线性代数第21次课
线性代数全套教学课件
aa2111xx11
a12 x2 a22 x2
a13 x3 a23 x3
b1 , b2 ,
a31x1 a32 x2 a33 x3 b3;
a11 b1 a13
得
D2 a21 b2 a23 ,
a31 b3 a33
aa2111xx11
a12 x2 a22 x2
a13 x3 a23 x3
当 a11a22 a12a21 0 时, 方程组的解为
x1
b1a22 a11a22
a12b2 , a12a21
x2
a11b2 a11a22
b1a21 . a12a21
(3)
由方程组的四个系数确定.
定义 由四个数排成二行二列(横为行、竖为列) 的数表
a11 a12
a21 a22
(4)
表达式 a11a22 a12a21称为数表(4)所确定的二阶
a31x1 a32 x2 a33 x3 b3;
a11 b1 a13
得
D2 a21 b2 a23 ,
a31 b3 a33
aa2111xx11
a12 x2 a22 x2
a13 x3 a23 x3
b1 , b2 ,
a31x1 a32 x2 a33 x3 b3;
a11 a12 a13 D a21 a22 a23
a31 a32 a33
aa2111xx11
a12 x2 a22 x2
a13 x3 a23 x3
b1 , b2 ,
a31x1 a32 x2 a33 x3 b3;
若记 或
b1 b2 b1
b1 a12 a13 D1 b2 a22 a23 ,
b3 a32 a33 a11 a12 a13 D a21 a22 a23 a31 a32 a33
《线性代数》知识点-归纳整理
《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式 .................................................................. 2-02、主对角线............................................................................ 2-03、转置行列式.......................................................................... 2-04、行列式的性质........................................................................ 3-05、计算行列式.......................................................................... 3-06、矩阵中未写出的元素 .................................................................. 4-07、几类特殊的方阵...................................................................... 4-08、矩阵的运算规则...................................................................... 4-09、矩阵多项式.......................................................................... 6-10、对称矩阵............................................................................ 6-11、矩阵的分块.......................................................................... 6-12、矩阵的初等变换...................................................................... 6-13、矩阵等价............................................................................ 6-14、初等矩阵............................................................................ 7-15、行阶梯形矩阵与行最简形矩阵......................................................... 7-16、逆矩阵 ............................................................................. 7-17、充分性与必要性的证明题 .............................................................. 8-18、伴随矩阵............................................................................ 8-19、矩阵的标准形:........................................................................ 9-20、矩阵的秩:........................................................................... 9-21、矩阵的秩的一些定理、推论............................................................. 9-22、线性方程组概念..................................................................... 10-23、齐次线性方程组与非齐次线性方程组(不含向量) .......................................... 10-24、行向量、列向量、零向量、负向量的概念................................................ 11-25、线性方程组的向量形式 ............................................................... 11-26、线性相关与线性无关的概念......................................................... 12-27、向量个数大于向量维数的向量组必然线性相关 ........................................... 12-28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题................. 12-29、线性表示与线性组合的概念......................................................... 12-30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题........................... 12-31、线性相关(无关)与线性表示的3个定理................................................ 12-32、最大线性无关组与向量组的秩.......................................................... 12-33、线性方程组解的结构…………………………………………………………………………………………12-01、余子式与代数余子式(1)设三阶行列式, 则①元素an,ai,au的余子式分别为:对Mi的解释:划掉第1行、第1列,剩下的就是一个二阶行列式,这个行列式即元素au的余子式Mi。
线性代数教案全(同济大学第六版)
线性代数教案第(1)次课授课时间()基本内容备注第一节二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
设二元线性方程组⎩⎨⎧=+=+22222211212111bxaxabxaxa用消元法,当021122211≠-aaaa时,解得211222111212112211222112121221,aaaababaxaaaababax--=--=令2112221122211211aaaaaaaa-=,称为二阶行列式 ,则如果将D中第一列的元素11a,21a换成常数项1b,2b ,则可得到另一个行列式,用字母1D表示,于是有2221211ababD=按二阶行列式的定义,它等于两项的代数和:212221abab-,这就是公式(2)中1x的表达式的分子。
同理将D中第二列的元素a 12,a 22换成常数项b1,b2 ,可得到另一个行列式,用字母2D表示,于是有2121112babaD=按二阶行列式的定义,它等于两项的代数和:121211baba-,这就是公式(2)中2x的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==DDxDDx2211其中0≠D例1.解线性方程组.1212232121⎪⎩⎪⎨⎧=+=-xxxx同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bxaxaxabxaxaxabxaxaxa时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bxaxaxabxaxaxabxaxaxa用消元法解得定义设有9个数排成3行3列的数表333231232221131211aaaaaaaaa记333231232221131211aaaaaaaaaD=322113312312332211aaaaaaaaa++=332112322311312213aaaaaaaaa---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆:从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2. 计算三阶行列式243122421----=D.(-14)例3. 求解方程094321112=xx(32==xx或)例4. 解线性方程组.5573422⎪⎩⎪⎨⎧=+-=++-=++-zyxzyxzyx解先计算系数行列式573411112--=D069556371210≠-=----+-=再计算321,,DDD第( 2 )次课授课时间()第( 3 )次课授课时间()基本内容备注第5节行列式按行(列)展开定义在n阶行列式中,把元素ija所处的第i行、第j列划去,剩下的元素按原排列构成的1-n阶行列式,称为ij a的余子式,记为ijM;而ijjiijMA+-=)1(称为ij a的代数余子式.引理如果n阶行列式中的第i行除ija外其余元素均为零,即:nnnjnijnjaaaaaaaD11111=.则:ijijAaD=.证先证简单情形:nnnnnaaaaaaaD212222111=再证一般情形:定理行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和,即按行:()jiAaAaAajninjiji≠=+++02211按列:()jiAaAaAanjnijiji≠=+++02211证:(此定理称为行列式按行(列)展开定理)nnnniniinaaaaaaaaaD2121112110+++++++++=nnnninnnnnninnnnninaaaaaaaaaaaaaaaaaaaaa211121121211211211112110+++=).,2,1(2211niAaAaAaininiiii=+++=例1:335111243152113------=D.解:例2:21122112----=nD解: 21122112----=n D 211221100121---=+++nr r1+=n D n .从而解得 1+=n D n .例3.证明范德蒙行列式112112222121111---=n nn n nnn x x x x x x x x x D()1i j n i j x x ≥>≥=-∏.其中,记号“∏”表示全体同类因子的乘积.证 用归纳法因为 =-==1221211x x x x D ()21i j i j x x ≥>≥-∏ 所以,当2=n n=2时,(4)式成立.现设(4)式对1-n 时成立,要证对n 时也成立.为此,设法把nD 降阶;从第n 行开始,后行减去前行的1x 倍,有()()()()()()213112213311222221331111110000n n n n n n n n n x x x x x x x x x x x x x x x D x x x x x x x x x ---------=---(按第一列展开,并提出因子1x x i -)行列式一行(列)的各元素与另一行(列)对应第( 4 )次课授课时间()第(5)次课授课时间()基本内容备注第一节矩阵一、矩阵的定义称m行、n列的数表mnmmnnaaaaaaaaa212222111211为nm⨯矩阵,或简称为矩阵;表示为⎪⎪⎪⎪⎪⎭⎫⎝⎛=mnmmnnaaaaaaaaaA212222111211或简记为nmijaA⨯=)(,或)(ijaA=或n m A⨯;其中ij a表示A中第i行,第j列的元素。
《线性代数》课程复习大纲与练习题
《线性代数》课程复习大纲与练习题第一章 线性方程组1.线性方程组的概念(1)线性方程组的一般形式:⎪⎪⎩⎪⎪⎨⎧=+⋅⋅⋅++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=+⋅⋅⋅++=+⋅⋅⋅++sn sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********(2)用消元法判断线性方程组是否有解,并求出解 2.初等变换对线性方程组进行求解 (1)初等变换的定义(2)用初等变换将线性方程组化为同解的阶梯形方程组,从而判断是否有解3.用矩阵的秩判断线性方程组是否有解记⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=sn s s n n a a a a a a a a a A 212222111211称为线性方程组的系数矩阵;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=ssns s nn b a a a b aa ab a a a A 21222221111211称为线性方程组的增广矩阵 (1)线性方程组有解⇔秩(A )=秩(A )当线性方程组有解时:秩(A )=未知量个数n 时, 线性方程组有唯一解;秩(A )<未知量个数n 时,线性方程组有无穷多解。
(2)线性方程组无解⇔秩(A )<秩(A )4.齐次线性方程组:常数项全为0的线性方程组⎪⎪⎩⎪⎪⎨⎧=+⋅⋅⋅++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=+⋅⋅⋅++=+⋅⋅⋅++0)1(00221122221211212111n sn s s nn n n x a x a x a x a x a x a x a x a x a (1)解的情况:r(A)=n ,(或系数行列式0≠D )只有零解;r(A)<n ,(或系数行列式D =0)有无穷多组非零解。
(2)解的结构:r n r n c c c X --+++=ααα 2211。
(3)求解的方法和步骤:①将增广矩阵通过行初等变换化为最简阶梯阵; ②写出对应同解方程组;③移项,利用自由未知数表示所有未知数; ④表示出基础解系; ⑤写出通解。
同济大学第四版线性代数习题解答
线性代数答案解答第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b cb a(3)222111c b a c b a ; (4)yxyx x y x y y x y x +++.解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++- =4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++ 3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---=(4)yxyx x y x y y x y x+++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2.解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个 5 2,54 2个 7 2,7 4,7 6 3个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个4 2 1个 6 2,6 4 2个 ……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-260523********12; (3)⎥⎥⎥⎦⎥⎢⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c ba100110011001 解(1)7110025102021421434327c c c c --010142310202110214---=34)1(143102211014+-⨯---=143102211014--321132c c c c ++141717201099-=0(2)2605232112131412-24c c -260532122130412-24r r -0412032122130412-14r r -0000032122130412-=0(3)efcfbfde cd bd ae ac ab---=ecbe c b e c badf ---=111111111---adfbce=abcdef 4(4)d cb a10110011001---21ar r +d cb a ab 10011011010---+=12)1)(1(+--d c a ab 101101--+ 23dc c +010111-+-+cd c ada ab=23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明:(1)1112222b b a a b aba +=3)(b a -; (2)bz ay by ax bx az by ax bx az bzay bxaz bzay byax +++++++++=yxzx z y z yxb a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a ;(4)444422221111d c b a dcbad c b a))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅; (5)1221100000100001a x a a a a x xx n n n +----- n n n n a x a x a x ++++=--111 . 证明(1)122222221312a b a b aa b a ab a c c c c ------=左边ab a b ab a ab 22)1(22213-----=+ 21))((ab a a b a b +--=右边=-=3)(b a (2)bzay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bz ay by ax x by ax bx az z bxaz bz ay y b +++++++++++++002yby ax z x bxaz y zbzay x a 分别再分bzay y x byax x zbxaz z y b +++zyxy x z x z yb y x z x z y z y x a 33+分别再分右边=-+=233)1(yxzx z yzy x b yxzx z yz y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c964496449644964422222++++++++d d dd c c c cb b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423dd c cb b a ac c c c c c c c ----第二项第一项06416416416412222=+d dd c c cb b b a a a(4) 444444422222220001a d a c ab a ad ac ab aa d a c ab a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b a d a c a b --------- =)()()(111))()((222a d d a c c a b b ad ac ab a d ac a b++++++---=⨯---))()((a d a c a b)()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b)()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a xD n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D :1列展开按第则n D1110010001)1(11----+=+-x x a xD D n n n n 右边=+=-n n a xD 1所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得nnnn a a a a D 11111=, 11112n nnn a a a a D = ,11113a a a a D n nnn=,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n n n nnnn a a a a a a a a a a D 2211111111111)1(--==∴=--=--nnn n nn n n a a a a a a a a 331122111121)1()1( nn n nn n a a a a111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnnn n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-=D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaa x a a a xD n=; (3); 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+提示:利用范德蒙德行列式的结果.(4) nnnnnd c d c b a b a D000011112=;(5)ji a a D ij ij n -==其中),det(;(6)nna a a D +++=11111111121,021≠n a a a 其中.