣∠DAN,即可证得△ABM∽△NDA;(2)由四边形BMND为矩形,可得BM=DN,然后由△ABM∽△NDA,根据相似三角形的对应边成比例,可证得BM2=AB2,继而求得答案.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:∵四边形BMND为矩形,∴BM=DN,∵△ABM∽△NDA,∴=,∴BM2=AB2,∴BM=AB,∴∠BAM=∠BMA==22.5°.【点评】此题考查了相似三角形的判定与性质、正方形的性质以及矩形的性质.注意能证得当四边形BMND为矩形时,△ABM是等腰三角形是难点.26.【分析】(1)根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.【解答】解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,,解得,,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.27.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;(2)A、①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B、①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.28.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N 的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m ,解得m =﹣2,∴y =2x ﹣2,则,得ax 2+(a ﹣2)x ﹣2a +2=0,∴(x ﹣1)(ax +2a ﹣2)=0,解得x =1或x =﹣2,∴N 点坐标为(﹣2,﹣6),∵a <b ,即a <﹣2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+, 有,﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y =﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
2019-2021年上海各区数学中考一模压轴题分类汇编18题-图形的翻折含详解
专题图形的翻折【知识梳理】【历年真题】1.(2021秋•长宁区期末)如图,在△ABC中,∠C=90°,AC=BC=3,点D、E分别在AC边和AB边上,沿着直线DE翻折△ADE,点A落在BC边上,记为点F,如果CF=1,则BE=.2.(2021秋•虹口区期末)如图,在△ABC中,AB=AC=15,sin∠A=45.点D、E分别在AB和AC边上,AD=2DB,把△ADE沿着直线DE翻折得△DEF,如果射线EF⊥BC,那么AE=.3.(2021秋•金山区期末)在△ABC中,AB=AC=10,sin B=45,E是BC上一点,把△ABE沿直线AE翻折后,点B落在点P处,如果PE∥AC,那么BE=.4.(2021秋•闵行区期末)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AC边上一点,将△ACB沿着过点P的一条直线翻折,使得点A落在边AB上的点Q处,联结PQ,如果∠CQB=APQ,那么AQ的长为.5.(2021秋•徐汇区期末)如图,在Rt△ABC中,∠CAB=90°,AB=AC,点D为斜边BC上一点,且BD=3CD,将△ABD沿直线AD翻折,点B的对应点为B′,则sin∠CB′D=.6.(2021秋•崇明区期末)如图所示,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,如果将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点D处,折痕为CM,那么cos∠DMA=.7.(2021秋•奉贤区期末)如图,在Rt△ABC中,∠C=90°,sin B=35.D是边BC的中点,点E在边AB上,将△BDE沿直线DE翻折,使得点B落在同一平面内的点F处.如果线段FD交边AB于点G,当FD⊥AB时,AE:BE的值为.8.(2020秋•崇明区期末)在△ABC中,AB=2,∠B=45°,∠C=60°.点D为线段AB的中点,点E在边AC上,连接DE,沿直线DE将△ADE折叠得到△A′DE.连接AA′,当A′E⊥AC时,则线段AA′的长为.9.(2020秋•长宁区期末17)如图,矩形ABCD沿对角线BD翻折后,点C落在点E处.联结CE交边AD于点F.如果DF=1,BC=4,那么AE的长等于.10.(2020秋•虹口区期末)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.D是BC的中点,点E在边AB上,将△BDE沿直线DE翻折,使得点B落在同一平面内的点B'处,线段B'D交边AB于点F,联结AB'.当△AB'F是直角三角形时,BE的长为.11.(2020秋•松江区期末)如图,已知矩形纸片ABCD,点E在边AB上,且BE=1,将△CBE沿直线CE翻折,使点B落在对角线AC上的点F处,联结DF,如果点D、F、E在同一直线上,则线段AE的长为.12.(2020秋•普陀区期末)如图,在▱ABCD中,点E在边BC上,将△ABE沿着直线AE 翻折得到△AFE,点B的对应点F恰好落在线段DE上,线段AF的延长线交边CD于点G,如果BE:EC=3:2,那么AF:FG的值等于.13.(2019秋•虹口区期末)如图,在等腰梯形ABCD中,AD∥BC,sin C=45,AB=9,AD=6,点E、F分别在边AB、BC上,联结EF,将△BEF沿着EF所在直线翻折,使BF的对应线段B′F经过顶点A,B′F交对角线BD于点P,当B′F⊥AB时,AP的长为.14.(2019秋•青浦区期末)已知,在矩形纸片ABCD中,AB=5cm,点E、F分别是边AB、CD的中点,折叠矩形纸片ABCD,折痕BM交AD边于点M,在折叠的过程中,如果点A恰好落在线段EF上,那么边AD的长至少是cm.15.(2019秋•闵行区期末)如图,在等腰△ABC中,AB=AC=4,BC=6,点D在底边BC 上,且∠DAC=∠ACD,将△ACD沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为.16.(2019秋•杨浦区期末)在Rt△ABC中,∠A=90°,AC=4,AB=a,将△ABC沿着斜边BC翻折,点A落在点A1处,点D、E分别为边AC、BC的中点,联结DE并延长交A1B 所在直线于点F,联结A1E,如果△A1EF为直角三角形时,那么a=.17.(2019秋•崇明区期末)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC 的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A=.18.(2019秋•静安区期末)如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cos∠EFB的值为.专题图形的翻折【历年真题】2.(2021秋•长宁区期末)如图,在△ABC 中,∠C =90°,AC =BC =3,点D 、E 分别在AC 边和AB 边上,沿着直线DE 翻折△ADE ,点A 落在BC 边上,记为点F ,如果CF =1,则BE =724.【考点】翻折变换(折叠问题);等腰直角三角形.【专题】平移、旋转与对称;几何直观.【分析】过F 作FG ⊥AB 于点G .先求出AB =3,BF =3﹣1=2.则FG =GB =BF ,所以AG =AB﹣BG =﹣=,设AE =x ,则EF =x ,EG =﹣x ,在Rt △EGF 中,EG 2+FG 2=EF 2,利用勾股定理解列出(﹣x )2+()2=x 2,解得x =524,即求出BE .【解答】解:过F 作FG ⊥AB 于点G .∵∠C =90°,AC =BC =3,CF =1,∴AB =,BF =3﹣1=2.∴FG =GB =BF =,∴AG =AB ﹣BG ==,设AE =x ,则EF =x ,EG =﹣x ,在Rt △EGF 中,EG 2+FG 2=EF 2,即(﹣x )2+)2=x 2,解得x =524,∴BE =AB ﹣AE =﹣524=724.故答案为:724.【点评】本题考查翻折变换,等腰直角三角形的性质等知识,解题的关键是熟练运用勾股定理,属于中考常考题型.2.(2021秋•虹口区期末)如图,在△ABC 中,AB =AC =15,sin ∠A =45.点D 、E 分别在AB 和AC 边上,AD =2DB ,把△ADE 沿着直线DE 翻折得△DEF ,如果射线EF ⊥BC ,那么AE =510-.【考点】翻折变换(折叠问题);解直角三角形;等腰三角形的性质.【专题】推理填空题;等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.【分析】先根据折叠得到DE 平分∠AEF ,根据角平分线过D 作∠AEF 两边垂线即可.【解答】过D 作DM ⊥AC 于M ,过B 作BH ⊥AC 于H∵AB =AC =15,4sin 5A ∠=,AD =2DB ∴AD =10,DM =8,AM=6,BH=12,AH=9,∴CH =AC-CH=6∴22tan 2,5BHC BC BH CH CH∠===+过D 作DG ⊥EF 交EF 于N,交AC 于G∵把△ADE 沿着直线DE 翻折得△DEF∴DE 平分∠AEF,∴DM=DN=8,EM=EN,∵EF⊥BC 于点G,∴DH∥BC,∴23DG AD BC AB ==,∠C=∠NHE,∴23DG BC ==∴8NG DG DN =-=-∵tan tan 2EN C NGE NG∠=∠==∴216EM EN NG ===∴10AE AM EM =+=故答案为:10-【点评】本题难度比较大,综合考查折叠的性质、三角函数、相似三角形的性质与判定,解题的关键是由折叠得到角平分线再根据角平分线作垂线.3.(2021秋•金山区期末)在△ABC 中,AB=AC=10,sinB=45,E 是BC 上一点,把△ABE 沿直线AE 翻折后,点B 落在点P 处,如果PE∥AC,那么BE=2.【考点】翻折变换(折叠问题);解直角三角形;平行线的性质;等腰三角形的判定与性质.【专题】等腰三角形与直角三角形;平移、旋转与对称;解直角三角形及其应用;几何直观;应用意识.【分析】过A 作AD ⊥BC 于D ,设AP 交BC 于F ,根据AB =AC =10,sin B =45,AD ⊥BC ,可得AD =8,BD =CD =6,BC =12,由△ABE 沿直线AE 翻折后,点B 落在点P 处,即得∠P =∠B =∠C ,∠BAE =∠PAE ,而PE ∥AC ,有∠P =∠FAC ,可证得∠AEC =∠EAC ,CE =AC =10,即得BE =BC ﹣CE =2.【解答】解:过A 作AD ⊥BC 于D ,设AP 交BC 于F ,如图:∵AB =AC =10,sin B =45,AD ⊥BC ,∴4105AD AD AB ==,∴AD =8,∴BD =CD =6,∴BC =12,∵△ABE 沿直线AE 翻折后,点B 落在点P 处,∴∠P =∠B =∠C ,∠BAE =∠PAE ,∵PE ∥AC ,∴∠P =∠FAC ,∴∠B =∠FAC ,∴∠B +∠BAE =∠FAC +∠PAE ,即∠AEC =∠EAC ,∴CE =AC =10,∴BE =BC ﹣CE =2,故答案为:2.【点评】本题考查等腰三角形中的折叠问题,解题的关键是掌握折叠的性质,能熟练运用锐角三角函数解直角三角形.4.(2021秋•闵行区期末)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AC边上一点,将△ACB沿着过点P的一条直线翻折,使得点A落在边AB上的点Q处,联结PQ,如果∠CQB=APQ,那么AQ的长为395.【考点】相似三角形的判定与性质;解直角三角形;勾股定理;翻折变换(折叠问题).【专题】几何综合题;压轴题;推理填空题;运算能力;推理能力.【分析】利用三角形内角和180°,以及平角180度,推导出PQ平分∠AQC,设CP=x,则AP=PQ=8﹣x,利用三角形等面积法和相似三角形性质求出AQ的长,再利用相似三角形的性质构建方程即可解决问题.【解答】解:根据题意如图所示:在Rt△ABC中,∠C=90°,∵AC=8,BC=6,∴AB=10,根据折叠的性质可知∠A=∠PQA,∵∠AQP+∠A+∠APQ=180°,∠AQP+∠PQC+∠CQB=180°,∵∠CQB=∠APQ,∴∠A=∠AQP=∠PQC,∴PQ平分∠AQC,设CP=x,则AP=PQ=8﹣x,如图,过点C作CD⊥AB于点D,PE⊥AB于点E,∴S △ABC =12⨯AC •BC =12⨯AB •CD ,∴10CD =6×8,∴CD =245,∵CD ⊥AB ,PE ⊥AB ,∴PE ∥CD ,∴△APE ∽△ACD ,∴AP PE AC CD =,∴82485x PE -=,∴PE =35(8﹣x ),∴AE=45(8﹣x ),∴AQ =2AE =85(8﹣x ),∵∠PCQ =∠QCA ,∠PQC =∠A ∴△PCQ ∽△QCA ,∴CQ CP PQ AC CQ AQ==,∴CQ,88(8)5x x -=-,∴258x =,∴AQ =85(8﹣x )=395.