随机信号分析
通信原理第2章-随机信号分析
1 1 2
f ( x)dx f ( x)dx
a
2
在点 a 处取极大值: 1
2
■ a f x 左右平移
f x宽窄
a
x
37
二、正态分布函数
积分无法用闭合形式计算,要设法把这个积分式和可以在数学 手册上查出积分值的特殊函数联系起来,常引入误差函数和互 补误差函数表示正态分布函数。
38
三、误差函数和互补误差函数
39
40
四、为了方便以后分析,给出误差函数和互补误差 函数的主要性质:
41
42
2.5.4 高斯白噪声
43
这种噪声称为白噪声,是一种理想的宽带随机过程。 式子是一个常数,单位是瓦/赫兹。白噪声的自相关 函数:
说明,白噪声只有在 =0 时才相关,而在任意
两个时刻上的随机变量都是不相关的。白噪声的功 率谱和自相关函数如图。
F1 x1 ,
x1
t1
f1 x1 ,
t1
则称 f1 x1 , t1 为 (t的) 一维概率密度函数。
显然,随机过程的一维分布函数或一维概率密度函数 仅仅描述了随机过程在各个孤立时刻的统计特性,没 有说明随机过程在不同时刻取值之间的内在联系,因 此需要在足够多的时间上考虑随机过程的多维分布函 数
60
用示波器观 察一个实现 的波形,如 图所示,是 一个频率近 似为fc,包 络和相位随 机缓变的正 弦波。
Df -fc
s(t)
S( f )
O (a) 缓慢变化的包络[a(t)]
O
频率近似为 fc (b)
窄带过程的频谱和波形示意
61
Df
fc
f
t
因此,窄带随机过程ξ(t)可表示成:
随机信号分析第2章--随机信号
例1.1 随机信号U(t)的一维概率密度函数为
f (u,t)
1
A0
exp
u2 A0
不同时刻的随机变量彼此统计独立,求其n维
概率密度函数。
解:t1,t2 ,,tn 时刻,随机变量 X (t1), X (t2 ),, X (tn ) 统计独立,则
f (u1, u2 ,, un;t1, t2 ,, tn ) f (u1;t1). f (u2;t2 ),, f (un;tn )
随机变量 0 与相位随机变量 ,以时间参量
t建立随机信号 W (t, s) Asin(0t )
,观察信号随参量t的各次过程,其样本函数 呈现出正弦函数规律。W (t) 称为正弦随机信 号。
无数个正弦样本函数组成了正弦随机信号,符合 定义2中对于随机信号的描述。
33
(1)均值
X (t) Esin(0t ) Esin 0t cos cos0t sin
12
基本概率特性
一、一维概率分布 随机信号 X (t) 在任意 t T 时刻的取值 X (t)
是一维随机变量。概率 PX (t) x 是取值 x ,时
刻 t 的函数,记做
F(x;t) PX (t) x
称为随机信号 X (t) 的一维概率分布函数。 若有F(x;t) 偏导数存在,则有
f (x;t) F(x;t) x
实随机变量 X (t) 与之对应,就称依赖于参量 t
的随机变量族X (t), t T 为实随机信号或随机
过程。
11
二、随机信号的分类 1.按时间参量来分类
时间连续的随机信号:时间t是连续的。 如:正弦随机信号,二进制传 输信号 时间离散的随机信号:时间t是离散的。 如:贝努里随机信号 2.按信号状态取值分类 取值连续的随机信号:X(t)值是连续的 如:正弦随机信号 取值离散的随机信号:X(t)值是离散的 如:贝努里随机信号,二进制传输信号 还有很多的分类方法
第2章随机信号分析
第二章随机信号分析随机信号分析确定性信号分析的不同与联系:随机信号分析、确定性信号分析的不同与联系:随机信号分析的主要内容:随机过程的一般表述平稳随机过程高斯过程窄带随机过程正弦波加窄带高斯过程稳随机过过线性系平稳随机过程通过线性系统2010-9-271引言信号:一般是时间的函数确定信号:可以用确定的时间函数表示的信号 周期信号和非周期信号能量信号和功率信号基带信号和频带信号模拟信号和数字信号随机信号:具有随机性,可用统计规律来描述 通信过程中要发送的信号是不可预知的,因此具有随机性,是随机信号,但信号的统计特性具有规律性。
