新北师大版二次函数章节练习题

合集下载

九下第二章二次函数全章热门考点整合专训作业新版北师大版

九下第二章二次函数全章热门考点整合专训作业新版北师大版
第二章 二次函数
全章热门考点整合专训
点击显示本课时答案
1
2
3
4
提示:点击 进入习题
5
6
7
8
9
10
11
12
13
14
15
16
17
18
1.下列y关于x的函数中,是二次函数的是( ) A.y=3x+1 B.y= C.y= D.y=2x2+1
17.【2023·无锡天一中学月考】已知二次函数y=x2+bx+c的图象经过A(1,1)和B(-1,-3),二次函数与一次函数y=-x-2的图象交于C,D两点. (1)求二次函数的表达式;
解:二次函数y=x2+bx+c的图象经过A(1,1)和B(-1,-3),
∴y=x2+2x-2.
17.【2023·无锡天一中学月考】已知二次函数y=x2+bx+c的图象经过A(1,1)和B(-1,-3),二次函数与一次函数y=-x-2的图象交于C,D两点. (2)求△BCD的面积;
D
2.【荣德原创题】若y= 是关于x的二次函数,则该函数的最小值为________.
3.【2023·河南】二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
解:由图象知抛物线在直线上方时,x<-3或x>0, ∴不等式x2+bx+c>-x-2的解集为x<-3或x>0.
解:设二次函数的表达式为y=ax2+bx+c(a,b, c是常数,a≠0),
(3)抛物线的顶点坐标为(-1,-2)且通过点(1,10).
解:设二次函数的表达式为y=a(x+1)2-2, 将(1,10)代入得,a(1+1)2-2=10,解得a=3, 所以该二次函数的表达式为y=3(x+1)2-2.

北师大版数学九年级下册:第二章《二次函数》测试卷

北师大版数学九年级下册:第二章《二次函数》测试卷

新北师大版第二章《二次函数》测试卷一、选择题(每小题3分,满分24分)1.下列函数:y =x (8-x ),y =1-221x ,y =42-x ,y =x x 62-,其中以x 为自变量的二次函数有( )A .1个B .2个C .3个D .4个 2.在函数2y x=,5y x =+,2y x =的图象中,关于y 轴对称的图形有( ) A .0个 B .1个 C .2个 D .3个3.点A (2,3)在函数21y ax x =-+的图象上,则a 等于( )A .1B .-1C .2D .-24.若抛物线228y x x h =++的顶点在x 轴上,则 ( )A .0h =B .16h =±C .4h =±D .4h =5.在同一坐标系中,图象与22x y =的图象关于x 轴对称的函数为( )A .221x y =B .221x y -= C .22x y -= D .2x y -= 6.二次函数y=ax 2+bx +c 的图象如图所示,则下列结论正确是( )A .a >0,b >0,c >0B .a <0,b <0,c <0C .a <0,b >0,c <0D .a >0,b <0,c >0 7.将抛物线22x y =经过平移得到抛物线2=y (4-x )21-是( )A .向左平移4个单位,再向下平移1个单位B .向左平移4个单位,再向上平移1个单位C .向右平移4个单位,再向下平移1个单位D .向右平移4个单位,再向上平移1个单位二、填空题(每小题3分,满分21分)1.抛物线2241y x x =--的开口向 ;顶点坐标是 ;对称轴方程为 .2.抛物线232y x x =-+不经过第 象限.3.若点),1(1y P 、Q 2(1,)y -都在抛物线21y x =+上,则线段P Q 的长为 .4.如图所示,二次函数26y x x =--的图象交x 轴于A 、B 两点,交y 轴于C 点,则ABC ∆的面积ABC S ∆= .5.一条抛物线,顶点坐标为(4,2)-,且形状与抛物线22y x =+相同,则它的函数表达式是 .6.函数2412x x y -+=的图象与x 轴有 个交点;当 时,y 值随x 值增大而增大;当=x 时, y 有最 值.7.函数c bx ax y ++=2的图象如图所示,则c b a ++ 0,c b a ++24 0.(用“=”、“>”或“<”填空)三、解答题:1.(12分)如图所示,二次函数2y ax bx c =++(0)a ≠的图象与x 轴交于A 、B 两点,与y 轴交于(0,2)C ,若90ACB ∠=︒,5BC =,试求:(1)A 、B 两点的坐标;(2)二次函数的表达式.2.(10分)已知一抛物线经过点()2,6-,它与x 轴的两交点间的距离为4,对称轴为直线1x =-,求此抛物线的解析式.解:3.(12分)抛物线2y x bx c =++(0)a ≠与x 轴交于(1,0)A -,(3,0)B 两点.(1)求该抛物线的解析式.(2)一动点P 在(1)中抛物线上滑动且满足10ABP S ∆=,求此时P 点的坐标.。

九年级数学下册第二章《二次函数》单元测试题-北师大版(含答案)

九年级数学下册第二章《二次函数》单元测试题-北师大版(含答案)

九年级数学下册第二章《二次函数》单元测试题-北师大版(含答案)一、单选题(本大题共12小题,每小题3分,共36分)1.抛物线2y ax bx c =++经过点()1,0-、()3,0,且与y 轴交于点()0,5-,则当2x =时,y 的值为( )A .5-B .3-C .1-D .52.在羽毛球比赛中,某次羽毛球的运动路线呈抛物线形,羽毛球距地面的高度()m y 与水平距离()m x 之间的关系如图所示,点B 为落地点,且1m OA =,4m OB =,羽毛球到达的最高点到y 轴的距离为3m 2,那么羽毛球到达最高点时离地面的高度为( )A .25m 4B .9m 4C .3m 2D .25m 163.二次函数222=++y x x 的图象的对称轴是( )A .=1x -B .2x =-C .1x =D .2x =4.已知二次函数()20y ax bx c a =+-≠,其中0b >、0c >,则该函数的图象可能为( )A .B .C .D .5.如图,抛物线2(0)y ax bx c a =++≠的对称轴为2x =-,下列结论正确的是( )A .a<0B .0c >C .当<2x -时,y 随x 的增大而减小D .当2x >-时,y 随x 的增大而减小6.已知抛物线22()1y x =-+,下列结论错误的是( )A .抛物线开口向上B .抛物线的对称轴为直线2x =C .抛物线的顶点坐标为(2,1)D .当2x <时,y 随x 的增大而增大7.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( )A .有最大值4B .有最小值4C .有最大值6D .有最小值68.抛物线y =x 2+3上有两点A (x 1,y 1),B (x 2,y 2),若y 1<y 2,则下列结论正确的是( )A .0≤x 1<x 2B .x 2<x 1≤0C .x 2<x 1≤0或0≤x 1<x 2D .以上都不对9.如图是拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-0.01(x -20)2+4,桥拱与桥墩AC 的交点C 恰好位于水面,且AC ⊥x 轴,若OA =5米,则桥面离水面的高度AC 为( )A .5米B .4米C .2.25米D .1.25米10.下表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:x… -2 0 1 3 …y… 6 -4 -6 -4 …下列各选项中,正确的是A .这个函数的图象开口向下B .这个函数的图象与x 轴无交点C .这个函数的最小值小于-6D .当1x >时,y 的值随x 值的增大而增大11.用配方法将二次函数21242y x x =--化为2()y a x h k =-+的形式为( ) A .21(2)42y x =-- B .21(1)32y x =-- C .21(2)52y x =-- D .21(2)62y x =--12.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的函数表达式为()20y ax bx c a =++≠,若此炮弹在第6秒与第13秒时的高度相等,则下列时间中炮弹所在高度最高的是( )A .第7秒B .第9秒C .第11秒D .第13秒二、填空题(本大题共8小题,每小题3分,共24分)13.某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.14.如图,在平面直角坐标系中,菱形ABCD 的一边AB 在x 轴上,顶点B 在x 轴正半轴上.若抛物线y =x 2﹣5x +4经过点C 、D ,则点B 的坐标为______.15.已知二次函数2(0)y ax bx c a =++≠,图象的一部分如图所示,该函数图象经过点(2,0)-,对称轴为直线12x =-.对于下列结论:⊥<0abc ;⊥240b ac ->;⊥0a b c ++=;⊥21(2)4am bm a b +<-(其中12m ≠-);⊥若()11,A x y 和()22,B x y 均在该函数图象上,且121x x >>,则12y y >.其中正确结论的个数共有_______个.16.二次函数23y ax ax c =-+(a<0,a ,c 均为常数)的图象经过()12A y -,、()22B y ,、()30C y ,三点,则1y ,2y ,3y 的大小关系是 _____.17.如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++,则铅球推出的水平距离OA 的长是_____m .18.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是_____.19.如图,一位篮球运动员投篮,球沿抛物线20.2 2.25y x x =-++运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是_________m .20.如图是一个横断面为抛物线形状的拱桥,当水面在正常水位的情况下,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .则当水位下降m=________时,水面宽为5m ?三、解答题(本大题共5小题,每小题8分,共40分)21.如图,隧道的截面由抛物线DEC 和矩形ABCD 构成,矩形的长AB 为4m ,宽BC 为3m ,以DC 所在的直线为x 轴,线段CD 的中垂线为y 轴,建立平面直角坐标系.y 轴是抛物线的对称轴,最高点E 到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面134米高处,隧道的宽度是多少? (3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.22.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A处的水平距离为4米时,离水平线的高度为8米,求抛物线2C的函数解析式(不要求写出自变量x的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b的取值范围.23.如图,抛物线y=x2+x﹣2与x轴交于A、B两点,与y轴交于点C.(1)求点A,点B和点C的坐标;(2)抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标.24.李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?25.如图,抛物线的顶点为A(h,-1),与y轴交于点B1(0,)2,点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时DFQ周长的最小值及点Q的坐标.参考答案1.A 2.D 3.A 4.C 5.C 6.D 7.D 8.D 9.C 10.C 11.D 12.B 13.1264 14.(2,0) 15.316.132y y y << 17.10 18.﹣3<x <1 19.4 20.1.12521.(1)2114y x =-+(2)3 (3)能通过22.(1)213482y x x =-++;(2)12米;(3)3524b ≥.23.(1)A (﹣2,0),B (1,0),C (0,﹣2).(2)P (12-,12-)24.(1)0.28.4y x =-+(110x ≤≤且x 为整数).(2)李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.25.(1)()21218y x =--;(2)1(3)226,14,2⎛⎫- ⎪⎝⎭。

北师大版九年级数学下册《第二章二次函数—有关二次函数的最值问题》练习题(附答案)

北师大版九年级数学下册《第二章二次函数—有关二次函数的最值问题》练习题(附答案)