故答案为:395.【点评】本题属于几何综合题,是中考填空题的压轴题,主要考查了翻折的性质、解直角三角形、相似三角形的判定和性质、勾股定理,三角形等面积法,综合性较强,熟练解直角三角形中线段问题是解题的捷径.5.(2021秋•徐汇区期末)如图,在Rt △ABC 中,∠CAB =90°,AB =AC ,点D 为斜边BC 上一点,且BD =3CD ,将△ABD 沿直线AD 翻折,点B 的对应点为B ′,则sin ∠CB ′D =1010.【考点】翻折变换(折叠问题);平行线分线段成比例;解直角三角形;等腰直角三角形.【专题】平移、旋转与对称;解直角三角形及其应用;运算能力;推理能力.【分析】过点D 作DE ⊥AB 于点E ,由折叠的性质得出AB =AB ',∠BAD =∠B 'AD ,证出∠CB 'D =∠CAD ,由平行线的性质得出∠CAD =∠ADE =∠CB 'D ,13CD AE BD BE ==,设AE =a ,则DE =3a ,求出AD=,由锐角三角函数的定义可得出答案.【解答】解:过点D 作DE ⊥AB 于点E ,∵将△ABD 沿直线AD 翻折,∴AB =AB ',∠BAD =∠B 'AD ,∵AB =AC ,∴AC =AB ',∴∠AB 'C =∠ACB ',设∠B 'AC =x ,∠CB 'D =α,∠CAD =β,∵AB =AC ,∠CAB =90°,∴∠B =∠ACB =∠AB 'D =45°,∴2(α+45°)+x =180°,∴2α=90°﹣x ,又∵∠B 'AD +∠BAD =∠B 'AC +∠CAB ,∴2(x +β)=90°+x ,∴2β=90°﹣x ,∴α=β,∴∠CB 'D =∠CAD ,∵CD ⊥AB ,DE ⊥AB ,∴CA ∥DE ,∴∠CAD =∠ADE =∠CB 'D ,13CD AE BD BE ==,∵BE =DE ,∴13AE BE =,设AE =a ,则DE =3a ,∴AD =,∴sin ∠CB ′D =sin ∠ADE =AE DE ==10.故答案为:1010.【点评】本题考查了折叠的性质,等腰直角三角形的性质,平分线分线段成比例定理,锐角三角函数的定义,熟练掌握折叠的性质是解题的关键.6.(2021秋•崇明区期末)如图所示,在三角形纸片ABC 中,AB =9,BC =6,∠ACB =2∠A ,如果将△ABC 沿过顶点C 的直线折叠,使点B 落在边AC 上的点D 处,折痕为CM ,那么cos ∠DMA =3132.【考点】翻折变换(折叠问题);解直角三角形.【专题】等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.【分析】由折叠的性质可知,CB =CD =6,∠BCM =∠ACM ,证明△BCM ∽△BAC ,由相似三角形的性质得出CD BM CM AB BC AC==,求出BM 和AC 的长,过点D 作DN ⊥AM 于点N ,设MN =x ,则AN =5﹣x ,由勾股定理求出x ,根据锐角三角函数的定义可得出答案.【解答】解:由折叠的性质可知,CB =CD =6,∠BCM =∠ACM,∵∠ACB =2∠A ,∴∠BCM =∠A ,∵∠B =∠B ,∴△BCM ∽△BAC ,∴CD BM CM AB BC AC ==,∴696BM =,∴BM =4,∴AM =CM =5,∴659AC =,∴AC =152,∴AD =AC ﹣CD =152﹣6=32,过点D 作DN ⊥AM 于点N ,设MN =x ,则AN =5﹣x ,∴22223((5)42x x +-=-,解得318x =,∴cos ∠DMA =31318432MN DM ==.故答案为:3132.【点评】本题考查了折叠的性质,相似三角形的判定与性质,勾股定理,解直角三角形,证明△BCM ∽△BAC 是解题的关键.7.(2021秋•奉贤区期末)如图,在Rt△ABC中,∠C=90°,sin B=35.D是边BC的中点,点E在边AB上,将△BDE沿直线DE翻折,使得点B落在同一平面内的点F处.如果线段FD交边AB于点G,当FD⊥AB时,AE:BE的值为4.【考点】平行线分线段成比例;解直角三角形;翻折变换(折叠问题).【专题】解直角三角形及其应用;推理能力.【分析】如图,过B点作BH∥DE交GD的延长线于H,如图,利用正弦的定义得到sin B=35DGBD=,则设DG=3x,BD=5x,所以BG=4x,再根据折叠的性质和平行线的性质得到∠H=∠DBH,所以DH=DB=5x,接着根据平行线分线段成比例定理得到35GE DGBE DH==,则BE=52x,然后证明△BDG∽△BAC,利用相似比得到BA=252x,最后计算AE:BE的值.【解答】解:如图,过B点作BH∥DE交GD的延长线于H,如图,∵FD⊥AB,∴∠DGB=90°,∵sin B=35DGBD=,∴设DG=3x,BD=5x,∴BG4x,∵△BDE沿直线DE翻折得到△FDE,∴∠BDE=∠FDE,∵DE∥BH,∴∠FDE=∠H,∠BDE=∠DBH,∴∠H=∠DBH,∴DH=DB=5x,∵DE∥BH,∴35 GE DGBE DH==,∴BE=58×4x=52x,∵∠BGD=∠C=90°,∠DBG=∠ABD,∴△BDG∽△BAC,∴BD BGBA BC=,即5410x xBA x=,∴BA=252x,∴AE=AB﹣BE=252x﹣52x=10x,∴AE:BE=10x:52x=4.故答案为:4.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了折叠的性质和解直角三角形.8.(2020秋•崇明区期末)在△ABC中,AB=2,∠B=45°,∠C=60°.点D为线段AB的中点,点E在边AC上,连接DE,沿直线DE将△ADE折叠得到△A′DE.连接AA′,当A′E⊥AC时,则线段AA′的长为26.【考点】翻折变换(折叠问题).【专题】等腰三角形与直角三角形;平移、旋转与对称;图形的相似;解直角三角形及其应用;运算能力;推理能力.【分析】画出相应的图形,结合图形通过作高构造直角三角形,求出AM=BM=4,进而求出AC,再利用相似三角形的性质和判定求出AE,根据对称在Rt△AEF中求出AF即可.【解答】解:如图,过点A作AM⊥BC,垂足为M,在Rt△ABM中,∠B=45°,AB=2,∴AM=BM=AB•sin∠B=4,在Rt△ACM中,AM=4,∠C=60°,∴AC=AM4=sin C sin60∠833,又∵A′E⊥AC,∴∠A′EC=90°,由折叠得∠AED=∠A′ED=12(180°﹣90°)=45°,AA′⊥DE,∵∠AED=45°=∠B,∠DAE=∠CAB,∴△DAE∽△CAB,∴AE AD=AB DC,∵点D为线段AB的中点,∴AD=BD=12AB=22,AE2242833AE=3,在Rt△AEF中,AF=EF=AE•sin∠AED=3×226,∴AA′=2AF=6,故答案为:6.【点评】本题考查轴对称的性质,相似三角形的判定和性质,解直角三角形,掌握轴对称、相似三角形的性质以及解直角三角形是解决问题的关键.9.(2020秋•长宁区期末17)如图,矩形ABCD 沿对角线BD 翻折后,点C 落在点E 处.联结CE 交边AD 于点F .如果DF =1,BC =4,那么AE 的长等于655.【考点】翻折变换(折叠问题);矩形的性质.【专题】矩形菱形正方形;推理能力.【分析】首先根据题意得到EG =CG ,CE ⊥BD ,证明△CDF ∽△BCD 和△CDG ∽△BDC ,可计算CD 和CG 的长,再证明△EFD ∽△AED ,可得AE 的长.【解答】解:由折叠得:CE ⊥BD ,CG =EG ,∴∠DGF =90°,∴∠DFG +∠FDG =90°,∵四边形ABCD 是矩形,∴∠ADC =∠BCD =90°,∴∠ADG +∠CDG =90°,∴∠CDG =∠DFG ,∵∠CDF =∠BCD =90°,∴△CDF ∽△BCD ,∴CD DF =BC CD,∵AB =4,DF =1,∴CD 1=4CD,∴CD =2,由勾股定理得:CF =221+2=5,BD 222+45,同理得:△CDG∽△BDC,∴CD CG=BD BCCG4,∴CG =455,∴CE=2CG =85 5,∴EF=CE﹣CF =855=355,∵DF1=ED2,ED21==AD42,且∠EDF=∠AED,∴△EFD∽△AED,∴EF DF=AE DE ,即15=AE2,∴AE【点评】本题主要考查了几何变换中的翻折变换、相似三角形的性质和判定、矩形的性质、勾股定理;熟练掌握翻折变换和矩形的性质,利用相似三角形列比例式是本题的关键.10.(2020秋•虹口区期末)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.D是BC的中点,点E在边AB上,将△BDE沿直线DE翻折,使得点B落在同一平面内的点B'处,线段B'D交边AB于点F,联结AB'.当△AB'F是直角三角形时,BE的长为2或40 17.【考点】翻折变换(折叠问题);相似三角形的判定与性质;勾股定理.【专题】等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.【分析】分两种情况画出图形,①方法一:如图1,当∠AFB′=90°时,由相似三角形的性质及直角三角形的性质可求出答案;方法二:过点E作EH⊥BC于点H,设EH=3a,BE=5a,则BH=4a,由BF的长列出方程,解方程求出a即可;②方法一如图2,当∠AB′F=90°时,由相似三角形的性质及直角三角形的性质可求出答案.方法二:过点E作EG⊥BD于点G,设EG=3a,BG=4a,BE=5a,得出9442a a+=,求出a的值则可得出答案.【解答】解:①方法一:如图1,当∠AFB′=90°时.在Rt △ABC 中,∵AC =6,BC =8,∴AB 22226810AC BC +=+=,∵D 是BC 的中点,∴BD =CD =12BC =4,∵∠AFB '=∠BFD =90°,∠ACB =90°,∴∠DFB =∠ACB ,又∵∠DBF =∠ABC ,∴△BDF ∽△BAC ,∴BF BD BC AB =,即4810BF =,解得:BF =165,设BE =B 'E =x ,则EF =165﹣x ,∵∠B =∠FB 'E ,∴sin ∠B =sin ∠FB 'E ,∴'AC EF AB B E =,∴166510x x-=,解得x =2.∴BE =2.方法二:过点E 作EH ⊥BC 于点H ,设EH =3a ,BE =5a ,则BH =4a ,∵将△BDE 沿直线DE 翻折,∴EF =3a ,∴BF =8a =BD •cos ∠B =4×45,∴a =25,∴BE =5a =2;②如图2中,当∠AB ′F =90°时,连接AD ,作EH ⊥AB ′交AB ′的延长线于H.∵AD =AD ,CD =DB ′,∴Rt △ADC ≌Rt △ADB ′(HL ),∴AC =AB ′=6,∵将△BDE 沿直线DE 翻折,∴∠B =∠DB 'E ,∵AB '⊥DB ',EH ⊥AH ,∴DB '∥EH ,∴∠DB 'E =∠B 'EH ,∴∠B =∠B 'EH ,∴sin ∠B =sin ∠B 'EH ,设BE =x ,则B 'H =35x ,EH =45x ,在Rt △AEH 中,AH 2+EH 2=AE 2,∴22234(6)()(10)55x x x ++=-,解得x =4017,∴BE =4017.则BE 的长为2或4017.方法二:过点E 作EG ⊥BD 于点G ,设EG =3a ,BG =4a ,BE =5a ,∴DG =EG ×32=92a ,∵DG +GB =DB ,∴9442a a +=,∴a =817,∴BE =4017.故答案为:2或4017.【点评】本题考查了翻折变换、勾股定理、解直角三角形、相似三角形的判定与性质、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题.11.(2020秋•松江区期末)如图,已知矩形纸片ABCD ,点E 在边AB 上,且BE =1,将△CBE 沿直线CE 翻折,使点B 落在对角线AC 上的点F 处,联结DF ,如果点D 、F 、E 在同一直线上,则线段AE 的长为152+.【考点】翻折变换(折叠问题);矩形的性质.【专题】矩形菱形正方形;平移、旋转与对称;运算能力;推理能力.