噪声和干扰是随机的信号噪声和干扰是随机的信号;无线信道特性(可理解为系统传递函数)也是随机变2010-9-272化的。
随机过程:与时间有关的函数,但任一时刻的取值不确定(随机变量)随机过程可以看成对应不同随机试验的时间过程的集合。
如n(或无数)台性能完全的接收机输出的噪声波形,每个波形都是一个确定函数,为一个样本函数,各波形又各不相同。
也可看成一个接收机,不同实验输出不同的样本函数。
随机过程是所有样本函数的集合。
2010-9-2731随机过程的一般表述1 随机过程的般表述(1)样本函数:随机过程的具体实现样本空间所有实现构成的全体~()i x t )()t 样本空间:所有实现构成的全体所有样本函数及其统计特性构成了随机过程{}1~(),,),i S x x t =……~()t ξ2010-9-274随机过程是随机变量概念的延伸,即随机变量引入时间变量,成为随机过程。
每一个时刻,对应每个样本函数的取值{i(),,,,}{x(t),i=1,2,…,n}是一个随机变量。
固定时刻t1的随机变量计为ξ(t1)。
随机过程看作是在时间进程中处于不同时刻的随机变量的集合。
2010-9-27511随机过程的n维分布函数或概率密度函数往往不容易或不需要得到,常常用数字特征部分地表述随机过程的主要特征。
《随机信号分析》课件
方差
均值
自相关函数描述了随机信号在不同时间点之间的相关性。
自相关函数可以用于分析信号的周期性和趋势性。
谱密度函数描述了随机信号的频率成分。
通过谱密度函数,可以了解信号在不同频率下的强度和分布。
04
CHAPTER
随机信号的频域分析
傅立叶变换是信号处理中的基本工具,用于将时间域的信号转换为频域的表示。通过傅立叶变换,我们可以分析信号的频率成分和频率特性。
02
时间变化特性
由于随机信号的取值是随机的,因此其时间变化特性也是随机的,表现为信号的幅度、频率和相位都是随机的。
在通信领域,随机信号可以用于扩频通信、信道编码等,以提高通信的可靠性和抗干扰能力。
通信
在雷达领域,随机信号可以用于雷达测距、目标跟踪等,以提高雷达的抗干扰能力和探测精度。
雷达
在地球物理学领域,随机信号可以用于地震勘探、矿产资源探测等,以提高探测的精度和可靠性。
线性系统的输出信号的统计特性与输入信号的统计特性和系统的传递函数有关。通过分析线性系统对随机信号的作用,我们可以了解系统对信号的影响和信号经过系统后的变化情况。
05
CHAPTER
随机信号的变换域分析
总结词
拉普拉斯变换是一种将时域信号转换为复平面上的函数的方法,用于分析信号的稳定性和可预测性。
详细描述
详细描述
06
CHAPTER
随机信号处理的应用
信号传输
随机信号分析在通信系统中用于信号传输的调制和解调过程,通过对信号的随机性进行编码和解码,实现可靠的信息传输。
目标检测
01
随机信号分析在雷达系统中用于目标检测和跟踪,通过对接收到的回波信号进行分析和处理,实现高精度和高可靠性的目标定位和识别。
随机信号分析
第9章 随机信号分析随机信号和确定信号是两类性质完全不同的信号,对它们的描述、分析和处理方法也不相同。
随机信号是一种不能用确定数学关系式来描述的,无法预测未来某时刻精确值的信号,也无法用实验的方法重复再现。
随机信号分为平稳和非平稳两类。
平稳随机信号又分为各态历经和非各态历经。
本章所讨论的随机信号是平稳的且是各态历经的。
在研究无限长信号时,总是取某段有限长信号作分析。
这一有限长信号称为一个样本(或称子集),而无限长信号x(t)称为随机信号总体(或称集)。
各态历经的平稳随机过程中的一个样本的时间均值和集的平均值相等。
因此一个样本的统计特征代表了随机信号总体,这使得研究大大简化。
工程上的随机信号一般均按各态历经平稳随机过程来处理。
仅在离散时间点上给出定义的随机信号称为离散时间随机信号,即随机信号序列。
随机信号序列可以是连续随机信号的采样结果,也可以是自然界里实际存在的物理现象,即它们本身就是离散的。
平稳随机过程在时间上是无始无终的,即其能量是无限的,本身的Fourier 变换也是不存在的;但功率是有限的。
