九年旋转复习
初中数学九年级旋转知识点
初中数学九年级旋转知识点在初中数学九年级,旋转是一个重要的几何变换方法。
通过旋转,我们可以改变图形的位置和方向,从而帮助我们解决一些几何问题。
本文将介绍九年级数学中与旋转相关的知识点,包括旋转的定义、旋转的性质以及旋转的应用。
一、旋转的定义旋转是指将一个图形绕着固定点旋转一定角度,保持图形内部的点与固定点的距离保持不变。
旋转的固定点称为旋转中心,旋转的角度称为旋转角度。
九年级数学中常用的旋转角度有90度、180度和270度。
二、旋转的性质1. 旋转保持图形面积不变:无论如何旋转一个图形,它的面积都保持不变。
2. 旋转保持图形周长不变:无论如何旋转一个图形,它的周长也保持不变。
3. 旋转保持图形对称性不变:如果一个图形是对称的,那么它的旋转图形也将保持对称性。
三、旋转的应用1. 确定旋转后的图形:通过给出旋转中心和旋转角度,我们可以确定旋转后的图形。
例如,给出一个三角形ABC,旋转中心为点O,旋转90度,我们可以通过连接OA、OB和OC来确定旋转后的图形。
2. 解决几何问题:旋转常常被用于解决一些几何问题。
例如,在证明两个图形相似时,可以通过旋转一个图形使其与另一个图形重合,从而得到相似的证明。
3. 观察图形性质:通过观察旋转后的图形,我们可以揭示一些图形的性质。
例如,通过旋转正方形,可以发现旋转后的图形仍然是正方形,这说明正方形具有旋转对称性。
四、注意事项在进行旋转时,需要注意以下几点:1. 旋转角度是逆时针方向旋转:九年级数学中的旋转一般都是逆时针方向旋转,所以在进行旋转时需要根据旋转角度确定旋转方向。
2. 旋转中心的选择:选择旋转中心时,需要注意选择一个能够旋转整个图形的点,使得旋转后的图形可以被完全覆盖。
3. 使用适当的工具:在实际操作中,可以使用直尺、量角器等几何工具来进行旋转操作,以确保旋转的准确性。
总结:初中数学九年级的旋转知识点是我们在几何学习中重要的一部分。
通过学习旋转的定义、性质和应用,我们可以更好地理解和解决与旋转相关的问题。
人教版九年级上册数学《图形的旋转》旋转研讨说课复习课件
从下午3时到下午5时:30°×(5-3)=60°
探索新知
如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转方向 是怎样的?旋转角是哪个角?
课件
课件
课件
课件
课件
课件
课件 课件
个人简历:课件/jianli/ 课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
C′
B
C
B′
O·
A
C′
A
旋转前、后的图形全等,即对应角相等,对应边相等. 对应点到旋转中心的距离相等.
B′
A′ C
B
观察下图,你能得到什么结论?
A'
A
B'
C
B
角:∠AOA'=∠BOB' =∠COC'
O
C'
线: AO=A'O ,BO=B'O ,CO=C'O
1.旋转不改变图形的形状和大小,只改变图形的位置。 2.旋转时,图形上的每一点都绕旋转中心旋转相同的角度。 3.旋转的性质中所说的“对应点”是指“任意一对对应 点”,并且对应点到旋转中心的距离相等。
归纳新知
定义
三要素:旋转中心,旋转 方向和旋转角度
旋转 性质
旋转前后的图形全等;
对应点到旋转中心的距离相等;
对应点与旋转中心所连线段的夹角等 于旋转角.
再见
人教版九年级数学上册
第二十三章 旋转
图形的旋转
第1课时
课件
导入新知
课件
课件
课件
课件
课件
课件
课件 课件
九年级数学中考复习专题-图形的旋转-PPT名师公开课获奖课件百校联赛一等奖课件
B4 B3 B2
B1
例8. 如图,把两张边长为10cm旳正 方形纸片放在桌面上,使一张纸片旳 顶点放在另一张正方形纸片旳中心位 置O处.试问,桌面被两张正方形纸片 所覆盖旳那部分面积是多少?