解(1)aa aa aD n 00010000000001000=按最后一行展开)1()1(100000000010000)1(-⨯-+-n n n a aa)1)(1(2)1(--⋅-+n n n a aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax xa a x xa a x x a a a a xD n ------=0000000 ax a x a x a a a an x D n ----+=0000000)1(再将各列都加到第一列上,得)(])1([1a x a n x n --+=-(3)从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得nnn n n n n n n n a a a n a a a n a a a D )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=1121)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4)nnnnn d c d c b a b a D 0011112=nn n n n nd d c d c b a b a a 00000011111111----展开按第一行0)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i i i nD c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)ji a ij -=432140123310122210113210)det(--------==n n n n n n n n a D ij n,3221r r r r --0432111111111111111111111--------------n n n n ,,141312c c c c c c +++1524232102221002210002100001---------------n n n n n=212)1()1(----n n n(6)nn a a a D +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------0000000000000000000000000022433221n n n a a a a a a a a ----+--000000000000000001133221 ++nn n a a a a a a a a -------000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑+==n i in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D812073503211111------=145008130032101111---=142142005410032101111-=---=112105132412211151------=D 112105132********----=1121023313090509151------=233130905112109151------= 1202300461000112109151-----=14200038100112109151----=142-=11235122412111512-----=D 81150731203271151-------=31390011230023101151-=28428401910023101151-=----=426110135232422115113-=----=D14202132132212151114=-----=D1,3,2,144332211-========∴DD x DD x DD x D D x(2)510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',)5100165100065100650000611=D 展开按第一列6510065100650006+'D46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-=1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+=703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651-- 51065106565--=395-=11000051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D ,齐次线性方程组有非零解,则03=D即0=-μλμ得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解? 解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-= 3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1.已知线性变换:⎪⎩⎪⎨⎧++=++=++=,323,53,22321332123211y y y x y y y x y y y x 求从变量321,,x x x 到变量321,,y y y 的线性变换.解由已知:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛----=321423736947y y y ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947xx x y x x x y x x x y2.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=,54,232,232133212311y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=,3,2,3323312211z z y z z y z z y 求从321,,z z z 到321,,x x x 的线性变换.解 由已知⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛-=321310102013514232102z z z ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z 所以有 ⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3.设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A , ,150421321⎪⎪⎪⎭⎫ ⎝⎛--=B 求.23B A A AB T及-解A AB 23-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛--=1504213211111111113⎪⎪⎪⎭⎫⎝⎛---1111111112 ⎪⎪⎪⎭⎫ ⎝⎛-=0926508503⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫⎝⎛----=22942017222132 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=150421321111111111B A T⎪⎪⎪⎭⎫ ⎝⎛-=0926508504.计算下列乘积:(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134; (2)()⎪⎪⎪⎭⎫ ⎝⎛1233,2,1; (3)()2,1312-⎪⎪⎪⎭⎫ ⎝⎛; (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412; (5)⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321),,(x x x a a a a a a a a a x x x;(6)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎪⎭⎫⎝⎛=49635 (2)()⎪⎪⎪⎭⎫ ⎝⎛123321)10()132231(=⨯+⨯+⨯=(3)()21312-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎪⎭⎫ ⎝⎛---=632142 (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎪⎭⎫⎝⎛---=6520876 (5)()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321x x x a a a a a a a a a x x x()333223113323222112313212111x a x a x a x a x a x a x a x a x a ++++++=⎪⎪⎪⎭⎫ ⎝⎛⨯321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++= (6)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎪⎪⎭⎫⎝⎛---=90003400421025215.设⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫⎝⎛=2101B ,问:(1)BA AB =吗?(2)2222)(B AB A B A ++=+吗?(3)22))((B A B A B A -=-+吗?解(1)⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫ ⎝⎛=2101B 则⎪⎪⎭⎫ ⎝⎛=6443AB ⎪⎪⎭⎫⎝⎛=8321BA BA AB ≠∴(2)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎪⎭⎫⎝⎛=2914148但=++222B AB A ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛43011288611483⎪⎪⎭⎫ ⎝⎛=27151610故2222)(B AB A B A ++≠+(3) =-+))((B A B A =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10205222⎪⎪⎭⎫⎝⎛9060 而 =-22B A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛430111483⎪⎪⎭⎫⎝⎛7182 故22))((B A B A B A -≠-+6.举反列说明下列命题是错误的:(1)若02=A ,则0=A ; (2)若A A =2,则0=A 或E A =;(3)若AY AX =,且0≠A ,则Y X =.解 (1) 取⎪⎪⎭⎫ ⎝⎛=0010A 02=A ,但0≠A(2) 取⎪⎪⎭⎫ ⎝⎛=0011A A A =2,但0≠A 且E A ≠(3) 取⎪⎪⎭⎫ ⎝⎛=0001A ⎪⎪⎭⎫ ⎝⎛-=1111X ⎪⎪⎭⎫⎝⎛=1011YAY AX =且0≠A 但Y X ≠7.设⎪⎪⎭⎫ ⎝⎛=101λA ,求k A A A ,,,32 . 解 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1301101120123λλλA A A 利用数学归纳法证明: ⎪⎪⎭⎫⎝⎛=101λk A k当1=k 时,显然成立,假设k 时成立,则1+k 时⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1)1(01101101λλλk k A A A kk 由数学归纳法原理知:⎪⎪⎭⎫ ⎝⎛=101λk A k8.设⎪⎪⎪⎭⎫⎝⎛=λλλ001001A ,求k A .解 首先观察⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎪⎭⎫⎝⎛=222002012λλλλλ ⎪⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A由此推测 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121)2(≥k用数学归纳法证明: 当2=k时,显然成立.假设k 时成立,则1+k 时,⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ由数学归纳法原理知: ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219.设B A ,为n 阶矩阵,且A 为对称矩阵,证明AB B T 也是对称矩阵.证明 已知:A A T=则 AB B B A B A B B AB B T T T T TT T T ===)()(从而 AB B T也是对称矩阵.10.设B A ,都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =.证明 由已知:A A T = B B T=充分性:BA AB =⇒A B AB TT =⇒)(AB AB T = 即AB 是对称矩阵.必要性:AB AB T =)(⇒AB A B TT =⇒AB BA =.11.求下列矩阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛5221; (2)⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos ; (3)⎪⎪⎪⎭⎫ ⎝⎛---145243121; (4)⎪⎪⎪⎪⎪⎭⎫⎝⎛4121031200210001; (5)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2500380000120025; (6)⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021)0(21≠a a a n 解(1)⎪⎪⎭⎫⎝⎛=5221A 1=A1),1(2),1(2,522122111=-⨯=-⨯==A A A A⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=*122522122111A A A A A *-=A A A 11故 ⎪⎪⎭⎫⎝⎛--=-12251A(2)01≠=A 故1-A 存在θθθθcos sin sin cos 22122111=-===A A A A从而 ⎪⎪⎭⎫ ⎝⎛-=-θθθθcos sin sin cos 1A (3) 2=A , 故1-A 存在024312111==-=A A A 而 1613322212-==-=A A A21432332313-==-=A A A故 *-=A A A 11⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4121031200210001A24=A 0434232413121======A A A A A A68122444332211====A A A A12411032001)1(312-=-=A 12421012021)1(413-=-=A3121312021)1(514=-=A 4421012001)1(523-=-=A5121312001)1(624-=-=A 2121021001)1(734-=-=A*-=A AA11故⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=-4112124581031612100212100011A(5)01≠=A 故1-A 存在而002141312111==-==A A A A005242322212===-=A A A A 320043332313-====A A A A 850044342414=-===A A A A从而⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-85003200005200211A(6)⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 1001121112.解下列矩阵方程:(1)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛12643152X ; (2) ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--234311*********X ;(3)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-101311022141X ; (4)⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 (1)⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-126431521X ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=12642153⎪⎪⎭⎫⎝⎛-=80232 (2)1111012112234311-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)11110210132141--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=210110131142121⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111(4)11010100001021102341100001010--⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎪⎭⎫⎝⎛---=20143101213.利用逆矩阵解下列线性方程组:(1) ⎪⎩⎪⎨⎧=++=++=++;353,2522,132321321321x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-+=--=--.0523,132,2321321321x x x x x x x x x解 (1)方程组可表示为 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x (2) 方程组可表示为 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----012523312111321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===305321x x x 14.设O A k =(k 为正整数),证明121)(--++++=-k A A A E A E .证明 一方面, )()(1A E A E E --=-另一方面,由O A k=有)()()(1122k k k A A A A A A A E E -+--+-+-=-- ))((12A E A A A E k -++++=-故 )()(1A E A E ---))((12A E A A A E k -++++=-两端同时右乘1)(--A E就有121)(--++++=-k A A A E A E15.设方阵A 满足O E A A =--22,证明A 及E A 2+都可逆,并求1-A 及 1)2(-+E A .证明 由O E A A =--22得E A A 22=-两端同时取行列式: 22=-A A即 2=-E A A ,故 0≠A所以A 可逆,而22A E A =+0222≠==+A A E A 故E A 2+也可逆.由O E A A =--22E E A A 2)(=-⇒E A E A A A 112)(--=-⇒)(211E A A -=⇒-又由O E A A =--22E E A A E A 4)2(3)2(-=+-+⇒ E E A E A 4)3)(2(-=-+⇒11)2(4)3)(2()2(--+-=-++∴E A E A E A E A)3(41)2(1A E E A -=+∴-16.设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A ,B A AB 2+=,求B . 解 由B A AB 2+=可得A B E A =-)2(故A E A B 1)2(--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-3210113301210113321⎪⎪⎪⎭⎫⎝⎛-=01132133017.设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=Λ2001,求11A .解 Λ=-AP P 1故1-Λ=P P A 所以11111-Λ=P P A3=P ⎪⎪⎭⎫ ⎝⎛-=*1141P ⎪⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=Λ11111120012001故⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎪⎭⎫ ⎝⎛--=6846832732273118.设m 次多项式m m x a x a x a a x f ++++= 2210)(,记m m A a A a A a E a A f ++++= 2210)()(A f 称为方阵A 的m 次多项式.(1)设⎪⎪⎭⎫ ⎝⎛=Λ2100λλ,证明: ⎪⎪⎭⎫ ⎝⎛=Λk k k2100λλ,⎪⎪⎭⎫⎝⎛=Λ)(00)()(21λλf f f ; (2)设1-Λ=P P A ,证明: 1-Λ=P P A k k ,1)()(-Λ=P Pf A f .证明(1) i)利用数学归纳法.当2=k 时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=Λ212120000λλλλ⎪⎪⎭⎫ ⎝⎛=222100λλ命题成立,假设k 时成立,则1+k 时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=ΛΛ=Λ+212110000λλλλk k k k ⎪⎪⎭⎫⎝⎛=++121100k k λλ 故命题成立. ii)左边m m a a a E a f Λ++Λ+Λ+=Λ= 2210)(⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=m m m a a a 21211000001001λλλλ⎪⎪⎭⎫⎝⎛++++++++=m m m m a a a a a a a a 2222210121211000λλλλλλ⎪⎪⎭⎫⎝⎛=)(00)(21λλf f =右边 (2) i) 利用数学归纳法.当2=k 时12112---Λ=ΛΛ=P P P P P P A 成立假设k 时成立,则1+k 时11111-+--+Λ=ΛΛ=⋅=P P P P P P A A A k k k k 成立,故命题成立,即 1-Λ=P P A k kii) 证明 右边1)(-Λ=P Pf12210)(-Λ++Λ+Λ+=P a a a E a P m m11221110----Λ++Λ+Λ+=P P a P P a P P a PEP a m m m m A a A a A a E a ++++= 2210)(A f ==左边19.设n 阶矩阵A 的伴随矩阵为*A ,证明:(1) 若0=A ,则0=*A ;(2) 1-*=n AA .证明(1) 用反证法证明.假设0≠*A 则有E A A =-**1)(由此得O A E A A AA A ===-*-**11)()(O A =∴*这与0≠*A 矛盾,故当0=A 时有0=*A(2) 由于*-=A A A11, 则E A AA =*取行列式得到: nAA A =* 若0≠A 则1-*=n AA若0=A 由(1)知0=*A 此时命题也成立 故有1-*=n AA20.取⎪⎪⎭⎫⎝⎛==-==1001D C B A ,验证DC B ADC B A ≠检验: =D C BA =--10100101101001011010010100200002--410012002==而01111==D C B A故 DC B AD C B A ≠21.设⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,求8A 及4A解 ⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,令⎪⎪⎭⎫ ⎝⎛-=34431A ⎪⎪⎭⎫ ⎝⎛=22022A 则⎪⎪⎭⎫ ⎝⎛=21A O O A A故8218⎪⎪⎭⎫ ⎝⎛=A OO A A ⎪⎪⎭⎫⎝⎛=8281A O O A 1682818281810===A A A A A⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=464444241422025005O O A OO A A22.设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O B A O .解 将1-⎪⎪⎭⎫⎝⎛O B A O 分块为⎪⎪⎭⎫ ⎝⎛4321C C C C其中 1C 为n s ⨯矩阵, 2C 为s s ⨯矩阵3C 为n n ⨯矩阵, 4C 为s n ⨯矩阵则⎪⎪⎭⎫ ⎝⎛⨯⨯O B A O s s n n ⎪⎪⎭⎫ ⎝⎛4321C C C C ==E ⎪⎪⎭⎫⎝⎛s n E O O E 由此得到⎪⎪⎩⎪⎪⎨⎧=⇒==⇒==⇒==⇒=----122111144133)()(B C E BC B O C O BC A O C O AC A C E AC s n 存在存在故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛---O A B O O B A O 111.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解(1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---02003100121)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--30003100120133~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-100001001201 3121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022*******12423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000000000221003211(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----00000410001111020201 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶子式?解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α 3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样?解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得 到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(- 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1)⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073*********⎪⎪⎪⎭⎫⎝⎛---------15273321059117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r .二阶子式71223-=-.(3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0230102420536307121131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x(3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x x xx故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000001720171910171317301~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201~即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----00007579751025341253414312311112~ ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1)0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2))()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3)3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ,得1=λ时,方程组有无穷多个解.9.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB 方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解。