通常用功率谱密度来描述随机信号的频域特征,这是一个统计平均的频谱特性。
平稳随机过程统计特征的计算要求信号x(n)无限长,而实际上这是不可能的,只能用一个样本,即有限长序列来计算。
因此得到的计算值不是随机信号真正的统计值,而仅仅是一种估计。
本章首先介绍随机信号的数字特征,旨在使大家熟悉描述随机信号的常用特征量。
然后介绍描述信号之间关系的相关函数和协方差。
这些是数字信号时间域内的描述。
在频率域内,本章介绍功率谱及其估计方法,并给出了功率谱在传递函数估计方面的应用。
最后介绍描述频率域信号之间关系的函数---相干函数。
9.1 随机信号的数字特征9.1.1 均值、均方值、方差若连续随机信号x(t)是各态历经的,则随机信号x(t)均值可表示为: []⎰∞→==TT x dt t x Tt x E 0)(1)(limμ (9-1)均值描述了随机信号的静态(直流)分量,它不随时间而变化。
随机信号分析李晓峰
随机信号分析李晓峰引言随机信号分析是一门研究信号及其性质的学科,其在现代通信、图像处理、生物医学工程等领域中具有重要的应用价值。
本文将介绍随机信号分析的基本概念、常见的分析方法以及李晓峰教授在随机信号分析领域的研究成果。
随机信号的定义随机信号是指在某个时间段内具有随机性质的信号。
其特点是信号的取值在时间和幅度上都是不确定的,只能通过概率统计的方法来描述。
一个随机信号可以用一个概率密度函数来描述其取值的分布情况。
随机信号有两种基本的分类方式:离散随机信号和连续随机信号。
离散随机信号是在离散的时间点上进行取样的信号,连续随机信号则是在连续的时间上变化的信号。
随机信号分析方法统计特性分析统计特性分析是随机信号分析的基本方法之一,它通过对信号进行统计分析,从而得到信号的数学特性。
常见的统计特性包括均值、方差、自相关函数和谱密度等。
均值是衡量随机信号集中程度的一个指标,它表示信号的中心位置。
方差则用来衡量信号的离散程度,方差越大表示信号的波动性越大。
自相关函数描述了信号在不同时间点之间的相关性,而谱密度则表示信号在不同频率上的能量分布情况。
概率密度函数分析随机信号的概率密度函数描述了信号取值的概率分布情况。
常见的概率密度函数包括高斯分布、均匀分布和指数分布等。
高斯分布是最常用的概率密度函数之一,其形状呈钟型曲线,具有对称性。
均匀分布则表示信号的取值在一个区间上是均匀分布的,而指数分布则表示信号的取值在一个时间段内的分布服从指数规律。
谱分析谱分析是通过对随机信号进行频域分析来研究其频率成分的分析方法。
常见的谱分析方法有功率谱密度分析和相关函数分析。
功率谱密度分析可以用来分析信号在不同频率上的能量分布情况,通过功率谱密度分析可以得到信号的频谱图。
相关函数分析则是通过对信号进行自相关操作,得到信号的相关函数,从而分析信号在不同频率上的相关性。
李晓峰教授的研究成果李晓峰教授是我国著名的随机信号分析专家,他在随机信号分析领域做出了许多重要的研究成果。
随机信号分析
(t2
)
同样,有关系式:
X (t1,t2) 1
当 t1 t2 t 时, X (t,t) 1
39
目录
2.1 定义与基本特性 2.2 典型信号举例 2.3 一般特性与基本运算 2.4 多维高斯分布与高斯信号 2.5 独立信号
40
2.2 典型信号举例 2.2.1 随机正弦信号
X ( t) A c o s ( t ) ,t ( , )
ij
26
27
3.二阶(维)概率分布和密度函数 二阶概率分布函数定义:
F X ( x 1 ,x 2 ;t 1 ,t2 ) P [ X ( t 1 ) x 1 ,X ( t2 ) x 2 ]
二阶概率密度函数定义:
fX(x1,x2;t1,t2)x12x2FX(x1,x2;t1,t2)
4.分析随机过程本质上就是分析相应的随机变量
CX (t1, t2 ) E X ( t 1 ) m X ( t1 ) X ( t2 ) m X ( t2 )
(x1)(x2)x1m(t1)x2m(t2)f(x1,x2;t1,t2)dx1dx2 C.R.P.
i
xim(t1) xj m(t2) P[X(t1)xi,X(t2xj)] D.R.P.