北师大版九年级数学下册《第二章二次函数—有关二次函数的最值问题》练习题(附答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题)1.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或2.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,03.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或34.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或25.如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形P ABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm26.已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣67.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC上方的抛物线上的一个动点,连接DC,DB,则△BCD的面积的最大值是()A.7 B.7.5 C.8D.98.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或﹣C.2或﹣D.2或﹣或﹣9.已知二次函数y=mx2+2mx+1(m≠0)在﹣2≤x≤2时有最小值﹣2,则m=()A.3B.﹣3或C.3或﹣D.﹣3或﹣10.已知一个二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,若y3<y2<y4,则y1,y2,y3,y4的最值情况是()A.y3最小,y1最大B.y3最小,y4最大C.y1最小,y4最大D.无法确定二.填空题(共10小题)11.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是.12.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.13.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是.14.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是.15.已知二次函数y=x2﹣2mx+1(m为常数),当自变量x的值满足﹣1≤x≤2时,与其对应的函数值y 的最小值为﹣2,则m的值为.16.当﹣7≤x≤a时,二次函数y=﹣(x+3)2+5恰好有最大值3,则a=.17.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.18.若二次函数y=﹣x2+mx在﹣1≤x≤2时的最大值为3,那么m的值是.19.二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.20.设x≥0,y≥0,且2x+y=6,则μ=x2+2xy+y2﹣3x﹣2y的最小值是.三.解答题(共5小题)21.设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}=,max{0,3}=;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.22.在平面直角坐标系xOy中,抛物线y=ax2+bx+a﹣4(a≠0)的对称轴是直线x=1.(1)求抛物线y=ax2+bx+a﹣4(a≠0)的顶点坐标;(2)当﹣2≤x≤3时,y的最大值是5,求a的值;(3)在(2)的条件下,当t≤x≤t+1时,y的最大值是m,最小值是n,且m﹣n=3,求t的值.23.如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A 为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?24.已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x…01234…y…5212n…(1)表中n的值为;(2)当x为何值时,y有最小值,最小值是多少?(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,且m>2,试比较y1与y2的大小.25.如图,函数y=﹣x2+x+c(﹣2020≤x≤1)的图象记为L1,最大值为M1;函数y=﹣x2+2cx+1(1≤x ≤2020)的图象记为L2,最大值为M2.L1的右端点为A,L2的左端点为B,L1,L2合起来的图形记为L.(1)当c=1时,求M1,M2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A,B重合时,求L上“美点”的个数;(3)若M1,M2的差为,直接写出c的值.参考答案与试题解析一.选择题(共10小题)1.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或解:二次函数的对称轴为直线x=m①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2综上所述,m的值为2或﹣.故选:C.2.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,0解:抛物线的对称轴是直线x=1,则当x=1时,y=1﹣2﹣3=﹣4,是最小值;当x=3时,y=9﹣6﹣3=0是最大值.故选:A.3.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或3解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5解得:h=5或h=1(舍);③若1≤h≤3时,当x=h时,y取得最小值为1,不是5,∴此种情况不符合题意,舍去.综上,h的值为﹣1或5,故选:B.4.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或2解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1故选:D.5.如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形P ABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm2解:在Rt△ABC中,∠C=90°,AB=10cm,BC=8cm,∴AC==6cm.设运动时间为ts(0≤t≤4),则PC=(6﹣t)cm,CQ=2tcm∴S四边形P ABQ=S△ABC﹣S△CPQ=AC•BC﹣PC•CQ=×6×8﹣(6﹣t)×2t=t2﹣6t+24=(t﹣3)2+15.∵1>0,∴当t=3时,四边形P ABQ的面积取最小值,最小值为15cm2.6.已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是直线x=2,且在x<2上y随x的增大而增大.又∵0≤x≤,∴当x=时,y取最大值,y最大=﹣2(﹣2)2+2=﹣2.5.故选:C.7.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC上方的抛物线上的一个动点,连接DC,DB,则△BCD的面积的最大值是()A.7B.7.5C.8D.9解:设抛物线的解析式是y=ax2+bx+c∵抛物线经过A(1,0),B(4,0),C(0,﹣4)三点∴解得,∴y=﹣x2+5x﹣4设过点B(4,0),C(0,﹣4)的直线的解析式为y=kx+m解得,即直线BC的直线解析式为:y=x﹣4设点D的坐标是(x,﹣x2+5x﹣4)∴=﹣2(x﹣2)2+8∴当x=2时,△BCD的面积取得最大值,最大值是8.故选:C.8.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或﹣C.2或﹣D.2或﹣或﹣解:二次函数对称轴为直线x=m①m<﹣2时,x=﹣2取得最大值,﹣(﹣2﹣m)2+m2+1=4解得m=﹣,不合题意,舍去;②﹣2≤m≤1时,x=m取得最大值,m2+1=4,解得m=±∵m=不满足﹣2≤m≤1的范围,∴m=﹣;③m>1时,x=1取得最大值,﹣(1﹣m)2+m2+1=4,解得m=2.综上所述,m=2或﹣时,二次函数有最大值4.故选:C.9.已知二次函数y=mx2+2mx+1(m≠0)在﹣2≤x≤2时有最小值﹣2,则m=()A.3B.﹣3或C.3或﹣D.﹣3或﹣解:∵二次函数y=mx2+2mx+1=m(x+1)2﹣m+1,∴对称轴为直线x=﹣1①m>0,抛物线开口向上,x=﹣1时,有最小值y=﹣m+1=﹣2,解得:m=3;②m<0,抛物线开口向下∵对称轴为直线x=﹣1,在﹣2≤x≤2时有最小值﹣2∴x=2时,有最小值y=4m+4m+1=﹣2,解得:m=﹣;故选:C.10.已知一个二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,若y3<y2<y4,则y1,y2,y3,y4的最值情况是()A.y3最小,y1最大B.y3最小,y4最大C.y1最小,y4最大D.无法确定解:∵二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,且y3<y2<y4,∴抛物线开口向上,对称轴在0和1之间∴P1(﹣3,y1)离对称轴的距离最大,P3(1,y3)离对称轴距离最小∴y3最小,y1最大,故选:A.二.填空题(共10小题)11.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是s≥9.解:由x+y2=3,得:y2=﹣x+3≥0,∴x≤3代入s=x2+8y2得:s=x2+8y2=x2+8(﹣x+3)=x2﹣8x+24=(x﹣4)2+8当x=3时,s=(3﹣4)2+8=9,∴s≥9;故答案为:s≥9.12.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=9.解:原式可化为y=(x﹣3)2﹣4,可知函数顶点坐标为(3,﹣4)当y=0时,x2﹣6x+5=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.如图:m=﹣4,当x=6时,y=36﹣36+5=5,即M=5.则M﹣m=5﹣(﹣4)=9.故答案为9.13.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是﹣1.5或.解:由二次函数y=x2﹣2mx(m为常数),得到对称轴为直线x=m,抛物线开口向上当m>2时,由题意得:当x=2时,y最小值为﹣2,代入得:4﹣4m=﹣2,即m=1.5<2,不合题意,舍去;当﹣1≤m≤2时,由题意得:当x=m时,y最小值为﹣2,代入得:﹣m2=﹣2,即m=或m=﹣(舍去);当m<﹣1时,由题意得:当x=﹣1时,y最小值为﹣2,代入得:1+2m=﹣2,即m=﹣1.5,综上,m 的值是﹣1.5或,故答案为:﹣1.5或.14.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是1,最大值是9.解:由题意可得:y=2(x+1)2+1,﹣2≤x≤1∵开口向上,∴当x=1时,有最大值:y max=9,当x=﹣1时,y min=1.故答案为1,9.15.已知二次函数y=x2﹣2mx+1(m为常数),当自变量x的值满足﹣1≤x≤2时,与其对应的函数值y 的最小值为﹣2,则m的值为﹣2或.解:由题意可知抛物线的对称轴为x=m,开口方向向上当m≤﹣1时,此时x=﹣1时,y可取得最小值﹣2,∴﹣2=1+2m+1,∴m=﹣2;当﹣1<m<2时,∴此时x=m,y的最小值为﹣2,∴﹣2=m2﹣2m2+1∴m=±,∴m=;当m≥2时,此时x=2时,y的最小值为﹣2,∴﹣2=4﹣4m+1,∴m=不符合题意故答案为:﹣2或.16.当﹣7≤x≤a时,二次函数y=﹣(x+3)2+5恰好有最大值3,则a=﹣5.解:∵y=﹣(x+3)2+5,∴该抛物线的开口方向向下,且顶点坐标是(﹣3,5).∴当x<﹣3时,y随x的增大而增大∴当x=a时,二次函数y=﹣(x+3)2+5恰好有最大值3把y=3代入函数解析式得到3=﹣(x+3)2+5,解得x1=﹣5,x2=﹣1.∴a=﹣5.故答案是:﹣5.17.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为1.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.18.若二次函数y=﹣x2+mx在﹣1≤x≤2时的最大值为3,那么m的值是﹣4或2.解:∵y=﹣x2+mx,∴抛物线开口向下,抛物线的对称轴为x=﹣=∵=①当≤﹣1,即m≤﹣2时,当x=﹣1时,函数最大值为3,∴﹣1﹣m=3解得:m=﹣4;②当≥2,即m≥4时,当x=2时,函数最大值为3,∴﹣4+2m=3解得:m=(舍去).③当﹣1<<2,即﹣2<m<4时,当x=时,函数最大值为3,∴﹣+=3解得m=2或m=﹣2(舍去),综上所述,m=﹣4或m=2故答案为﹣4或2.19.二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=1.解:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3∴a﹣4=﹣3,∴a=1,故答案为1.20.设x≥0,y≥0,且2x+y=6,则μ=x2+2xy+y2﹣3x﹣2y的最小值是0.解:由题意得:x≥0,y=6﹣2x≥0,解得:0≤x≤3.∵μ=x2+2xy+y2﹣3x﹣2y=x2+2x(6﹣2x)+(6﹣2x)2﹣3x﹣2(6﹣2x)=x2﹣11x+24=﹣∴当x≤时,y随x的增大而减小,故当x=3时,μ的最小值为﹣=0.故答案为:0.三.解答题(共5小题)21.设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}=5,max{0,3}=3;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.解:(1)max{5,2}=5,max{0,3}=3.故答案为:5;3.(2)∵max{3x+1,﹣x+1}=﹣x+1,∴3x+1≤﹣x+1,解得:x≤0.(3)联立两函数解析式成方程组,解得:,,∴交点坐标为(﹣2,4)和(3,﹣1).画出直线y=﹣x+2,如图所示观察函数图象可知:当x=3时,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.22.在平面直角坐标系xOy中,抛物线y=ax2+bx+a﹣4(a≠0)的对称轴是直线x=1.(1)求抛物线y=ax2+bx+a﹣4(a≠0)的顶点坐标;(2)当﹣2≤x≤3时,y的最大值是5,求a的值;(3)在(2)的条件下,当t≤x≤t+1时,y的最大值是m,最小值是n,且m﹣n=3,求t的值.解:(1)将x=1代入抛物线y=ax2+bx+a﹣4得,y=a+b+a﹣4=2a+b﹣4∵对称轴是直线x=1.∴﹣=1,∴b=﹣2a,∴y=2a+b﹣4=2a﹣2a﹣4=﹣4∴抛物线y=ax2+bx+a﹣4(a≠0)的顶点坐标为(1,﹣4);(2)①a<0时,抛物线开口向下,y的最大值是﹣4∵当﹣2≤x≤3时,y的最大值是5,∴a<0不合题意;②a>0时,抛物线开口向上∵对称轴是直线x=1.1到﹣2的距离大于1到3的距离,∴x=﹣2时,y的值最大∴y=4a﹣2b+a﹣4=5a﹣2b﹣4=5,将b=﹣2a代入得,a=1;(3)①t<0时,∵a=1,∴b=﹣2a=﹣2∴y的最大值是m=t2﹣2t+1﹣4=t2﹣2t﹣3,最小值是n=(t+1)2﹣2(t+1)﹣3∵m﹣n=3,∴t2﹣2t﹣3﹣[(t+1)2﹣2(t+1)﹣3]=3,解得:t=﹣1;②≤t<1时,∴y的最大值是m=(t+1)2﹣2(t+1)﹣3,最小值是n=﹣4∵m﹣n=3,∴(t+1)2﹣2(t+1)﹣3﹣(﹣4)=3,解得:t=±(不成立);③0<t≤时,y的最大值是m=t2﹣2t+1﹣4=t2﹣2t﹣3,最小值是n=﹣4m﹣n=t2﹣2t﹣3﹣(﹣4)=3,解得:t=±+1(不成立);④t≥1时,∴y的最大值是m=(t+1)2﹣2(t+1)﹣3,最小值是n=t2﹣2t﹣3m﹣n=(t+1)2﹣2(t+1)﹣3﹣(t2﹣2t﹣3)=3,解得:t=2;综上,t的值为﹣1或2.23.如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC 于点E,连接BE,设动点D运动的时间为x(s),AE的长为y (cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?解:(1)动点D运动x秒后,BD=2x.又∵AB=8,∴AD=8﹣2x.∵DE∥BC,∴∴∴y关于x的函数关系式为y=(0<x<4).(2)解:S△BDE===(0<x<4).当时,S△BDE最大,最大值为6cm2.24.已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x…01234…y…5212n…(1)表中n的值为5;(2)当x为何值时,y有最小值,最小值是多少?(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,且m>2,试比较y1与y2的大小.解:(1)∵根据表可知:对称轴是直线x=2∴点(0,5)和(4,n)关于直线x=2对称,∴n=5,故答案为:5;(2)根据表可知:顶点坐标为(2,1),即当x=2时,y有最小值,最小值是1;(3)∵函数的图象开口向上,顶点坐标为(2,1),对称轴是直线x=2∴当m>2时,点A(m1,y1),B(m+1,y2)都在对称轴的右侧,y随x的增大而增大∵m<m+1,∴y1<y2.25.如图,函数y=﹣x2+x+c(﹣2020≤x≤1)的图象记为L1,最大值为M1;函数y=﹣x2+2cx+1(1≤x ≤2020)的图象记为L2,最大值为M2.L1的右端点为A,L2的左端点为B,L1,L2合起来的图形记为L.(1)当c=1时,求M1,M2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A,B重合时,求L 上“美点”的个数;(3)若M1,M2的差为,直接写出c的值.解:(1)当c=1时,函数y=﹣x2+x+c=﹣x2+x+1=﹣(x﹣)2+.又∵﹣2020≤x≤1,∴M1=,y=﹣x2+2cx+1=﹣x2+2x+1=﹣(x﹣1)2+2.又∵1≤x≤2020,∴M2=2;(2)当x=1时,y=﹣x2+x+c=c﹣;y=﹣x2+2cx+1=2c.若点A,B重合,则c﹣=2c,c=﹣,∴L1:y=﹣x2+x﹣(﹣2020≤x≤1);L2:y=﹣x2﹣x+1(1≤x≤2020).在L1上,x为奇数的点是“美点”,则L1上有1011个“美点”;在L2上,x为整数的点是“美点”,则L2上有2020个“美点”.又点A,B重合,则L上“美点”的个数是1011+2020﹣1=3030.(3)y=﹣x2+x+c(﹣2020≤x≤1)上时,当x=时,M1=+cy=﹣x2+2cx+1(1≤x≤2020),对称轴为x=c当2020≥c≥1时,M2=c2+1,∴|+c﹣c2﹣1|=,∴c=﹣1(舍去)或c=2;当c<1时,M2=2c,∴|2c﹣﹣c|=,∴c=3(舍去)或c=﹣;∴c=﹣或2.当c>2020时,M2=﹣20202+4040c+1,∴|﹣20202+4040c+1﹣﹣c|=∴c≈1010(舍弃),综上所述,c=﹣或2.。