【分析】根据矩形的性质得到AD =BC ,∠ADC =∠B =∠DAE =90°,根据折叠的性质得到CF =BC ,∠CFE =∠B =90°,EF =BE =1,DC =DE ,证明△AEF ∽△DEA ,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD 是矩形,∴AD =BC ,AB =CD ,∠ADC =∠B =∠DAE =90°,∵把△BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,∴CF =BC ,∠CFE =∠B =90°,EF =BE =1,∠CEB =∠CEF ,∵矩形ABCD 中,DC ∥AB ,∴∠DCE =∠CEB ,∴∠CEF =∠DCE ,∴DC =DE ,设AE=x,则AB=CD=DE=x+1,∵∠AFE=∠CFD=90°,∴∠AFE=∠DAE=90°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴AF DEEF AE=,∴11x xx+=,解得x=152+或x=152(舍去),∴AE=12.故答案为:15 2.【点评】本题考查了翻折变换(折叠问题),平行线的性质,相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键.12.(2020秋•普陀区期末)如图,在▱ABCD中,点E在边BC上,将△ABE沿着直线AE翻折得到△AFE,点B的对应点F恰好落在线段DE上,线段AF的延长线交边CD于点G,如果BE:EC=3:2,那么AF:FG的值等于214.【考点】相似三角形的判定与性质;平行四边形的性质;翻折变换(折叠问题).【专题】多边形与平行四边形;平移、旋转与对称;图形的相似;推理能力.【分析】延长BC,AG交于点H,设BE=3x,EC=2x,由平行四边形的性质可得AD=BC=5x,AD∥BC,由折叠的性质可得∠AEB=∠AEF,BE=EF=3x,通过证明△ADF∽△HEF,△ADG∽△HCG,可求AF=425y,FG=AG﹣AF=85y,即可求解.【解答】解:如图,延长BC,AG交于点H,∵BE:EC=3:2,∴设BE=3x,EC=2x,∵四边形ABCD是平行四边形,∴AD=BC=5x,AD∥BC,∴∠DAE=∠AEB,∵将△ABE沿着直线AE翻折得到△AFE,∴∠AEB=∠AEF,BE=EF=3x,∴∠DAE=∠AED,∴AD=DE=5x,∴DF=2x,∵AD∥BC,∴△ADF∽△HEF,∴AD DF AFEH EF FH==,∴523x AFEH FH==,∴EH=152x,AF=23FH,∴CH=EH﹣EC =x,∵AD∥BC,∴△ADG∽△HCG,∴AD AGCH GH=,∴51011112x AGGHx==,∴设AG=10y,GH=11y,∴AH=21y,∴AF=215y×2=425y,∴FG=AG﹣AF=85y,∴AF:FG=21:4=21 4,故答案为21 4.【点评】本题考查了相似三角形的判定和性质,折叠的性质,平行四边形的性质,灵活运用这些性质进行推理是解题的关键.13.(2019秋•虹口区期末)如图,在等腰梯形ABCD中,AD∥BC,sin C=45,AB=9,AD=6,点E、F分别在边AB、BC上,联结EF,将△BEF沿着EF所在直线翻折,使BF的对应线段B′F经过顶点A,B′F交对角线BD于点P,当B′F⊥AB时,AP的长为24 7.【考点】相似三角形的判定与性质;解直角三角形;等腰梯形的性质;翻折变换(折叠问题).【专题】图形的相似;解直角三角形及其应用;应用意识.【分析】解直角三角形求出BF,AF,再利用相似三角形的性质求解即可.【解答】解:如图,∵FB′⊥AB,∴∠BAF=90°,∵四边形ABCD是等腰梯形,∴∠ABC=∠C,∴sin∠ABC=sin∠C=AFBF=45,设AF=4k,BF=5k,则AB=9=3k,∴k=3,∴AF=12,BF=15,∵AD∥BF,∴△APD∽△FPB,∴PA AD62=== PF BF155,∴PA=27AF=247,故答案为24 7.【点评】本题考查相似三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.14.(2019秋•青浦区期末)已知,在矩形纸片ABCD中,AB=5cm,点E、F分别是边AB、CD的中点,折叠矩形纸片ABCD,折痕BM交AD边于点M,在折叠的过程中,如果点A恰好落在线段EF上,那么边AD的长至少是532cm.【考点】翻折变换(折叠问题).【专题】平移、旋转与对称;推理能力.【分析】根据已知条件得到AE=DF=BE=CF,求得四边形AEFD是矩形,得到EF=AD,∠AEN=∠BEN=90°,根据折叠的性质得到BN=AB,根据直角三角形的性质得到∠BNE=30°,于是得到EN=32BN532到结论.【解答】解:如图,∵在矩形纸片ABCD中,点E、F分别是边AB、CD的中点,∴AE=DF=BE=CF,∴四边形AEFD是矩形,∴EF=AD,∠AEN=∠BEN=90°,∵折叠矩形纸片ABCD,折痕BM交AD边于点M,∴BN=AB,∵BE=12AB,∴BE=12BN,∴∠BNE=30°,∵AB=5cm,∴EN =32BN∴EF≥EN时,点A恰好落在线段EF上,即AD∴边AD的长至少是【点评】本题考查了翻折变换(折叠问题),矩形的性质,直角三角形的性质,正确的识别图形是解题的关键.15.(2019秋•闵行区期末)如图,在等腰△ABC中,AB=AC=4,BC=6,点D在底边BC上,且∠DAC=∠ACD,将△ACD沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为1.【考点】翻折变换(折叠问题);等腰三角形的性质;勾股定理.【专题】平移、旋转与对称;推理能力.【分析】只要证明△ABD∽△MBE,得AB BDBM BE=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴CA CDCB AC=,∴464CD=,∴CD=83,BD=BC﹣CD=103,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴AD DMBD DA=,即8310833DM=,∴DM=3215,MB=BD﹣DM=65,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,(不用四点共圆,可以先证明△BMA∽△EMD,推出△BME∽AMD,推出∠ADB=∠BEM也可以!)∴AB BD BM BE,∴BE=BD BMAB=1.故答案为:1.【点评】本题考查翻折变换、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是充分利用相似三角形的性质解决问题,本题需要三次相似解决问题,题目比较难.16.(2019秋•杨浦区期末)在Rt△ABC中,∠A=90°,AC=4,AB=a,将△ABC沿着斜边BC翻折,点A落在点A1处,点D、E分别为边AC、BC的中点,联结DE并延长交A1B所在直线于点F,联结A1E,如果△A1EF为直角三角形时,那么a=4或【考点】翻折变换(折叠问题);勾股定理;三角形中位线定理.【专题】平移、旋转与对称;推理能力.【分析】当△A1EF为直角三角形时,存在两种情况:①当∠A1EF=90°时,如图1,根据对称的性质和平行线可得:A1C=A1E=4,根据直角三角形斜边中线的性质得:BC=2A1B=8,最后利用勾股定理可得AB的长;②当∠A1FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A1EF为直角三角形时,存在两种情况:①当∠A1EF=90°时,如图1,∵△A1BC与△ABC关于BC所在直线对称,∴A1C=AC=4,∠ACB=∠A1CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A1EF,∴AC∥A1E,∴∠ACB=∠A1EC,∴∠A1CB=∠A1EC,∴A1C=A1E=4,Rt△A1CB中,∵E是斜边BC的中点,∴BC=2A1E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB=;②当∠A1FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A1BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA1=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为或4;故答案为:4;【点评】本题考查了翻折变换(折叠问题),三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.17.(2019秋•崇明区期末)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A=5或5.【考点】翻折变换(折叠问题).【专题】平移、旋转与对称;解直角三角形及其应用.【分析】分两种情形分别求解,作DF⊥AB于F,连接AA′.想办法求出AE,利用等腰直角三角形的性质求出AA′即可.【解答】解:如图,作DF⊥AB于F,连接AA′.在Rt△ACB中,BC=6,∵∠DAF=∠BAC,∠AFD=∠C=90°,∴△AFD∽△ACB,∴DF AD AFBC AB AC==,∴46108DF AF==,∴DF=125,AF=165,∵A′E⊥AB,∴∠AEA′=90°,由翻折不变性可知:∠AED=45°,∴EF=DF=125,∴AE=A′E=125+165=285,∴AA′=2825,如图,作DF⊥AB于F,当EA′⊥AB时,同法可得AE=165﹣125=45,AA AE=425.故答案为2825或425.【点评】本题考查翻折变换,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.18.(2019秋•静安区期末)如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cos∠EFB的值为1 7.【考点】翻折变换(折叠问题);解直角三角形;等边三角形的判定与性质;菱形的性质.【专题】矩形菱形正方形;解直角三角形及其应用.【分析】如图,连接BD .设BC =2a .在Rt △BEF 中,求出EF ,BF 即可解决问题.【解答】解:如图,连接BD .设BC =2a.∵四边形ABC 都是菱形,∴AB =BC =CD =AD =2a ,∠A =∠C =60°,∴△BDC 是等边三角形,∵DE =EC =a ,∴BE ⊥CD ,∴BE 22-3BC EC =a ,∵AB ∥CD ,BE ⊥CD ,∴BE ⊥AB ,∴∠EBF =90°,设AF =EF =x ,在Rt △EFB 中,则有x 2=(2a ﹣x )2+3a )2,∴x =74a ,∴AF =EF =74a ,BF =AB ﹣AF =4a ,∴cos ∠EFB =14774a BF a EF ==,故答案为17.【点评】本题考查菱形的性质,解翻折变换,直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。
(备战中考)2021年中考数学新题分类汇编(中考真题模拟新题)图形的展开与叠折
图形的展开与叠折1. (2011山东德州16,4分)长为1,宽为a的矩形纸片(121<<a),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为_____________.【答案】35或342. (2011浙江绍兴,15,5分) 取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,那剪下的①这部分展开,平铺在桌面上,若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为.3. (2011甘肃兰州,20,4分)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。
已知第一个矩形的面积为1,则第n个矩形的面积为。