X1 ~N(0,2) X2 ~N(0,2)
即Xi ~N(0,2)
fX(x;t)
x2
1 e 22
2
46
2.2.2 伯努利随机序列
47
X(n,ξ1)
1
n
0 1 2 3 4 5 6 7 8 9 10
X(n,ξn)
……
X(9,ξ)
1
n 0
1 2 3 4 5 6 7 8 9 10
数字通信中,串行传输的二进制比特流是 伯努利序列,是通信中最常用的数学模型之一。 48
随机信号分析
随机信号分析随机信号是在时间或空间上具有随机性质的信号,其数学模型采用随机过程来描述。
随机信号的分析是信号与系统理论中的重要内容,其应用广泛涉及通信、控制、电力系统等领域。
本文将从随机信号的基本特性、常见的随机过程以及随机信号分析的方法等方面进行阐述。
随机信号的基本特性包括:平均性、相关性和功率谱密度。
首先,平均性是指随机信号的统计平均等于其数学期望值。
随机信号的平均性是通过计算信号在一定时间或空间范围内的平均值来描述的。
其次,相关性是指随机信号在不同时刻或不同空间位置上的取值之间存在一定程度的相关性。
相关性可以描述信号之间的相似度和相关程度,常用相关函数来表示。
最后,功率谱密度是用来描述信号在频域上的分布特性,它表示了随机信号在不同频率上所占的功率份额。
随机信号的常见模型主要有白噪声、随机行走、随机震荡等。
其中,白噪声是指功率谱密度在整个频率范围内均匀分布的信号,其在通信领域中应用广泛。
随机行走模型是一种随机过程,它描述了随机信号在不同时刻之间的步长是独立同分布的。
随机震荡模型是一种具有振荡特性的随机过程,常用于描述具有周期性或周期性变化的信号。
对于随机信号的分析方法,主要包括时间域分析和频域分析两种。
时间域分析是通过观察信号在时间上的波形和变化规律来分析随机信号的特性,常用的方法有自相关函数和互相关函数等。
频域分析是将信号转换为频率域上的功率谱密度来分析信号的频谱特性,常用的方法有傅里叶变换和功率谱估计等。
在实际应用中,随机信号的分析对于信号处理和系统设计具有重要意义。
在通信系统中,随机信号的噪声特性是衡量系统性能的关键因素之一,因此通过对随机信号的分析可以有效地优化通信系统的传输质量。
此外,在控制系统和电力系统中,随机信号的分析也能帮助我们进行系统建模和性能预测,从而实现系统的稳定性和可靠性。
综上所述,随机信号的分析是信号与系统理论中的重要内容,其对于各个领域的应用具有重要的意义。
通过对随机信号的基本特性、常见的随机过程以及分析方法的了解,可以为我们深入理解和应用随机信号提供帮助。
《随机信号分析》课件
连续随机信号
连续时间和连续幅度的随机信号,如噪声信号。
高斯随机信号
服从高斯分布的随机信号,常用于描述自然界 的随机现象。
非高斯随机信号
不服从高斯分布的随机信号,如脉冲信号和干 扰信号。
常见的随机信号分析方法
自相关分析
用于分析信号的自身相关性和 平稳性。
频谱分析
通过对信号进行频域分析,得 到信号的频谱特性。
统计特性分析
对信号的均值、方差等统计特 性进行分析。
使用MATLAB进行随机信号分析的步骤
1
准备据
收集并整理所需信号的数据。
2
数据预处理
对数据进行去噪、归一化等预处理操作。
3
信号分析
运用MATLAB提供的工具进行信号分析和特征提取。
随机信号分析的应用领域
通信系统
用于优化信道传输和抗干扰能力的研究。
金融市场
用于分析股票价格、汇率等随机变动的特性。
生物医学
用于分析心电图、脑电图等生物信号。
气象预报
用于分析天气数据,提高气象预报的准确性。
总结
通过本课件,您了解了随机信号的定义、特性、分类以及分析方法,以及其在不同领域的应用。
《随机信号分析》PPT课 件
本课件将介绍随机信号分析的基本概念和方法,包括随机信号的定义、特性、 分类以及常见的分析方法。
分析随机信号的定义
1 随机信号
随机信号是不确定的信号,具有随机性和不可预测性。
2 随机过程
随机信号可以看作是随时间变化的随机过程。
3 概率论基础
随机信号的定义和性质可以通过概率论进行分析和描述。
随机信号的特性
1 均值和方差
随机信号的均值和方差是 表征其平均值和离散程度 的重要特性。
随机信号分析
随机信号是一种不能用确定的数学关系式来描述的、无法预测未来时刻精确值的信号,也无法用实验的方法重复再现。
换言之,随机信号是指不能用确定性的时间函数来描述,只能用统计方法研究的信号。
其统计特性:概率分布函数、概率密度函数。
统计平均:均值、方差、相关。
随机信号分为平稳和非平稳两大类。
平稳随机信号又分为各态历经和非各态历经。
1) 各态历经信号——指无限个样本在某时刻所历经的状态,等同于某个样本在无限时间里所经历的状态的信号。
2) 平稳随机信号——其均值和相关不随时间变化。
注:各态历经信号一定是随机信号,反之不然。
工程上的随机信号通常都按各态历经平稳随机信号来处理。
仅在离散时间点上给出定义的随机信号称为离散时间随机信号,即随机信号序列。
平稳随机信号在时间上的无限的,故其能量是无限的,只能用功率谱密度来描述随机信号的频域特性。