北师大版九年级下册数学第二章 二次函数含答案(高分练习)

北师大版九年级下册数学第二章 二次函数含答案(高分练习)

北师大版九年级下册数学第二章二次函数含答案一、单选题(共15题,共计45分)1、已知点A(﹣3,7)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()A.(0,7)B.(﹣1,7)C.(﹣2,7)D.(﹣3,7)2、若将函数y=a(x+3)(x-5)+b(a≠0)的图象向右平行移动1个单位,则它与直线y=b的交点坐标是( )A.(-3,0)和(5,0)B.(-2,b)和(6,b)C.(-2,0)和(6,0)D.(-3,b)和(5,b)3、将抛物线向左平移3个单位得到的抛物线的解析式是( )A. B. C. D.4、若抛物线y=x2﹣2x﹣1与x轴的一个交点坐标为(m,0),则代数式m2﹣2m+2017的值为()A.2019B.2018C.2016D.20155、下列二次函数的图象中,其对称轴是x=1的为()A.y=x 2+2xB.y=x 2﹣2xC.y=x 2﹣2D.y=x 2﹣4x6、如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为()A.2B.4C.8D.167、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是()A.y=﹣(x﹣60)2+1825B.y=﹣2(x﹣60)2+1850C.y=﹣(x ﹣65)2+1900D.y=﹣2(x﹣65)2+20008、如图所示,桥拱是抛物线形,其函数的表达式为y=﹣x2,当水位线在AB位置时,水面宽 12m,这时水面离桥顶的高度为()A.3 mB. mC.4 mD.9 m9、函数y=2x2﹣8x+m的图象上有两点A(x1, y1),B(x2, y2),且|x1﹣2|>|x2﹣2|,则()A.y1<y2B.y1=y2C.y1>y2D.y1、y2的大小不确定10、在同一直角坐标系中,a≠0,函数y=ax与y=ax2的图象可能正确的有()A.0B.1C.2D.311、已知二次函数图象的对称轴为,其图象如图所示,现有下列结论:① ;② ;③ ;④;⑤ .正确的是()A.①③B.②⑤C.③④D.④⑤12、由二次函数,可知()A.其图象的开口向下B.其图象的对称轴为直线C.当x<3时,y随x的增大而增大D.其最小值为113、抛物线y=(x+2)2+1的对称轴是()A.直线x=-1B.直线x=1C.直线x=2D.直线x=-214、已知抛物线y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有两个同号的实数根D.没有实数根15、函数图像的大致位置如图所示,则ab,bc,2a+b,,,b2-a2 等代数式的值中,正数有()A.2个B.3个C.4个D.5个二、填空题(共10题,共计30分)16、如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为处达到最高,高度为,水柱落地处离池中心距离为,则水管的长度是________ .17、一个函数有下列性质:①它的图象不经过第四象限;②图象经过点(1,2);③当x>1时,函数值y随自变量x的增大而增大.满足上述三条性质的二次函数解析式可以是________(只要求写出一个).18、如图,菱形OABC的顶点O、A、C在抛物线上,其中点O为坐标原点,对角线OB在y轴上,且OB=2.则菱形OABC的面积是________.19、已知函数y=-3(x-2)2+4,当x=________时,函数取得最大值为________.20、已知函数的图象与两坐标轴共有两个交点,则的值为________.21、如果抛物线y=(2+k)x2﹣k的开口向下,那么k的取值范围是________ .22、抛物线y=x2﹣3x﹣15 与x 轴的一个交点是(m,0),则2m2﹣6m 的值为________.23、已知二次函数y=ax2(a≠0的常数),则y与x2成________ 比例.24、设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为________.25、若一个二次函数的二次项系数为﹣1,且图象的顶点坐标为(0,﹣3).则这个二次函数的表达式为________三、解答题(共5题,共计25分)26、已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴相交于A、B两点,且AB=2,求m的值.27、某宾馆有30个房间供游客住宿,当每个房间的房价为每天160元时,房间会全部住满。