4. (2011四川绵阳17,4)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C 重合,则折痕EF的长为_____cm.……第一次操作第二次操作【答案】25图形变换(图形的平移、旋转与轴对称)一、选择题1.(2011年江苏盐都中考模拟)图所示的汽车标志图案中,能用平移变换来分析形成过程的图案是 ( )答案 D2.(2011年北京四中中考模拟19)图3,将∠BAC沿DE向∠BAC内折叠,使AD与A’D重合,A’E与AE重合,若∠A=300,则∠1+∠2=()A、500B、600C、450D、以上都不对答案 B3.(2011年浙江省杭州市中考数学模拟22)如图是万花筒的一个图案,图中所有小三角形均是全等三角形,其中把菱形ABCD以A为中心旋转多少度后可得图中另一阴影的菱形()A、顺时针旋转60°B、顺时针旋转120°C、逆时针旋转60°D、逆时针旋转120°答案:D4. (2011年兴华公学九下第一次月考)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B ,则图中阴影部分的面积是(第3题)A .6πB.5πC.4πD.3π5. (2011年黄冈市浠水县中考调研试题)下列图案由黑、白两种颜色的正方形组成,其中属于轴对称图形的是()答案:B6.(2011年青岛二中)视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E”之间的变换是()A.平移B.旋转C.对称D.位似答案:D7、(北京四中模拟)下列图形中,既是轴对称图形,又是中心对称图形的是()A、角B、平行四边形C、等边三角形D、矩形答案:D8、(2011浙江杭州模拟14)如图折叠直角三角形纸片的直角,使点C落在斜边AB上的点E处. 已知AB=38, ∠B=30°, 则DE的长是( ).A. 6B. 4C. 34 D. 239.(2011武汉调考模拟)下列图形中,绕着它的中心旋转60°后,能够与原图形完全重合.,则这个图形是( )A.等边三角形 B.正方形 C.圆 D.菱形答案:C标准对数视力表0.1 4.00.12 4.10.15 4.2(第6题图)yAC O xB MNPQ (第11题图)11 SR Q P ②①A. B. C. D.答案:C11、(2011年浙江杭州七模)如图,点A ,B ,C 的坐标分别为(0,1),(0,2),(3,0)-.从下面四个点(3,3)M ,(3,3)N -,(3,0)P -,(3,1)Q -中选择一个点,以A ,B ,C 与该点为顶点的四边形是中心对称图形的个数有( )A .1个B .2个C .3个D .4个答案:CB 组1.(2011 天一实验学校 二模)下列交通标志中既是中心对称图形,又是轴对称图形的是( )答案:A2. (2011浙江慈吉 模拟) 如图所示网格中, 已知②号三角形是由①号三角形经旋转变化得到的, 其旋转中心是下列各点中的( )A. PB. QC. RD. S 答案:C3.(2011年重庆江津区七校联考一模)下列美丽的图案,既是轴对称图形又 )A .1个B .2个C .3个D .4个A. B. C . D. 第2题图答案:C4.(2011年安徽省巢湖市七中模拟)下列美丽图案,既是轴对称图形又是中心对称图形的个数是( )A .1个B .2个C .3个D .4个答案:C 5.(2011北京四中二模)下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )(A )1B )))答案:C6.(2011浙江杭州育才初中模拟)一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°)。
中考数学模拟试题汇编 专题18 图形的展开与叠折
图形的展开与叠折一、选择题1. (2016·河北石家庄·一模)按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.第1题A.1个B.2个C.3个D.4个【考点】翻折变换(折叠问题);相似三角形的判定与性质.【分析】根据翻折变换的性质、相似三角形的判定定理解答即可.【解答】解:由翻折变换的性质可知,∠AEB+∠FEC=×180°=90°,则∠AEF=90°,即∠2=90°,①正确;由图形可知,∠1<∠AEC,②错误;∵∠2=90°,∴∠1+∠3=90°,又∠1+∠BAE=90°,∴∠BAE=∠3,④正确;∵∠BAE=∠3,∠B=∠C=90°,∴△ABE∽△ECF,③正确.故选:C.【点评】本题考查的是翻折变换的性质,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、填空题1、(2016青岛一模)如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有 4 种拼接方法.【考点】几何体的展开图.【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可.【解答】解:如图所示:故小丽总共能有4种拼接方法.故答案为:4.2、(2016枣庄41中一模)现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为 2 cm.【考点】圆锥的计算.【分析】根据扇形的弧长等于圆锥的底面周长,利用扇形的弧长公式即可求得圆锥的底面周长,然后根据圆的周长公式即可求解.【解答】解:圆锥的底面周长是: =4π.设圆锥底面圆的半径是r,则2πr=4π.解得:r=2.故答案是:2.3、(2016 苏州二模)如图,将矩形纸片的两个直角分别沿EF、DF翻折,点B恰好落在AD边上的点B'处,点C恰好落在边B F'上.若AE=3,BE=5,则FC= .答案:43. (2016·黑龙江齐齐哈尔·一模)如图,矩形ABCD 的边长AB=8,AD=4,若将△DCB沿BD所在直线翻折,点C落在点F处,DF与AB交于点E. 则cos∠ADE = .答案:45FA BCDE第1题4. (2016·上海浦东·模拟)在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC 上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是3585.(2016·上海闵行区·二模)如图,已知在△ABC中,AB=AC,tan∠B=,将△ABC翻折,使点C与点A重合,折痕DE交边BC于点D,交边AC于点E,那么的值为.【考点】翻折变换(折叠问题).【分析】作AF⊥BC于F,连接AD,设AF=a,DC=x,根据相似三角形的性质用a表示CD和BD,计算即可.【解答】解:作AF⊥BC于F,连接AD,设AF=a,DC=x,∵tan∠B=,∴BF=3a,由勾股定理得,AB=a,∵DE⊥A C,AF⊥BC,∴△CED∽△CFA,∴=,即=,解得x=a,∴DF=CF﹣CD=a,∴BD=a,∴=.故答案为:.【点评】本题考查的是翻折变换的性质,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.CBFA EDHG三、解答题1. (2016·绍兴市浣纱初中等六校·5月联考模拟) 如图矩形ABCD 是一张标准纸长BC=AD=2,AB=CD=1,把△BCF 沿CF 对折使点B 恰好落在边AD 上的点E 处,再把△DCH 沿CH 对折使点D 落在线段CE 上的点G 处。
初中数学中考模拟模拟考试题分类 图形的展开与叠折考试卷及答案.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.第1题A.1个 B.2个 C.3个 D.4个试题2:如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有种拼接方法.试题3:现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为cm.试题4:评卷人得分如图,将矩形纸片的两个直角分别沿、翻折,点恰好落在边上的点处,点恰好落在边上.若=3,=5,则= .试题5:如图,矩形ABCD 的边长AB=8,AD=4,若将△DCB沿BD所在直线翻折,点C落在点F处,DF与AB交于点E. 则cos∠ADE = .试题6:在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是试题7:如图,已知在△ABC中,AB=AC,tan∠B=,将△ABC翻折,使点C与点A重合,折痕DE交边BC于点D,交边AC于点E,那么的值为.试题8:如图矩形ABCD是一张标准纸长BC=AD=,AB=CD=1,把△BCF沿CF对折使点B恰好落在边AD上的点E处,再把△DCH 沿CH对折使点D落在线段CE上的点G处。
求证△AEF≌△GHE;(2)利用该图形试求tan22.5°的值。
试题9:如图1,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.(1)操作:如图2,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在B D边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).求证:BH•GD=BF2(2)操作:如图3,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG ∥CE,交FE于点G,连接DG.探究:FD+DG= .请予证明.试题1答案:C【考点】翻折变换(折叠问题);相似三角形的判定与性质.【分析】根据翻折变换的性质、相似三角形的判定定理解答即可.【解答】解:由翻折变换的性质可知,∠AEB+∠FEC=×180°=90°,则∠AEF=90°,即∠2=90°,①正确;由图形可知,∠1<∠AEC,②错误;∵∠2=90°,∴∠1+∠3=90°,又∠1+∠BAE=90°,∴∠BAE=∠3,④正确;∵∠BAE=∠3,∠B=∠C=90°,∴△ABE∽△ECF,③正确.故选:C.【点评】本题考查的是翻折变换的性质,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.试题2答案:4【考点】几何体的展开图.【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可.【解答】解:如图所示:故小丽总共能有4种拼接方法.故答案为:4.试题3答案:2【考点】圆锥的计算.【分析】根据扇形的弧长等于圆锥的底面周长,利用扇形的弧长公式即可求得圆锥的底面周长,然后根据圆的周长公式即可求解.【解答】解:圆锥的底面周长是:=4π.设圆锥底面圆的半径是r,则2πr=4π.解得:r=2.故答案是:2.试题4答案:4试题5答案:试题6答案:试题7答案:【考点】翻折变换(折叠问题).【分析】作AF⊥BC于F,连接AD,设AF=a,DC=x,根据相似三角形的性质用a表示CD和BD,计算即可.【解答】解:作AF⊥BC于F,连接AD,设AF=a,DC=x ,∵tan∠B=,∴BF=3a,由勾股定理得,AB=a,∵DE⊥A C,AF⊥BC,∴△CED∽△CFA,∴=,即=,解得x=a,∴DF=CF﹣CD=a,∴BD=a,∴=.故答案为:.【点评】本题考查的是翻折变换的性质,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.试题8答案:解:(1)设矩形ABCD的宽CD为1,则CB=∵△BCF、△DCH分别沿CF、CH对折得到△ECF、△GCH∴CE=CB=,CG=CD=1,∠FEC=∠B=Rt∠,∠HGC=∠HGE=∠D =Rt∠∴CE=CD,∠HGE=∠A=Rt∠∴tan∠DEC=,EG=EC-GC= -1∴∠DEC=45°∴△DEC是等腰三角形,∠AEF=90°-45°=45°∴DE=DC,∠AEF=∠DEC∴AE=AD-DE=-1∴AE= EG∴△AEF≌△GHE(2)由(1)可知∠DC H=∠GCH=45°÷2=22.5°,DH=GH△HEG是等腰直角三角形∴EG=HG= DH=-1∴tan∠DCH=试题9答案:【考点】相似三角形的判定与性质;全等三角形的判定与性质;菱形的性质;旋转的性质.【专题】压轴题.【分析】(1)根据菱形的性质以及相似三角形的判定得出△BFH∽△DGF,即可得出答案;(2)利用已知以及平行线的性质证明△ABF≌△ADG,即可得出FD+DG的关系.【解答】证明:(1)∵将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,∴∠B=∠D,∵将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,∴BF=DF,∵∠HFG=∠B,又∵∠HFD=∠HFG+∠GFD=∠B+∠BHF∴∠GFD=∠BHF,∴△BFH∽△DGF,∴,∴BH•GD=BF2;(2)∵AG∥CE,∴∠FAG=∠C,∵∠CFE=∠CEF,∴∠AGF=∠CFE,∴AF=AG,∵∠BAD=∠C,∴∠BAF=∠DAG,又∵AB=AD,∴△ABF≌△ADG,∴FB=DG,∴FD+DG=BD,故答案为:BD.【点评】此题主要考查了相似三角形的判定以及全等三角形的判定,根据等腰三角形的性质得出∠BAF=∠DAG是解决问题的关键.。
中考数学考前小题狂做专题18图形的展开与叠折含解析试题