线性代数课本习题答案
[][][][][]2**11**2===..........................mn mr rn u x x x x v r r y x xx w x x xy uvw xx r r xx S A B S m A m S n B n A r B r f z u v w f z u v w f u u z z f f f v v w w =⎡⎤⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥⎡⎤==⎣⎦⎢⎥⎢⎥⎣⎦,其中的行数的行数,的列数的列数,的列数的行数另外矩阵的元素一般是同一类型,于是有1.25785475855273849563421021405251203241410530330435350233343021544104415054213042111AB ⨯+⨯+⨯⨯+⨯+⨯⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⨯+⨯+⨯⨯+⨯+⨯⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⨯+⨯+⨯⨯+⨯+⨯⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⨯+⨯+⨯⨯+⨯+⨯⎣⎦⎣⎦⎣⎦1112223331.3210121312222421134435()()6862342x y z X x Y y Z z x y z A B Y AX Z BYZ BY B AX BA X ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦==-⎡⎢====----⎣记,,一般变量都记作列向量,这个称为系数矩阵,即系数按照原来的位置排成矩阵于是有,线性变换的矩阵写法从而11112322212333312343543568668623422342Xz x z x x x z x z x x x z x z x x x ⎤⎥⎢⎥⎢⎥⎦-=-+⎡⎤⎡⎤⎡⎤⎧⎪⎢⎥⎢⎥⎢⎥⇒=-⇔=+-⎨⎢⎥⎢⎥⎢⎥⎪⎢⎥⎢⎥⎢⎥---=---⎣⎦⎣⎦⎣⎦⎩线性变换的方程组写法和矩阵写法123111111(1)323124111211105111111111213111213(1)112(1)31311214111214(1)112(1)4101513101513(1)015(1)3BA A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⨯+⨯+⨯⨯+⨯+⨯-⨯+⨯-+⨯=-⨯-⨯+⨯-⨯-⨯+⨯--⨯-⨯-+⨯⨯+⨯+⨯⨯+⨯+⨯-⨯+⨯-+⨯1112111111160211136303221212131752111313(7)3521212(1)64411136343(4)212(1)21180622232115181212⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⨯⨯⨯⨯⨯⨯⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=---=⨯⨯-⨯-⨯⨯⨯-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⨯⨯⨯-⨯⨯-⨯⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦182026216242223221215(2)1231722218212(2)1221614142132232217204292123111110(2)124111225051111341TT AB A B A ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-----=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-------⎣⎦⎣⎦⎣⎦-⎡⎤⎢⎥-=--⎢⎥⎢⎥-⎣⎦-⎡⎤⎡⎤⎡⎢⎥⎢⎥=---=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦书上是11111111111110111110(1)111(1)0121215121215(1)212(1)5131411131411(1)314(1)11002559860⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⨯-⨯+⨯⨯-⨯+⨯-⨯-⨯-+⨯⎡⎤⎢⎥=⨯-⨯+⨯⨯-⨯+⨯-⨯-⨯-+⨯⎢⎥⎢⎥⨯+⨯+⨯⨯+⨯+⨯-⨯+⨯-+⨯⎣⎦⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦111122221122111122221111112222220000(,,,)00,,,nn nn nn nn nn k kk k nn nn a a a a diag a a a a a a b a b A B a b a b a a b a A AB a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦对角矩阵的三种表示表示形式:.规律:记则11111221122111121212221212,,,,.(1,:)(2,:)(,:)(,:)(,,,(,:)nn nn nn r r i i n n nr b a a a a a A A a c c c C c c c C C C i C i C i c c c c c c C n ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦当且仅当全不为零时,是可逆矩阵,并有记,其中表示的第行,1111111211111222122222222212111212122212),(1,:)(2,:).(,:)(:,1)(:,2)ir r r ii nn n nn n nn nr nn n n s s sn a c a c a c a C a c a c a c a C AC a C i a c a c a c a C n d d d d d d D D D d d d ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦ 则,即分别乘以的第行记[][]1211112211111222222211221122(:,)(:,)(:,),(:,1)(:,2)(:,),.j j sj nn n nn n nn jj snsn nn sn d d D n D j D j D j d a d a d a d a d a d a d DA a D a D a D n a D j a d a d a d ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦ ,其中表示的第列,则即分别乘以的第列[]111213212223313233(1),10010,001(1,:)(1,:)(2,:),(:,2)(:,1)(:,2)(:,3),(3,:)(1,:),(2,:),(3,:)1,2,3(:,1AB BA a a a A a a a C k C a a a A CA kA A AC kA A A A A A A A A A ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥=+=+⎢⎥⎢⎥⎣⎦由1.5规律可得.,是一个初等矩阵则其中表示的第行,()1112112122221212111112121121212222221122),(:,2),(:,3)1,2,3(2)n n n n n nn n n n n n n n n n nn n n A A A a a a x aa a x x x x a a a x a x x a x x a x x a x x a x x a x x a x x a x x a x x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=++++++++++++ 表示的第列,这是初等矩阵的性质,第3章.规律:这是二次型,第5章.22221.8(2)(1),,,()()()()AB A BA B AB A AB A AAA A BA A AB A BA B BA B BBB B AB B BA B ===⇒=⇒=⇒==⇒=⇒=⇒=由于是两边同时右乘矩阵结合律两边同时右乘矩阵结合律222221.91(1)(1)(2)2()21(2)(1)(2)2()2X Y A X A BA X A BA X Y BA Y A BA Y A BA ⎧+=+⇒=+⇒=+⎪⎪⎨⎪-=-⇒=-⇒=-⎪⎩222222222222222(1)()()(),2(2)()(),(3)0()0111100000,111100A B A B A B A BA AB B AB BA A BA AB B A AB B A B A B A BA AB B AB BA A BA AB B A B A A A A A A E AB A B +=++=+++≠+++≠+++-=+--≠+-+≠-=⇒-=⇒-=-⎛⎫⎛⎫⎛⎫==== ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭因为所以因为所以因为不能推出必有或者例如2211()0000100(4)00,000011100100(5),0001001010,()()A A E A A E A A Ax Ay x y A Ax Ay A Ax A Ay x y---==-=⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭=⇒=⇒=所以不能推出必有或者不能推出必有例如不能推出必有例如若可逆则11111(1),0. 2.31202211111,,1011010222122123131()100121224(2)a b d b A ad bc A c d c a ad bc A A B B AB AB -----⎛⎫⎛⎫=-≠= ⎪ ⎪--⎝⎭⎝⎭--⎛⎫⎛⎫⎛⎫⎛⎫=⇒==⇒= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭--⎛⎫⎛⎫⎛⎫⎛⎫==⇒= ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭已知当时,有见节设准对角矩阵(一种特殊的分块1122121212111111221220000,,00000,,,,,,,,,,,s s s s s k k k k s s s s A A A A A A A B B A A A A B B B B B B A B A A A B A A AB A A A B A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭⎛⎫⎛⎫⎪ ⎪ ⎪⎪=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 矩阵)即其中都为方阵,准对角矩阵其中都为方阵.于是有:1111.010*********,.011000220001A A C C B B ---⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭-⎛⎫ ⎪ ⎪⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪⎝⎭⎝⎭- ⎪⎪ ⎪⎝⎭因此,就有21222221.1240()4040,11(1)01124(1)42122n A A A E A E A E X E A E A E X A A E x x A E x x x a b x a x a b a a x x x a x a b a b b x x -+-=----=+-=⇒+-=-⇒--+=+---=-==⎧⎧+-≡+---⇒⇒⎨⎨--=-=⎩⎩-+=⇒设阶方阵,且,证可逆。
线性代数教案全(同济大学第六版)
线性代数教案第(1)次课授课时间()1.教学内容: 二、三阶行列式的定义;全排列及其逆序数;阶行列式的定义2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.基本内容备注第一节 二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
设二元线性方程组 ⎩⎨⎧=+=+22222211212111b x a x a b x a x a用消元法,当021122211≠-a a a a 时,解得211222111212112211222112121221,a a a a b a b a x a a a a b a b a x --=--=令2112221122211211a a a a a a a a -=,称为二阶行列式 ,则如果将D 中第一列的元素11a ,21a 换成常数项1b ,2b ,则可得到另一个行列式,用字母1D 表示,于是有2221211a b a b D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
同理将 中第二列的元素a 12,a 22 换成常数项b1,b2 ,可得到另一个行列式,用字母 表示,于是有2121112b a b a D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==D D x D D x 2211 其中0≠D例1. 解线性方程组 .1212232121⎪⎩⎪⎨⎧=+=-x x x x 同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a用消元法解得定义 设有9个数排成3行3列的数表333231232221131211a a a a a a a a a 记 333231232221131211a a a a a a a a a D =322113312312332211a a a a a a a a a ++=332112322311312213a a a a a a a a a ---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆: 从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2.计算三阶行列式 .(-14) 例3.求解方程 ( ) 例4.解线性方程组 解 先计算系数行列式573411112--=D 069556371210≠-=----+-= 再计算 321,,D D D515754101121-=--=D ,315534011222=--=D ,55730112123=---=D得 23171==D D x ,69312-==D D y ,6953-==D D z第( 2 )次课授课时间()第( 3 )次课授课时间()1.教学内容: 行列式按行(列)展开;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;教学手段: 黑板讲解与多媒体演示.基本内容备注第5节 行列式按行(列)展开定义 在 阶行列式中, 把元素 所处的第 行、第 列划去, 剩下的元素按原排列构成的 阶行列式, 称为 的余子式, 记为;而 称为 的代数余子式.引理 如果 阶行列式中的第 行除 外其余元素均为零, 即: .则: .证 先证简单情形:再证一般情形:定理 行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和, 即按行: 按列: 证:(此定理称为行列式按行(列)展开定理)nnn n ini i n a a a a a a a a a D212111211000000+++++++++=nnn n in n nnn n i n nn n n i n a a a a a a a a a a a a a a a a a a a a a 21112112121121121111211000000+++=).,2,1(2211n i A a A a A a in in i i i i =+++=例1 : . 解:例2: 21122112----=n D解: 21122112----=n D 211221100121---=+++nr r)()()()()()21331122213311n n n n n n n x x x x x x x x x x x -----, 并提出因子 )()2321111--n n n x x x x x x()1-n 阶范德蒙行列式(1n x x -行列式一行(列)的各元素与另一行(列)对应各元素的代数余子式乘积之和为零第( 4 )次课授课时间()1.教学内容: 克拉默法则;2.时间安排: 2学时;教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.4.教学手段:黑板讲解与多媒体演示.基本内容备注第(5)次课授课时间()1.教学内容: 矩阵;矩阵的运算;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示。
线性代数科学出版社课后习题答案
工程数学(线性代数与概率统计)习题一一、1.5)1(1222112=-⨯-⨯=-;2.1)1)(1(111232222--=-++-=++-x x x x x x x x x x ;3.b a ab baba 2222-=4.53615827325598413111=---++=5.比例)第一行与第三行对应成(,000000=d c b a 6.186662781132213321=---++=。
二.求逆序数1.5512430122=↓↓↓↓↓τ即2.52134023=↓↓↓↓τ即3.2)1(12)2()1(12)1(01)2()1(-=+++-+-=-↓↓-↓-↓n n n n n n n n τ即4.2)1(*2]12)2()1[()]1(21[24)22()2()12(31012111-=+++-+-+-+++=--↓↓-↓-↓-↓↓↓n n n n n n n n n n n τ三.四阶行列式中含有2311a a 的项为4234231144322311a a a a a a a a +-四.计算行列式值1.071108517002021459001577110202150202142701047110025102021421443412321=++------r r r r r r r r 2.31000010000101111301111011110111113011310131103111301111011110111104321-=---⋅=⋅=+++c c c c 3.abcdef adfbce ef cf bf de cd bd ae ac ab 4111111111=---=---4.dc d c b a dc b a 1010011101101100110011001--------按第一行展开ad cd ab dc d a d c ab+++=-+---=)1)(1(11011115.ba c cbc a b a a c b a c c b c a b a a b b a c c c b c a b b a a a ba c c cbc a b b a a c b a --------------=------202022202022222222222222其中)3)(()(3522)(22)(12221222122)(2202022202022222220222200222202222222222222ac ab a c a b a ab abc ba c c aa c ab b a a b a abc ba c c aa c abc c b b a a a c c b b a a c c c b b b a a a b a c c b c b a a b a c c b a b a a b a c c c b b b a a a b a c c c b c a b b a a a ++++++=--+-+-=--+---=--------=----其余同法可求。
(完整word版)线性代数教案
教案(2013-2014学年第2学期)课程名称:线性代数任课教师:教师职称:所在院系:教学教案设计(首页)教学教案设计(续页)第一 章 行列式 §1.1 n 阶行列式定义教学目的:使学生了解和掌握n 级排列、逆序逆序数奇排列偶排列n 阶行列式定义及行列式的计算教学重点:n 阶行列式定义及计算 教学难点:n 阶行列式定义一、导入 线性方程组和矩阵在工程技术领域里有着广泛的应用,而行列式就是研究线性方程组的求解理论和矩阵理论的重要工具。
二、新授(一) 二阶、三阶行列式对于二元线性方程组⎩⎨⎧=+=+22221211212111b x a x a b x a x a (1.1) 采用加减消元法从方程组里消去一个未知量来求解,为此: 第一个方程乘以a 22与第二个方程乘以a 12相减得(a 11a 22-a 21a 12)x 1= b 1a 22— b 2a 12第二个方程乘以a 11与第一个方程乘以a 21相减得(a 11a 22-a 21a 12)x 2=a 11b 2-a 21b 1若a 11a 22-a 21a 12≠0,方程组的解为122122111122211a a a a a b a b x --=122122*********a a a a b a b a x --= (1.2)容易验证(1.2)式是方程组(1。
1)的解。
称a 11a 22-a 21a 12为二阶行列式,它称为方程组(1。
1)的系数行列式,记为D .我们若记 2221211a b a b D =2211112b a b a D =方程组的解(1。
2)式可写成 D D x 11=DDx 22=对三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a (1。
3) 与二元线性方程组类似,用加减消元法可求得它的解: D D x 11=D Dx 22= DD x 33= 111213212223313233112233122331132132112332122133132231a a a Da a a a a a a a a a a a a a a a a a a a a a a a (1。
线性代数课件(完整版)同济大学
0 D2 0
0 a23 a32 0
0 0
(1)t (4321) a14a23a33a41 a14a23a33a41
a41 0 0 0
其中 t(4321) 0 1 2 3 3 4 6. 2
a11 a12 a13 a14
0 D3 0
a22 0
a23 a33
a24 a34
4 6 32 4 8 24 14.
例3 求解方程 1 1 1
2 3 x 0. 4 9 x2
解 方程左端 D 3x2 4x 18 9x 2x2 12 x2 5x 6,
由 x2 5x 6 0 得
x 2 或 x 3.