1. 随机信号的数字特征 均值、均方值、方差若连续随机信号x(t)是各态历经的,则随机信号x(t)的均值可表示为:⎰→∞==TT x dt t x Tt x E 0)(1lim)]([μ均值描述了随机信号的静态分量(直流)。
随机信号x(t)的均方值表达式为:dt t x TTT x)(1lim22⎰→∞=ψ2xψ表示信号的强度或功率。
随机信号x(t)的均方根值表示为:⎰→∞=T T x dt t x T 02)(1limψ x ψ也是信号能量的一种描述。
随机信号x(t)的方差表达式为:⎰-==-→∞Tx T x x dx t x Tx E 0222])([1lim])[(μσμ2xσ是信号的幅值相对于均值分散程度的一种表示,也是信号纯波动分量(交流)大小的反映。
随机信号x(t)的均方差(标准差)可表示为⎰-=→∞T x T x dx t x T 02])([1limμσ 它和2x σ意义相同。
平稳随机过程统计特征的计算要求信号x(t)无限长,而实际上只能用一个样本即有限长序列来计算。
第5章随机信号分析
Rxy () 0
R xy ( )
0 的最大峰值一般不在 处。
3. 估计
直接方法:
1 R ( m ) x ( n ) y ( n m ) xy N mn 0
^
N 1 m
1 R ( m ) y ( n ) x ( n m ) yx N mn 0
求傅立叶变换,得
N 1 ^
N 1N 1 1 j m j m R ( m ) e x ( n ) x ( n m ) e x N N N m ( N 1 ) m ( N 1 ) n 0
N 1 N 1 1 j m x ( n ) x ( n m ) e N N N n 0 m ( N 1 )
^
4 自相关函数的应用
检测淹没在随机噪声中的周期信号
x ( t ) x sin( t ) 0
T / 2 1 2 R ( ) lim x sin( t ) sin[ ( t ) ] dt x 0 T / 2 T T
t 令(
) ,则 dt 1 d
R 0 )R m ) X( X(
性质3
周期平稳过程的自相关函数必是周期函数, 且与过程的周期相同。
E[ X 2 (n)]
性质4
性质5
2 R ( 0 ) = EX [ ( n ) ] X
不包含任何周期分量的非周期平稳过程 满足
m 2 lim R ( m ) R ( ) X X X
平稳随机过程
均值和时间无关,是常数;自相关函数与时间的起点无关, 只与两点的时间差有关。
第三章 随机信号分析
随机信号是一类变化规律不确定的、随时间变化的 信号。知道当前的值,不能精确地预计未来某个时刻 的值。 一般来说,由人工产生的信号大都是确知信号,如 周期正弦波、雷达的发射信号等 自然界产生的许多信号都是随机信号,如海浪、地 物杂波、图象信号、语音信号、地震信号和医学上的 生理信号等。 在实际中遇到的信号,大部分都是随机信号。即使 由人工产生的信号是确知的,但信号经信道传输以后 也会受到噪声污染而变成了随机信号。
p1 x 1 , t 1 p1 x 1 , p 2 x 1 , x 2 , t 1 , t 1
p 2 x 1 , x 2 ,
24
2、严平稳随机过程的数字特征
(1) 数学期望(均值函数):与时间无关
E X t
x p1 x , t d x
第三章 随机信号
1
学习目标
随机过程的基本概念; 随机过程的数字特征(均值函数、方差函数、相关函 数); 随机过程的平稳性、各态历经性、自相关函数的性质、 维纳-辛钦定理; 高斯随机过程的定义、性质,其一维概率密度函数和正 态分布函数,高斯白噪声; 平稳随机过程通过线性系统,其输出过程的均值函数、 自相关函数和功率谱密度、带限白噪声; 窄带随机过程的表达式,其包络、相位的统计特性,其 同相分量、正交分量的统计特性; 余弦波加窄带高斯过程的合成包络的统计特性(选学) 匹配滤波器 2 循环平稳随机过程
13
如果对于X(t)任意时刻和任意n都给定了分布函数
或概率密度,即n越大,对随机过程统计特性的描述
就越充分,但问题的复杂性也随之增加。
14
2、随机过程的数字特征
第02章 随机信号分析 67页 1.4M PPT版
第二章 随机信号分析
• 2.1、引言 • 2.2、随机过程的一般表述 • 2.3、平稳随机过程 • 2.4、平稳随机过程的相关函数与概率谱密度 • 2.5、高斯过程 • 2.6、窄带随机过程 • 2.7、正弦波加窄带高斯过程 • 2.8、随机过程通过线性系统
•2.1 引言
•通信过程是有用信号通过通信系统的过程, 在这一过程中常伴有噪声的传输. 分析与研 究通信系统,离不开对信号和噪声的分析.通 信系统中的信号通常具有某种随机性.他们 的某个或几个参数不能预知或不能完全预 知.如果能预知,通信就失去了意义
• 随机过程§(t)的定义:
• 设随机试验E的可能结果为§(t),试验的样本空 间S为{ x1(t) ,x2(t), … xi(t)… }
• xi(t): 第i个样本函数 (实现) • 每次试验后, §(t)取空间S中的某一样本函数
• 称此§(t)为随机函数
• 当t 代表时间量时,称此§(t)为随机过程
一维分布函数: F1(x1,t1) P (t1) x1
x
F(x)
1
2
exp
(z )2 2 2
dz
概率积分函数:
(x)
1
• 随机过程的统计特性的表述 • 概率分布 (分布函数、概率密度函数) • 数字特征 • (数学期望、方差、相关函数)
• 一维分布函数:
•
设§(t)表示一个随机过程 §(t1)是一个随机变量,
,则在任一时刻t1
上
• 称分布F1函(数x1,t1)=P{ §(t1) ≤ x1 }为§(t)的一维
• 即§(随t1)机的过分程布§函(t数)在t1时刻所对应的随机变量 • 如果存在ə F1( x1,t1)/ ə x1 = f1( x1,t1) • 则称f1( x1,t1)为§(t)的一维概率密度函数
随机信号分析第一章
02
随机信号的统计描
述
概率密度函数
定义
概率密度函数(PDF) 是描述随机信号在各个 时刻取值概率分布的函 数。
性质
概率密度函数具有非负 性、归一化性质,即概 率密度函数在全域上的 积分等于1。
计算方法
可以通过直方图法、核 密度估计法等方法计算 概率密度函数。
概率分布函数
定义
概率分布函数(CDF)是描述随机信号取值小于或等 于某个值的概率的函数。
随机信号的特性
统计特性
随机信号的统计特性包括均值、 方差、概率分布等,这些特性描 述了信号的平均行为和不确定性 。
时间特性
随机信号的时间特性包括自相关 函数、互相关函数、功率谱密度 等,这些特性描述了信号在不同 时间点的相关性以及频率成分。
随机信号的应用
通信
在通信领域,随机信号可用 于扩频通信、无线通信等领 域,以提高通信的抗干扰能 力和保密性。
05
随机信号的采样定
理
采样定理的内容
采样定理定义
对于一个时间连续的模拟信号,如果以不高于其最高频率分量的频 率进行采样,则可以无失真地恢复原始信号。
采样定理的数学表达式
如果信号的最高频率为Fmax,则采样频率应不小于2Fmax。
采样定理的意义
采样定理是数字信号处理的基础,它确保了从离散样本中能够准确 重建原始信号。
雷达与声呐
在雷达与声呐领域,随机信 号可用于目标检测、测距、 定位等方面,以提高探测的 精度和可靠性。
地球物理学
在地球物理学领域,随机信 号可用于地震勘探、矿产资 源探测等方面,以揭示地球 内部结构和物质分布。
金融与经济
在金融与经济领域,随机信 号可用于股票价格分析、市 场预测等方面,以揭示市场 动态和经济发展趋势。
随机信号分析课件
谱密度函数
谱密度函数描述了随机信号的频率成分。
通过谱密度函数,可以了解信号在不同频率下的强度分布。
04
随机信号的频域分析
傅里叶变换
傅里叶变换的定义
傅里叶变换是一种将时间域信号转换为频域信号的方法, 通过将信号分解为不同频率的正弦波和余弦波的线性组合, 可以更好地理解信号的频率成分。
功率谱密度的计算
功率谱密度可以通过傅里叶变换的模平方得到, 也可以通过相关函数得到。
功率谱密度的应用
功率谱密度在信号处理中用于频域滤波、噪声抑 制、频率估计等方面。
滤波器设计
滤波器的分类
滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波 器等类型,不同类型的滤波器具有不同的频率响应特性。
滤波器的设计方法
傅里叶变换的性质
傅里叶变换具有线性性、时移性、频移性、共轭性、对称 性等性质,这些性质有助于简化信号处理和分析的过程。
傅里叶变换的应用
傅里叶变换在信号处理、通信、图像处理等领域有着广泛 的应用,例如频谱分析、滤波器设计、调制解调等。
功率谱密度
功率谱密度的定义
功率谱密度是描述随机信号频域特性的重要参数, 它表示信号功率随频率的分布情况。
04
通信
在通信领域中,随机信号分析 用于信道容量评估、信噪比估
计、误码率分析等方面。
雷达
在雷达领域中,随机信号分析 用于目标检测、跟踪和成像等
方面。
地球物理学
在地球物理学领域中,随机信 号分析用于地震勘探、矿产资
源评估等方面。
金融
在金融领域中,随机信号分析 用于股票价格波动分析、风险
评估等方面。
02
第二章随机信号分析
• 无穷多个样本函数的总体叫做随机过程。
2011-2-23
CP 第二章 随机信号分析
5
样本空间
S1 S2 Sn x 2(t) t x 1(t) t
ξ (t)
x n(t) t tk
• 样本函数的总体
2011-2-23 CP 第二章 随机信号分析 6
2.1.1 随机过程
• 随机过程具有随机变量和时间函数的特 点。 • 在进行观测前是无法预知是空间中哪一 个样本。 • 全体样本在t1时刻的取值ξ(t1)是一个不含t 变化的随机变量。
2011-2-23
CP 第二章 随机信号分析
13
2.2.1定义 定义
2011-2-23
CP 第二章 随机信号分析
14
2.2.3平稳随机过程自相关 平稳随机过程自相关 函数的性质
• 平稳随机过程的自相关函数特别重要。
– 其统计特性,可通过自相关函数来描述; – 自相关函数与谱特性有着内在的联系。
• 设ξ(t)为实平稳随机过程, 则它的自相关 函数 R (τ ) = E [ξ ( t )ξ ( t + τ )]
自协方差函数和自相关函数
B(t1 , t2 ) = E {x (t1 ) - a (t1 ) ] x (t2 ) - a (t2 ) ] [ [ }
=
蝌
- ?