卜人入州八九几市潮王学校图形的展开与叠折1.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C 与点O重合,折痕MN恰好过点G假设AB=,EF=2,∠H=120°,那么DN的长为〔〕A .B .C .﹣D.2﹣2.如图是一个正方体纸盒的外外表展开图,那么这个正方体是〔〕A .B .C .D .3.如图是一个正方体的外表展开图,那么原正方体中与“你〞字所在面相对的面上标的字是〔〕A.遇B.见C.未D.来4.把以下列图形折成一个正方体的盒子,折好后与“中〞相对的字是〔〕A.祝B.你C.顺D.利5.小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了〔〕A.1次B.2次C.3次D.4次6.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,那么a,b,c的大小关系是〔〕A.c>a>bB.b>a>cC.c>b>aD.b>c>a7.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全一样.现把它们摆放成不同的位置〔如图〕,请你根据图形判断涂成绿色一面的对面涂的颜色是A.绿白黑红绿蓝白黄红8.如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,那么线段BP的长不可能是A.3B.4 C.D.10第7题图9.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,假设∠2=40°,那么图中∠1的度数为〔〕A.115°B.120°C.130°D.140°10.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F 处,连接CF,那么CF的长为〔〕A .B .C .D .参考答案1.【考点】矩形的性质;菱形的性质;翻折变换〔折叠问题〕.【分析】延长EG交DC于P点,连接GC、FH,那么△GCP为直角三角形,证明四边形OGCM 为菱形,那么可证OC=OM=CM=OG=,由勾股定理求得GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案.【解答】解:长EG交DC于P点,连接GC、FH;如下列图:那么CP=DP=CD=,△GCP为直角三角形,∵四边形EFGH是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG⊥FH,∴OG=GH•sin60°=2×=,由折叠的性质得:CG=OG=,OM=CM,∠MOG=∠MCG,∴PG==,∵OG∥CM,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM∥CG,∴四边形OGCM为平行四边形,∵OM=CM,∴四边形OGCM为菱形,∴CM=OG=,根据题意得:PG是梯形MCDN的中位线,∴DN+CM=2PG=,∴DN=﹣;应选:C.2.【考点】几何体的展开图.【分析】根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.应选C.3.【考点】几何体的展开图.【分析】正方体的外表展开图,相对的面之间一定相隔一个正方形,根据这一特点答题.【解答】解:正方体的外表展开图,相对的面之间一定相隔一个正方形,“遇〞与“的〞是相对面,“见〞与“未〞是相对面,“你〞与“来〞是相对面.应选D.4.答案:C考点:正方体的展开。
精选-中考数学真题分类汇编第一期专题18图形的展开与叠折试题含解析
图形的展开与叠折一、选择题1.(2018•四川凉州•3分)一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山【分析】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.2.(2018·天津·3分)如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3(2018·新疆生产建设兵团·5分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cmB.4cmC.3cmD.2cm【分析】根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.【点评】本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.4(2018·台湾·分)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A.B.C.D.【分析】三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.【解答】解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D选项中,展开图能折叠成一个三棱柱,符合题意;故选:D.【点评】本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.5.(2018•河南•3分)某正方体的每个面上那有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我6.(2018·浙江衢州·3分)如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB 边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°【考点】平行线的性质【分析】由折叠可得:∠DGH=∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°.【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得:∠DGH=∠DGE=74°.∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°.故选D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.7.(2018·浙江舟山·3分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. B.C. D.【考点】剪纸问题【解析】【解答】解:沿虚线剪开以后,剩下的图形先向右上方展开,缺失的部分是一个等腰直角三角形,用直角边与正方形的边是分别平行的,再沿着对角线展开,得到图形A。
中考数学真题分类汇编(第三期)专题18图形展开与叠折试题(含解析)
图形的张开与叠折一. 选择题1. ( 2018·湖北江汉· 3 分)如图是某个几何体的张开图,该几何体是()A.三棱柱B.三棱锥C.圆柱 D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.2.( 2018?莱芜 ?3 分)已知圆锥的三视图以下列图,则这个圆锥的侧面张开图的面积为()2222A. 60π cm B. 65π cm C. 120π cm D. 130π cm【分析】先利用三视图获取底面圆的半径为 5cm,圆锥的高为 12cm,再依照勾股定理计算出母线长为 13cm,尔后依照锥的侧面张开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:依照三视图获取圆锥的底面圆的直径为 10cm,即底面圆的半径为 5cm,圆锥的高为12cm,所以圆锥的母线长 ==13,2所以这个圆锥的侧面积=?2π ?5?13=65π( cm).应选: B.【议论】此题观察了圆锥的计算:圆锥的侧面张开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也观察了三视图.3.(2018?陕西 ?3 分)如图,是一个几何体的表面张开图,则该几何体是A. 正方体B.长方体C.三棱柱D.四棱锥【答案】 C【分析】依照表面张开图中有两个三角形,三个长方形,由此即可判断出此几何体为三棱柱。
【详解】观察可知图中有一对全等的三角形,有三个长方形,所以此几何体为三棱柱,应选 C【点睛】此题观察了几何体的张开图,熟记常有立体图形的张开图特点是解决此类问题的要点.4. ( 2018·江苏常州· 2 分)以下列图形中,哪一个是圆锥的侧面张开图?()A.B.C.D.【分析】依照圆锥的侧面张开图的特点作答.【解答】解:圆锥的侧面张开图是圆滑的曲面,没有棱,可是扇形.应选:B.【议论】此题观察了几何体的张开图,注意圆锥的侧面张开图是扇形.5. ( 2018·湖北江汉·心角的度数是()A.120°B.180°3 分)一个圆锥的侧面积是底面积的C.240°D.300°2 倍,则该圆锥侧面张开图的圆【分析】依照圆锥的侧面积是底面积的 2 倍可获取圆锥底面半径和母线长的关系,利用圆锥侧面张开图的弧长=底面周长即可获取该圆锥的侧面张开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r ,2∴底面周长 =2π r ,底面面积 =π r ,侧面面积 =π rR,2∴2π r =π rR,∴R=2r ,设圆心角为n,则=2πr= π R,解得, n=180°,应选: B.6.( 2018·湖北江汉· 3 分)如图,正方形 ABCD中, AB=6,G是 BC的中点.将△ ABG沿 AG 对折至△ AFG,延长 GF交 DC于点 E,则 DE的长是()A. 1B.C. 2D.【分析】依照翻折变换的性质和正方形的性质可证Rt △AFE≌ Rt△ ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:∵AB=AD=AF,∠ D=∠AFE=90°,在 Rt △ ABG和 Rt △ AFG中,∵,∴R t △ AFE≌ Rt △ ADE,∴E F=DE,设 DE=FE=x,则 EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在 Rt △ ECG中,依照勾股定理,得:( 6﹣x)2+9=(x+3)2,解得 x=2.则 DE=2.应选: C.5.( 2018·四川省攀枝花·3分)如图,在矩形 ABCD中, E 是 AB边的中点,沿 EC对折矩形ABCD,使 B 点落在点P 处,折痕为EC,连接 AP并延长 AP交 CD于 F 点,连接CP并延长 CP 交 AD于 Q点.给出以下结论:①四边形 AECF为平行四边形;②∠ PBA=∠APQ;③△ FPC为等腰三角形;④△ APB≌△ EPC.其中正确结论的个数为()A.1B.2C.3D. 4解:①如图, EC, BP交于点 G;∵点 P 是点 B 关于直线EC的对称点,∴ EC垂直均分BP,∴ EP=EB,∴∠ EBP=∠ EPB.∵点 E 为 AB中点,∴ AE=EB,∴ AE=EP,∴∠ PAB=∠ PBA.∵∠ PAB+∠PBA+∠ APB=180°,即∠ PAB+∠ PBA+∠ APE+∠ BPE=2(∠ PAB+∠ PBA)=180°,∴∠P AB+∠PBA=90°,∴ AP⊥ BP,∴ AF∥ EC;∵AE∥ CF,∴四边形AECF是平行四边形,故①正确;②∵∠ APB=90°,∴∠ APQ+∠BPC=90°,由折叠得: BC=PC,∴∠ BPC=∠ PBC.∵四边形 ABCD是正方形,∴∠ ABC=∠ABP+∠PBC=90°,∴∠ ABP=∠APQ,故②正确;③∵ AF∥ EC,∴∠ FPC=∠ PCE=∠ BCE.∵∠ PFC是钝角,当△ BPC是等边三角形,即∠ BCE=30°时,才有∠FPC=∠ FCP,如右图,△PCF不用然是等腰三角形,故③不正确;④∵ AF=EC, AD=BC=PC,∠ ADF=∠EPC=90°,∴ Rt △ EPC≌△ FDA( HL).∵∠ ADF=∠APB=90°,∠ FAD=∠ ABP,当 BP=AD或△ BPC是等边三角形时,△ APB≌△FDA,∴△ APB≌△ EPC,故④不正确;其中正确结论有①②, 2 个.应选 B.7. (2018 ·四川省巴中市 3 分)毕业前夕,同学们准备了一份礼物送给自己的母校,现用一个正方体盒子进行包装,六个面上分别写上“祝、母、校、更、美、丽”,其中“祝”与“更”,“母”与“美”在相对的面上.则此包装盒的张开图(不考虑文字方向)不可以能是()A.B.C.D.【解答】解:选项D不可以能.原由:选项D,围成的立方体以下列图,不吻合题意,应选: D.二. 填空题1.(2018 ·辽宁省盘锦市)如图,是某立体图形的三视图,则这个立体图形的侧面张开图的面积是 65π .(结果保留π)【解答】解:由三视图可知圆锥的底面半径为5,高为12,所以母线长为13,所以侧面积为π rl= π×5×13=65 π .故答案为: 65π .2.( 2018·辽宁大连· 3 分)如图,矩形 ABCD中,AB=2,BC=3,点 E 为 AD上一点,且∠ ABE=30°,将△ ABE沿 BE翻折,获取△ A′BE,连接 CA′并延长,与 AD订交于点F,则 DF 的长为.解:如图作A′H⊥ BC于 H.∵∠ ABC=90°,∠ ABE=∠EBA′=30°,∴∠ A′BH=30°,∴A′H= BA′=1,BH= A′H=,∴CH=3﹣.∵△ CDF∽△ A′HC,∴=,∴=,∴ DF=6﹣2.故答案为: 6﹣ 2.3.(2018·广西梧州·3分)如图,圆锥侧面张开获取扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是4.【分析】先依照圆锥的侧面张开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.【解答】解:设圆锥底面圆的半径为r ,∵A C=6,∠ ACB=120°,∴==2π r ,∴r=2 ,即: OA=2,在 Rt △ AOC中, OA=2, AC=6,依照勾股定理得, OC==4 ,故答案为: 4.【议论】此题主要观察了扇形的弧长公式,勾股定理,求出OA是解此题的要点.三. 解答题1. ( 2018·湖北荆州· 8 分)如图,对折矩形纸片将纸片展平;再一次折叠,使点 D 落到 MN上的点ABCD,使F 处,折痕AB与 DC重合,获取折痕MN,AP 交 MN于 E;延长 PF 交 AB于 G.求证:(1)△ AFG≌△ AFP;(2)△ APG为等边三角形.【解答】证明:( 1)由折叠可得:M、 N分别为 AD、 BC的中点,∵DC∥ MN∥AB,∴F为 PG的中点,即 PF=GF,由折叠可得:∠ PFA=∠D=90°,∠ 1=∠2,在△ AFP和△ AFG中,,∴△ AFP≌△ AFG( SAS);(2)∵△AFP≌△AFG,∴AP=AG,∵AF⊥ PG,∴∠ 2=∠ 3,∵∠ 1=∠ 2,∴∠ 1=∠ 2=∠3=30°,∴∠ 2+∠3=60°,即∠ PAG=60°,∴△ APG为等边三角形.。