D1
b1 b2
a12 a22
D2
a11 a21
b1 b2
则上述二元线性方程组的解可表示为
x1
b1a22 a11a22
a12b2 a12a21
D1 D
x2
a11b2 a11a22
b1a21 a12a21
D2 D
例1
求解二元线性方程组
3 x1 2 2 x1
0 D3 0
a22 a23 a24 0 a33 a34
0 0 0 a44
a11 0 0 0
D4
a21 a32
a22 a32
0 a33
0 0
a41 a42 a43 a44
解:
a11 0 0 0
0 D1 0
0
a22 0 0 a33
0 0 a11a22a33a44
0 0 a44
线性代数
线性代数
2010-10-12
第二章 §2.7
11 11
定理2 定理2 设 A 是一个 m×n 矩阵,对 A 施行一 × 矩阵, 次初等行变换, 次初等行变换,相当于在 A 的左边乘以相应的 m 阶初等矩阵; 施行一次初等列变换, 阶初等矩阵;对 A 施行一次初等列变换,相当于 阶初等矩阵. 在 A 的右边乘以相应的 n 阶初等矩阵.
a12 M ai 2 M a j2 M am 2
L a1n M L ain ← 第i 行 M L a jn ← 第 j 行 M L amn
6
线性代数
2010-10-12
第二章 §2.7
用 m 阶初等矩阵 Em ( i , j ) 左乘 A = (aij )m×n,得
a11 a12 L a1n M M M a a j 2 L a jn ←第i 行 j1 M M Em ( i , j ) A = M a ai 2 L ain ←第 j 行 i1 M M M a am 2 L amn m1 相当于对矩阵 A 施行第一种初等行变换 :
线性代数
2010-10-12
第二章 §2.7
21 21
二、用初等矩阵求逆矩 阵 其逆矩阵为 A1 ,由定理2.9 ,存在初等矩阵 G1 ,L , 可逆, 设A可逆,
Gk , 使得 则
A1= G1 LGk
G1 LGk A= A1 A= E
G1 LGk E = A1 E= A1 G1 LGk ( A E ) = (G1 LGk A G1 LGk E )= (E A1 )
证
Q A ~ E,
故 E 经有限次初等变换可变 A,
即存在有限个初等方阵 P1 , P2 ,L, Pl , 使
P1 P2 L Pr EPr +1 L Pl = A
2024版年度《线性代数A》教学大纲
《线性代数A》教学大纲contents •课程目标与要求•教学内容与计划•线性方程组•矩阵及其运算•向量空间与线性变换•特征值与特征向量•二次型与矩阵合同•课程复习与考试指导目录01课程目标与要求010204知识与技能目标掌握线性代数的基本概念、基本理论和基本方法。
熟练掌握矩阵的运算、行列式的计算以及线性方程组的解法。
理解向量空间、线性变换以及特征值和特征向量的概念。
能够运用所学知识解决一些实际问题,如线性规划、数据分析等。
03培养学生的抽象思维能力和逻辑推理能力。
提高学生分析问题和解决问题的能力。
培养学生的自主学习能力和团队协作精神。
教授学生如何将线性代数知识应用于其他学科和实际生活中。
01020304过程与方法目标02030401情感态度与价值观目标激发学生对线性代数学习的兴趣和热情。
培养学生的数学素养和严谨的科学态度。
帮助学生认识到线性代数在现代科技和社会发展中的重要作用。
培养学生的创新思维和实践精神。
学生需要按时完成作业和练习,积极参与课堂讨论。
平时成绩主要包括作业完成情况、课堂表现、小组讨论等。
考核方式包括平时成绩、期中考试和期末考试,其中平时成绩占总评的30%,期中考试占总评的30%,期末考试占总评的40%。
期中和期末考试主要考察学生对课程内容的掌握程度和应用能力。
课程要求与考核方式02教学内容与计划教学内容概述向量空间与线性变换特征值与特征向量线性方程组矩阵与行列式介绍向量空间的基本概念、线性变换及其性质,为后续的线性方程组、特征值与特征向量等内容打下基础。
讲解线性方程组的解法,包括高斯消元法、矩阵的秩与线性方程组解的关系等,培养学生解决实际问题的能力。
系统介绍矩阵的基本运算、矩阵的逆、转置以及行列式的定义和性质,为后续的线性代数知识提供必要的数学工具。
深入讲解特征值与特征向量的概念、性质以及计算方法,为理解线性变换的几何意义和应用奠定基础。
教学重点与难点教学重点向量空间的基本概念、线性变换及其性质、线性方程组的解法、矩阵的基本运算以及特征值与特征向量的概念和应用。
21高斯消元法
对j= k+1~n+1(列)令 aij aij cakj
回代过程是解同解的上三角形方程组
a11x1 a12x2
a22 x2
a1,n1 xn1 a1n xn
a2,n1xn1 a2 ,n xn
a x n1,n1 n1 an1,n xn ann xn
素,……,第n-1步消去an-1,n-1下方元素。即第k 步将第k行的适当倍数加于其后各行,或可说是 从k+1~n行减去第k行的适当倍数,使它们的第k 列元素变为零,而其余列元素减去第k行对应列 元素的倍数。
因此,如把增广矩阵 A 变换前后都在计算
机上用同一数组A存储, 则消去过程可写为:
对k=1~n-1(步)做 对i= k+1~n(行)做
求出x2代回第一个方程时,因 10-5x1+2x2=1, 10-5x1’+2x2’=1 两式相减得10-5(x1- x1’)+2(x2- x2’)=0,可见 | x1- x1’ |=200 000| x2- x2’|
~x 表明 x1的误差被放大200 000倍, x1’自然失真。2
列主元消去法
为了避免出现小主元,在每次消元前进行选 主元。即每次消元前先选取所要消元的列中绝对 值最大的元素作为主元,然后再消元。
通常情况下稳定性彼此相差不大,所以一般 情况都只用列主元消去法。
复习题
1、何谓高斯消去法?它与一般消去法有 何不同?怎样计算行列式?
2、计算机上为什么不用克莱姆法与约当 消去法?
3、何谓主元消去法?有何优点?
具体为:
中选~x在主2第元k,步即的在第其k列中的找元出素绝a对kk值, a最k大~x1,1的k ,元素, aankpk,
王晓峰著《线性代数》习题解答
王晓峰著《线性代数》习题解答第一章1. 解下列方程组, 并在直角坐标系中作出图示.1)⎩⎨⎧=-=+21y x y x ;2)⎩⎨⎧=+=+5331y x y x ; 3)⎩⎨⎧=-=-2221y x y x .解: 1) 将第一个方程减去第二个方程, 得2y =-1, y =-1/2, 再代入第个方程解得x =1+1/2=3/2,⎪⎭⎫ ⎝⎛-21,23方程有唯一解.2) 将第二个方程除以3得35=+y x , 与第一个方程相比较知此方程组为矛盾方程组, 无解,3) 将第2个方程除以2, 可以得到第一个方程, 令y =t 为任意实数, 则x =1+t , 方程组的解集.2. 用Gauss 消元法解下列线性方程组.1)⎪⎩⎪⎨⎧-=-+=++-=-+333693132472321321321x x x x x x x x x2)⎩⎨⎧-=-+=+-223252321321x x x x x x3)⎪⎪⎩⎪⎪⎨⎧=+-=-=--=+54212302433214243241x x x x x x x x x x4)⎪⎩⎪⎨⎧=++=-+=+033803403232132121x x x x x x x x解: 1) 对增广矩阵进行变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0000751010301)2(000075104721)3/1(12115302115304721)3()2(333693131124721123323121r r r r r r r r r则x 3为自由变量, 令x 3=t 为任意实数, 则x 1=10-3t , x 2=5t -7, 方程有无穷多解, 解集为(10-3t , 5t -7, t ).2) 对增广矩阵进行变换:⎥⎦⎤⎢⎣⎡--−−−→−+⨯⎥⎦⎤⎢⎣⎡---−−−→−⨯⎥⎦⎤⎢⎣⎡---−−−−→−+-⨯⎥⎦⎤⎢⎣⎡---121001012121025218/1816802521)3(2123252112221r r r r r则x 3为自由变量, 令x 3=t 为任意实数, 则x 1=-t , x 2=2t -1,解集为(-t , 2t -1, t ).3) 对增广矩阵进行变换:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−→−+-⨯+⨯+⨯-⨯⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-----−−−−→−+-⨯+⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-----−−−−→−⨯-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−+⨯+⨯↔⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----11000101001001010001)3()32()35()43(34340003235100313201043001)7(461370032351003641043001)12/1()1(613700820120036410430012336410120300112043001)2(50412120300112043001142434443233242324241r r r r r r r r r r r r r r r r r r r r r方程有唯一解x 1=x 2=x 3=x 4=1.4) 此为齐次方程, 对系数矩阵进行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−→−+⨯+⨯⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10003000211)6/1(6001301021)3(390130032)4()2(3381340321323312323121r r r r r r r r r r r r r可知方程有唯一零解x 1=x 2=x 3=0.3. 确定下列线性方程组中k 的值满足所要求的解的个数. 1) 无解: 2) 有唯一解:⎩⎨⎧=++=++;486362z y x kz y x⎩⎨⎧-=-=+123214y x y kx3) 有无穷多解:⎪⎩⎪⎨⎧=+-=++=++12524z y x z y x kz y x解:1) 对增广矩阵作变换:⎥⎦⎤⎢⎣⎡--−−−−→−+-⨯⎥⎦⎤⎢⎣⎡143800621)3(486362121k k r r k因此, 要使方程组无解, 须使8-3k =0, 解得k =8/3, 即当k 取值为8/3时, 方程无解. 2) 对增广矩阵作变换:⎥⎥⎦⎤⎢⎢⎣⎡++--−−−−−→−+-⨯⎥⎦⎤⎢⎣⎡--−−−→−↔⎥⎦⎤⎢⎣⎡--14612301232)2(141123212321412121k k r kr k r r k因此, 如要方程组有唯一解, 必须有0123≠+k , 即32-≠k . 3) 对增广矩阵作变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-0440*******1331301110411)1()1(11215121411323121kkk r r k k k r r r r k因此, 如要方程组有无穷多解, 必须4-4k =0, 即当k =1时, 方程组才有无穷多解.4. 证明: 如果对所有的实数x 均有ax 2+bx +c =0, 那么a =b =c =0.证: 既然对所有的实数x 都有ax 2+bx +c =0成立, 那么具体地分别取x =0, x =1, x =2代入上式也成立, 则有⎪⎩⎪⎨⎧=++=++=02400c b a c b a c , 这是关于a ,b ,c 的齐次线性方程组, 对其系数矩阵作变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−→−↔↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100320111)4(100124111124111100213221r r r r r r看出此方程只有唯一零解, 因此有a =b =c =0.5. 讨论以下述阶梯矩阵为增广矩阵的线性方程组是否有解; 如有解区分是唯一解还是无穷多解.1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---0000320003212)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--410030201231 3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--00004000320040214)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--0000010013201021 解: 1) 方程组有一个自由变元x 2, 因此方程组有无穷多解. 2) 方程组的三个变元均为首项变元, 因此方程组有唯一解. 3) 第三个方程0=4说明此方程无解.4) 方程组的三个变元均为首项变元, 因此方程组有唯一解.6. 对给定方程组的增广矩阵施行行初等变换求解线性方程组..1)⎪⎩⎪⎨⎧=-=+-=+-3284432253y x y x y x 2)⎩⎨⎧=--+=--+302859322207124w z y x w z y x 3)⎪⎩⎪⎨⎧=+-+=--+=+-+222242*********w z y x w z y x w z y x 解: 1) 对增广矩阵进行变换:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---781007231032811974190723103281)28/1(74190922803281)3()3(2253443328132814432253322312113r r r r r r r r r方程组无解.2) 对增广矩阵进行变换⎥⎦⎤⎢⎣⎡--−−−−→−+⨯⎥⎥⎦⎤⎢⎢⎣⎡---−−→−⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯⎥⎥⎦⎤⎢⎢⎣⎡----−−−→−⨯⎥⎦⎤⎢⎣⎡----5452100100960317/4545210021154731422713410021154731)3(302859321154731)4/1(302859322207124122211r r r r r r可以看出y 和w 为自由变元, 则令y =s , w =t , s 与t 为任意常数, 则x =100-3s +96t , z =54+52t . 方程的解集表示为(100-3s +96t , s , 54+52t , t ). 3) 对增广矩阵进行变换()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-−−−−−→−+⨯⨯+-⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--−−−−→−+-⨯+-⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0000100021021211)2/1(2/1)2(04002000212121211)4()2(2222411112212121211222242121212111111212232312121r r r r r r r r r r r 可知y 与z 为自由变元, 令y =s , z =t , s 与t 均为任意实数, 则,212121=+-=w t s x , 方程组的解集为⎪⎭⎫ ⎝⎛+-0,,,212121t s t s7. 对给定齐次线性方程组的系数矩阵施行行初等变换求解下列方程组.1) ⎪⎩⎪⎨⎧=-+=+=+-02020z y x yx z y x 2)⎪⎩⎪⎨⎧=+-=+-=+++0202202w z y w y x w z y x解: 1) 对系数矩阵作初等变换.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−−→−+-⨯+⨯-⨯⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−−→−+-⨯+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−→−⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001)3/1()3/2()5/3(350032103101)2(320321011131320230111)1()2(21101211113233321223121r r r r r r r r r r r r r r方程只有零解, x =y =z =0.2) 对系数矩阵作初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−−−→−+-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−-⨯⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--110000102001)2()2/1(11002/12/1100201)3/1()2/1(3300112002012)1(114011201121112011401121)1(11202021112113233232123221r r r r r r r r r r r r r r因此, w 为自由变元, 令w =t 为任意实数, 则x =-2t , y =0, z =t , 方程组的解集为 (2t , 0, t , t ).8. 设一线性方程组的增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--32223411121α求α的值使得此方程组有唯一解.解: 对增方矩阵求初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+−−→−+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+-⨯+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--420034601121126034601121)2(32223411121323121αααr r r r r r因此, 此方程组要有唯一解, 就必须满足α+2≠0, 即α≠-2.9. 设一线性方程组的增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0410*******β1) 此方程有可能无解吗? 说明你的理由. 2) β取何值时方程组有无穷多解?解: 1) 此方程一定有解, 因为此方程是齐次方程, 至少有零解. 2) 对此增广矩阵做初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−++⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0500011001216016001100121204103520121323121βββr r r r r r因此, 只有当β+5=0, 即β=-5时,方程才有无穷多解.10. 求λ的值使得下述方程组有非零解.⎩⎨⎧=-+-=+-0)2(0)2(y x y x λλ 解: 对系数矩阵作初等行变换:⎥⎦⎤⎢⎣⎡+---−−−−−→−+-⨯⎥⎦⎤⎢⎣⎡---−−−→−↔⎥⎦⎤⎢⎣⎡---1)2(021)2(1221211222121λλλλλλλr r r r因此, 要使方程有非零解, 必须有(λ-2)2+1=0, 但(λ-2)2+1≥0对λ取任何实数值总是成立, 因此必有(λ-2)2+1≠0, 因此, 无论λ取什么值此方程组都不会有非零解.11. 求出下列电路网络中电流I 1,I 2,I 3的值.解: 根据基尔霍夫定律可得如下方程组:⎪⎩⎪⎨⎧=+=+=+-52384202132321I I I I I I I 对增广矩阵做初等行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−→−-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-13/1510013/2201013/7001)3()2(13/1510042104301)13/1(151300421043011)5(535042100111)2/1()3(502384200111132331232231r r r r r r r rr r r r最后得I 1=7/13, I 2=22/13, I 3=15/1312. 一城市局部交通流如图所示.(单位: 辆/小时)51) 建立数学模型2) 要控制x 2至多200辆/小时, 并且x 3至多50辆小时是可行的吗? 解: 1} 将上图的四个结点命名为A , B , C , D , 如下图所示:5则每一个结点流入的车流总和与流出的车流总和应当一样, 这样这四个结点可列出四个方程如下:⎪⎪⎩⎪⎪⎨⎧=+=++-=-+=+D x x C x x x Bx x x A x x 3502001503005453243121对增广矩阵进行变换:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---−−−−→−++-⨯+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−−→−+-⨯+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−−→−+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--000000350110002001011050010101)1()1(35011000350110001500111015001101)1()1(35011000200101101500111030000011)1(350110002001011015001101300000111323431232221r r r r r r r r r r r r r可见x 3和x 5为自由变量, 因此令x 3=s , x 5=t , 其中s ,t 为任意正整数(车流量不可能为负值), 则可得x 1=500-s -t , x 2=s +t -200, x 4=350-t .2) 令x 2=200, x 3=s =50, 代入上面的x 2的表达式, 得200=50+t -200, 求出t =350, 则x 1=500-s -t =100, x 4=0, 是可行的.13. 在应用三的货物交换经济模型中, 如果交换系统由下表给出, 试确定农作物的价值x 1, 农具及工具的价值x 2, 织物的价值x 3的比值.313131313131313131CM F C M F解: 根据上表可得关于x 1, x 2,x 3的三个齐次方程如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=+-=++-032313103132310313132321321321x x x x x x x x x对系数矩阵做行初等变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−↔⨯⨯⨯⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---0001101012000110121)3/1(1330330121)1(221111212133332313131323131313212232312121321r r r r r r r r r r r r r r可见方程有非零解, x 3为自由变量, 令x 3=t 为任意正实数, 则有x 1=x 2=x 3=t , 即三种价值的比值为1:1:1.