O
O
O
延伸: (1)如图,O是边长为a旳正方形 ABCD旳中心,将一块半径足够长、
圆心角为直角旳扇形纸板旳圆心放在 O点处,并将纸板绕O点旋转.求证: 正方形ABCD旳边被纸板覆盖旳总长 度为定值a(圆心O是在正方形内).
样经过平移、旋转、轴对称将△ABC
运动到△A1B1C1旳位置上,使得两者
重叠.
C1
B1 A1
C
A
B
C B
C B
A
C2
A2
图1
A1
A A2
B2 C
C1 B
C2 B1
B2
图2
C1
A1
B1
A
A2
C2
B2
图3
例4 .如图,菱形ABCD绕点O旋转后,
顶点A旳相应点是点E,试拟定顶点B、 C、D旳位置,以及旋转后旳四边形 EFGH.
A´ C
C´ O
旋转方向是 ________顺__时___针__________ 旋转角是∠__A_O__A_´_、___∠__B_O__B_´_、__∠__C__O__C_´_。
演示3
B´
A
O A´
B
C
C´
旋转方向是 ____顺__时___针______________ 旋转角是_∠_A__O_A__´、___∠__B_O__B_´_、___∠__C_O__C__´ 。
以AB边上旳高
OA1为边,按逆 时针方向作等边
九年级数学上册第二十三章旋转必须掌握的典型题(带答案)
九年级数学上册第二十三章旋转必须掌握的典型题单选题1、如图,将△ABC绕点A逆时针旋转40°得到△ADE,AD与BC相交于点F,若∠E=80°且△AFC是以线段FC 为底边的等腰三角形,则∠BAC的度数为()A.55°B.60°C.65°D.70°答案:B分析:由旋转的性质得出∠E=∠C=80°,∠BAD=40°,由等腰三角形的性质得出∠C=∠AFC=80°,求出∠CAF=20°,根据∠BAC=∠BAD+∠CAF即可得出答案.解:∵将△ABC绕点A逆时针旋转40°得到△ADE,且∠E=80°,∴∠E=∠C=80°,∠BAD=40°,又∵△AFC是以线段FC为底边的等腰三角形,∴AC=AF,∴∠C=∠AFC=80°,∴∠CAF=180°−∠C−∠AFC=180°−80°−80°=20°,∴∠BAC=∠BAD+∠CAF=40°+20°=60°,故选:B.小提示:本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理,熟练掌握旋转的性质是解题的关键.2、如图,△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△EDC,使点B的对应点D恰好落在AB边上,AC、ED交于点F.若∠BCD=α,则∠EFC的度数是(用含α的代数式表示)()A.90°+12αB.90°−12αC.180°−32αD.32α答案:C分析:根据旋转的性质可得,BC=DC,∠ACE=α,∠A=∠E,则∠B=∠BDC,利用三角形内角和可求得∠B,进而可求得∠E,则可求得答案.解:∵将△ABC绕点C顺时针旋转得到△EDC,且∠BCD=α∴BC=DC,∠ACE=α,∠A=∠E,∴∠B=∠BDC,∴∠B=∠BDC=180°−α2=90°−α2,∴∠A=∠E=90°−∠B=90°−90°+α2=α2,∴∠A=∠E=α2,∴∠EFC=180°−∠ACE−∠E=180°−α−α2=180°−32α,故选:C.小提示:本题考查了旋转变换、三角形内角和、等腰三角形的性质,解题的关键是掌握旋转的性质.3、如图,将△ABC绕点A逆时针旋转55°得到△ADE,若∠E=70°且AD⊥BC于点F,则∠BAC的度数为()A.65°B.70°C.75°D.80°答案:C分析:由旋转的性质可得∠BAD=55°,∠E=∠ACB=70°,由直角三角形的性质可得∠DAC=20°,即可求解.解:∵将△ABC绕点A逆时针旋转55°得△ADE,∴∠BAD=55°,∠E=∠ACB=70°,∵AD⊥BC,∴∠DAC=20°,∴∠BAC=∠BAD+∠DAC=75°.故选C.小提示:本题考查了旋转的性质,掌握旋转的性质是本题的关键.4、下列四个银行标志中,是中心对称图形的标志是()A.B.C.D.答案:A分析:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.据此即可判断.解:A.是中心对称图形,故此选项符合题意;B.不是中心对称图形,故此选项不合题意;C.不是中心对称图形,故此选项不合题意;D.不是中心对称图形,故此选项不合题意;故选:A.小提示:本题主要考查了中心对称图形定义,关键是找出对称中心.5、如图,在ΔABC中,AB=2,BC=3.6,∠B=60∘,将ΔABC绕点A顺时针旋转度得到ΔADE,当点B的对应点D 恰好落在BC边上时,则CD的长为()A.1.6B.1.8C.2D.2.6答案:A分析:由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.