北师大新版九年级数学下学期《第2章 二次函数》 单元练习卷 含解析

北师大新版九年级数学下学期《第2章 二次函数》 单元练习卷 含解析

第2章二次函数一.选择题(共10小题)1.下列各式中,y是关于x的二次函数的是()A.y=2x+3 B.C.y=3x2﹣1 D.y=(x﹣1)2﹣x22.对于二次函数y=3(x﹣2)2+1的图象,下列说法正确的是()A.开口向下B.对称轴是直线x=﹣2C.顶点坐标是(2,1)D.与x轴有两个交点3.抛物线y=3x2先向下平移1个单位,再向左平移2个单位,所得的抛物线是()A.y=3(x+2)2﹣1 B.y=3(x﹣2)2+1C.y=(x﹣2)2﹣1 D.y=3(x+2)2+14.抛物线y=x2+2x与x轴的交点坐标是()A.(0,0)B.(2,0)C.(0,0)或(﹣2,0)D.(0,0)或(2,0)5.如图所示,中堂中学教学楼前喷水池喷出的抛物线形水柱,水柱喷出的竖直高度y (m)与水平距离x(m)满足y=﹣(x﹣2)2+6,则水柱的最大高度是()A.2 B.4 C.6 D.2+6.若A(﹣3,y1),,C(2,y3)在二次函数y=x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y2<y17.已知二次函数y=ax2+bx+c中x和y的值如下表()x0.10 0.11 0.12 0.13 0.14y﹣5.6 ﹣3.1 ﹣1.5 0.9 1.8 则ax2+bx+c=0的一个根的范围是()A.0.10<x<0.11 B.0.11<x<0.12C.0.12<x<0.13 D.0.13<x<0.148.赵州桥的桥拱可以用抛物线的一部分表示,函数关系为,当水面宽度AB 为20m时,水面与桥拱顶的高度DO等于()A.2m B.4m C.10m D.16m9.抛物线y=x2﹣x+m与x轴至少有一个公共点,则m的取值范围是()A.m B.m>C.m≤D.m<10.在同一坐标系中,二次函数y=ax2+b与一次函数y=bx+a的图象可能是()A.B.C.D.二.填空题(共7小题)11.已知点A(3,n)在二次函数y=x2﹣x+1的图象上,那么n的值为.12.抛物线y=x2﹣2x+1与x轴交点的交点坐标为.13.函数y=(m+1)x|m|+1+5x﹣5是二次函数,则m=.14.二次函数y=kx2﹣4x+1与x轴有交点,则k的取值范围是.15.如图,一次函数y=mx+n的图象与二次函数y=ax2+bx+c的图象交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.16.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<0时,y随x的增大而减小;⑥a+b+c>0中,正确的有.(只填序号)17.如图,将函数y=+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A′、B′.若曲线段AB扫过的面积为12(图中的阴影部分),则新图象的函数表达式是.三.解答题(共23小题)18.(1)解方程:(x﹣2)(x+3)=6;(2)已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点,求该抛物线的顶点坐标.19.已知抛物线y=﹣x+5.(l)求该抛物线的顶点坐标;(2)判断点P(﹣2,5)是否落在图象上,请说明理由.20.如图,抛物线y=x2﹣2x﹣3与x轴交于A,B两点,与y轴交于点D,抛物线的顶点为C.(1)求A,B,C,D的坐标;(2)求四边形ABCD的面积.21.二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣4 ﹣3 ﹣2 ﹣1 0 1 …y… 5 0 ﹣3 ﹣4 ﹣3 m…(1)写出m的值;(2)在图中画出这个二次函数的图象;(3)当y≥5时,x的取值范围是;(4)当﹣4<x<1时,y的取值范围是.22.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调査,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并直接写出当x取何值时,商场可获得最大利润?最大利润为多少元?23.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)一辆宽为2米,高为3米的货船能否从桥下通过?24.已知函数y=2x2﹣(3﹣k)x+k2﹣3k﹣10的图象经过原点,试确定k的值.25.在平面直角坐标系中,若抛物线y=2x2与直线y=x+1交于点A(a,b)和点B(c,d),其中a>c,点O为原点,求△ABO的面积.26.如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,点P从点C开始沿CB向点B以1cm/s的速度移动,点Q从A开始沿AC向点C以2cm/s的速度移动,如果点P,Q同时从点C,A出发,试问:(1)出发多少时间时,点P,Q之间的距离等于?(2)出发多少时间时,△PQC的面积为6cm2?(3)△PQC面积的是否有最大值?若有是多少?此时时间是多少?27.如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D 作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?28.我县某乡镇实施产业扶贫,帮助贫困户承包田地种植“黄金梨”,已知该黄金梨的成本价为8元/千克,到了收获季节投入市场销售时,通过调查市场行情发现销售该黄金梨不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当黄金梨定价为多少元时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘黄金梨4800千克,若黄金梨的保质期为40天,则按(2)中的方式进行销售,能否销售完这批黄金梨?请说明理由.29.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A,B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P 在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在点Q,且点Q在第一象限,使△BDQ中BD边上的高为?若存在,求出点Q的坐标;若不存在,请说明理由.30.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C,点B和点C的坐标分别为(3,0)、(0,﹣3),抛物线的对称轴为x=1,D为抛物线的顶点.(1)求抛物线的解析式.(2)点E为线段BC上一动点,过点E作x轴的垂线,与抛物线交于点F,求四边形ACFB面积的最大值,以及此时点E的坐标.(3)抛物线的对称轴上是否存在一点P,使△PCD为等腰三角形?若存在,写出点P点的坐标;若不存在,说明理由.31.如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(4,0),B(﹣1,0),交y轴于点C.(1)求抛物线的解析式;(2)点D是直线AC上一动点,过点D作DE垂直于y轴于点E,过点D作DF⊥x轴,垂足为F,连接EF,当线段EF的长度最短时,求出点D的坐标;(3)在AC上方的抛物线上是否存在点P,使得△ACP是直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.32.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?33.如图,已知直线y=x+4交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A、B.(1)求抛物线解析式;(2)点C(m,0)是x轴上异于A、O点的一点,过点C作x轴的垂线交AB于点D,交抛物线于点E.①当点E在直线AB上方的抛物线上时,连接AE、BE,求S△ABE的最大值;②当DE=AD时,求m的值.34.已知等边△ABC和Rt△DEF按如图所示的位置放置,点B、D重合,且点E、B(D)、C在同一条直线上.其中∠E=90°,∠EDF=30°,AB=DE=,现将△DEF沿直线BC以每秒个单位向右平移,直至E点与C点重合时停止运动,设运动时间为t 秒.(1)试求出在平移过程中,点F落在△ABC的边上时的t值;(2)试求出在平移过程中△ABC和Rt△DEF重叠部分的面积S与t的函数关系式.35.如图,为了绿化小区,某物业公司要在形如五边形ABCDE的草坪上建一个矩形花坛PKDH.已知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直线为x轴,AE所在直线为y轴,建立平面直角坐标系,坐标原点为O.(1)求直线AB的解析式.(2)若设点P的横坐标为x,矩形PKDH的面积为S,求S关于x的函数关系式.36.在体育测试时,九年级的一名高个男同学推铅球,已知铅球所经过的路径是某个二次函数图象的一部分(如图所示).如果这个男同学出手处A点的坐标是(0,2),铅球路线的最高处B点的坐标是(6,5).求这个二次函数的解析式.37.某涵洞是抛物线形,它的截面如图所示,现测得水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,求涵洞所在抛物线的函数表达式.38.已知二次函数y=﹣x2+x+(1)将y=﹣x2+x+成y=a(x﹣h)2+k的形式:(2)在坐标系中利用描点法画出此抛物线x……y……(3)当﹣3<x<3时,观察图象直接写出函数值y的取值的范围.(4)将该抛物线在x上方的部分(不包含与x的交点)记为G,若直线y=x+b与G 只有一个公共点,则b的取值范围是.39.抛物线y=﹣x2+mx+n与x轴的一个交点为(﹣1,0),对称轴是直线x=1,(1)抛物线与x轴的另一个交点坐标为;m=,n=.(2)画出此二次函数的图象;(3)利用图象回答:当x取何值时,y≤0?40.已知抛物线y=﹣2x2+(m﹣3)x﹣8.(1)若抛物线的对称轴为y轴,求m的值;(2)若抛物线的顶点在x正半轴上,求顶点坐标.参考答案与试题解析一.选择题(共10小题)1.下列各式中,y是关于x的二次函数的是()A.y=2x+3 B.C.y=3x2﹣1 D.y=(x﹣1)2﹣x2【分析】根据二次函数的定义,可得答案.【解答】解:A、是一次函数,故A错误;B、二次函数都是整式,故B错误;C、是二次函数,故C正确;D、是一次函数,故D错误;故选:C.2.对于二次函数y=3(x﹣2)2+1的图象,下列说法正确的是()A.开口向下B.对称轴是直线x=﹣2C.顶点坐标是(2,1)D.与x轴有两个交点【分析】利用二次函数的性质对A、B、C进行判断;利用3(x﹣2)2+1=0的实数解的个数对D进行判断.【解答】解:二次函数y=3(x﹣2)2+1的图象的开口向上,对称轴为直线x=2,顶点坐标为(2,1),当y=0时,3(x﹣2)2+1=0,此方程没有实数解,所以抛物线与x轴没有交点.故选:C.3.抛物线y=3x2先向下平移1个单位,再向左平移2个单位,所得的抛物线是()A.y=3(x+2)2﹣1 B.y=3(x﹣2)2+1C.y=(x﹣2)2﹣1 D.y=3(x+2)2+1【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.【解答】解:抛物线y=3x2先向下平移1个单位,再向左平移2个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选:A.4.抛物线y=x2+2x与x轴的交点坐标是()A.(0,0)B.(2,0)C.(0,0)或(﹣2,0)D.(0,0)或(2,0)【分析】根据题意可知,解方程x2+2x=0,即可得出结果.【解答】解:令y=0,则x2+2x=0,解得x1=0,x2=﹣2,所以抛物线y=x2+2x与x轴的交点坐标是(0,0)或(﹣2,0),故选:C.5.如图所示,中堂中学教学楼前喷水池喷出的抛物线形水柱,水柱喷出的竖直高度y (m)与水平距离x(m)满足y=﹣(x﹣2)2+6,则水柱的最大高度是()A.2 B.4 C.6 D.2+【分析】直接利用二次函数最值求法得出答案.【解答】解:∵抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,∴水柱的最大高度是:6.故选:C.6.若A(﹣3,y1),,C(2,y3)在二次函数y=x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y2<y1【分析】求出二次函数的对称轴,再根据二次函数的增减性判断即可.【解答】解:对称轴为直线x=﹣=﹣1,∵a=1>0,∴x<﹣1时,y随x的增大而减小,x>﹣1时,y随x的增大而增大,∴y2<y1<y3.故选:A.7.已知二次函数y=ax2+bx+c中x和y的值如下表()x0.10 0.11 0.12 0.13 0.14y﹣5.6 ﹣3.1 ﹣1.5 0.9 1.8 则ax2+bx+c=0的一个根的范围是()A.0.10<x<0.11 B.0.11<x<0.12C.0.12<x<0.13 D.0.13<x<0.14【分析】由表格可发现y的值﹣1.5和0.9最接近0,再看对应的x的值即可得.【解答】解:由表可以看出,当x取0.12与0.13之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为0.12<x<0.13.故选:C.8.赵州桥的桥拱可以用抛物线的一部分表示,函数关系为,当水面宽度AB 为20m时,水面与桥拱顶的高度DO等于()A.2m B.4m C.10m D.16m【分析】根据题意,把x=10直接代入解析式即可解答.【解答】解:根据题意B的横坐标为10,把x=10代入y=﹣x2,得y=﹣4,∴A(﹣10,﹣4),B(10,﹣4),即水面与桥拱顶的高度DO等于4m.故选:B.9.抛物线y=x2﹣x+m与x轴至少有一个公共点,则m的取值范围是()A.m B.m>C.m≤D.m<【分析】利用判别式的意义得到△=(﹣1)2﹣4m≥0,然后解不等式即可.【解答】解:∵抛物线y=x2﹣x+m与x轴至少有一个公共点,∴△=(﹣1)2﹣4m≥0,∴m≤.故选:C.10.在同一坐标系中,二次函数y=ax2+b与一次函数y=bx+a的图象可能是()A.B.C.D.【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y =bx2+a的图象相比较看是否一致.【解答】解:A、由抛物线y=ax2+b可知,图象开口向上,与y轴交在负半轴a>0,b<0,由直线y=bx+a可知,图象过一,二,三象限,b>0,a>0,故此选项错误;B、由抛物线y=ax2+b可知,图象开口向上且与y轴交在正半轴a>0,b>0,由直线y=bx+a可知,图象过一,二,四象限,b<0,a>0,故此选项错误;C、由抛物线可y=ax2+b知,图象开口向下且与y轴交在正半轴a<0,b>0,由直线y=bx+a可知,图象过一,三,四象限b>0,a<0,故此选项正确;D、由抛物线可y=ax2+b知,图象开口向下且与y轴交在负半轴a<0,b<0,由直线y=bx+a可知,图象过一,二,三象限b>0,a>0,故此选项错误;故选:C.二.填空题(共7小题)11.已知点A(3,n)在二次函数y=x2﹣x+1的图象上,那么n的值为7 .【分析】将A(3,n)代入二次函数的关系式y=x2﹣x+1,然后解关于n的方程即可.【解答】解:∵A(3,n)在二次函数y=x2﹣x+1的图象上,∴A(3,n)满足二次函数y=x2﹣x+1,∴n=9﹣3+1=7,即n=7,故答案是:7.12.抛物线y=x2﹣2x+1与x轴交点的交点坐标为(1,0).【分析】通过解方程x2﹣2x+1=0得抛物线与x轴交点的交点坐标.【解答】解:当y=0时,x2﹣2x+1=0,解得x1=x2=1,所以抛物线与x轴交点的交点坐标为(1,0).故答案为(1,0).13.函数y=(m+1)x|m|+1+5x﹣5是二次函数,则m= 1 .【分析】根据二次函数的定义,必须二次项系数不等于0,且未知数的次数等于2,据此列不等式组并求解即可.【解答】解:由二次函数的定义可知,当时,该函数是二次函数∴∴m=1故答案为:1.14.二次函数y=kx2﹣4x+1与x轴有交点,则k的取值范围是k≤4且k≠0 .【分析】根据二次函数y=kx2﹣4x+1与x轴有交点,可以得到关于k的不等式组,从而可以求得k的取值范围.【解答】解:∵二次函数y=kx2﹣4x+1与x轴有交点,∴,解得,k≤4且k≠0,故答案为:k≤4且k≠0.15.