全国中考数学试卷解析分类汇编(第二期)专题18图形的展开与叠折
全国中考数学试卷解析分类汇编(第二期)专题18图形的展开与叠折一.选择题1.(2015•宜昌,第9题3分)下列图形中可以作为一个三棱柱的展开图的是()AB.C.D.考点:几何体的展开图..分析:三棱柱展开后,侧面是三个长方形,上下底各是一个三角形.解答:解:三棱柱展开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有A是三棱柱的展开图.故选:A点评:此题主要考查了三棱柱表面展开图,注意上、下两底面应在侧面展开图长方形的两侧.2.(2015•聊城,第9题3分)图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美考点:专题:正方体相对两个面上的文字..分析:根据两个面相隔一个面是对面,再根据翻转的规律,可得答案.解答:解:第一次翻转梦在下面,第二次翻转中在下面,第三次翻转国在下面,第四次翻转城在下面,城与梦相对,故选:A.点评:本题考查了正方体相对两个面上的文字,两个面相隔一个面是对面,注意翻转的顺序确定每次翻转时下面是解题关键.3.(2015江苏常州第8题2分)将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是A.cm2B.8cm2C.cm2D.16cm24.(2015•乌鲁木齐,第7题4分)如图,△ABC的面积等于6,边AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,点P在直线AD上,则线段BP的长不可能是()A.3B.4C.5D.6考点:翻折变换(折叠问题)..分析:过B作BN⊥AC于N,BM⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是4,得出选项即可.解答:解:如图:过B作BN⊥AC于N,BM⊥AD于M,∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,∴∠C′AB=∠CAB,∴BN=BM,∵△ABC的面积等于6,边AC=3,∴×AC×BN=6,∴BN=4,∴BM=4,即点B到AD的最短距离是4,∴BP的长不小于4,即只有选项A的3不正确,故选A.点评:本题考查了折叠的性质,三角形的面积,角平分线性质的应用,解此题的关键是求出B到AD的最短距离,注意:角平分线上的点到角的两边的距离相等.5.(2015•山东泰安,第20题3分)如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=4,则FD 的长为()A.2B.4C.D.2考点:翻折变换(折叠问题)..分析:根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解.解答:解:∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,∵在Rt△EDF和Rt△EGF中,,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,设DF=x,则BF=6+x,CF=6﹣x,在Rt△BCF中,(4)2+(6﹣x)2=(6+x)2,解得x=4.故选:B.点评:本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟记性质,找出三角形全等的条件EF=EC是解题的关键.6.(4分)(2015•铜仁市)(第8题)如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为()A.3B.C.5D.考点:翻折变换(折叠问题)..分析:首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE 的方程,解方程即可解决问题.解答:解:设ED=x,则AE=8﹣x;∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=42+(8﹣x)2,解得:x=5,∴ED=5.故选:C.点评:本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.7.(2015•恩施州第7题3分)如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0B.2C.数D.学考点:专题:正方体相对两个面上的文字..分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“数”相对的字是“1”;“学”相对的字是“2”;“5”相对的字是“0”.故选:A.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.(2015•济南,第12题3分)将一块正方形铁皮的四角各剪去一个边长为3cm 的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cmB.13cmC.14cmD.16cm考点:一元二次方程的应用.专题:几何图形问题.分析:设正方形铁皮的边长应是x厘米,则做成没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据长方体的体积计算公式列方程解答即可.解答:解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.点评:此题主要考查长方体的体积计算公式:长方体的体积=长×宽×高,以及平面图形折成立体图形后各部分之间的关系.二.填空题1.(2015•江苏泰州,第16题3分)如图,矩形ABCD中,AB=8,BC=6,P为AD 上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为4.8.考点:翻折变换(折叠问题);勾股定理;矩形的性质..分析:由折叠的性质得出EP=AP,∠E=∠A=90°,BE=AB=8,由ASA证明△ODP≌△OEG,得出OP=OG,PD=GE,设AP=EP=x,则PD=GE=6﹣x,DG=x,求出CG、BG,根据勾股定理得出方程,解方程即可.解答:解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=8﹣x,BG=8﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣x)2=(x+2)2,解得:x=4.8,∴AP=4.8;故答案为:4.8.点评:本题考查了矩形的性质、折叠的性质、全等三角形的判定与性质、勾股定理;熟练掌握翻折变换和矩形的性质,并能进行推理计算是解决问题的关键.2.(2015•宁夏第15题3分)如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为.考点:翻折变换(折叠问题)..分析:设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.解答:解:设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,∴BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中,由勾股定理得:AF2=52﹣32=16,∴AF=4,DF=5﹣4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3﹣x)2+12,解得:x=,故答案为.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理、矩形的性质、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.3.(2015•青海西宁第20题2分)如图,△ABC是边长为1的等边三角形,BD 为AC边上的高,将△ABC折叠,使点B与点D重合,折痕EF交BD于点D1,再将△BEF折叠,使点B于点D1重合,折痕GH交BD1于点D2,依次折叠,则BDn=.考点:翻折变换(折叠问题);等边三角形的性质.专题:规律型.分析:根据等边三角形的性质依次求出边上的高,找出规律即可得到结果.解答:解:∵△ABC是边长为1的等边三角形,BD为AC边上的高,∴BD=,∵△BEF是边长为等边三角形,∴BD1=,∴BD2=,…∴BDn=,故答案为:.点评:本题考查了翻折变换﹣折叠问题,等边三角形的性质,根据已知条件找出规律是解题的关键.4.(2015•滨州,第17题4分)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为(10,3).考点:翻折变换(折叠问题);坐标与图形性质.分析:根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理来求OF=6,然后设EC=x,则EF=DE=8﹣x,CF=10﹣6=4,根据勾股定理列方程求出EC可得点E的坐标.解答:解:∵四边形A0CD为矩形,D的坐标为(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10﹣6=4,设EC=x,则DE=EF=8﹣x,在Rt△CEF中,EF2=EC2+FC2,即(8﹣x)2=x2+42,解得x=3,即EC的长为3.∴点E的坐标为(10,3),故答案为:(10,3).点评:本题考查折叠的性质:折叠前后两图形全等,即对应线段相等,对应角相等;对应点的连线段被折痕垂直平分.也考查了矩形的性质以及勾股定理.三.解答题1.(2015江苏连云港第22题10分)如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.(1)求证:∠EDB=∠EBD;(2)判断AF与DB是否平行,并说明理由.【思路分析】(1)由折叠可知:∠CDB=∠EDB,根据平行四边形的性质,易知:∠CDB=∠EBD,从而可证(2)由折叠可知:CD=DF,根据平行四边形的性质,易知:CD=AB,从而可证DF=AB,由∠EDB=∠EBD可知:DE=BE,从而有AE=EF,∠EAF=∠EFA,再根据三角形的内角和定理易知,∠EDB=∠EFA,所以AF与DB平行【答案】(1)由折叠可知:∠CDB=∠EDB……………………………………1分∵四边形ABCD是平行四边形∴DC∥AB,∴∠CDB=∠EBD……………………………………2分∴∠EDB=∠EBD.……………………………………4分(2)AF∥DB.∵∠EDB=∠EBD,∴DE=BE……………………………………5分由折叠可知:DC=DF,∵四边形ABCD是平行四边形,∴DC=AB,∴DF=AB,∴AE=EF,……………………………………6分∴∠EAF=∠EFA,在△BED中,∠EDB+∠EBD+∠DEB=180°,即2∠EDB+∠DEB=180°.同理在△AEF中,2∠EFA+∠AEF=180°.∵∠DEB=∠AEF,∴∠EDB=∠EFA,……………………………………8分∴AF∥DB.……………………………………10分【点评】本题考查了图形的折叠的运用及思考方法,平行四边形的性质,等腰三角形的性质及其判定,平行的判定。
中考数学专题复习之 18 图形的展开与叠折(含解析)1 精编