由旋转的性质可知,AD=AB,∵∠B=60∘,AD=AB,∴ΔADB为等边三角形,∴BD=AB=2,∴CD=CB−BD=1.6,故选A.小提示:此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB6、如图,将ΔABC绕点C顺时针旋转得到ΔDEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC答案:D分析:利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出∠A=∠EBC,所以选项D正确;再根据∠EBC=∠EBC+∠ABC=∠A+∠ABC=1800-∠ACB判断选项B不一定正确即可.解:∵ΔABC 绕点C 顺时针旋转得到ΔDEC ,∴AC=CD ,BC=EC ,∠ACD=∠BCE ,∴∠A=∠CDA=180°−∠ACD 2;∠EBC=∠BEC=180°−∠BCE 2,∴选项A 、C 不一定正确,∴∠A =∠EBC ,∴选项D 正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=1800-∠ACB 不一定等于900,∴选项B 不一定正确;故选D .小提示:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.7、如图,四边形ABCD 与四边形FGHE 关于点O 成中心对称,下列说法中错误的是( )A .AD//EF,AB//GFB .BO =GOC .CD =HE,BC =GH D .DO =HO答案:D分析:中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.A .∵AD 与EF 关于点O 成中心对称,∴AD //EF ,同理可得AB //GF ,正确;B .∵点B 与点G 关于点O 成中心对称,∴BO =GO ,正确;C .∵CD 与HE 关于点O 成中心对称,∴CD=HE,同理可得BC=GH,正确;D.∵点D与点E关于点O成中心对称,∴DO=EO,∴DO=HO错误,故选:D.小提示:本题考查中心对称图形的性质,是基础考点,掌握相关知识是解题关键.8、某校举办了“送福迎新春,剪纸庆佳节”比赛.以下参赛作品中,是中心对称图形的是().A.B.C.D.答案:D解:选项A,B,C中的图形不是中心对称图形,选项D中的图形是中心对称图形,故选D小提示:本题考查的是中心对称图形的识别,中心对称图形的定义:把一个图形绕某点旋转180°后能够与自身重合,则这个图形是中心对称图形,掌握“中心对称图形的定义”是解本题的关键.9、下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.答案:C分析:根据轴对称图形和中心对称图形的概念逐项判断即可.A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:C.小提示:本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.10、把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°答案:C分析:根据图形的对称性,用360°除以3计算即可得解.解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C.小提示:本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.填空题11、在平面直角坐标系中,点A(a,2)与点B(6,b)关于原点对称,则ab=________.答案:12分析:根据关于原点对称的两点坐标关系:横、纵坐标均互为相反数,即可求出a和b的值,从而求出结论.解:∵点A(a,2)与点B(6,b)关于原点对称,∴a=-6,b=-2∴ab=12所以答案是:12.小提示:此题考查的是根据两点关于原点对称,求参数的值,掌握关于原点对称的两点坐标关系是解题关键.12、镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示.A灯发出的光束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动12°,B灯每秒转动4°.B灯先转动12秒,A灯才开始转动.当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是.答案:6秒或19.5秒分析:设A灯旋转t秒,两灯光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),推出t≤45−12,即t≤33.