如图,一次函数y=mx+n的图象与二次函数y=ax2+bx+c的图象交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x>4 .【分析】写出抛物线在直线上方所对应的自变量的范围即可.【解答】解:当x<﹣1或x>4,所以关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x>4.故答案为x<﹣1或x>4.16.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<0时,y随x的增大而减小;⑥a+b+c>0中,正确的有①②③⑤.(只填序号)【分析】①根据抛物线的开口方向、对称轴、与y轴的交点即可判断;②根据抛物线与x轴的交点个数即可判断;③根据抛物线的对称轴即可判断;④根据抛物线与y轴的交点和顶点坐标即可判断;⑤根据抛物线的性质即可判断;⑥根据当x=1时y的值即可判断.【解答】解:①根据图象可知:a>0,b<0,c<0,∴abc>0.∴①正确;②∵抛物线与x轴有两个交点,∴△>0,即b2﹣4ac>0,4ac<b2.∴②正确;③∵抛物线的对称轴x<1,即﹣<1,得2a+b>0.∴③正确;④∵抛物线与y轴的交点坐标为(0,﹣2),∴抛物线的顶点的纵坐标不能为﹣2.∴④错误;⑤根据抛物线的性质可知:当x<0时,y随x的增大而减小;∴⑤正确;⑥当x=1时,y<0,即a+b+c<0.∴⑥错误.故答案为①②③⑤.17.如图,将函数y=+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A′、B′.若曲线段AB扫过的面积为12(图中的阴影部分),则新图象的函数表达式是y=(x﹣2)2+5 .【分析】曲线段AB扫过的面积=(x B﹣x A)×AA′=3AA′=12,则AA′=4,即可求解.【解答】解:曲线段AB扫过的面积=(x B﹣x A)×AA′=3AA′=12,则AA′=4,故抛物线向上平移4个单位,则y=(x﹣2)2+5,故答案为.三.解答题(共23小题)18.(1)解方程:(x﹣2)(x+3)=6;(2)已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点,求该抛物线的顶点坐标.【分析】(1)根据解一元二次方程的方法可以解答此方程;(2)根据抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点,可以求得该抛物线的解析式,然后将该函数的解析式化为顶点式,即可解答本题.【解答】解:(1)∵(x﹣2)(x+3)=6,∴x2+x﹣6=6,∴x2+x﹣12=0,∴(x﹣3)(x+4)=0,∴x﹣3=0或x+4=0,解得,x1=3,x2=﹣4;(2)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点,∴,解得,,∴y=x2﹣2x﹣3=(x﹣1)2﹣4,∴该抛物线的顶点坐标为(1,﹣4).19.已知抛物线y=﹣x+5.(l)求该抛物线的顶点坐标;(2)判断点P(﹣2,5)是否落在图象上,请说明理由.【分析】(1)将抛物线的解析式化为顶点式,即可写出该抛物线的顶点坐标;(2)先判断点P是否落在图象上,然后将x=﹣2代入函数解析式,求出相应的函数值,即可解答本题.【解答】解:(1)∵抛物线y=﹣x+5=+,∴该抛物线的顶点坐标是(1,);(2)点P(﹣2,5)不落在图象上,理由:当x=﹣2时,y=×(﹣2)2﹣(﹣2)+5=9,∴点P(﹣2,5)不落在图象上.20.如图,抛物线y=x2﹣2x﹣3与x轴交于A,B两点,与y轴交于点D,抛物线的顶点为C.(1)求A,B,C,D的坐标;(2)求四边形ABCD的面积.【分析】(1)根据题目中的函数解析式可以求得A,B,C,D的坐标;(2)根据(1)中求得的点A,B,C,D的坐标,可以求得四边形ABCD的面积.【解答】解:(1)∵y=x2﹣2x﹣3=(x﹣3)(x+1)=(x﹣1)2﹣4,∴当y=0时,x1=3,x2=﹣1,当x=0时,y=﹣3,该函数的顶点坐标为(1,﹣4),∴点A的坐标为(﹣1,0),点B的坐标为(3,0),点C的坐标为(1,﹣4),点D 的坐标为(0,﹣3);(2)连接OC,如右图所示,∵点A的坐标为(﹣1,0),点B的坐标为(3,0),点C的坐标为(1,﹣4),点D 的坐标为(0,﹣3),∴四边形ABCD的面积是:S△AOD+S△ODC+S△OCB==9.21.二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣4 ﹣3 ﹣2 ﹣1 0 1 …y… 5 0 ﹣3 ﹣4 ﹣3 m…(1)写出m的值0 ;(2)在图中画出这个二次函数的图象;(3)当y≥5时,x的取值范围是x≤﹣4或x≥2 ;(4)当﹣4<x<1时,y的取值范围是﹣4≤y<5 .【分析】(1)先确定出对称轴,根据抛物线的对称性即可求得;(2)根据二次函数图象的画法作出图象即可;(3)根据抛物线的对称性,(﹣4,5)关于直线x=﹣1的对称点是(2,5),根据图象即可求得结论,(4)根据函数图象,写y的取值范围即可.【解答】解:(1)由图表可知抛物线的顶点坐标为(﹣1,﹣4),∴抛物线的对称轴为直线x=﹣1,∵(﹣3,0)关于直线x=﹣1的对称点是(1,0),∴m=0,故答案为:0;(2)函数图象如图所示;(3)∵(﹣4,5)关于直线x=﹣1的对称点是(2,5),由图象可知当y≥5时,x的取值范围是x≤﹣4或x≥2,故答案为x≤﹣4或x≥2;(4)由图象可知当﹣4<x<1时,y的取值范围是﹣4≤y<5,故答案为﹣4≤y<5.22.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调査,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并直接写出当x取何值时,商场可获得最大利润?最大利润为多少元?【分析】(1)根据一天获利=每件利润×一天的销售量即可求解;(2)①根据降价后的单件利润乘以销售量等于总利润列方程即可求解;②根据①的关系式利用二次函数的性质即可求解.【解答】解:(1)根据题意,得(100﹣80)×100=2000.答:商场经营该商品原来一天可获利润2000元(2)①根据题意,得(100﹣80﹣x)(100+10x)=2160整理,得x2﹣10x+16=0,解得x1=2,x2=8.答:每件商品应降价2元或8元.②y=(100﹣80﹣x)(100+10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250当x=5时,y有最大值为2250.答:y与x之间的函数关系式为y=﹣10x2+100x+2000.当x取5元时,商场可获得最大利润,最大利润为2250元.23.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)一辆宽为2米,高为3米的货船能否从桥下通过?【分析】(1)根据直角坐标系中的抛物线,和已知条件即可求解;(2)根据货车宽度可知抛物线解析式中的x值,即可求出对应的y的值,再与货车高度比较即可求解.【解答】解:(1)根据题意,得抛物线的顶点坐标为(5,4),经过(0,0),∴设:抛物线解析式为y=a(x﹣5)2+4,把(0,0)代入,得25a+4=0,解得a=﹣,所以抛物线解析式为:y=﹣(x﹣5)2+4=﹣x2+x.答:抛物线解析式为y=﹣x2+x.(2)货船能从桥下通过.理由如下:∵货船宽为2米,高为3米,当x=6时,y=﹣(6﹣5)2+4=3.84,∵3.84>3,∴货船能从桥下通过.答:货船能从桥下通过.24.已知函数y=2x2﹣(3﹣k)x+k2﹣3k﹣10的图象经过原点,试确定k的值.【分析】根据函数y=2x2﹣(3﹣k)x+k2﹣3k﹣10的图象经过原点,可以得到关于k的一元二次方程,从而可以求得k的值.【解答】解:∵函数y=2x2﹣(3﹣k)x+k2﹣3k﹣10的图象经过原点,∴0=2×02﹣(3﹣k)×0+k2﹣3k﹣10,∴k2﹣3k﹣10=0,∴(k﹣5)(k+2)=0,解得,k1=5,k2=﹣2,即k的值是5或﹣2.25.在平面直角坐标系中,若抛物线y=2x2与直线y=x+1交于点A(a,b)和点B(c,d),其中a>c,点O为原点,求△ABO的面积.【分析】首先求得两个交点的坐标,然后求得三角形的面积即可.【解答】解:由题意得:,解得:x=﹣或x=1,∵点A(a,b)和点B(c,d),其中a>c,∴A(1,2),B(﹣,),∴S△ABO=×1×+×1×1=.26.如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,点P从点C开始沿CB向点B以1cm/s的速度移动,点Q从A开始沿AC向点C以2cm/s的速度移动,如果点P,Q同时从点C,A出发,试问:(1)出发多少时间时,点P,Q之间的距离等于?(2)出发多少时间时,△PQC的面积为6cm2?(3)△PQC面积的是否有最大值?若有是多少?此时时间是多少?【分析】(1)可设出发xs时间时,点P,Q之间的距离等于2cm,根据勾股定理列出方程求解即可;(2)可设出发ys时间时,△PQC的面积为6cm2,根据三角形的面积公式列出方程求解即可;(3)根据题意得到△PQC面积和时间t的关系式,根据关系式即可得到结论.【解答】解:(1)设出发xs时间时,点P,Q之间的距离等于2cm,依题意有x2+(12﹣2x)2=(2)2,解得x1=2,x2=7.6(不合题意舍去).答:出发2s时间时,点P,Q之间的距离等于2cm;(2)设出发ys时间时,△PQC的面积为6cm2,依题意有y(12﹣2y)=6,解得y1=3﹣,y2=3+.答:出发(3﹣)s或(3+)s时间时,△PQC的面积为6cm2;(3)依题意有S△PQC=t(12﹣2t)=﹣(t﹣3)2+9,∵﹣1<0,∴△PQC面积的有最大值9,此时时间是3.27.如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D 作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?【分析】(1)由平行线得△ABC∽△ADE,根据相似形的性质得关系式;(2)由S=•BD•AE;得到函数解析式,然后运用函数性质求解.【解答】解:(1)动点D运动x秒后,BD=2x.又∵AB=8,∴AD=8﹣2x.∵DE∥BC,∴,∴,∴y关于x的函数关系式为y=(0<x<4).(2)解:S△BDE===(0<x<4).当时,S△BDE最大,最大值为6cm2.28.我县某乡镇实施产业扶贫,帮助贫困户承包田地种植“黄金梨”,已知该黄金梨的成本价为8元/千克,到了收获季节投入市场销售时,通过调查市场行情发现销售该黄金梨不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当黄金梨定价为多少元时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘黄金梨4800千克,若黄金梨的保质期为40天,则按(2)中的方式进行销售,能否销售完这批黄金梨?请说明理由.【分析】(1)根据图象即可求出y与x的函数关系;(2)根据销售利润等于每千克的利润乘以销售量即可求解;(3)每天的销售量与天数即可求解.【解答】解:(1)设y与x的函数关系为y=kx+b,将(10,200),(15,150)代入,得,,∴y与x的函数关系式为y=﹣10x+300(8≤x≤30).(2)设每天销售获得利润为w元,根据题意,得w=(x﹣8)(﹣10x+300)=﹣10x2+380x﹣2400=﹣10(x﹣19)2+1210∵﹣10<0,当x=19时,w有最大值为1210,答:黄金梨定价为19元时,每天销售获得的利润最大,最大利润是1210元.(3)根据题意,得40y=4800,即﹣10x+300=120,解得x=18.答:能销售完这批黄金梨.29.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A,B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P 在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在点Q,且点Q在第一象限,使△BDQ中BD边上的高为?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)可设抛物线解析式为顶点式,由B点坐标可求得抛物线的解析式,则可求得D点坐标,利用待定系数法可求得直线BD解析式;(2)设出P点坐标,从而可表示出PM的长度,利用二次函数的性质可求得其最大值;(3)过Q作QG∥y轴,交BD于点G,过Q和QH⊥BD于H,可设出Q点坐标,表示出QG的长度,由条件可证得△DHG为等腰直角三角形,则可得到关于Q点坐标的方程,可求得Q点坐标.【解答】解:(1)∵抛物线的顶点C的坐标为(1,4),∴可设抛物线解析式为y=a(x﹣1)2+4,∵点B(3,0)在该抛物线的图象上,∴0=a(3﹣1)2+4,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3,∵点D在y轴上,令x=0可得y=3,∴D点坐标为(0,3),∴可设直线BD解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BD解析式为y=﹣x+3;(2)设P点横坐标为m(m>0),则P(m,﹣m+3),M(m,﹣m2+2m+3),∴PM=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,∴当m=,PM有最大值;(3)如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设Q(x,﹣x2+2x+3),则G(x,﹣x+3),∴QG=|﹣x2+2x+3﹣(﹣x+3)|=|﹣x2+3x|,∵△BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,当△BDQ中BD边上的高为时,即QH=HG=,∴QG==2,∵点Q在第一象限,∴﹣x2+3x=2,解得x=1或x=2,∴Q(1,4)或(2,3),综上可知存在满足条件的点Q,其坐标为(1,4)或(2,3).30.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C,点B和点C的坐标分别为(3,0)、(0,﹣3),抛物线的对称轴为x=1,D为抛物线的顶点.(1)求抛物线的解析式.(2)点E为线段BC上一动点,过点E作x轴的垂线,与抛物线交于点F,求四边形ACFB面积的最大值,以及此时点E的坐标.(3)抛物线的对称轴上是否存在一点P,使△PCD为等腰三角形?若存在,写出点P 点的坐标;若不存在,说明理由.【分析】(1)由B、C的坐标,结合抛物线对称轴,根据待定系数法可求得抛物线解析式;(2)由B、C可求得直线BC解析式,可设出F点坐标,则可表示出E点坐标,从而可求得EF的长,则可表示出△CBF的面积,从而可表示出四边形ACFB的面积,再利用二次函数的性质可求得其最大值,可求出E点的坐标;(3)由抛物线解析式可求得D点坐标,可设P点坐标为(1,t),则可表示出PC、PD和CD的长,由等腰三角形可分PC=PD、PC=CD和PD=CD三种情况分别得到关于t的方程,可求得P点坐标.【解答】解:(1)∵点B和点C的坐标分别为(3,0)(0,﹣3),抛物线的对称轴为x=1,∴,解得,∴抛物线解析式为y=x2﹣2x﹣3;(2))∵B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,∵E点在直线BC上,F点在抛物线上,∴设F(x,x2﹣2x﹣3),E(x,x﹣3),∵点F在线段BC下方,∴EF=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,∴S△BCF=EF•OB=×3(﹣x2+3x)=﹣x2+x=﹣(x﹣)2+,又∵S△ABC=AB•OC=×4×3=6,∴S四边形ACFB=S△ABC+S△BCF=﹣(x﹣)2++6=﹣(x﹣)2+,∵﹣<0,∴当x=时,S四边形ACFB有最大值,最大值为,此时E点坐标为(,﹣),综上可得四边形ACFB面积的最大值为,此时点E的坐标为(,﹣);(3)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4),且C(0,﹣3),∵P点为抛物线对称轴上的一点,∴设P(1,t),∴PC==,PD=|t+4|,CD==,∵△PCD为等腰三角形,∴分PC=PD、PC=CD和PD=CD三种情况,①当PC=PD时,则=|t+4|,解得t=﹣3,此时P点坐标为(1,﹣3);②当PC=CD时,则=,解得t=﹣2或t=﹣4(与D点重合,舍去),此时P点坐标为(1,﹣2);。