ゥ
[ x1 - a (t1 )][ x2 - a (t2 )] f 2 ( x1 , x2 ; t1 , t2 )dx1dx2
R(t1 , t2 ) = E [ (t1 )x (t2 ) ]= x
通信原理
第二章 随机信号分析 刘柏森
2011-2-23 CP 第二章 随机信号分析 1
随机信号分析 第二章随机信号概论
[x m
X
(t1)][ y mY (t 2 )] p XY ( x, y; t1 , t 2 )dxdy
且有 C
XY (t1 , t 2 )
(2)如果X(t)和Y(t)的互协方差函数CXY(t1,t2)=0,我们称 他们互不相关的.并有 RXY (t1 , t2 ) mX (t1 )mY (t2 ) (3)若两个过程X(t)和Y(t)之间的互相关函数等于零,即 对任意t1,t2有RXY(t1,t2)=E[X(t1)Y(t2)]=0, 则称两个过程正交。
2 X (t ) D[ X (t )] D[V sin w0t ] sin 2 w0tD[V ] sin 2 w0t
RX (t1 , t 2 ) E[ X (t1 ) X (t 2 )] E[V sin w0t1 V sin w0t 2 ]
.
sin w0t1. sin w0t 2 E[V 2 ] sin w0t1. sin w0t 2 C X (t1 , t 2 ) E[( X (t1 ) m X (t1 ))(X (t 2 ) m X (t 2 ))] E[ X (t1 ) X (t 2 )] RX (t1 , t 2 ) sin w0t1. sin w0t 2
FX ( x1 , t1 ) p X ( x1 , t1 ) x1
为随机过程的概率密度函数.
二维分布律:随机过程X(t)在任意时刻t1,t2, 是一个二 维随机变量{X(t1),X(t2)},定义t=t1时X(t1) ≤x1和 t=t2时 X(t2) ≤x2的概率为随机过程X(t)的二维概率分布函 数
随机信号分析-随机信号
2.4 多维高斯分布与高斯信号
93/90
2.4 多维高斯分布与高斯信号
例4:给定R.S.{X (t),t 0}, X (t) X0 Vt, t 0
其中( V )~ X0
N
r (u,
r c)
N
0 0
1 0
0
1
V ~ N (0,1) X 0 ~ N (0,1)
r 其中u
E[ X (t1) X *(t2 ) m(t1) X *(t2) X (t1)m*(t2) m(t1)m*(t2)] E[ X (t1) X *(t2 )] m(t1)E[ X *(t2)] E[ X (t1)]m*(t2) m(t1)m*(t2) E[ X (t1) X *(t2 )] m(t1)m*(t2) m(t1)m*(t2) m(t1)m*(t2) RX (t1,t2 ) m(t1)m*(t2 ) C.R.S.