利用平行线的性质,结合角度间关系,构建方程即可解答.解:设A灯旋转t秒,两灯的光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),∴t≤45﹣12,即t≤33.由题意,满足以下条件时,两灯的光束能互相平行:①如图,∠MAM'=∠PBP',12t=4(12+t),解得t=6;②如图,∠NAM'+∠PBP'=180°,12t﹣180+4(12+t)=180,解得t=19.5;综上所述,满足条件的t的值为6秒或19.5秒.所以答案是:6秒或19.5秒.小提示:本题主要考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.13、如图,在矩形ABCD中,对角线AC、BD的交点为O,矩形的长、宽分别为7cm、4cm,EF过点O分别交AB、CD于E、F,那么图中阴影部分面积为___cm2.答案:7分析:先根据矩形的性质可得OA=OC,AB∥CD,S▭ABCD=28cm2,再根据平行线的性质可得∠OAE=∠OCF,∠OEA=∠OFC,然后根据三角形全等的判定定理证出△AOE≅△COF,根据全等三角形的性质可得S△AOE=S△COF,由此即可得.解:∵四边形ABCD是矩形,且长、宽分别为7cm、4cm,∴OA=OC,AB∥CD,S▭ABCD=7×4=28(cm2),∴∠OAE=∠OCF,∠OEA=∠OFC,在△AOE和△COF中,{∠OAE=∠OCF∠OEA=∠OFCOA=OC,∴△AOE≅△COF(AAS),∴S△AOE=S△COF,则图中阴影部分面积为S△AOE+S△DOF=S△COF+S△DOF=S△COD=14S▭ABCD=7cm2,所以答案是:7.小提示:本题考查了矩形的性质、三角形全等的判定与性质等知识点,熟练掌握三角形全等的判定与性质是解题关键.14、如图,△ABC与△DEF关于O点成中心对称.则AB________DE,BC//________,AC=________.答案: = EF DF分析:利用关于某点对称的图形全等,这样可以得出对应边与对应角之间的关系,进而解决.∵△ABC与△DEF关于O点成中心对称,∴△ABC≌△DEF,∴AB=DE,AC=DF,∠ABC=∠DEF∴∠CBO=∠FEO,∴BC//EF.所以答案是:=,EF,DF.小提示:此题主要考查了关于某点对称的图形之间的关系,涉及全等三角形,难度不大,熟练掌握中心对称图形的定义是解题的关键.15、以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为_____.答案:(2,﹣1)分析:根据平行四边形是中心对称图形,再根据▱ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.解:∵▱ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∴点C的坐标为(2,﹣1),所以答案是:(2,﹣1).小提示:此题考查中心对称图形的顶点在坐标系中的表示.解答题16、如图1,在等腰Rt△ABC中,∠A=90°,点D、E分别在边AB、AC上,AD=AE,连接,点M、P、N分别为DE、DC、BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是______,位置关系是______;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,求△PMN面积的最大值.答案:(1)PM=PN,PM⊥PN(2)△PMN是等腰直角三角形,理由见解析(3)492分析:(1)利用三角形的中位线定理得出PM=12CE,PN=12BD,进而得出BD=CE,即可得出结论,再利用三角形的中位线定理得出PM∥CE,再得出∠DPM=∠DCA,最后利用互余得出结论;(2)先判断出△ABD≌△ACE(SAS),得出BD=CE,同(1)的方法得出PM=12CE,PN=12BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)由等腰直角三角形可知,当PM最大时,△PMN面积最大,而BD的最大值是AB+AD=14,即可得出结论.(1)解:∵P、N分别为DC、BC的中点,∴PN∥BD,PN=12BD,∵点M、P分别为DE、DC的中点,∴PM∥CE,PM=12CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,PM∥CE,∴∠DPN=∠ADC,∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN.所以答案是:PM=PN,PM⊥PN.(2)解:△PMN是等腰直角三角形,理由如下.