北师大版九年级数学下册第二章 二次函数 单元测试训练卷(word 含答案)

北师大版九年级数学下册第二章 二次函数    单元测试训练卷(word 含答案)

北师大版九年级数学下册第二章 二次函数单元测试训练卷一、选择题(共8小题,4*8=32)1. 下列函数中,不是二次函数的是( )A .y =1-2x 2B .y =2(x -1)2+4C .y =12(x -1)(x +4) D .y =(x -2)2-x 2 2. 如图是有相同对称轴的两条抛物线,下列关系不正确的是( )A .h =mB .k =nC .k >nD .h <0,k >03. 已知二次函数y =x 2-4x +a ,下列说法错误的是( )A .当x<1时,y 随x 的增大而减小B .若图象与x 轴有交点,则a≤4C .当a =3时,不等式x 2-4x +3>0的解集是1<x<3D .若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a =-34. 下列关于二次函数的说法错误的是( )A .抛物线y =-2x 2+12x +1的对称轴是直线x =3B .对于抛物线y =x 2-2x -3,点A(3,0)不在它的图象上C .二次函数y =(x +3)2-3的顶点坐标是(-3,-3)D .函数y =2x 2+4x -3的图象的最低点是(-1,-5)5. 点P(m ,n)在以y 轴为对称轴的二次函数y =x 2+ax +4的图像上.则m -n 的最大值等于( )A .154B .4C .-154D .-1746. 函数y =ax +b 和y =ax 2+bx +c 在同一直角坐标系内的图象可能是( )7. 如图是抛物线y =ax 2+bx +c(a≠0)的部分图象,其顶点坐标为(1,n),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a -b +c >0;②3a +b =0;③b 2=4a(c -n);④一元二次方程ax 2+bx +c =n -1有两个不相等的实数根.其中正确结论的个数是( )A .1B .2C .3D .48. 如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )二.填空题(共6小题,4*6=24)9.抛物线y =-x 2+15有最________点,其坐标是________.10. 若二次函数y =x 2+2x +a 的图象与x 轴有两个不同的交点,则a 的取值范围是__________.11. 如图,已知二次函数y =x 2+bx +c 的图象的对称轴是直线x =1,过抛物线上两点的直线AB 平行于x 轴,若点A 的坐标为⎝⎛⎭⎫0,32,则点B 的坐标为 .12. 已知二次函数y =x 2+2mx +2,当x>2时,y 随x 的增大而增大,则实数m 的取值范围是________.13. 抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,则a +b +c =________.14. 如图,二次函数y =ax 2+bx +c 的对称轴在y 轴的右侧,其图象与x 轴交于点A(-1,0),点C(x 2,0),且与y 轴交于点B(0,-2),小强得到以下结论:①0<a <2;②-1<b <0;③c=-1;④当|a|=|b|时,x2>5-1.以上结论中,正确的结论序号是________.三.解答题(共5小题,44分)15.(6分) 已知抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),求a,b的值.16.(8分)如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的表达式;(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)17.(8分) 抛物线y=-x2+bx+c的对称轴为直线x=2,且顶点在x轴上.(1)求b、c的值;(2)在如图所示的平面直角坐标系中画出抛物线并写出它与y轴的交点C的坐标;(3)根据图像直接写出:点C关于直线x=2的对称点D的坐标为________;若E(m,n)为抛物线上一点,则点E关于直线x=2的对称点的坐标为________(用含m、n的式子表示).18.(10分) 如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的表达式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.19.(12分) 如图是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO=2,在ON上方有五个台阶T1~T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴的距离OK=10.从点A处向右上方沿抛物线L:y=-x2+4x+12发出一个带光的点P.(1)求点A的横坐标,且在图中补画出y轴,并指出点P会落在哪个台阶上;(2)当点P落到台阶上后立即弹起,又形成了另一条与L形状相同的抛物线C,且最大高度为11,求C的表达式,并说明其对称轴是否与台阶T5有交点;(3)在x轴上从左到右有两点D,E,且DE=1,从点E向上作EB⊥x轴,且BE=2.在△BDE 沿x轴左右平移时,必须保证(2)中沿抛物线C下落的点P能落在边BD(包括端点)上,则点B横坐标的最大值比最小值大多少?[注:(2)中不必写x的取值范围]参考答案1-4 DBCB 5-8CCCA9.高,(0,15)10.a <111.⎝⎛⎭⎫2,32 12.m≥-213.014.①④15.解:把(-1,0),(3,0)分别代入y =ax 2+bx -3,得⎩⎪⎨⎪⎧0=a -b -3,0=9a +3b -3,解得⎩⎪⎨⎪⎧a =1,b =-2. 即a 的值为1,b 的值为-2.16.解: (1)∵直线y =x +m 经过点A(1,0),∴0=1+m .∴m =-1.∴y =x -1.∵抛物线y =x 2+bx +c 经过点A(1,0),B(3,2),∴⎩⎪⎨⎪⎧0=1+b +c ,2=9+3b +c ,解得⎩⎪⎨⎪⎧b =-3,c =2.∴抛物线的表达式为y =x 2-3x +2 (2)x<1或x>317.解:(1)∵抛物线y =-x 2+bx +c 的对称轴为直线x =2,且顶点在x 轴上,∴顶点为(2,0).∴抛物线为y =-(x -2)2=-x 2+4x -4,∴b =4,c =-4.(2)画出抛物线如图:点C 的坐标为(0,-4).(3)(4,-4);(4-m ,n)18.(1)将点A(1,0)代入y =(x -2)2+m 中得(1-2)2+m =0,解得m =-1,所以二次函数的表达式为y =(x -2)2-1.当x =0时,y =4-1=3,所以点C 坐标为(0,3),由于点C 和点B 关于对称轴对称,而抛物线的对称轴为直线x =2,所以点B 坐标为(4,3),将A(1,0),B(4,3)代入y =kx +b 中,得⎩⎪⎨⎪⎧k +b =0,4k +b =3,解得⎩⎪⎨⎪⎧k =1,b =-1.所以一次函数的表达式为y =x -1 (2)当kx +b≥(x -2)2+m 时,1≤x≤419.解:(1)对于抛物线y =-x 2+4x +12,令y =0,则-x 2+4x +12=0,解得x =-2或x =6,∵OA =2,∴A(-2,0),∴点A 的横坐标为-2.补画y 轴,如图所示,由题意知台阶T 4左边的端点坐标为(4.5,7),右边的端点为(6,7).当x =4.5时,y =9.75>7,当x =6时,y =0<7,对于y =-x 2+4x +12,当y =7时,7=-x 2+4x +12,解得x =-1或x =5,∴抛物线与台阶T 4有交点,∴点P 会落在台阶T 4上.(2)设抛物线C 的表达式为y =-x 2+bx +c ,抛物线y =-x 2+4x +12与台阶T 4的交点为R ,则R(5,7).由题意知抛物线C :y =-x 2+bx +c 经过R(5,7),最高点的纵坐标为11,∴⎩⎪⎨⎪⎧-4c -b 2-4=11,-25+5b +c =7,解得⎩⎪⎨⎪⎧b =14,c =-38或⎩⎪⎨⎪⎧b =6,c =2(舍去),∴抛物线C 的表达式为y =-x 2+14x -38,∴抛物线C 的对称轴为直线x =7,易知台阶T 5的左边的端点为(6,6),右边的端点为(7.5,6),∴抛物线C 的对称轴与台阶T 5有交点.(3)对于抛物线C :y =-x 2+14x -38,令y =0,得到-x 2+14x -38=0,解得x =7+11或x =7-11(舍去),∴抛物线C 交x 轴于(7+11,0),当y =2时,2=-x 2+14x -38,解得x =4(舍去)或x =10,∴抛物线经过(10,2),在Rt △BDE 中,∠DEB =90°,DE =1,BE =2,∴当点D 与(7+11,0)重合时,点B 的横坐标最大,最大值为8+11,当点B 与(10,2)重合时,点B 的横坐标最小,最小值为10,∴点B 横坐标的最大值比最小值大11-2.。

北师大版九年级数学下册第二章《二次函数》练习题(含答案)

北师大版九年级数学下册第二章《二次函数》练习题(含答案)

北师大版九年级数学下册第二章《二次函数》练习题(含答案)(满分:100分 时间:100分钟)一、选择题(本大题共10小题;每小题3分;共30分) 1.下列函数中;不是二次函数的是( )A .y =1-2x 2B .y =2(x -1)2+4C .12(x -1)(x +4) D .y =(x -2)2-x 2答案:D2.抛物线y =x 2+3与y 轴的交点坐标为( )A .(3;0)B .(0;3)C .(0;3)D .(3;0)答案:B3.把二次函数y =-14x 2-x +3用配方法化成y =a (x -h )2+k 的形式( )A .y =-14(x -2)2+2B .y =14(x -2)2+4C .y =-14(x +2)2+4D .y =21122x ⎛⎫- ⎪⎝⎭+3答案:C4.将抛物线y =3x 2向左平移2个单位;再向下平移1个单位;所得抛物线为( ) A .y =3(x -2)2-1 B .y =3(x -2)2+1 C .y =3(x +2)2-1 D .y =3(x +2)2+1 答案:C5.对抛物线y =-x 2+2x -3而言;下列结论正确的是( ) A .与x 轴有两个交点 B .开口向上C .与y 轴的交点坐标是(0,3)D .顶点坐标是(1;-2) 答案:D6.二次函数y =2x 2+mx +8的图象如图所示;则m 的值是( ) A .-8 B .8 C .±8 D .6 答案:B6题图 8题图 9题图7.点P 1(﹣1;y 1);P 2(3;y 2);P 3(5;y 3)均在二次函数y =﹣x 2+2x +c 的图象上;则y 1;y 2;y 3的大小关系是( )A .y 1=y 2>y 3B .y 1>y 2>y 3C .y 3>y 2>y 1D .y 3>y 1=y 2答案:A8.已知二次函数y =ax 2+bx +c (a <0)的图象如图所示;当-5≤x ≤0时;下列说法正确的是( )A .有最小值-5、最大值0B .有最小值-3、最大值6C .有最小值0、最大值6D .有最小值2、最大值6 答案:B9.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示;下列结论正确的是( )A .a <0B .b 2-4ac <0C .当-1<x <3时;y >0D .-b2a=1答案:D10.在同一平面直角坐标系内;一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )A B C D答案:C二、填空题(本大题共8小题;每小题3分;共24分)11.若函数y =(m -3)2213m m x +-是二次函数;则m =______. 答案:-512.抛物线y =2x 2-bx +3的对称轴是直线x =1;则b 的值为________. 答案:413.如果抛物线y =(m +1)2x 2+x +m 2﹣1经过原点;那么m 的值等于 . 答案:114.已知抛物线y =x 2﹣6x +m 与x 轴仅有一个公共点;则m 的值为 . 答案:915.二次函数的部分图象如图所示;则使y >0的x 的取值范围是 . 答案:﹣1<x <315题图 16提图 17题图 18题图16.如图所示;已知二次函数y =ax 2+bx +c 的图象与x 轴交于A (1,0);B (3,0)两点;与y 轴交于点C (0,3);则二次函数的图象的顶点坐标是________.答案:(2;-1)17.如图;在平面直角坐标系中;抛物线y =﹣23(x ﹣3)2+k 经过坐标原点O ;与x 轴的另一个交点为A .过抛物线的顶点B 分别作BC ⊥x 轴于C 、BD ⊥y 轴于D ;则图中阴影部分图形的面积和为 . 答案:1818.如图;在正方形ABCD 中;E 为BC 边上的点;F 为CD 边上的点;且AE =AF ;AB =4;设EC =x ;△AEF 的面积为y ;则y 与x 之间的函数关系式是__________.答案:y =-12x 2+4x三、解答题(本大题共5小题;共46分)19.求经过A (1,4);B (-2,1)两点;对称轴为x =-1的抛物线的解析式. 解:∵对称轴为x =-1;∴设其解析式为y =a (x +1)2+k (a ≠0). ∵抛物线过A (1,4);B (-2,1);∴⎩⎪⎨⎪⎧4=a 1+12+k ;1=a -2+12+k.解得⎩⎪⎨⎪⎧a =1;k =0.∴y =(x +1)2=x 2+2x +1.20.已知;在同一平面直角坐标系中;反比例函数y =5x与二次函数y =-x 2+2x +c 的图象交于点A (-1;m ).(1)求m ;c 的值;(2)求二次函数图象的对称轴和顶点坐标.解:(1)∵点A 在函数y =5x的图象上;∴m =5-1=-5.∴点A 坐标为(-1;-5). ∵点A 在二次函数图象上; ∴-1-2+c =-5;即c =-2.(2)∵二次函数的解析式为y =-x 2+2x -2; ∴y =-x 2+2x -2=-(x -1)2-1.∴对称轴为直线x =1;顶点坐标为(1;-1).21.下图是一座拱桥的截面图;拱桥桥洞上沿是抛物线形状.抛物线两端点与水面的距离都是1m ;拱桥的跨度为10cm .桥洞与水面的最大距离是5m .桥洞两侧壁上各有一盏距离水面4m 的景观灯.现把拱桥的截面图放在平面直角坐标系中; (1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.解:(1)抛物线的顶点坐标为(5;5);与y 轴交点坐标是(0;1); 设抛物线的解析式是y =a (x ﹣5)2+5; 把(0;1)代入y =a (x ﹣5)2+5;得a =﹣425; ∴y =﹣425(x ﹣5)2+5(0≤x ≤10);(2)由已知得两景观灯的纵坐标都是4;∴4=﹣425(x﹣5)2+5;∴425(x﹣5)2=1;∴x1=152;x2=52;∴两景观灯间的距离为152﹣52=5(米).22.元旦期间;某宾馆有50个房间供游客居住;当每个房间每天的定价为180元时;房间会全部住满;当每个房间每天的定价每增加10元时;就会有一个房间空闲.如果游客居住房间;宾馆需对每个房间每天支出20元的各种费用.(1)若房价定为200元时;求宾馆每天的利润;(2)房价定为多少时;宾馆每天的利润最大?最大利润是多少?解:(1)若房价定为200元时;宾馆每天的利润为:(200﹣20)×(50﹣2)=8640(元);答:宾馆每天的利润为8640;(2)设总利润为y元;则y=(50﹣18010x)(x﹣20)=﹣110x2+70x+1360=﹣110(x﹣350)2+10890故房价定为350时;宾馆每天的利润最大;最大利润是10890元.23.如图;已知二次函数y=﹣x2+bx+3的图象与x轴交于A、C两点(点A在点C的左侧);与y轴交于点B;且OA=OB.(1)求线段AC的长度:(2)若点P在抛物线上;点P位于第二象限;过P作PQ⊥AB;垂足为Q.已知PQ=;求点P的坐标.解:(1)∵二次函数y=﹣x2+bx+3的图象与y轴交于点B;且OA=OB;∴点B的坐标为(0;3);∴OB=OA=3;∴点A的坐标为(﹣3;0);∴0=﹣(﹣3)2+b×(﹣3)+3;解得;b=﹣2;∴y=﹣x2﹣2x+3=﹣(x+3)(x﹣1);∴当y=0时;x1=﹣3;x2=1;∴点C的坐标为(1;0);∴AC=1﹣(﹣3)=4;即线段AC的长是4;(2)∵点A(﹣3;0);点B(3;0);∴直线AB的函数解析式为y=x+3;过点P作PD∥y轴交直线AB于点D;设点P的坐标为(m;﹣m2﹣2m+3);则点D的坐标为(m;m+3);∴PD=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m;∵PD∥y轴;∠ABO=45°;∴∠PDQ=∠ABO=45°;又∵PQ⊥AB;PQ=2;∴△PDQ是等腰直角三角形;∴PD=2sin4522PQ=︒=2;∴﹣m2﹣3m=2;解得;m1=﹣1;m2=﹣2;当m=﹣1时;﹣m2﹣2m+3=4;当m=﹣2时;﹣m2﹣2m+3=3;∴点P的坐标为(﹣2;3)或(﹣1;4).24.如图;在平面直角坐标系中;顶点为M的抛物线C1:y=ax2+bx(a<0)经过点A 和x轴上的点B;AO=OB=2;∠AOB=120°.(1)求该抛物线的表达式;(2)联结AM;求S△AOM;(3)将抛物线C1向上平移得到抛物线C2;抛物线C2与x轴分别交于点E、F(点E在点F 的左侧);如果△MBF与△AOM相似;求所有符合条件的抛物线C2的表达式.解:(1)∵抛物线C1:y=ax2+bx(a<0)经过点A和x轴上的点B;AO=OB=2;∠AOB =120°;∴点B (2;0);点A (﹣1;﹣);∴220223(1)(1)a b a b ⎧=⨯+⨯⎪⎨-=⨯-+⨯-⎪⎩;得333a b ⎧=⎪⎪⎨⎪=⎪⎩;∴该抛物线的解析式为y =2232333(1)3333x x x -+=--+; (2)连接MO ;AM ;AM 与y 轴交于点D ; ∵y =22323331)3333x x x -+=--+; ∴点M 的坐标为(1;33); 设过点A (﹣13;M (1;33)的直线解析式为y =mx +n ;333m n m n ⎧-+=-⎪⎨+=⎪⎩;得2333m n ⎧=⎪⎪⎨⎪=-⎪⎩;∴直线AM 的函数解析式为y 23x 3当x =0时;y 3∴点D 的坐标为(0;﹣33);∴OD =33; ∴S △AOM =S △AOD +S △MOD =33;(3)①当△AOM ∽△FBM 时;OM OABM BF=; ∵OA =2;点O (0;0);点M (13;点B (2;0); ∴OM =233;BM =233;∴OM =BM ;解得;BF =OA =2;∴点F 的坐标为(4;0); 设抛物线C 2的函数解析式为:y =23(1)3x --+c ; ∵点F (4;0)在抛物线C 2上;∴c =33 ∴抛物线C 2的函数解析式为:y =23(1)333x --+; ②当△AOM ∽△MBF 时;OM OABF BM=; ∵OA =2;点O (0;0);点M (1;33);点B (2;0); ∴OM =233;BM =233;∴BF =23; ∴点F 的坐标为(83;0); 设抛物线C 2的函数解析式为:y =23(1)3x --+d ; ∵点F (83;0)在抛物线C 2上;∴d 253;∴抛物线C 2的函数解析式为:y =231)x -253.。