18 图形的展开与叠折(含解析)一、选择题1.(3分)(2016•安顺)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.1.(3分)(2016•深圳)把下列图标折成一个正方体的盒子,折好后与“中”相对的字是()A.祝B.你C.顺D.利【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“祝”与面“利”相对,面“你”与面“考”相对,面“中”与面“顺”相对.故选C.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.(3分)(2016•舟山)把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则 BC的度数是()A.120°B.135°C.150°D.165°【分析】直接利用翻折变换的性质结合锐角三角函数关系得出∠BOD=30°,再利用弧度与圆心角的关系得出答案.【解答】解:如图所示:连接BO,过点O作OE⊥AB于点E,由题意可得:EO=12BO,AB∥DC,可得∠EBO=30°,故∠BOD=30°,则∠BOC=150°,故 BC的度数是150°.故选:C.【点评】此题主要考查了翻折变换的性质以及弧度与圆心角的关系,正确得出∠BOD的度数是解题关键.3.(3分)(2016•连云港)如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面是的字是()A.丽B.连C.云D.港【考点】专题:正方体相对两个面上的文字.【分析】正方体的平面展开图中,相对面的特点是必须相隔一个正方形,据此作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“港”是相对面,“丽”与“连”是相对面,“的”与“云”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(4分)(2016•黔东南州)将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为()A.2 B 1 C D.1【考点】简单几何体的三视图.【分析】先求得正方体的一个面的上的对角线的长度,然后可求得正方体视图面积的最大值.【解答】解:正方体正视图为正方形或矩形.∵正方体的棱长为1,∴边长为1.∵始终保持正方体的一个面落在桌面上,∴正视图(矩形)的宽为1.∴最大值面积=1故选:C .【点评】本题主要考查的是正方体的正视图,判断出正方体的正视图的形状是解题的关键.5.(3分)(2016•荆门)如图,从一块直径为24cm 的圆形纸片上剪出一个圆心角为90°的扇形ABC ,使点A ,B ,C 在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( )A .12cmB .6cmC ..【考点】圆锥的计算.【分析】圆的半径为12,求出AB 的长度,用弧长公式可求得弧BC 的长度,圆锥的底面圆的半径=圆锥的弧长÷2π.【解答】解:,∴»BC =90801p ´∴圆锥的底面圆的半径(2π).故选C .【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.6.(3分)(2016•达州)如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是( )A .遇B .见C .未D .来【考点】几何体的展开图.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“遇”与“的”是相对面,“见”与“未”是相对面,“你”与“来”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.(3分)(2016•枣庄)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑【分析】根据图形可得涂有绿色一面的邻边是白,黑,红,蓝,即可得到结论.【解答】解:∵涂有绿色一面的邻边是白,黑,红,蓝,∴涂成绿色一面的对面的颜色是黄色,故选C.【点评】本题考查了正方体相对两个面上的文字问题,此类问题可以制作一个正方体,根据题意在各个面上标上图案,再确定对面上的图案,可以培养动手操作能力和空间想象能力.8.(3分)(2016•泰安)如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()A.90°B.120°C.135°D.150°【考点】由三视图判断几何体;圆锥的计算.【分析】根据圆锥的底面半径得到圆锥的底面周长,也就是圆锥的侧面展开图的弧长,根据勾股定理得到圆锥的母线长,利用弧长公式可求得圆锥的侧面展开图中扇形的圆心角.【解答】解:∵圆锥的底面半径为3,∴圆锥的底面周长为6π,∵圆锥的高是,设扇形的圆心角为n°,∴9180n p´=6π,解得n=120.答:圆锥的侧面展开图中扇形的圆心角为120°.故选B.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.9.(3分)(2016•威海)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE 沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.95B.125C.165D.185【考点】矩形的性质;翻折变换(折叠问题).【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴,∴BH=12 5,则BF=245,∵FE=BE=EC,∴∠BFC=90°,∴CF=185.故选:D.【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键10.(3分)(2016•资阳)如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.【考点】几何体的展开图.【分析】根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C.【点评】本题考查的是几何体的展开图,此类问题从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.11.(3分)(2016•天津)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE【考点】翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选D.【点评】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.12.(2016•衢州)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看,圆锥看见的是:圆和点,两个正方体看见的是两个正方形.故答案为:C.【点评】此题主要考查了三视图的知识,关键是掌握三视图的几种看法13.(4分)(2016•黔东南州)将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为()A.2 B 1 C D.1【考点】简单几何体的三视图.【分析】先求得正方体的一个面的上的对角线的长度,然后可求得正方体视图面积的最大值.【解答】解:正方体正视图为正方形或矩形.∵正方体的棱长为1,∴边长为1.∵始终保持正方体的一个面落在桌面上,∴正视图(矩形)的宽为1.∴最大值面积=1故选:C.【点评】本题主要考查的是正方体的正视图,判断出正方体的正视图的形状是解题的关键.14.(3分)(2016•达州)如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来【考点】几何体的展开图.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“遇”与“的”是相对面,“见”与“未”是相对面,“你”与“来”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.15.(3分)(2016•枣庄)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑【分析】根据图形可得涂有绿色一面的邻边是白,黑,红,蓝,即可得到结论.【解答】解:∵涂有绿色一面的邻边是白,黑,红,蓝,∴涂成绿色一面的对面的颜色是黄色,故选C.【点评】本题考查了正方体相对两个面上的文字问题,此类问题可以制作一个正方体,根据题意在各个面上标上图案,再确定对面上的图案,可以培养动手操作能力和空间想象能力.16.(3分)(2016•泰安)如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()A.90°B.120°C.135°D.150°【考点】由三视图判断几何体;圆锥的计算.【分析】根据圆锥的底面半径得到圆锥的底面周长,也就是圆锥的侧面展开图的弧长,根据勾股定理得到圆锥的母线长,利用弧长公式可求得圆锥的侧面展开图中扇形的圆心角.【解答】解:∵圆锥的底面半径为3,∴圆锥的底面周长为6π,∵圆锥的高是,设扇形的圆心角为n°,∴9180n p´=6π,解得n=120.答:圆锥的侧面展开图中扇形的圆心角为120°.故选B.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.二、填空题1.(3分)(2016•苏州)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC 上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为【分析】作DF⊥B′E于点F,作B′G⊥AD于点G,首先根据有一个角为60°的等腰三角形是等边三角形判定△BDE是边长为4的等边三角形,从而根据翻折的性质得到△B′DE也是边长为4的等边三角形,从而GD=B′F=2,然后根据勾股定理得到B′G=用勾股定理求得答案即可.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴∵AB=10,∴AG=10﹣6=4,∴AB′===故答案为:【点评】本题考查了翻折变换的性质,解题的关键是根据等边三角形的判定定理判定等边三角形,难度不大.2.(3分)(2016•孝感)若一个圆锥的底面圆半径为3cm,其侧面展开图的圆心角为120°,则圆锥的母线长是9cm.【考点】圆锥的计算.【分析】利用圆锥的底面周长等于圆锥的侧面展开图的弧长即可求解.【解答】解:设母线长为l,则12023 180lππ⨯=⨯解得:l=9.故答案为:9.【点评】考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.3.(3分)(2016•常德)如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D 落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=55°.【考点】平行四边形的性质.【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.【解答】解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.【点评】本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.4.(4分)(2016•金华)如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是2或5.【考点】翻折变换(折叠问题).【分析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.【解答】解:∵Rt △ABC 纸片中,∠C =90°,AC =6,BC =8,∴AB=10,∵以AD 为折痕△ABD 折叠得到△AB ′D ,∴BD =DB ′,AB ′=AB =10.如图1所示:当∠B ′DE =90°时,过点B ′作B ′F ⊥AF ,垂足为F .设BD =DB ′=x ,则AF =6+x ,FB ′=8﹣x .在Rt △AFB ′中,由勾股定理得:AB ′2=AF 2+FB ′2,即()()2226810x x ++-=. 解得:12x =,20x =(舍去).∴BD =2.如图2所示:当∠B ′ED =90°时,C 与点E 重合.∵AB ′=10,AC =6,∴B ′E =4.设BD =DB ′=x ,则CD =8﹣x .在Rt △′BDE 中,DB ′2=DE 2+B ′E 2,即()22284x x =-+. 解得:x =5.∴BD =5.综上所述,BD 的长为2或5.故答案为:2或5.【点评】本题主要考查的是翻折的性质、勾股定理的应用,根据勾股定理列出关于x 的方程是解题的关键.5.(3分)(2016•张家界)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在E 处,EQ 与BC 相交于F .若AD=8cm ,AB=6cm ,AE=4cm .则△EBF 的周长是 8 cm .【考点】翻折变换(折叠问题);矩形的性质.【分析】设AH=a ,则DH=AD ﹣AH=8﹣a ,通过勾股定理即可求出a 值,再根据同角的余角互补可得出∠BFE=∠AEH ,从而得出△EBF ∽△HAE ,根据相似三角形的周长比等于对应比即可求出结论.