由旋转可知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,由三角形的中位线定理得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法可得,PM∥CE,PN∥BD,∠DPM=∠DCE,∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC,=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形.(3)解:由(2)可知,△PMN是等腰直角三角形,PM=PN=12BD,∴当PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=12PM2=12×72=492.小提示:本题综合考查了三角形全等的判定与性质、旋转的性质及三角形的中位线定理,熟练应用相关知识是解决本题的关键.17、如图,在等边△ABC中,D为BC边上一点,连接AD,将△ACD沿AD翻折得到△AED,连接BE并延长交AD的延长线于点F,连接CF.(1)若∠CAD=20°,求∠CBF的度数;(2)若∠CAD=a,求∠CBF的大小;(3)猜想CF,BF,AF之间的数量关系,并证明.答案:(1)20°;(2)∠CBF=α;(3)AF=CF+BF,理由见解析分析:(1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,∠ABE=∠AEB=1(180°−∠BAE)=80°,∠CBF=∠ABE-2∠ABC=20°;(2)同(1)求解即可;(3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.解:(1)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,∴∠ABE=∠AEB=1(180°−∠BAE)=80°,2∴∠CBF=∠ABE-∠ABC=20°;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=α,AC=AE,∴∠BAE=∠BAC−∠EAD−∠CAD=60°−2α,AB=AE,∴∠ABE=∠AEB=12(180°−∠BAE)=60°+α,∴∠CBF=∠ABE−∠ABC=α;(3)AF=CF+BF,理由如下:如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG在△AEF和△ACF中,{AE=AC∠EAF=∠CAF AF=AF,∴△AEF≌△ACF(SAS),∴∠AFE=∠AFC,∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,∴∠BFD=∠ACD=60°,∴∠AFE=∠AFC=60°,∴∠BFC=120°,∴∠BAC+∠BFC=180°,∴∠ABF+∠ACF=180°,∴∠ACG+∠ACF=180°,∴F、C、G三点共线,∴△AFG是等边三角形,∴AF=GF=CF+CG=CF+BF.小提示:本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.18、马老师在带领学生学习《正方形的性质与判定》这一课时,给出如下问题:如图①,正方形ABCD的对角线AC、BD相交于点O,正方形A′B′C′O与正方形ABCD的边长相等.在正方形A′B′C′O绕点O旋转的过程中,OA′与AB相交于点M,OC′与BC相交于点N,探究两个正方形重叠部分的面积与正方形ABCD的面积有什么关系.(1)小亮第一个举手回答“两个正方形重叠部分的面积是正方形ABCD面积的______”;请说明理由.(2)马老师鼓励同学们编道拓展题,小颖编了这样一道题:如图②,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,求四边形ABCD的面积.请你帮小颖解答这道题.答案:(1)14,见解析(2)18,见解析分析:(1)只需要证明△MOB≌△NOC得到S△MOB=S△NOC,即可求解.(2)过A作AE⊥AC,交CD的延长线于E,证明△EAD≌△CAB得到S△ABC=S△ADE,AE=AC=6,则S△AEC=12×6×6=18S四边形ABCD =S△ACD+S△ABC=S△ACD+S△ADE=S△EAC=12AE⋅AC=18.(1)解:∵四边形ABCD是正方形,四边形OA′B′C′是正方形,∴AC⊥BD,OB=OC,∠OBM=∠OCN=45°,∠A′OC′=90°,∴∠BOC=∠A′OC′=90°,∴∠BOM=∠CON,∴△BOM≌△CON(ASA),∴S△BOM=S△CON,∴S四边形OMBN =S△OBC=14S正方形ABCD.答案为:14;(2)过A作AE⊥AC,交CD的延长线于E,∵AE⊥AC,∴∠EAC=90°,∵∠DAB=90°,∴∠DAE=∠BAC,∵∠BAD=∠BCD=90°,∴∠ADC+∠B=180°,∵∠EDA+∠ADC=180°,∴∠EDA=∠B,∵AD=AB,在△ABC与△ADE中,{∠EAD=∠CABAD=AB∠EDA=∠B,∴△ABC≌△ADE(ASA),∴AC=AE,∵AC=6,∴AE=6,∴S△AEC=12×6×6=18,∴S四边形ABCD=18.小提示:本题主要考查了正方形的性质,全等三角形的性质与判定,四边形内角和,熟知全等三角形的性质与判定是解题的关键.。