北师大版九年级数学下册第二章《二次函数》单元练习题(含答案)

北师大版九年级数学下册第二章《二次函数》单元练习题(含答案)

北师大版九年级数学下册第二章《二次函数》单元练习题(含答案)1.在平面直角坐标系中,抛物线y=(x+5)(x-3)经变换后得到抛物线y=(x+3)(x-5),则这个变换可以是( )A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位2.抛物线y=2x2-5x+3与坐标轴的交点共有( )A.4个 B.3个 C.2个 D.1个3.若二次函数y=x2-6x+c的图象过A(-1,y1)、B(2,y2)、C(5,y3),则y1、y2、y3的大小关系是( )A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y24.若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,则m的值为( )A.0 B.0或2 C.2或-2 D.0,2或-25.已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是( )A.b>1 B.b<1 C.b≥1 D.b≤16.设计师以y=2x2-4x+8的图形为灵感设计杯子如图所示.若AB=4,DE=3,则杯子的高CE 等于( )A.17 B.11 C.8 D.77.已知抛物线y=-x2-2x+3,当-2≤x≤2时,对应的函数值y的取值范围为 .8.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式y<0的解集是 .9. 二次函数y=-3x2-6x+5的图象的顶点坐标是 .10. 已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,且经过点(-1,y1),(2,y2),试比较y1和y2的大小:y1y2(填“>”“<”或“=”).11. 已知抛物线:y=ax2+bx+c(a>0)经过A(-1,1)、B(2,4)两点,顶点坐标(m,n),有下列结论:①b<1;②c<2;③0<m<12;④n≤1.则所有正确结论的序号是 .12. 如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(-2,-2),且过点B(0,2),则二次函数的表达式为 .13. 如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长14m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是 m2.14. 如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使△MOB的面积是△AOB面积的3倍?若存在,求出点M的坐标;若不存在,请说明理由.15. 某工厂制作A、B两种手工艺品,B每件获利比A多105元,获利30元的A与获利240元的B 数量相等.(1)制作一件A和一件B分别获利多少元?(2)工厂安排65人制作A、B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A、C两种手工艺品的数量相等.设每天安排x人制作B,y人制作A,写出y与x之间的函数关系式;(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.参考答案:1-6 BBBDDB 7. -5≤y ≤4 8. x >5或x <-1 9. (-1,8) 10. >11. ① ② ④12. y =(x +2)2-2 13. 11214. 解:(1)设抛物线的解析式为y =a(x -2)2+1,把(0,0)代入得4a +1=0,解得a =-14.所以抛物线的解析式为y =-14(x -2)2+1,即y =-14x 2+x ;(2)存在.因为抛物线的对称轴为直线x =2,则B(4,0),设M(x ,-14x 2+x),根据题意得12×4×|-14x 2+x|=12×4×1×3,所以-14x 2+x =3(舍)或-14x 2+x =-3,解-14x 2+x =-3得x 1=-2,x 2=6,此时M 点的坐标为(-2,-3)或(6,-3).15. (1) 解:设制作一件A 获利x 元,则制作一件B 获利(105+x)元,由题意得:30x =240x +105,解得:x =15,经检验,x =15是原方程的根,当x =15时,x +105=120,答:制作一件A 获利15元,制作一件B 获利120元;(2) 解:设每天安排x 人制作B ,y 人制作A ,则2y 制作C ,于是有:y +x +2y =65,∴y =-13x+653,答:y 与x 之间的函数关系式为:y =-13x +653; (3) 解:由题意得:W =15×2×y +[120-2(x -5)]x +2y ×30=-2x 2+130x +90y ,又∵y =-13x+653, ∴W =-2x 2+130x +90y =-2x 2+130x +90(-13x +653)=-2x 2+100x +1950,∵W =-2x 2+100x +1950,对称轴为x =25,而x =25时,y 的值不是整数,根据抛物线的对称性可得:当x =26时,W 最大=-2×262+100×26+1950=3198元,此时制作A 产品的13人,B 产品的26人,C 产品的26人,获利最大,最大利润为3198元.。

北师大版二次函数单元测试卷

北师大版二次函数单元测试卷

北师大版二次函数单元测试卷一.选择题(共10小题)1.二次数y=x2+6x+1图象的对称轴是()A.x=6 B.x=﹣6 C.x=﹣3 D.x=42.抛物线y=x2()A.开口向上,具有最高点B.开口向上,具有最低点C.开口向下,具有最高点D.开口向下,具有最低点3.下列各点中,在函数y=﹣x2﹣1的图象上的是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(2,3)4.抛物线y=2x2向上平移3个单位,再向右平移2个单位,得到的抛物线是()Ay=2(x+2)2﹣3 B.y=2(x+2)2+3 C.y=2(x﹣2)2﹣3 D.y=2(x﹣2)2+3 5.关于二次函数y=﹣的图象及其性质的说法错误的是()A.开口向下B.顶点是原点C.对称轴是y轴D.函数有最小值是06.矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是()A.y=﹣x2+6x(3<x<6)B.y=﹣x2+6x(0<x<6)C.y=﹣x2+12x(6<x<12)D.y=﹣x2+12x(0<x<12)7.已知点A(4,y1)、B (,y2)、C(﹣2,y3)都在二次函数y=﹣x2﹣1的图象上,则y1,y2,y3的大小关系()A.y2>y3>y1B.y1>y2>y3C.y3>y2>y1D.y3>y1>y28.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b2﹣4ac=0;③a>2;④ax2+bx+c=﹣2的根为x1=x2=﹣1;⑤若点B(﹣,y1)、C (﹣,y2)为函数图象上的两点,则y1>y2.其中正确的个数是()A.2B.3C.4D.59.关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=1D.当x>1时,y随x的增大而减小10.若二次函数y=ax2+bx+c的部分图象如图所示,则下列结论中正确的是()A.a>0B.a﹣b+c>0C.不等式ax2+bx+c>0的解集是﹣1<x<5D.当x>2时,y随x的增大而增大二.填空题(共10小题)11.二次函数y=x2﹣8x的最低点的坐标是.12.拋物线的顶点为(2,﹣3),与y轴交于点(0,﹣7),则该抛物线的解析式为.13.将抛物线y=3x2向左平移2个单位,再向下平移3个单位所得新抛物线的解析式为.14.已知点(1,y1)、(﹣2,y2)、(﹣4,y3)都是抛物线y=﹣2ax2﹣8ax+3(a<0)图象上的点,则y1,y2,y3的大小关系是15.飞机着陆后滑行的距离s(单位:m)关于滑行时间t(单位:s)的函数解析式是S=26t ﹣t2,则飞机着陆滑行到停止,最后6s滑行的路程m16.若二次函数y=2(x+1)2+3的图象上有三个不同的点A(x1,4)、B(x1+x2,n)、C(x2,4),则n的值为.17.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=﹣1,经过点(0,1)有以下结论:①a+b+c<0;②b2﹣4ac>0;③abc>0;④4a﹣2b+c<0;⑤c ﹣a>1,其中所有正确结论的序号是.18.如图已知二次函数y1=x2+c与一次函数y2=x+c的图象如图所示,则当y1<y2时x 的取值范围.19.已知二次函数y=ax2+bx+1(a≠0)的图象经过点(﹣2,4),则6a﹣3b﹣2的值为.20.已知m、n、t都为实数,点P (,n)和点Q (+4,n)都在抛物线y=x2﹣2mx﹣1上,则t+n+m=.三.解答题(共10小题)21.已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0)和(3,0).(1)求a,b的值.(2)求抛物线向左平移2个单位后的函数解析式.22.求二次函数y=x2﹣6x+1的顶点坐标,并直接写出y随x增大而增大时自变量x 的取值范围.23.(1)解方程:x2=4x(2)将抛物线y=﹣x2+2x﹣3配成顶点式,并写出其对称轴.24.如图,修建一个圆形喷水池,在池中心竖直安装一根喷水管AB,在水管的顶端A安一个喷水头,使喷出的微物线形水柱在与池中心的水平距离为1m处达到最高点D,高度为3m,水柱落地处C离池中心B相距3m.(1)请以BC所在直线为x轴(射线BC的方向为正方向),AB所在直线为y轴建立平面直角坐标系,求出抛物线的解析式,并直接写出自变量的取值范围;(2)直接写出AB的长为.25.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,通过一段时间摸索,该店主发现这种商品每涨价0.5元,其销售量就减少10件.(1)将售价定为多少元的时候,使每天利润为700元吗?(2)当售价定为x元时,这天所获利润为y,请写出y与x的关系式.(3)根据(2)问中的关系式,求出这天所获利润y的最大值?26.如图,在平面直角坐标系中有Rt△ABO,其中∠OAB=90°,AO=4,BO=5,求经过点O、A、B抛物线的解析式.27.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0)、C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)设点M(3,n),求使MN+MD取最小值时n的值.28.已知二次函数y=﹣+2.(1)填空:此函数图象的顶点坐标是;(2)当x时,函数y的值随x的增大而减小;(3)设此函数图象与x轴的交于点A、B,与y轴交于点C,连接AC及BC,试求△ABC的面积.29.如图,抛物线y=﹣(x﹣2)2+m+4与x轴交于点A(1,0)和点B,与y轴交于点C.(1)求m的值;(2)请问:在此抛物线的对称轴上,是否存在一点M,使得△MAC的周长有最小值?如果存在,请你求出点M的坐标;如果不存在,请你说明理由!(3)若点P 是y轴上的一点,且满足△PAC是等腰△,请你直接写出满足条件的点P坐标.30.如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C (0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式.(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值.(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,四边形AODF 的面积为S.①求S与m的函数关系式.②S是否存在最大值,若存在,求出最大值及此时点E的坐标,若不存在,请说明理由.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

最新北师大版九年级下册二次函数单元测试试题以及答案

最新北师大版九年级下册二次函数单元测试试题以及答案

二次函数单元测试试题一、选择题。

二次函数 y = X 2—2x + l 与X 轴的交点个数是(D. 3把抛物线y=3x 2先向上平移2个单位,再向右平移3个单位,所得 抛物线的解析式是(6 .如图,抛物线顶点坐标是P (1, 3),函数y 随自变量x 的增大而减小的x 的取值范围是(A 、x>3 D 、x<l1. A 、 抛物线y=: (1, -3)(X+1) 2+3的顶点坐标( B 、 (1, 3) C 、 (-1, -3) D 、(-1, 3)2. 抛物线y=x 2+6x+8与y 轴交点坐标(A 、 (0, 8)B 、 (0, 6)C 、 (0, -8)D 、(-2, 0) 或(-4, 0)C.4、 抛物线y=x 2-4x+7的对称轴是( A 、 直线x=-3, B 、直线x=3 C 、 直线x=-2D 、直线x=2A 、y=3 (x+3)2-2B 、 y=3 (x+2) 2+2C 、y=3 (x-3)2+2D 、 y=3 (x-3)2-2B 、x<3C 、x>l7 .若二次函数y = (m + l) 一+〃?2一2加-3的图象经过原点,则m的值必为A 、1 或3B 、1 C> 3D 、无法确定8、已知点 A (1, y,)> B (-V2, y 2)> C ( - 2, y 3)在函数y = 2(x + i>—1上,则%、丫2、%的大小关系是()A 、%>丫2>丫3 D 、y 3>yi>y29、在同一直角坐标系中,函数y=ax?+b 与y=ax+b (ab#O)的图象大致如图( )B 、%>丫3>丫 2C 、丫2>%>丫 3y = ax 2+bx + c (aWO)的图象如图所示,则下列结论:①a 、b 同号;②当x=l 和x=3时,函数值相等;③4a + b=0;④当 y=-2时,x 的值只能取0.其中正确的个数是( A ・1个 B ・2个 C ・3个D. 4个二、填空题。