第二章1. 1. 写出下列方程组的矩阵形式:1) x 1-2x 2+5x 3=-1;2) ⎩⎨⎧=+=-1223231x x x x 3) ⎪⎩⎪⎨⎧=-=+=++002045z x z y z y x 解:1) []15,2,1321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-x x x ; 2)⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡12110102321x x x ;3) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-000101120415z y x2. 设⎥⎦⎤⎢⎣⎡=212121A , ⎥⎦⎤⎢⎣⎡--=212234B求: 1) 3A -2B ;2) 若X 满足A T +X T =B T , 求X .. 解: 1)⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--------=⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡=-10110105)4(623)4(64366834244686363632122342212121323B A2)因X 满足A T +X T =B T , 等号两边同时转置, 有 A +X =B ,等号两边同时减去A , 得 X =B -A , 因此有⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--------=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--=-=404113221122122314212121212234A B X3. 计算下列矩阵的乘积:1)[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-213121; 2) []214321-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡; 3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡-103110021212321; 4)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡011011120101130213 解:1)[]1211231213121=⨯+⨯+⨯-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-2)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯-⨯⨯-⨯⨯-⨯⨯-⨯=-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8463422124)1(423)1(322)1(221)1(12143213)⎥⎦⎤⎢⎣⎡---==⎥⎦⎤⎢⎣⎡-⨯+⨯+⨯-⨯+⨯+⨯-⨯+⨯+⨯--⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡-1341410)1(21102021122320112)1(312010312213302111031100212123214)⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-⨯+-⨯+⨯-⨯+-⨯+⨯=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯+-⨯+⨯-⨯--⨯+⨯⨯+-⨯+⨯⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡83)2(1)2(310)2(2)2(11322113021300)1(11101)1(21001)1(011130213011011120101130213 4. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=201210003,310120101B A求: 1) (A +B )(A -B );2) A 2-B 2.比较1)和2)的结果, 可得出什么结论? 解: 1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-+567063519111110102511330104)201210003310120101)(201210003310120101())((B A B A2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-655142418405612009105055041120121000320121000331012010131012010122B A 可得出的结论: 大家知道, 在代数公式上有a 2-b 2=(a +b )(a -b ), 而将此公式中的a 和b 换成矩阵A 与B , 就不一定成立了, 这是因为矩阵乘法一般不满足交换律, 即一般AB ≠BA , 当然也就有A 2-B 2≠(A +B )(A -B ).5. 已知矩阵A ,B ,C , 求矩阵X ,Y 使其满足下列方程:⎩⎨⎧+=+=-T B A Y X CY X )(2解: 将此方程编上号, 用类似解线性方程组一样的办法来解,⎩⎨⎧+=+=-)2()()1(2T B A Y X C Y X将方程(1)的左边和(2)的左边和左边相加, 右边和右边相加, 等号还是成立, 得: 3X =C +(A +B )T 两边同乘1/3, 得TB AC X )(3131++=(3)(2)式等号两边都加上X , 得 Y =(A +B )T -X (4) 将(3)式代入到(4)式, 得CB A B AC B A Y T T T 31)(32)(3131)(-+=+--+=因此⎪⎩⎪⎨⎧-+=++=CB A YC B A X T T T T 3132323131316. 如矩阵AB =BA , 则称A 与B 可交换, 试证:1) 如果B 1, B 2都与A 可交换, 那么B 1+B 2, B 1B 2, 也与A 可交换; 2) 如果B 与A 可交换, 那么B 的k (k >0)次幂B k 也与A 可交换. 证: 1) 因B 1, B 2都与A 可交换, 即AB 1=B 1A , AB 2=B 2A , 则 (B 1+B 2)A =B 1A +B 2A =AB 1+AB 2=A (B 1+B 2) 即B 1+B 2与A 可交换. 而且(B 1B 2)A =B 1(B 2A )=B 1(AB 2)=(B 1A )B 2=(AB 1)B 2=A (B 1B 2), 因此B 1B 2与A 可交换.2)因B 与A 可交换, 即AB =BA , 则用归纳法, 当k =1时, 有B 1=B , 结论显然成立. 假设当k =m 时假设成立, 即AB m =B m A , 则当k =m +1时, 有AB m +1=AB m B =B m AB =B m BA =B m +1A , 结论也成立.7. 如矩阵A =A T , 则称A 为对称矩阵.设A ,B 都是n 阶对称矩阵, 证明AB 是对称矩阵的充分必要条件是AB =BA . 证: 已知A =A T , B =B T ,充分性: 假设AB =BA , 则(AB )T =B T A T =BA =AB , 因此AB 为对称矩阵. 必要性: 如果AB 为对称矩阵, 即(AB )T =AB , 则因 (AB )T =B T A T =BA , 可得BA =AB . 8. 设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A21其中a i ≠a j , 当i ≠j (i , j = 1,2, …, n ). 试证: 与A 可交换的矩阵一定是对角矩阵. 证:假设矩阵B ={b ij }n 与A 可交换, 即有BA =AB , 而BA 相乘得到的矩阵为B 的第j 列所有元素都乘上a j 得到的矩阵, AB 相乘得到的矩阵为B 的第i 行元素都乘上a i 得到的矩阵. 即BA ={a j b ij }n , AB ={a i b ij }n , 但对于任给的i ,j ,i ≠j , 因AB =BA , 因此有a j b ij =a i b ij , 因a i ≠a j , 所以必有b ij =0, 即B 只能是对角矩阵.9. 检验以下两个矩阵是否互为可逆矩阵?⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000210012100121,1000210032104321B A解: 计算AB 和BA 如下:410000100001000011100012)2(1110013)2(21112)2(111014)2(31213)2(21112)2(11110002100121001211000210032104321I AB =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯+-⨯⨯⨯+-⨯+⨯⨯+-⨯⨯⨯+-⨯+⨯⨯+-⨯+⨯⨯+-⨯⨯==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=41000010000100001110001)2(211100112)2(311)2(21110213)2(41112)2(311)2(21111000210032104321100021********21I AB =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯-+⨯⨯⨯+⨯-+⨯⨯-+⨯⨯⨯+⨯-+⨯⨯+⨯-+⨯⨯-+⨯⨯==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=因此A 与B 确实互为逆矩阵.10. 设A ,B ,C 为n 阶方阵, 且C 非奇异, 满足C -1AC =B , 求证B m =C -1A m C (m 为正整数). 证: 用归纳法, 当m =1时条件已经成立为C -1AC =B , 假设当m =k 时, 命题成立, 即有 B k =C -1A k C , 则当m =k +1时, 有B k +1= B k B =C -1A k CC -1AC = C -1A k (CC -1)AC = C -1A k IAC = C -1A k AC = C -1A k +1C , 命题得证.11. 若n 阶矩阵A 满足A 2-2A -4I =0, 试证A +I 可逆, 并求(A +I )-1. 证: 将A 2-2A -4I =0改写为A 2-2A -3I =I ,先解一元二次方程组x 2-2x -3=0, 根据公式a acb b x 2422,1-±-=其中a =1, b =-2, c =-3, 则⎩⎨⎧-=+±=13212422,1x , 因此可将多项式x 2-2x -3因式分解为x 2-2x -3=(x -3)(x +1), 那么, 根据矩阵相乘相加的性质也就能将A 2-2A -3I 因式分解为 A 2-2A -3I =(A -3I )(A +I )=(A +I )(A -3I ), 因此我们有(A -3I )(A +I )=(A +I )(A -3I )=I , 即A +I 与A -3I 互为逆矩阵, (A +I )-1=A -3I .12. 证明: 如果A =AB , 但B 不是单位矩阵, 则A 必为奇异矩阵.证: 用反证法, 假设A 为可逆, 其逆为A -1, 则对于A =AB 两边同时左乘A -1, 得 A -1A =A -1AB , 即I =B , 这与B 不是单位矩阵相矛盾, 因此A 必为奇异矩阵.13. 判别下列矩阵是否初等矩阵?1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100020001, 2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 3) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010100201, 4) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100410001 解: 1) 是初等矩阵P (2(-2)),2) 是初等矩阵P (1,3), 3) 不是初等矩阵,4) 是初等矩阵P (3(-4), 2).14. 求3阶方阵A 满足⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221331332123111333231232221131211555a a a a a a a a a a a a a a a a a a a a a A解: 从等式看出A 左乘一矩阵相当于对此矩阵作初等行变换r 3×(-5)+r 1, 因此A 为一相应的初等矩阵, 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-=100010501)1),5(3(P A15. 设A ,B ,C 均为n 阶可逆矩阵, 且ABC =I , 证明BCA =I证: 因B ,C 为可逆矩阵, 则BC 也是可逆矩阵, 且(BC )-1=C -1B -1, 因ABC =I , 对此等式两边右乘(BC )-1, 即ABC (BC )-1=I (BC )-1, 因为BC (BC )-1=I , 因此上式化简为A =(BC )-1, 因此当然有 BCA =BC (BC )-1=I .16. 设A ,B 均为n 阶方阵, 且)(21I B A +=, 证明: A 2=A 的充分必要条件是B 2=I .证: 充分性: 假设B 2=I , 则A IB I B I B B I B A =+=+=++=+=)(21)22(41)2(41)(41222必要性: 如果A 2=A , 则有)2(41)(41)(2122I B B I B I B ++=+=+等式两边乘4得I B B I B ++=+2222,等式两边同时减去2B +I 得 B 2=I 证毕.17. 如果n 阶矩阵A 满足A 2=A , 且A ≠I , 则A 为奇异矩阵.证: 用反证法, 假设A 为可逆, 其逆为A -1, 则上式两边左乘(或者右乘)A -1, 得 AAA -1=AA -1, 即A =I , 但这与A ≠I 相矛盾, 因此A 的逆不存在, 即A 为奇异矩阵.18. 求下列矩阵的逆矩阵:1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=285421122A ; 2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=1111111111111111A 3)),,2,1,0(000000000000121n i a a a a a A i n n=≠⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-解: 用对[A |I ]进行行初等变换为[I |A -1]的办法来求:1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100285001122010421100285010421001122]|[21r r I A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----−−−−→−+-⨯+-⨯11390002196003/13/111)3/1()3(15018180021960010421)5()2(12323121r r r r r r r r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⨯⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−−→−+-⨯+9/19/13/11006/16/13/10109/19/23/20019/16/11139001120609/19/23/2001)9/1(321323r r r r r r 因此, 最后得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-9/19/13/16/16/13/19/19/23/21A 2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=10001111010011110010111100011111]|[I A⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−−→−+-⨯+-⨯+-⨯10010220010120200011220000011111)1()1()1(413121r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−↔1001022000112200010120200001111123r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−−−→−+⨯+-⨯11002200001122000101202002/102/10101)2/1()1(1242r r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−−→−+⨯+-⨯11114000001122000101202002/12/1010012/1)1(1343r r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−−→−+⨯+⨯+⨯111140002/12/12/12/102002/12/12/12/100204/14/14/14/100012/12/14/1342414r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−⨯-⨯-⨯4/14/14/14/110004/14/14/14/101004/14/14/14/100104/14/14/14/100014/1)2/1()2/1(432r r r 因此有A A 414/14/14/14/14/14/14/14/14/14/14/14/14/14/14/14/11=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=-3)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-10000000000010000001000]|[121n n a a aa I A⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−−→−↔↔↔----01000000100000001000100000012121211n n n n n n a a a a r r r r r r ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−−→−⨯⨯⨯--0/1010000/100100000/10010/1000001/1/1/11211121n n n n n a a a a a r a r a r因此, 最后得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=--0/10000/10000/1/10001211n n a a a a A19. 解下列矩阵方程, 求出未知矩阵X .1) ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡12643152X 2) ⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--132321433312120X解: 令⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=12643152B A , 则要解的方程为AX =B将方程两边左乘上A 的逆A -1, 可得A -1AX =A -1B , 即 X =A -1B 下面求A -1:⎥⎦⎤⎢⎣⎡--−−−−→−+-⨯⎥⎦⎤⎢⎣⎡−−−→−↔⎥⎦⎤⎢⎣⎡=21101031)2(0152103110310152]|[2121r r r r I A⎥⎦⎤⎢⎣⎡--−−−→−-⨯+⨯21105301)1(3212r r r 因此有⎥⎦⎤⎢⎣⎡--=-21531A 因此⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--==-80232126421531B A X 2) 令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=132321433312120B A 则矩阵方程为XA =B设A 的逆存在为A -1, 则方程两边右乘A -1, 得XAA -1=BA -1,即X =BA -1 下面求A -1:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−⨯↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=10043300112002/102/32/112/1100433010312001120|121r r r I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−→−⨯+⨯12/302/12/30002/12/11002/102/32/112/13231r r r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−−→−+-⨯+⨯12/34/34/100002/12/11002/14/14/701)2/3(2/13212r r r r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−-⨯463100002/12/11002/14/14/701)4(3r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−−→−+-⨯+-⨯4631002310107115001)4/7()2/1(1323r r r r因此,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-46323171151A 最后得⎥⎦⎤⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎦⎤⎢⎣⎡-==-47411246323171151323211BA X20. 