九年级数学上册复习资料《旋转》
《图形的旋转》复习知识回顾1、概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.旋转三要素:旋转中心、旋转方面、旋转角2、旋转的性质:(1)旋转前后的两个图形是全等形;(2)两个对应点到旋转中心的距离相等(3)两个对应点与旋转中心的连线段的夹角等于旋转角3、中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.4、中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.5、中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.6、坐标系中的中心对称基础练习一、选择题1、(泸州)如图1,P是正△ABC内的一点,若将△PBC绕点B旋转到△P’BA,则∠PBP′的度数是( )A.45° B.60°C.90° D.120°2、(陕西省) 如图2,∠AOB=90°,∠B=30°,△A′OB′可以看作是由△AOB绕点O顺时针旋转α角度得到的,若点A′在AB上,则旋转角α的大小可以是()A.30°B.45°C.60°D.90°3、(桂林市、百色市)如图3所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O 按顺时针方向旋转90°,得△A′B′O,则点A′的坐标为().A.(3,1) B.(3,2) C.(2,3) D.(1,3)4、、(甘肃白银)下列图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形B.平行四边形C.正三角形D.矩形5、(台州市)单词NAME的四个字母中,是中心对称图形的是()A.N B.A C.M D.E6、(2009年广西钦州)某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形7、(锦州)下列图形中,既是轴对称图形,又是中心对称图形的是 ( )A B C D8、 (四川省内江市)已知如图4所示的四张牌,若将其中一张牌旋转180O后得到图5,则旋转的牌是()9、(成都)在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转180°得到0A′,则点A′在平面直角坐标系中的位置是在()(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限10、(崇左)已知点A的坐标为()a b,,O为坐标原点,连结OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为().A.()a b-, B.()a b-, C.()b a-, D.()b a-,11、(河南)如图6所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).图6xy1243-11-22-33123AB图3图2图4图5 A.B.C.D.月牙①绕点B 顺时针旋转900得到月牙②,则点A 的对应点A ’的坐标为( ) A.(2,2) B.(2,4) C.(4,2) D.(1,2)12、(新疆)下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是( )13、(淄博市)如图7,点A ,B ,C 的坐标分别为(01)(02)(30)-,,,,,.