(完整版)新北师大版二次函数章节练习题

(完整版)新北师大版二次函数章节练习题

二次函数练习题班级 姓名 成绩二次函数所描述的关系1.下列函数中,哪些是二次函数? (1)y=3(x-1)²+1 (2)y=x +x 1 (3)s=3-2t (4)y=xx -21(5)y=(x+3)²-x ² (6) v=10πr ² 2.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是______(其中x 、t 为自变量). 3.若y=(m +1)x562--m m 是二次函数,则m=( )A .-1B .7C .-1或7D .以上都不对4.下列各关系式中,属于二次函数的是(x 为自变量)A .y =81x 2B .y =12-xC .y =21x D .y =a 2x5.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是A .a ≠0,b ≠0,c ≠0B .a <0,b ≠0,c ≠0C .a >0,b ≠0,c ≠0D .a ≠0 6.自由落体公式h =21gt 2(g 为常量),h 与t 之间的关系是 A.正比例函数 B.一次函数 C.二次函数 D.以上答案都不对 7.下列结论正确的是A .y =ax 2是二次函数B .二次函数自变量的取值范围是所有实数C .二次方程是二次函数的特例D .二次函数的取值范围是非零实数 8.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,求m 的值 9.如果函数y=x232+-k k +kx+1是二次函数,则k 的值一定是______10.如果函数y=(k -3) x 232+-k k +kx+1是二次函数,则k 的值一定是______11.下列函数属于二次函数的是( ) A .y=x -x 1 B .y=(x -3)2-x 2 C .y=21x-x D .y=2(x +1)2-1 12. 在半径为5㎝的圆面上,从中挖去一个半径为x ㎝的圆面,剩下一个圆环的面积为y ㎝2,则y 与x 的函数关系式为( )A .y=πx 2-5 B .y=π(5-x )2C .y=-(x 2+5) D .y=-πx 2+25π结识抛物线y=ax 21.函数y =622--a a ax是二次函数,当a =_____时,其图象开口向上;当a =_____时,其图象开口向下 2.填右表并填空: 抛物线y=2x²的顶点坐标是 ,对称轴是 ,在 侧,y 随着x 的增大而增大;在 侧,y 随着x 的增大而减小,当x= 时,函数y 的值最小,最小值是 ,抛物线y=2x2在x 轴的 方(除顶点外). 3.二次函数y=x 2,若y >0,则自变量x 的取值范围是( ) A .可取一切实数 B .x ≠0 C .x >0 D .x <0 4.抛物线y =-x 2不具有的性质是( )A .开口向下B .对称轴是Y 轴C .与Y 轴不相交D .最高点是原点 5.抛物线y=2x 2,y=-2x 2,y=21x 2共有的性质是( ) A .开口向上 B .对称轴是Y 轴 C .都有最低点 D .y 随x 的增大而减小6.二次函数y=3x 2的图象是关于 对称的曲线,这条曲线叫做 ,它的开口 ,与x 轴交点坐标是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数练习题班级 姓名 成绩 二次函数所描述的关系1.下列函数中,哪些是二次函数? 1 “、 (1) y=3(x-1)2+1 (2) y=x + (3) x F 列函数中:① y= — x 2;②y=2x :③y=22+x 2 — x 3;④m=3 — t — t 2是二次函数的是s=3-2t (4) y= —⑸y=(x+3) 2-x 2 ⑹ v=10 n r2 x x 2 若y= ( 1) x m 6m 5是二次函数,则m=() —1 B . 7 C . — 1或7 D .以上都不对 F 列各关系式中,属于二次函数的是(x 为自变量)1 2 y= x8B . y= .. x 211C . y= 2xy=ax 2+bx+c(a , b , C 是常数)是二次函数的条件是 a M 0, b M 0, C M 0 B . a<0, b M 0, C M 0 C . a>0,1自由落体公式h= gt 2(g 为常量),h 与t 之间的关系是 2A.正比例函数 下列结论正确的是 A . y=ax 2是二次函数 B .二次函数自变量的取值范围是所有实数C .二次方程是二次函数的特例D .二次函数的取值范围是非零实数已知函数 y=(m 2— m)x 2+(m — 1)x+m+1. (1) 若这个函数是一次函数, (2) 若这个函数是二次函数, 函数 A . b 丰 0, C M 0(其中x 、t 为自变量).2D . y=a xB. 一次函数C.二次函数D.以上答案都不对2如果函数y=x k 3k 2+kx+1 求 m 的值; 求m 的值是二次函数,贝U k 的值一 —定是 210 .如果函数y=(k — 3) x k 3k 2+kx+1是二次函数,则k 的值一定是 11.下列函数属于二次函数的是( ) 1 y=x ——xB . y= (x — 3) 2 — x 21 C . y=2 -xx D . y=2 (x + 1) 2 — 112. 在半径为 cm 的圆面上,从中挖去一个半径为 ox cm 的圆面,剩下一个圆环的面积为 y cm ,贝V y 与x 的函数关系式为( A . y= x 2 — 52 B . y= (5 — x ) 2 2 .y= —( x + 5) D . y= — x + 25 结识抛物线 y=ax21 .函数y= ax2 a 2 2a 6 是二次函数,当 a= ____ 时,其图象开口向上;当 a= ____ 时,其图象开口向下 2.填右表并填空: 抛物线y=2x2的顶点坐标是 __________ 」对x的增大而减小,当x= _____ 时,函数y的值最小,最小值是 ____ 抛物线y=2x2在x轴的 _______ 方(除顶点外).3 .二次函数y=x 2,若y > 0,则自变量x的取值范围是()A .可取一切实数B . X M 0 C. x > 0 D . x v 04 .抛物线y= —x 2不具有的性质是()A .开口向下B .对称轴是Y轴C .与Y轴不相交D .最高点是原点15. 抛物线y=2x 2 ,y= —2x2 ,y= x2共有的性质是()2A .开口向上B.对称轴是Y轴 C .都有最低点D. y随x的增大而减小6. _________________________________ 二次函数y=3x 2的图象是关于 ______ 对称的曲线,这条曲线叫做,它的开口 __________________________________ ,与x轴交点坐标是 _____ 。

当x> 0, y的值随x的值增大而 _。

当x v 0,y的值随着x值的增大而 _,当x=_时,y有最小值,最小值是7. _______________________________________________ 点A (3,m)是抛物线y=—x2上一点,则m= ,点A关于y 轴对称点B的坐标是点A关于原点对称点C的坐标是 _________ ;点B、C关于 _______ 对称。

8 .已知二次函数y=ax 2 ,当x= —3时,y= —9,则当x= —2时,y= ______ 。

二次函数y=ax 2+ c1.若二次函数y=ax 2+ c(a丰0)中,a> 0,c > 0时,它的图象的开口方向是()A.向上B .向下C .向上或向下 D .无法判断2 .将抛物线y=—x2—1向上平移两个单位得到抛物线的表达式()2 2 2 2A. y= —x B . y= —x —2 C . y= —x + 1 D . y=x + 13. 若二次函数y=ax 2+ c,当x取x1,x 2(x1丰x2)时函数值相等,则当x取x1+ x2时,函数值为()A . a+ c B . a—c C . —c D . c4. 抛物线y=x2+ b与抛物线y=ax 2—2的形状相同,只是位置不同,则a、b值分别是()A . a=1, b M—2B . a=—2, b丰 2C . a=1, b丰 2D . a=2, b丰 2k5 .函数y=kx —3与y= ( k M 0)在同一直角坐标系中的图象可能是()x6.如果二次函数y=ax 2+ m的值恒大于0,那么必有()A . a> 0, m取任意实数B . a>0, m>0C. a v 0, m>0 D . a, m均可取任意实数A. c> 0 B . c=0 C . c v 0 D . c 的符号与a 无关8. 抛物线y=x2—4 的顶点坐标是()A. (2, 0)B . (- 2, 0)C . (1, 3)D . (0,—4)9 .对于y=ax 2(0)的图象,下列叙述正确的是()A. a越大开口越大,a越小开口越小 B . a越大开口越小,a越小开口越大C. I a丨越大开口越小,丨a丨越小开口越大D . I a丨越大开口大,丨a丨越小开口越小110 .抛物线y= —x2—3的图象开口,对称轴是,顶点坐标为,当x= 时,y3有最 ____ 值为11. _______________________________________________ 抛物线y=3x2+ 4可以由抛物线y=3x2沿平移得到;同样,y=3x 2—4可以由抛物线y=3x 2沿 ______ 平移 ___________ 得到12 .已知函数①y=x2+ 1,②y= —2x2+ 1,函数(填序号)_____________有最小值,当x _______ 时,该函数的最小值是 __________ 。

13 .已知,抛物线y=ax 2+ c与抛物线y= —2x2—1关于x轴对称,则a= _________ , c= ________ 。

3 214 .已知函数y= —x 2,则其图象开口向,对称轴为,顶点坐标为,图象有最2点,此点坐标为 ________ ,当x > 0时,y随x的增大而_________ 。

15 .已知二次函数y= (2a+ 1)x2的开口向下,贝U a的取值范围是 __________ 。

16. 二次函数y= —4x2—2的图象与y= —4x2的图象有什么关系?它是轴对称图形吗?它的开口方向、对称轴和顶点坐标分别是什么?二次函数y=ax 2+ bx + c的图象(一)1 .二次函数y=x2—3x的图象与x轴两个交点的坐标分别为()A. (0,0 ),(0,3)B . (0,0),(0,—3)C . (0,0 ),(—3,0)D. (0,0),(3,0)2 .下列抛物线中,对称轴都相同的是()1①y=2x 2+ 3x —4 :② y= —2x 2+ 3x —4;③ y=—4x 2—6x —3 :④ y=4x 2+ 6x;⑤ y=x 2+ 3x +4A.①②④ B .①③④ C .①④⑤ D .①③3 .二次函数y= (x + 1)2—1的图象是下图中的()6 .把抛物线y=3x2先向上平移2个单位,再向左平移3个单位,所得的抛物线是(2 2 2 2A. y=3(x+ 3) —2 B . y=3 (x+ 3) + 2 C . y=3 (x—3) —2 D . y=3 (x—3) + 27.函数y= —x2+ bx + c的图象最高点是(1,—4),则b、c的值分别是( )A. 2, 5 B . —2, —5 C . —2, 5 D . 2,—58 .将函数y=2x 2的图象向右平移一个单位,再向上平移3个单位,得到的图象解析式是( )A . y=2 (x—1) 2 —3B . y=2 (x + 1) 2 2 2+ 3 C . y=2 (x—1) + 3 D . y=2 (x + 1) — 31 29.抛物线y= - (x + 2) —1是则函数4得到的,贝U a、b的值分别为( )1 2y= x + 4x + 19的图象先向上平移b个单位,再向左平移a个单位4.a=2, b=— 1 D .无法确定10 .抛物线y=a (x —b) 2+ b无论b取何值,其图象的顶点都在(A . x轴上B . y轴上C .第一、二象限的平分线上D .第二、四象限的平分线上11.抛物线y=3(x —1) 2的开口方向,对称轴为,顶点坐标是12 .抛物线1 2y=—(x + 1) —3的开口方向,对称轴为,顶点坐标为13 .已知二次函数y=ax2+ bx + c (0)的图象如图所示,贝U a+ b + c 0 。

(填“” a ” \V 、=)14.二次函数y=〔x2—x—3写成y=a ( x —h) 2+ k的形式后,h=2,k= 。

抛物线与x轴的交点15 .已知抛物线y=ax 2+ bx + c经过点(1, 2)与(—1, 4),则a + c的值是16 .确定下列抛物线的开口方向,对称轴及顶点坐标。

1 2 (1) y=- (x—2) 232(2) y=2 (x —3) + 5 (3) y= — - (x + 2) 2+ 3317.将下列函数化成y=a (x—h) 2+ k的形式,并指出其顶点坐标和对称轴;2(1) y=x —2x + 32(2) y=—x —6x + 5一1 2一5. 将函数y= x —6x + 21经过配方可变形为( )21 2 1 2A. y= (x + 6) 2+ 3 B . y= (x—6) 2—32 21 2 1 2C. y= (x —6) + 3 D . y= (x+ 6) —32 2A . y= — 2 (x + 1) 2B . y= — 2 (x — 1) 2C . y= — 2x 218. 通过配方,确定抛物线 y= — 2x 2 + 4x + 6的开口方向,对称轴和顶点坐标,再描点画图。

相关文档
最新文档