求矩阵X 满足AX =A +2X , 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=410011103A解: 将方程两边减去2X , 得AX -2X =A因2X =2IX , 因此上面的方程可以从右边提取公因子X , 得 (A -2I )X =A假设A -2I 可逆, 则方程两边同时左乘(A -2I )-1, 得(A -2I )-1(A -2I )X =(A -2I )-1A , 即X =(A -2I )-1A设B =A -2I , 则X =B -1A , 而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=210011101200020002410011103B 下面用行初等变换求B 的逆B -1:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100210011110001101)1(100210010011001101|21r r I B⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−-⨯+⨯111100122010112001)1()1(111100011110001101)1(11323232r r r r r r r则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1111221121B最后得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----==-3222342254100111031111221121A B X 验算:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+1054459341364446844104100111032X A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10544593413322234225410011103AX21. 利用分块的方法, 求下列矩阵的乘积:1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100110201110021; 2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡d d c c b b a a00000010001010001000000解:1) 将乘积分块为[]⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-2|100110201110021I C B A其中[]10,201102,101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=C B A[][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=⎥⎦⎤⎢⎣⎡30111220110210001020110210101|22BI AC I C B A2) 将乘积分块为⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡22222220000001000110001000000dI O cI I bI I O aI d d c c b b a a⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+=bd c bd c ac a ac a I bd c I acI aI 010*******)(2222第三章1. 计算下列行列式:1) 4321; 2) 22b b a a ; 3) 7040-解: 1) 26432414321-=-=⨯-⨯=;2) )(2222a b ab b a ab b b a a -=-=;3) 0)4(0707040=-⨯-⨯=-.2. 计算下列三阶行列式:1)241130421--; 2) 320001753-; 3) b a c a c b cb a 解: 1) 将行列式按第一列展开81021342124131241130421=+-=⨯-⨯-=-- 2) 将行列式按第二行展开172353275320001753=⨯-⨯==- 3)3333333c b a abc c b a abc abc abc b a c a c b cb a ---=---++=3. 计算下列行列式:1)000000005544332222211111b a b a b a e d c b a e d c b a ;2)x yy x y x y x D n 0000000000=;3) f e d c b a 0000000000解: 1) 将行列式按第一列展开后, 得到的各子式再按第二列展开, 这样展开后的后三列构成的任何三阶子式都至少包括一行0, 因此后三列任何三阶子式均为0, 整个行列式的值D =0. 2) 将行列式按第一列展开得nn n n n y x y x y x y y x y x y x x D 11)1(0000000)1(0000000++-+=-+=3) 先对第一列展开, 然后对第二列展开, 得abdfbadf fe dbafe dab D -=-=-=-=000004. 利用行列式的性质计算下列行列式1) 2605232112131412-; 2)ef cf bf de cd bd ae ac ab ---;3) 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a解: 下面都将所求行列式的值设为D .1) 因为第1行加到第2行以后, 第2行将和第4行相等, 因此行列式的值D =0; 2) 首先从第1,2,3行分别提取公因子a ,d ,f , 再从第1,2,3列提取公因子b ,c ,e , 得abcdef abcdef adfbce ef cfbfde cd bd ae ac ab 4020200111111111111=-=---=---3) 将第2,3,4列都展开, 并统统减去第1列, 得9644129644129644129644122222++++++++++++=d d d d c c c cb b b b a a a a D 再将第3列减去2倍的第2列, 第4列减去3倍的第2列, 得62126212621262122222=++++=d d c cb b a a D5. 把下列行列式化为上三角形行列式, 并计算其值1) 1502321353140422-----; 2) 2164729541732152-----解:1)121034805350024211203840553004221)2/3(2150232135314042232413121------↔=-----+⨯+⨯+⨯=-----c c r r r r r r 131002050021102042101300520001210024258535034801210024243423242---↔=--+⨯+⨯=-----↔=c c r r r r r r270)27(512270002050021102042)2(43-=-⨯⨯⨯=----+-⨯=r r2)0210311061202251)1()2(12461759243712251216472954173215241312113----+-⨯+-⨯+⨯=------↔=-----r r r r r r c c93000030031102251133000300311022511)2(021061203110225143423232-=--+⨯=--+⨯+-⨯=---↔=r r r r r r r r6. 计算下列n 阶行列式1) 12125431432321-n n n2) a bbba b a解: 1) 设此行列式的值为D , 将第2,3,…,n 列均加于第一列, 则第一列的所有元素均为)1(21321+=++++n n n , 将此公因式提出, 因此有121125411431321)1(21-+=n nn n D再令第n 行减去第n -1行, 第n -1行减去第n -2行, …, 第2行减去第1行, 可得11111111111111111)1(21111011101110321)1(21-----+=--+=n n n n n n n n n n n n D 1)1(21)()1)(1(21)000000111111111)(1(21----+=---++=n n n n n n n n nn n2) 此题和第3题的2)一样, 因此有n n nb a D 1)1(+-+=7. 证明下列行列式1) ))()((111a c c b b a ab ca bc c b a ---=2) nb a n ab a ba b b a b a ba )(222-=证: 1)=----=----+-⨯+-⨯=)()()()(001)1()1(1113221c a b b a c ac a b c a b b a c bc a c a b a c c cc ab ca bc c b a))()(())()((11))((a c c b b a b c c a b a b c c a b a ---=---=----=2) 用归纳法, 设D n 为所求行列式值, 当n =1时,221b a a b ba D -==, 等式成立. 假设当n =k 时假设成立, 即有kk b a k aba b a b b a ba ba D )(222-==当n =k +1时,按第一列展开=+=+221k aba b ab b a b a ba D k=+++=1212k aba b b a ba b bk aa bab ba ba a12222222222)()()()(+-=--=-=-=k kk k k b a b a b a b a D D b D a证毕.8. 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210111302A 的伴随矩阵A *, 并求A -1. 解:31130,32130,12111312111=-==--==--=A A A 11132,42032,22011322212=-=-=-==--=A A A 2112,21002,11011332313-=-=-=-==-=A A A因此得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221142331332313322212312111*A A A A A A A A A A A 的行列式为5132012||131312121111=⨯+⨯+⨯=++=A a A a A a A 因此有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==-22114233151||1*1A A A9. 设A 为三阶方阵, A *是A 的伴随矩阵, 且|A |=1/2, 求行列式|(3A )-1-2A *|的值.解: 因11**121||,||1---===A A A A A A A , 以及1131)3(--=A A , 还有2||1||1==-A A ,则27162278||32|32||31||2)3(|13111*1-=⨯-=⎪⎭⎫⎝⎛-=-=-=------A A A A A A10. 设A 为n 阶可逆阵, A 2=|A |I , 证明: A 的伴随矩阵A *=A . 证: 因A 可逆, 则在等式A 2=|A |I 两边乘A -1, 得A =|A |A -1, 即A A A ||11=-, 而因为*1||1A A A =-, 所以有A =A *, 证毕.11. 用克莱姆法则解下列方程组.(1) ⎪⎩⎪⎨⎧=+-=++=++10329253142321321321x x x x x x x x x(2) ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++=+++24324322256511322121432143214321x x x x x x x x x x x x x x x x解: (1) 方程的系数矩阵A 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=113215421A , 常数向量T ]102931[=β, 则求A 的逆矩阵:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10311700151890001421)3()5(1001130102150014213121r r r r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−-⨯103117009/19/5210001421)9/1(2r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+⨯+-⨯19/79/830009/19/521009/29/10017)2(3212r r r r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−⨯3/127/727/810009/19/521009/29/10013/13r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−+-⨯3/127/727/81003/227/1127/101009/29/1001)2(23r r 因此得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-3/127/727/83/227/1127/109/29/11A则方程的解X 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-5431029313/127/727/83/227/1127/109/29/11321βA x x x X即x 1=3,x 2=4,x 3=5.(2) 方程的系数矩阵A 为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=43114312251151132A , 常数向量[]T 2226=β先求A 的逆A -1:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−↔⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡10004311010043120001511320010251110004311010043120010251100015113221r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−+-⨯+-⨯+-⨯10102200012007100021111000102511)1()2()2(413121r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−+⨯+-⨯101022000141160000211110003114011)1(3212r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−-⨯↔014116002/102/1011000021111000311401)2/1(343r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−−→−+⨯+-⨯+-⨯311150002/102/1011002/102/512010201150016)1()4(332313r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−-⨯5/35/15/15/110002/102/1011002/102/51201020115001)5/1(4r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−−→−+⨯+-⨯+-⨯5/35/15/15/1100010/15/110/75/1010010/75/210/295/70010110000011)2()5(342414r r r r r r 因此有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=-5/35/15/15/110/15/110/75/110/75/210/295/711001A则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-002022265/35/15/15/110/15/110/75/110/75/210/295/7110014321βA x x x x X 即x 1=0, x 2=2, x 3=0, x 4=0.12. 如果齐次线性方程组有非零解, k 应取什么值?⎪⎩⎪⎨⎧=-+=-+=++-0)4(20)6(2022)5(z k x y k x z y x k解: 此方程组的系数矩阵A 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=k kk A 402062225要使方程组有非零解, 必须有det(A )=0.而k k k k kr r rr k kk A ---+--+⨯+-⨯=---=402242242252)2(402062225)det(2321k kk k r r rr k kk --+---+⨯+-⨯=-----=4022121005)2(2)2(402212225)2(1213)8)(5)(2(80061020122402212201)5)(2(3121----=---+⨯+⨯=-----=k k k kr r rr k k k因此, 只有当k =5或者k =2或者k =8时, 此方程组才有非零解.13. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ 有非零解?解: 此方程组的系数矩阵A 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1211111μμλA , 要使方程组有非零解, 必须det(A )=0,而012101111)1()1(1211111)det(3121----+-⨯+-⨯==μλμλλμμλr r rr Aμλμμλμλμλ)1(12111)1(121113-=---=----=列展开按第因此, 只有当λ=1或者μ=0时, 方程组才有非零解.第四章1. 设α1=(1,1,1), α2=(-1,2,1), α3=(2,3,4), 求β=3α1+2α2-α3解: β=3α1+2α2-α3=3(1,1,1)+2(-1,2,1)-(2,3,4)=(3,3,3)+(-2,4,2)-(2,3,4) =(3-2-2, 3+4-3, 3+2-4)=(-1, 4, 1)2. 设3(α1-α)+2(α2+α)=5(α3+α), 求α, 其中α1=(2,5,1,3), α2=(10,1,5,10), α3=(4,1,-1,1) 解: 将上述方程整理: 3α1-3α+2α2+2α=5α3+5α -3α+2α-5α=-3α1-2α2+5α3 (-3+2-5)α=-3α1-2α2+5α3 -6α=-3α1-2α2+5α3 最后得)4,3,2,1()6531023,653521,653125,3103101()65,65,65,310()310,35,31,310()23,21,25,1()1,1,1,4(65)10,5,1,10(31)3,1,5,2(21653121321=-+++-+-+=--+=--+=-+=αααα3. 设R 为全体实数的集合, 并且设}0,,,|),,,({11211=++∈==n n n x x R x x x x x X V 满足, }1,,,|),,,({11212=++∈==n n n x x R x x x x x X V 满足.问V 1,V 2是否向量空间? 为什么?解: (一般的技巧: 凡是对R n 作一个齐次线性方程的约束的集合都是向量子空间, 而作非齐次线性方程的约束的集合则因为它不穿过原点, 就不是向量子空间).V 1是向量空间, 且是R n 的向量子空间, 因为nR V ⊂1, 而任给R k V Y X ∈∈,,1, 设0),,,,(0),,,,(121121=+==++=n n n n y y y y y Y x x x x x X则令),,,(2211n n y x y x y x Y X Z +++=+= ,则因=++++++=+++n n n y x y x y x z z z 221121011=+++++=n n y y x x , 则1V Y X ∈+,因为),,,(21n kx kx kx kX =, 而0)(11=++=++n n x x k kx kx 则1V kX ∈,因此, V 1是R n 的向量子空间.而V 2不是向量空间, 是因为1000≠+++ , 零向量O 不属于V 2, 2V O ∉.4. 试证: 由)1,1,1(),1,1,0(),1,0,0(321===ααα所生成的向量空间就是R 3证: 因为3321),,(R Span ⊂ααα, 只须证),,(3213αααSpan R ⊂, 任给3321),,(R d d d D ∈=, 试求实数x 1,x 2,x 3使。
线性代数课件
偶排列
奇排列
1
N ( j1 j2 j3 )
a1 j1 a2 j2 a3 j3
线性代数 第一章 行列式
11
定义 设有 n 2 个数,排成 n 行 n 列的数表
a11 a12 n 称为n 阶行列式. 简记为 a ij
it 这种变换称为对换,记作( i s ,)
定理1.1 任一 排列经过一次对换后奇偶性发生改变。
定理1.2
n! n级排列共有 n! 个,其中奇、偶排列相等,各为 2
线性代数 第一章 行列式
10
2
a11 a21 a31
n 阶行列式的定义
a12 a22 a32 a13 a23 a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 a33
主讲
田立芳
统计与数学学院
目录 线性代数 第一章 行列式 退出
1
目
录
行列式 矩阵 线性空间 线性方程组 矩阵的特征值 二次型
线性代数 第一章 主页 行列式 线性代数
退出
2
第一章 行列式
§1 n 阶行列式的定义
§2 行列式的性质 §3 行列式的计算 §4 克莱姆法则
线性代数 第一章 行列式
3
§1.1
线性代数 第一章 行列式
18
性质1 对任何行列式D,有D=DT(行列式与其转置行列式相等) 证
D
T
将DT记为
于是有 bij a ji ( i , j 1,2, , n) 按行列式的定义
j1 j2 jn
重庆大学线性代数答案