【解答】解:设AH=a ,则DH=AD ﹣AH=8﹣a ,在Rt △AEH 中,∠EAH=90°,AE=4,AH=a ,EH=DH=8﹣a ,∴EH 2=AE 2+AH 2,即(8﹣a )2=42+a 2,解得:a=3.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH .又∵∠EAH=∠FBE=90°,∴△EBF ∽△HAE , ∴EBFHAEC C =BE AH =AB AE AH =23. ∵C △HAE =AE+EH+AH=AE+AD=12, ∴C △EBF =23C △HAE =8. 故答案为:8.【点评】本题考查了翻折变换、矩形的性质、勾股定理以及相似三角形的判定及性质,解题的关键是找出△EBF ∽△HAE .本题属于中档题,难度不大,解决该题型题目时,通过勾股定理求出三角形的边长,再根据相似三角形的性质找出周长间的比例是关键.6.(3分)(2016•吉林)在三角形纸片ABC 中,∠C =90°,∠B=30°,点D (不与B ,C 重合)是BC 上任意一点,将此三角形纸片按下列方式折叠,若EF 的长度为a ,则△DEF 的周长为 3a (用含a 的式子表示).【考点】翻折变换(折叠问题).【分析】由折叠的性质得出BE =EF =a ,DE =BE ,则BF =2a ,由含30°角的直角三角形的性质得出DF =12BF =a ,即可得出△DEF 的周长. 【解答】解:由折叠的性质得:B 点和D 点是对称关系,DE =BE ,则BE =EF =a ,∴BF =2a ,∵∠B =30°,∴DF =12BF =a , ∴△DEF 的周长=DE +EF +DF =BF +DF =2a +a =3a ;故答案为:3a .【点评】本题考查了翻折变换的性质、含30°角的直角三角形的性质、三角形周长的计算;熟练掌握翻折变换的性质,由含30°角的直角三角形的性质得出DF =a 是解决问题的关键.三、解答题1.1.(14分)(2016广西省来宾)如图,在矩形ABCD 中,AB =10,AD =6,点M 为AB 上的一个动点,将矩形ABCD 沿某一直线对折,使点C 与点M 重合,该直线与AB (或BC )、CD (或DA )分别交于点P 、Q .(1)用直尺和圆规在图甲中画出折痕所在直线(不要求写出画法,但要保留作图痕迹);(2)如果PQ 与AB 、CD 都相交,试判断△MPQ 的形状并证明你的结论;(3)设AM =x ,d 为点M 到直线PQ 的距离,y =d 2.①求y 关于x 的函数解析式,并指出x 的取值范围;②当直线PQ 恰好通过点D 时,求点M 到直线PQ 的距离.【考点】 折叠;尺规作图;勾股定理;函数解析式;方程思想.【分析】本题考查了尺规作图,矩形的性质,折叠(轴对称)的性质,等腰三角形、直角三角形的判定与性质,勾股定理,求函数解析式等知识.(1)因为沿直线PQ 折叠后,点C 与点M 重合,所以点C 与点M 关于直线PQ 对称,即折痕所在直线PQ 就是线段CM 的中垂线.具体画法:①连CM ;②分别以点C 、点M 为圆心,以大于21CM 长为半径画弧,两弧分别交于点1O 、2O ;③连1O 2O ,交AB 于点P 、交CD 于点Q ,则直线PQ 就是折痕所在直线.(2)猜想并证明△MPQ 是等腰三角形.先连MQ ,得到△MPQ ;根据“点C 与点M 关于直线PQ 对称(即PQ 是线段CM 的中垂线)”得∠MQP =∠CQP ;根据平行线的性质得∠CQP =∠MPQ ;那么∠MQP =∠MPQ ,从而MP =MQ ,△MPQ 是等腰三角形得证.(3)①分两种情况(直线PQ 与AB (或BC )、CD (或DA )分别交于点P 、Q )考虑,画出图形,在Rt △BCM 中利用勾股定理可求得y 关于x 的函数解析式;对于极端情况(x =0或x =10),分别画图考察,得到x 的取值范围是0≤x≤10;②当直线PQ 恰好通过点D 时,画出图形,在Rt △ADM 中利用勾股定理求得x 的值,进一步利用①中得到的函数解析式求得y 的值,从而求得点M 到直线PQ 的距离.(1)【解析】解:(1)如图所示,直线PQ 就是折痕所在直线.(2)△MPQ 是等腰三角形.证明如下:如图,连MQ ;∵点C 与点M 关于直线PQ 对称,∴QC =QM ,∴PQ 平分等腰△MQC 的顶角∠MQC ,即∠MQP =∠CQP ;∵四边形ABCD 是矩形,∴CQ ∥MP ,∴∠CQP =∠MPQ ;∴MP =MQ ,即△MPQ 是等腰三角形.(3)①如图,当直线PQ 与AB 、CD 分别交于点P 、Q 时,设CM 与PQ 交于点O ,则OM =d ,CM =2d .在Rt △BCM 中,BM =AB -AM =10-x ,BC =6,根据勾股定理得:CM 2=BM 2+BC 2,即(2d )2=(10-x )2+62,∴d 2=41x 2-5x +34,而y =d 2,∴y =41x 2-5x +34; 如图,当直线PQ 与BC 、AD 分别交于点P 、Q 时,设CM 与PQ 交于点O ,则OM =d ,CM =2d .在Rt △BCM 中,同理求得y =41x 2-5x +34; 那么y 关于x 的函数解析式是y =41x 2-5x +34,其中0≤x≤10. ②如图,当直线PQ 恰好通过点D 时,根据折叠的性质知DM =CD =10;在Rt △ADM 中,根据勾股定理得AM 2+AD 2=DM 2,即x 2+62=102,解得x =±8(负值不合题意,舍去);当x =8时,根据①中y =41x 2-5x +34得y =41×82-5×8+34=10, 根据y =d 2得d 2=10,即d =±10(负值不合题意,舍去);故此时点M 到直线PQ 的距离是10.【点评】1、题(1)属于尺规作图题,关键是作出线段CM 的中垂线,难度不大;题(2)属于等腰三角形的判定,技巧在于可将(1)中所作图形简化,以排除线、角的干扰;题(3)的难点在于画出符合题意的图形,并且从较为复杂的图形中重点考察Rt △BCM ;在题(3)②中,画图时,判断点P 在BC 上也是很重要的一个环节.2、图形的折叠属于轴对称变换,折痕所在直线即为对称轴.由于折叠前后折叠部分图形的形状、大小不变,因此利用轴对称性,可以转化相等的线段,相等的角等关系.折叠前后的两个图形是关于折痕轴对称的全等形,有对应角、对应边及直角三角形出现,常与勾股定理、方程思想相结合.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的展开与叠折
一、选择题
1. (·河北石家庄·一模)按如图所示的方法折纸,下面结论正确的个数()
①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.
第1题
A.1个B.2个C.3个D.4个
【考点】翻折变换(折叠问题);相似三角形的判定与性质.
【分析】根据翻折变换的性质、相似三角形的判定定理解答即可.
【解答】解:由翻折变换的性质可知,∠AEB+∠FEC=×180°=90°,
则∠AEF=90°,即∠2=90°,①正确;
由图形可知,∠1<∠AEC,②错误;
∵∠2=90°,
∴∠1+∠3=90°,又∠1+∠BAE=90°,
∴∠BAE=∠3,④正确;
∵∠BAE=∠3,∠B=∠C=90°,
∴△ABE∽△ECF,③正确.
故选:C.
【点评】本题考查的是翻折变换的性质,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
二、填空题
1、(青岛一模)如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有 4 种拼接方法.
【考点】几何体的展开图.
【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可.
【解答】解:如图所示:
故小丽总共能有4种拼接方法.
故答案为:4.
2、(枣庄41中一模)现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为 2 cm.
【考点】圆锥的计算.
【分析】根据扇形的弧长等于圆锥的底面周长,利用扇形的弧长公式即可求得圆锥的底面周长,然后根据圆的周长公式即可求解.
【解答】解:圆锥的底面周长是: =4π.
设圆锥底面圆的半径是r,则2πr=4π.
解得:r=2.
故答案是:2.
3、(苏州二模)如图,将矩形纸片的两个直角分别沿EF、DF翻折,点B恰
好落在AD边上的点B'处,点C恰好落在边B F'上.若AE=3,BE=5,则FC= .
答案:4
3. (·黑龙江齐齐哈尔·一模)如图,矩形ABCD 的边长AB=8,AD=4,若将△DCB
沿BD所在直线翻折,点C落在点F处,DF与AB交于点E. 则cos∠ADE = .
答案:4 5
4.(·上海浦东·模拟)在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC
上,DE⊥AB,垂足为点E,将
△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是35
8
5.(·上海闵行区·二模)如图,已知在△ABC中,AB=AC,tan∠B=,将△ABC翻折,使点C与点A重合,折痕DE交边BC于点D,交边AC于点E,那么的值为.
【考点】翻折变换(折叠问题).
【分析】作AF⊥BC于F,连接AD,设AF=a,DC=x,根据相似三角形的性质用a表示CD和BD,计算即可.
【解答】解:作AF⊥BC于F,连接AD,
设AF=a,DC=x,
∵tan∠B=,
∴BF=3a,
由勾股定理得,AB=a,
∵DE⊥A C,AF⊥BC,
∴△CED∽△CFA,
∴=,即=,
解得x=a,
∴DF=CF﹣CD=a,
F
A B
C
D
E
第1题
C
B
F
A E
D
H
G
∴BD=a , ∴
=
.
故答案为:
.
【点评】本题考查的是翻折变换的性质,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
三、解答题
1. ( ·绍兴市浣纱初中等六校·5月联考模拟) 如图矩形ABCD 是一张标准纸长BC=AD=2,AB=CD=1,把△BCF 沿CF 对折使点B 恰好落在边AD 上的点E 处,再把△DCH 沿CH 对折使点D 落在线段CE 上的点G 处。
(1)求证△AEF ≌△GHE ;
(2)利用该图形试求tan22.5°的值。
解:(1)设矩形ABCD 的宽CD 为1,则CB=2
∵△BCF 、△DCH 分别沿CF 、CH 对折得到△ECF 、△GCH
∴CE=CB=2,CG=CD=1,∠FEC=∠B=Rt ∠,∠HGC=∠HGE=∠D =Rt ∠ ∴CE=2CD ,∠HGE=∠A=Rt ∠
∴tan ∠DEC=
2
2
=EC DC ,EG=EC-GC= 2 -1 ∴∠DEC=45°
∴△DEC 是等腰三角形,∠AEF=90°-45°=45° ∴DE=DC ,∠AEF=∠DEC ∴AE=AD-DE=2-1 ∴AE= EG
∴△AEF ≌△GHE (2)由(1)可知∠DC H=∠GCH=45°÷2=22.5°,DH=GH △HEG 是等腰直角三角形 ∴EG=HG= DH=2-1 ∴tan ∠DCH=
121
1
2-=-=CD DH
12-
2. (·广东东莞·联考)如图1,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一
起.
(1)操作:如图2,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F 在B D边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).
求证:BH•GD=BF2
(2)操作:如图3,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.
探究:FD+DG=DB.请予证明.
【考点】相似三角形的判定与性质;全等三角形的判定与性质;菱形的性质;旋转的性质.【专题】压轴题.
【分析】(1)根据菱形的性质以及相似三角形的判定得出△BFH∽△DGF,即可得出答案;(2)利用已知以及平行线的性质证明△ABF≌△ADG,即可得出FD+DG的关系.
【解答】证明:(1)∵将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,
∴∠B=∠D,
∵将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,
∴BF=DF,
∵∠HFG=∠B,
又∵∠HFD=∠HFG+∠GFD=∠B+∠BHF
∴∠GFD=∠BHF,
∴△BFH∽△DGF,
∴,
∴BH•GD=BF2;
(2)∵AG∥CE,
∴∠FAG=∠C,
∵∠CFE=∠CEF,
∴∠AGF=∠CFE,
∴AF=AG,
∵∠BAD=∠C,
∴∠BAF=∠DAG,
又∵AB=AD,
∴△ABF≌△ADG,
∴FB=DG,
∴FD+DG=BD,
故答案为:BD.
【点评】此题主要考查了相似三角形的判定以及全等三角形的判定,根据等腰三角形的性质得出∠BAF=∠DAG是解决问题的关键.。