2.1 定义与基本特性
38/90
2.2 典型信号举例
39/90
2.2 典型信号举例
(1)、若A-R.V. .-常数const
则该随机信号如下所示:
40/90
2.2 典型信号举例
(2)、为随机变量,A,为常数,则该随机
信号为:
41/90
2.2 典型信号举例
(3)、为R.V .,A, 为常数,则随机信号为:
2
1 1 2 1
e 1 2 1 2
x 1 12
2
2
x1 y
1 2
2
y
2
2 2
2
2
50/90
2.2 典型信号举例
f X1 (x1;t) f X2 (x2;t)
x1 f X (x1, x2;t1, t2 )dx1
0201随机信号分析
R( ) R(0)
(R( )具有上界)
R( ) R( ) (R( )是偶函数)
R(0) E 2 (t) S ( (t)的平均功率)
R() E2 (t) a(2 (t) 的直流平均功率)
R(0) R() 2 ( (t) 的交流平均功率)
平稳随机过程的“各态历经性”
只有平稳随机过程才可能具有各态 历经性,即平稳随机过程的任一实 现均经历了随机过程的所有可能状 态,因而我们可以用任一实现的统 计特性来描述平稳随机过程的统计 特性,进而通过任一实现的时间平 均特性得到平稳随机过程的统计平 均特性。
平稳随机过程的“各态历经性”
a a lim 1
随机过程的自相关函数
R(t1, t2 ) E (t1) (t2 )
x1x2 f2 (x1, x2 ; t1, t2 )dx1dx2
随机过程的自协方差函数
B(t1,t2 ) E (t1) a(t1) (t2 ) a(t2 )
x1 a(t1)x2 a(t2 )f2 (x1, x2;t1,t2 )dx1dx2
2
exp
t2
dt
x
为互补误差函数;
误差函数与互补误差函数的性质;
误差函数与互补误差函数的性质
erf (x) 在 (, )内单调上升; erf (x) 是奇函数,即: erf (x) erf (x) 且 erf () 1 erfc(x)在 (, )内单调下降; erfc(x) 2 erfc(x) 且 erfc() 0
零Байду номын сангаас值平稳窄带高斯过程
f
(a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机信号分析
朱华,等北京理工大学出版社2011-07-01
《随机信号分析》是高等学校工科电子类专业基础教材。
内容为概率论基础、平稳随机过程、窄带随机过程、随机信号通过线性与非线性系统的理论与分析方法等。
在相应的部分增加了离散随机信号的分析。
《随即信号分析》的特点侧重在物理概念和分析方法上,对复杂的理论和数学问题着重用与实际的电子工程技术问题相联系的途径及方法去处理。
《随即信号分析》配套的习题和解题指南将与《随即信号分析》同期出版。
《随即信号分析》适用于电子工程系硕士研究生及高年级本科生,也适用于科技工作者参考。
第一章概率论
1.1 概率空间的概念
1.1.1 古典概率
1.1.2 几何概率
1.1.3 统计概率
1.2 条件概率空间
1.2.1 条件概率的定义
1.2.2 全概率公式
1.2.3 贝叶斯公式
1.2.4 独立事件、统计独立
1.3 随机变量及其概率分布函数
1.3.1 随机变量的概念
1.3.2 离散型随机变量及其分布列
1.3.3 连续型随机变量及其密度函数
1.3.4 分布函数及其基本性质
1.4 多维随机变量及其分布函数
1.4.1 二维分布函数及其基本性质
1.4.2 边沿分布
1.4.3 相互独立的随机变量与条件分布
1.5 随机变量函数的分布
1.5.1 一维随机变量函数的分布
1.5.2 二维随机变量函数的分布
1.5.3 二维正态随机变量函数的变换
1.5.4 多维情况
1.5.5 多维正态概率密度的矩阵表示法
1.6 随机变量的数字特征
1.6.1 统计平均值与随机变量的数学期望值
1.6.2 随机变量函数的期望值
1.6.3 条件数学期望
1.6.4 随机变量的各阶矩
1.7 随机变量的特征函数
1.7.1 特征函数的定义
1.7.2 特征函数的性质
1.7.3 随机变量函数概率密度的确定
1.7.4 特征函数与矩的关系
1.7.5 多维随机变量的特征函数
1.8 极限定理
1.8.1 切比雪夫不等式
1.8.2 样本均值与弱大数定律
1.8.3 相对概率与贝努里定理
1.8.4 各种收敛关系的比较
1.8.5 中心极限定理
1.9 各种概率分布的参数和特征汇编
1.9.1 连续分布的随机变量
1.9.2 离散分布的随机变量
第二章随机过程
2.1 随机过程的基本概念及其统计特性
2.1.1 随机过程的基本概念
2.1.2 随机过程的分类
2.1.3 随机过程的概率分布
2.1.4 随机过程的数字特征
2.1.5 随机过程的特征函数
2.2 随机过程的微分与积分
2.2.1 随机连续性
2.2.2 随机过程的微分及其数学期望与相关函数2.2.3 随机过程的积分及其数学期望与相关函数2.3 平稳随机过程和遍历性过程
2.3.1 平稳随机过程
2.3.2 遍历性过程
2.3.3 平稳随机过程相关函数的性质
2.4 随机过程的联合概率分布和互相关函数2.4.1 两个随机过程的联合概率分布
2.4.2 互相关函数
2.5 复随机过程
2.5.1 复随机变量
2.5.2 复随机过程
2.6 离散时间随机过程
2.6.1 离散时间随机过程的定义
2.6.2 离散时间随机过程的概率分布
2.6.3 离散时间随机过程的数字特征
2.6.4 平稳离散时间随机过程相关函数的性质2.7 正态随机过程
……
第三章平稳随机过程的谱分析
第四章随机信号通过线性系统的分析
第五章窄带随机过程
第六章随机信号通过非线性系统的分析
第七章几种常用的随机过程。