重庆大学线性代数答案习题一解答21D611填空(3)设有行列式31、为答:(1)51501124013037304282含因子a12a31a45的项a12a23a31a45a54526831440或(1)4a12a24a31a45a535068101f(某)111241241某某23188某,f(某)0的根为(5)设解:根据课本第23页例8得到f(某)(21)(21)(22)(某1)(某2)(某2)f(某)0的根为1,2,2(6)设某1,某2,某3是方程某解:根据条件某1某2某30,3p某q0的三个根,则行列式某1某3某2某2某1某3某3某2某1=某3p某q(某某1)(某某2)(某某3),比较系数得到某1某2某3q;再根据条件某13p某1q,某23p某2q,某33p某3q;333某某某3某1某2某3p(某1某2某3)3q3q0123原行列式=1D2323434141(aiJ)24123(7)设,则A142A243A344A44=解:A142A243A344A44相当于(aiJ)中第一列四个元素分别乘以第四列的代数余子式,其值为0.aDcdabbbbcdcdda(aiJ)ac(8)设,则A14A24A34A44=acdabbbbcdcddaac解将D按第四列展开得到dA14aA24aA34cA44=,第四列的元素全变成1,此时第四列与第二列对应成比例,所以A14A24A34A44=0.=a,a11D1c11c21cn1a12a1mc12c1m000a21a22a2mam1am2ammb11b21bn1000b 12b22bn2b1nb2nbbnn,则000000000a11a21c11c21a12a1ma22a2mc12c1mc22c2m(1)mnab000b11b1 2b1nab;D2b11b12b1nb21b22b2nam1am2ammc22c2mb21b22b2ncn2cnmbn1bn2bnnbn1bn 2bnncn1cn2cnm证因为任何一个行列式根据性质5可以变成三角行列式,假设第一个行列式变成:a11aa21am1a12a22a1ma2ma1a210a200am2amm=1am2amam=a1a2am行列式D1,D2的变换和行列式a的变换完全相同,同样假设行列式D1变成a1a211amc11c211cn0a22amc12c222cn00ammc1000b11b21bn1000b12b22 bn2000b1nb2nbnnmc2cnm第1次按第1行展开(a2变成第1行)第2次按第1行展开(a3变成第1行)第m次按第1行展开a1a2amb11b12b1nb21b22b2nbn1bn2bnn00D20b11000000aba1a210a2001am2amamc1m第1次按第1行展开(a2变成第1行、第n+1列)c11c12c2m第2次按第1行展开(a3变成第1行、第n+1列)c21c22第m-1次按第1行展开(am变成第1行、第n+1列)1cn2cnm第m次按第1行展开cnb12b1nb21b22b2nbn1bn2bnn==(1)mnab或将D2的第(n1)列连续经过n次对换(依次和其前面的列对换)而成为第1列,第(n2)列连续经过n次对换而成为第2列,如此下去,第(nm)列连续经过n次对换而成为第m列,D2共经过mn次列对换而变成D1,所以D2=(1)ab。
线性代数 同济大学第七版
第二节 行列式的性质
性质4 行列式中两行(列)对应元素都成比例,行列式值为零。
设第 j 行为第i 行的k 倍,由性质3,将 j 行提出公因子k ,即得第i 行 与第 j 行相同,于是行列式的值为零。
性质5 若行列式的某一行(列)的元素都是两数之和,例如第i 列
的元素都是两数之和:
a11 a12
式中划去第i 行和第 j 列元素,后所剩下的元素组成的行列式,称为元
素 aij i,j 1,2 的余子式。
---
第一节 行列式的概念
显然在定义中,A11
1
M 11 11
M11
,而
M11 a22 a22
;
A12 1 12 M12 M12 a21 a21
则二阶行列式
a11 a21
【定义 1.4】 当 n 1 时, a11 a11 ,假设已定义了 n 1 阶 行列式,n 阶行列式是由 n2 个元素排成行和列组成,记为:
a11 a12
a1n
D a21 a22
a2n
a a --n1 n2
ann
第一节 行列式的概念
且规定其值为:D a11A11 a12 A12 a1n A1n
7
0
0
7 5
6 4
5 7
3 1 1 7
0 7 4 7
---
下页继续……
第二节 行列式的性质
熟练以后,这几步也可以合并为:
1 2 1 2
1 2 1 2
2 3
2 1
4 2
1 3
r2 2r1 r3 2r1
r4 3r1
0
0
7 5
6 4
5 7
3 1 1 7
线性代数 第五版 课后习题 答案 完整 最全
第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (3)222111c b a c b a ; 解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).4. 计算下列各行列式: (1)7110025*******214; 解 71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-;解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b ad f ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 6. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)yx z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=yx z x z y zy x b a )(33+=.8. 计算下列各行列式(D k 为k 阶行列式): (1)aa D n 1 1⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解aa a a a D n 0 0010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa aa x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n 第二章 矩阵及其运算 1. 计算下列乘积:(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.2. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫ ⎝⎛--=150421321B , 求3AB -2A 及A TB .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4.设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA . 因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2. 因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.5. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0; 解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ; 解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y . 7. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k kk k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k kk k k k k k k k A λλλλλλ0002)1(121.8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵. 11. 求下列矩阵的逆矩阵: (1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .19.设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001, 故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 20. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114.21. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.22. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.第三章 矩阵的初等变换与线性方程组 1. 把下列矩阵化为行最简形矩阵: (1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. 3. 已知两个线性变换 ⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4. 试利用矩阵的初等变换, 求下列方阵的逆矩阵: (1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/922/7003 ~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001 故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001 故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 5. (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 9. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.12. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3. P106/ 1.已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由 ⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r ⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示. 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示. 4. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为 ⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为 022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.5. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由 )1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R (A )<3, 此时向量组线性相关.9.设b 1=a 1+a 2, b 2=a 2+a 3, b 3=a 3+a 4, b 4=a 4+a 1, 证明向量组b 1, b 2, b 3, b 4线性相关.证明 由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1,于是 a 1 =b 1-b 2+a 3 =b 1-b 2+b 3-a 4 =b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.11.(1) 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a ,知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组: (1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125, 所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---14011313021512012211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221113142~rr r r --⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122112343~rr r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组. 13. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5. 20.求下列齐次线性方程组的基础解系: (1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ;解 对系数矩阵进行初等行变换, 有 ⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A ,于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x .取(x 3, x 4)T =(4, 0)T , 得(x 1, x 2)T =(-16, 3)T ; 取(x 3, x 4)T =(0, 4)T , 得(x 1, x 2)T =(0, 1)T . 因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x .解 对系数矩阵进行初等行变换, 有 ⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A ,于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(x x x x x x .取(x 3, x 4)T =(19, 0)T , 得(x 1, x 2)T =(-2, 14)T ; 取(x 3, x 4)T =(0, 19)T , 得(x 1, x 2)T =(1, 7)T . 因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .26. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ;解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B . 与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=213 843231x x x x x . 当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=043231x x x x x . 当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x . 解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x . 当x 3=x 4=0时, 得所给方程组的一个解η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x . 分别取(x 3, x 4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .第五章 相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎭⎫ ⎝⎛=931421111) , ,(321a a a ; 根据施密特正交化方法,⎪⎪⎭⎫ ⎝⎛==11111a b , ⎪⎪⎭⎫ ⎝⎛-=-=101],[],[1112122b b b a b a b , ⎪⎪⎭⎫ ⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . (2)⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a . 解 根据施密特正交化方法,⎪⎪⎪⎭⎫ ⎝⎛-==110111a b , ⎪⎪⎪⎭⎫ ⎝⎛-=-=123131],[],[1112122b b b a b a b , ⎪⎪⎪⎭⎫ ⎝⎛-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b . 2. 下列矩阵是不是正交阵:(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---121312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵.证明 因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T=E -2(x T )T x T =E -2xx T ,所以H 是对称矩阵.因为H T H =HH =(E -2xx T )(E -2xx T )=E -2xx T -2xx T +(2xx T )(2xx T )=E -4xx T +4x (x T x )x T=E -4xx T +4xx T=E ,所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎭⎫ ⎝⎛----201335212; 解 3)1(201335212||+-=-------=-λλλλλE A , 故A 的特征值为λ=-1(三重).对于特征值λ=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=+000110101101325213~E A , 得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)⎪⎪⎭⎫ ⎝⎛633312321; 解 )9)(1(633312321||-+-=---=-λλλλλλλE A , 故A 的特征值为λ1=0, λ2=-1, λ3=9.对于特征值λ1=0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=000110321633312321~A , 得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量.对于特征值λ2=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A , 得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量.对于特征值λ3=9, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A , 得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)⎪⎪⎪⎭⎫ ⎝⎛0001001001001000. 解 22)1()1(001010010100||+-=----=-λλλλλλλE A , 故A 的特征值为λ1=λ2=-1, λ3=λ4=1.对于特征值λ1=λ2=-1, 由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量. 对于特征值λ3=λ4=1, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=-00000000011010011001011001101001~E A ,得方程(A-E)x=0的基础解系p3=(1, 0, 0, 1)T,p4=(0, 1, 1, 0)T,向量p3和p4是对应于特征值λ3=λ4=1的线性无关特征值向量.6.设A为n阶矩阵,证明A T与A的特征值相同.证明因为|A T-λE|=|(A-λE)T|=|A-λE|T=|A-λE|,所以A T与A的特征多项式相同,从而A T与A的特征值相同.7.设n阶矩阵A、B满足R(A)+R(B)<n,证明A与B有公共的特征值,有公共的特征向量.证明设R(A)=r,R(B)=t,则r+t<n.若a1,a2,⋅⋅⋅,a n-r是齐次方程组A x=0的基础解系,显然它们是A的对应于特征值λ=0的线性无关的特征向量.类似地,设b1,b2,⋅⋅⋅,b n-t是齐次方程组B x=0的基础解系,则它们是B的对应于特征值λ=0的线性无关的特征向量.由于(n-r)+(n-t)=n+(n-r-t)>n,故a1,a2,⋅⋅⋅,a n-r,b1,b2,⋅⋅⋅,b n-t 必线性相关.于是有不全为0的数k1,k2,⋅⋅⋅,k n-r,l1,l2,⋅⋅⋅,l n-t,使k1a1+k2a2+⋅⋅⋅+k n-r a n-r+l1b1+l2b2+⋅⋅⋅+l n-r b n-r=0.记γ=k1a1+k2a2+⋅⋅⋅+k n-r a n-r=-(l1b1+l2b2+⋅⋅⋅+l n-r b n-r),则k1,k2,⋅⋅⋅,k n-r不全为0,否则l1,l2,⋅⋅⋅,l n-t不全为0,而l1b1+l2b2+⋅⋅⋅+l n-r b n-r=0,与b1,b2,⋅⋅⋅,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m⨯n B n⨯m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令ϕ(λ)=λ3-5λ2+7λ,则ϕ(1)=3,ϕ(2)=2,ϕ(3)=3是ϕ(A)的特征值,故|A3-5A2+7A|=|ϕ(A)|=ϕ(1)⋅ϕ(2)⋅ϕ(3)=3⨯2⨯3=18.12.已知3阶矩阵A的特征值为1, 2,-3,求|A*+3A+2E|.解因为|A|=1⨯2⨯(-3)=-6≠0,所以A可逆,故A*=|A|A-1=-6A-1,A*+3A+2E=-6A-1+3A+2E.令ϕ(λ)=-6λ-1+3λ2+2,则ϕ(1)=-1,ϕ(2)=5,ϕ(-3)=-5是ϕ(A)的特征值,故|A*+3A+2E|=|-6A-1+3A+2E|=|ϕ(A)|=ϕ(1)⋅ϕ(2)⋅ϕ(-3)=-1⨯5⨯(-5)=25.13. 设A 、B 都是n 阶矩阵, 且A 可逆, 证明AB 与BA 相 似.证明 取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵⎪⎪⎭⎫ ⎝⎛=50413102x A 可相似对角化, 求x . 解 由)6()1(50413102||2---=---=-λλλλλλx E A , 得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r 知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T是矩阵⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值;解 设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由.解 由3)1(201335212||--=-------=-λλλλλE A , 得A 的特征值为λ1=λ2=λ3=1.由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A 知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)⎪⎪⎭⎫ ⎝⎛----020212022; 解 将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2), 得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4.对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x , 得特征向量(1, 2, 2)T , 单位化得T )32 ,32 ,31(1=p . 对于λ2=1, 解方程(A -E )x =0, 即0120202021321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x , 得特征向量(2, 1, -2)T , 单位化得T )32,31,32(2-=p .对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x ,得特征向量(2, -2, 1)T , 单位化得T )31,32,32(3-=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)⎪⎪⎭⎫⎝⎛----542452222.解 将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x,得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x ,得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎭⎫ ⎝⎛-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解 已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A , 解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ, 所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p . 对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A . 解 令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1. 因为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛=--11011101101111111011P , 所以 ⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎭⎫ ⎝⎛------=244354331. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解 设⎪⎪⎭⎫ ⎝⎛=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即 ⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x , ---① ⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x , 314=x , 325=x . 因此 ⎪⎪⎭⎫ ⎝⎛-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解 设⎪⎪⎭⎫ ⎝⎛=653542321x x x x x x x x x A . 因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1116111A , 即⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-331113333653542653542321~x x x x x x x x x x x x x x x E A . 因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此 ⎪⎪⎭⎫ ⎝⎛=411141114A . 21. 设a =(a 1, a 2, ⋅⋅⋅, a n )T , a 1≠0, A =aa T .(1)证明λ=0是A 的n -1重特征值;证明 设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax ,于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ⋅ ⋅ ⋅, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ⋅ ⋅ ⋅, a n 2, 所以a 12+a 22+ ⋅ ⋅ ⋅ +a n 2=a T a =λ1+λ2+ ⋅ ⋅ ⋅ +λn ,这说明在λ1, λ2, ⋅ ⋅ ⋅, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解 设λ1=a T a , λ2= ⋅ ⋅ ⋅ =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ⋅ ⋅ ⋅ =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ⋅ ⋅ ⋅ +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, ⋅⋅⋅, 0)T ,p 3=(-a 3, 0, a 1, ⋅⋅⋅, 0)T ,⋅ ⋅ ⋅,p n =(-a n , 0, 0, ⋅⋅⋅, a 1)T .因此n 个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a a a a a a n n n p p p . 22. 设⎪⎪⎭⎫ ⎝⎛-=340430241A , 求A 100. 解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ,A =P ΛP -1,A 100=P Λ100P -1.因为Λ100=diag(1, 5100, 5100),⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P , 所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A ⎪⎪⎭⎫ ⎝⎛-=1001001005000501501. 23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11中的矩阵A ; 解 由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n ,y n +1=y n +px n -qy n = px n +(1-q )y n ,可用矩阵表示为⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q p q p y x 1111, 因此 ⎪⎭⎫ ⎝⎛--=q p q p A 11. (2)设目前农村人口与城镇人口相等, 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x , 求⎪⎭⎫ ⎝⎛n n y x.解 由⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛++n n n n y xA y x11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y xn n n . 由)1)(1(11||q p q p q p E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r , 解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T . 令⎪⎭⎫⎝⎛-==11) ,(21p q P p p , 则P -1AP =diag(1, r )=Λ,A =P ΛP -1,A n =P Λn P -1.于是 11100111-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=p q r p q A n n⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111⎪⎭⎫⎝⎛+--++=n n n n qr p pr p qr q pr q q p 1,⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫ ⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(21. 24. (1)设⎪⎭⎫ ⎝⎛--=3223A , 求ϕ(A )=A 10-5A 9; 解 由)5)(1(3223||--=----=-λλλλλE A , 得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-. 于是有正交矩阵⎪⎭⎫ ⎝⎛-=111121P , 使得P -1AP =diag(1, 5)=Λ, 从而A =P ΛP -1, A k =P Λk P -1. 因此ϕ(A )=P ϕ(Λ)P -1=P (Λ10-5Λ9)P -1=P [diag(1, 510)-5diag(1, 59)]P -1=P diag(-4, 0)P -1⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222. (2)设⎪⎪⎭⎫ ⎝⎛=122221212A , 求ϕ(A )=A 10-6A 9+5A 8. 解 求得正交矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是ϕ(A )=P ϕ(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1=P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0, 0)P -1⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=222033211001220223123161 ⎪⎪⎭⎫ ⎝⎛----=4222112112. 25. 用矩阵记号表示下列二次型:(1) f =x 2+4xy +4y 2+2xz +z 2+4yz ;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121) , ,(. (2) f =x 2+y 2-7z 2-2xy -4xz -4yz ;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211) , ,(. (3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛------=432143211021013223111211) , , ,(x x x x x x x x f . 26. 写出下列二次型的矩阵:(1)x x x ⎪⎭⎫ ⎝⎛=1312)(T f ; 解 二次型的矩阵为⎪⎭⎫ ⎝⎛=1312A . (2)x x x ⎪⎪⎭⎫ ⎝⎛=987654321)(T f .解 二次型的矩阵为⎪⎪⎭⎫ ⎝⎛=987654321A . 27. 求一个正交变换将下列二次型化成标准形:(1) f =2x 12+3x 22+3x 33+4x 2x 3;解 二次型的矩阵为⎪⎪⎭⎫ ⎝⎛=320230002A . 由 )1)(5)(2(320230002λλλλλλλ---=---=-E A , 得A 的特征值为λ1=2, λ2=5, λ3=1.当λ1=2时, 解方程(A -2E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A , 得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T .当λ2=5时, 解方程(A -5E )x =0, 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A , 得特征向量(0, 1, 1)T . 取T )21 ,21 ,0(2=p . 当λ3=1时, 解方程(A -E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A , 得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p . 于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解 二次型矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=1101111001111011A . 由 2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A , 得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1. 当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p . 当λ2=3时, 可得单位特征向量T )21 ,21 ,21 ,21(2--=p . 当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p . 于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解 二次型的矩阵为⎪⎪⎭⎫ ⎝⎛----=552552223A . 由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2, λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p . 对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p . 对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21 ,0(3=p . 于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234, 使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值.证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ成立, 其中λ1, λ2, ⋅ ⋅ ⋅, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ⋅ ⋅ ⋅ +y n 2=1.因此f =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2≤λ1,又当y 1=1, y 2=y 3=⋅ ⋅ ⋅=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩。
线性代数 江龙编 高等教育版 课本答案
-5-
C 公司的联合收入为 186548.22 元,实际收入为 55964.47 元.
习题二
1.利用对角线法则计算下列行列式:
(1) cos sin . sin cos
解 原式 1 .
xy
(2) x2
.
y2
(A)
解 原式 xy( y x) .
123 (3) 3 1 2 .
231
解 原式 18 . abc
1 2 35 12
215 .
0 1 15 1
11 1 L 1 1 a1 0 L 0 (5) 1 0 a2 L 0 ,其中 ai 0,i 1, 2,L , n . MM M L M 1 0 0 L an
n 1
1
1 r1
1 ai
ri
2in
a i1 i
解 原式
0 a1
0 0
1
0 a2
0
0
0
(1
1 1 1 1 1
(4)
2 1 4
0 3 2
3 6 6
2 1 4
1 2 3
.
解
1
2
1
1 0 3
1 3 6
1 2 1
1 1
1
r
0
2 0
1 2 0
1 5 7
1 0 0
1
1
1 0
r
0
0 1
0 0
1 0
1
2
1 2
,得
4
2
6
4
3
0
0
0
0
0
0
0
1
0
0
0 0 0 0 0
n i 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
kx 1 ( k 1 ) a ( k 1 ) b V .
这个向量空间称为由向 间.
Copyright © 2011 All Rights Reserved,信息管理学院
量 a , b 所生成的向量空
线性代数(工)同济大学第五版
一般地, 由向量组a1 , a2 , , a m 所生成的向量空 间为
x 可由 b 1 , ,
这就是说,若 因此 V 1 V 2 .
类似地可证
: 若 x V 2 ,则 x V1 ,
因此 V 2 V 1 . 因为 V 1 V 2, V 2 V 1,所以 V 1 V 2 .
Copyright © 2011 All Rights Reserved,信息管理学院
线性代数(工)同济大学第五版
三、向量空间的基与维数
定义3 设 V 是向量空间,如果 r 个向量 1 , 2 , , r V,且满足
( 1 ) 1 , 2 , , r 线性无关 ; ( 2) V 中任一向量都可由
1 , 2 , , r 线性表示
.
那末,向量组 1 , 2 , , r 就称为向量 V 的一个
Copyright © 2011 All Rights Reserved,信息管理学院
线性代数(工)同济大学第五版
思考题解答
解 V 不是向量空间 .
显然 , V 对加法封闭 还是正实数 .
, 因为两个正实数的和与
积
但 V 对乘法不封闭
.
比如 V 中的元素 ( 1 , b ), 对任意实数
记作 B AX .
x 12 x 22 , x 32
Copyright © 2011 All Rights Reserved,信息管理学院
线性代数(工)同济大学第五版
对矩阵 ( A B ) 施行初等行变换,若 则 a 1 , a 2 , a 3 为 R 的一个基,且当 X A
线性代数(工)同济大学第五版
例4 设 a , b 为两个已知的
n 维向量,集合
V 解
x
a b , R .因为若 x 1 1 a 1 b
试判断集合是否为向量空间.
V 是一个向量空间
x 2 2 a 2 b , 则有 x 1 x 2 ( 1 2 )a ( 1 2 )b V ,
1 3 3
1 0 3
1 2 5
3 3 5
Copyright © 2011 All Rights Reserved,信息管理学院
线性代数(工)同济大学第五版
r2 2 r1 r3 r1
~
1 0 0
1 3 3
1 0 3
1 2 5
3 3 5
V x 1 1 2 2 r r 1 , , r R
Copyright © 2011 All Rights Reserved,信息管理学院
线性代数(工)同济大学第五版
例6
设矩阵
2 A (a1 , a 2 , a 3 ) 2 1 1 B ( b1 , b 2 ) 0 4
线性代数(工)同济大学第五版
二、子空间
定义2 设有向量空间 V 1及 V 2 ,若向量空间V 1 V 2, 就说 V 1 是 V 2 的子空间. 实例
设V 是由 n 维向量所组成的向量空间,
显然 V R n 所以 V 总是 R n 的子空间 .
Copyright © 2011 All Rights Reserved,信息管理学院
y1 z1 z1 y1 1 A y2 B z2 z2 B A y2 y z z y 3 3 3 3
P A
1
B 叫做从 A 到 B 的过渡矩阵
Copyright © 2011 All Rights Reserved,信息管理学院
线性代数(工)同济大学第五版
证
设 x V 1,则 x 可由 a 1 , , a m 线性表示 .
因 a 1 , , a m 可由 b 1 , , b s 线性表示,故 b s 线性表示,
所以 x V 2 . x V 1,则 x V 2,
3
2 1 2
1 2 , 2
4 3 , 2
验证 a 1 , a 2 , a 3 , 是 R 的一个基,并把 线性表示 .
b 1 , b 2 用这个基
Copyright © 2011 All Rights Reserved,信息管理学院
线性代数(工)同济大学第五版
解
V x 1a1 2 a 2 m a m 1 , 2 ,, m R
例5 记 V 1 x 1 a 1 2 a 2 m a m 1 , 2 , , m R V 2 x 1 b1 2 b 2 s b s 1 , 2 , s R 试证: V 1 V 2 . 设向量组 a 1 , , a m 与向量组 b 1 , , b s 等价,
r2 ( 3 )
r3 3
~
1 0 0
1 1 1
1 0 1
1 2 3 5 3
3 1 5 3
Copyright © 2011 All Rights Reserved,信息管理学院
线性代数(工)同济大学第五版
r2 ( 3 )
线性代数(工)同济大学第五版
2 4 1 0 0 3 3 初等行变换 0 1 0 2 1 (A B) ~ 3 2 0 0 1 1 3 3 因有 A ~ E ,故 a 1 , a 2 , a 3 为 R 的一个基,且
2 3 2 (a1 , a 2 , a 3 ) 3 1 4 3 1 . 2 3
例2 判别下列集合是否为向量空间.
V 1 x 0 , x 2 , , x n
T
x 2 , , x n R
解 V 1 是向量空间
.
因为对于 V 1的任意两个元素
0 , a 2 , , a n , 0 , b2 , , bn V 1 ,
若 V , V , 则 V ; 若 V , R , 则 V .
n 维向量的集合是一个向量空间,记作 R n. 2.
Copyright © 2011 All Rights Reserved,信息管理学院
线性代数(工)同济大学第五版
例1 3 维向量的全体
T T
有
0 , a 2 b 2 , , a n b n V 1
T
0 , a 2 , , a n V 1 .
T
Copyright © 2011 All Rights Reserved,信息管理学院
线性代数(工)同济大学第五是一个向量空间
3
.
因为任意两个
3 维向量之和仍然是 3 维向量,它们都属于
n
3 维向量 , 数 R .
3
乘 3 维向量仍然是
类似地, n 维向量的全体 间.
R ,也是一个向量空
Copyright © 2011 All Rights Reserved,信息管理学院
线性代数(工)同济大学第五版
Copyright © 2011 All Rights Reserved,信息管理学院
线性代数(工)同济大学第五版
1 3
( r1 r2 r3 )
~
1 2 1
1 1 2
1 2 2
1 0 4
3 3 2
r2 2 r1 r3 r1
~
1 0 0
b1 , b 2
Copyright © 2011 All Rights Reserved,信息管理学院
线性代数(工)同济大学第五版
坐标变换公式
y1 x ( a 1 , a 2 , a 3 ) y 2 , y 3 z1 x ( b1 , b 2 , b 3 ) z 2 z 3
V 2 x 1 , x 2 , , x n
T
x 2 , , x n R
解 V 2 不是向量空间
.
T
因为若 1 , a 2 , , a n V 2 , 则 2 2 , 2 a 2 , , 2 a n V 2 .
T
Copyright © 2011 All Rights Reserved,信息管理学院
r3 3
~
1 0 0
1 0 0
1 1 1
1 0 1
1 2 3 5 3
3 1 5 3
4 3 1 2 3
0 1 0
0 0 1
2 3 2 3 1
r1 r 3 r3 r2
~
Copyright © 2011 All Rights Reserved,信息管理学院
要证 a 1 , a 2 , a 3 是 R 的一个基,只要证 A ~ E.
3
a1 , a 2 , a 3
线性无关,即只要证
设
b 1 x 11 a 1 x 21 a 2 x 31 a 3 , b 2 x 12 a 1 x 22 a 2 x 32 a 3,
即 x 11 ( b 1 , b 2 ) ( a 1 , a 2 , a 3 ) x 21 x 31
线性代数(工)同济大学第五版