从下面四个点M(3,3),N(3,-3),P(-3,0), Q(-3,1)中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是( ) A .M B .N C .P D .Q二、填空题1、(肇庆)在平面直角坐标系中,点P(2,-3)关于原点对称点P ′的坐标是 .2、(湖北十堰市)如图8,在平面直角坐标系中,点A 的坐标为(1,4),将线段OA 绕点O 顺时针旋转90°得到线段OA′,则点A′的坐标是 .3、(梅州市)如图10所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过________次旋转而得到, 每一次旋转_______度.4、(衡阳市)点A 的坐标为(2,0),把点A 绕着坐标原点顺时针旋转135º到点B ,那么点B 的坐标是 _________ .5、(枣庄市)如图11,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把AO B△绕点A 顺时针旋转90°后得到AO B ''△,则点B '的坐标是 .三、解答题1、(娄底)如图13所示,每个小方格都是边长为1的正方形,以O 点为坐标原点建立平面直角坐标系.(1)画出四边形OABC 关于y 轴对称的四边形OA 1B 1C 1,并写出点B 1的坐标是 . (2)画出四边形OABC 绕点O 顺时针方向旋转180°后得到的四边形OA 2B 2C 2.2、(潍坊)在如图14所示的方格纸中,每个小方格都是边长为1个单位的正方形,A B C △的三个顶点都在格点上(每个小方格的顶点叫格点).画出A B C △绕点O 逆时针旋转90°后的A B C '''△. 4、(长春)图①、图②均为76⨯的正方形网格,点A B C 、、在格点上. (1)在图①中确定格点D ,并画出以A B C D 、、、为顶点的四边形, 使其为轴对称图形.(画一个即可)(3分)(2)在图②中确定格点E ,并画出以A B C E 、、、为顶点的四边形,使其为中心对称图形. (画一个即可)(3分)3、(株洲市)如图15,在Rt OAB ∆中,90O A B ∠=︒,6O A A B ==,将OAB ∆绕点O 沿逆时针方向旋转90︒得到11O A B ∆. (1)线段1O A 的长是 ,1A O B ∠的度数是 ; (2)连结1A A ,求证:四边形11O A A B 是平行四边形; (3)求四边形11O A A B 的面积.甲乙甲乙A B C D 甲乙甲乙图14图13图10图11图9 图8 图7图①图②图15。
九年级旋转专题复习
九年级旋转专题复习1.下列图案既是中心对称,又是轴对称的是( )A B C D2.已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90得1OA ,则点1A 的坐标为( ) A .()a b -,B .()a b -,C .()b a -,D .()b a -,3.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为 .4.如图,把面积为1的正方形纸片ABCD 放在平面直角坐标系中, 点B 、C 在x 轴上,A 、D 关于y 轴对称,将C 点折叠到y 轴上的C′,折痕BP ,则经过P 点反比例函数的解析式为 .5.(1)点(2,4)绕点(0,2)顺时针旋转90°得到的点的坐标是 . (2)直线y=2x 绕点(0,2)顺时针旋转90°得到的直线解析式是 . (3) 求直线y=2x+2绕点(0,2)顺时针旋转90°得到的直线的解析式是 . 6.如图,已知ABC △: (1)AC 的长等于_______.(2)若将ABC △向右平移2个单位得到A B C '''△, 则A 点的对应点A '的坐标是_____;(3)若将ABC △绕点C 按顺时针方向旋转90后得到∆A 1B 1C 1,则A 点对应点A 1的坐标是_________.7. 正方形ABCD 中,对角线AC 、BD 交于O ,Q 为CD 上任意一点, AQ 交BD 于M ,过M 作MN ⊥AM 交BC 于N ,连AN 、QN. 下列结论:①MA =MN ;②∠AQD =∠AQN ; ③ABNQD AQN S S 五边形21=∆; ④AQ.MN=QN.CD 。
其中正确的结论有( ) (A )①②③④. (B )只有①③④. (C )只有②③④. (D )只有①②.8.如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ;②△ABE ≌△ACD ; ③BE DC DE +=; ④222BE DC DE += 其中正确的是 【 】(第8题图)A BCD EF12题Q N M DOCBAA .②④;B .①④;C .②③;D .①③.图 (一)在△OAB , △OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =90°,连AC ,BD . (1)①若O 、C 、A 在一条直线上,连AD 、BC ,取BC 的中点M (如图1),则OM 、AD 之间有何确定的关系?②若将△OCD 绕O 旋转(如图1-1、1-2、1-3),则①的结论是否变化,加以证明.图1 图1-1 图1-2 图1-3(2)①若O 、C 、A 在一条直线上,连AD 、BC ,AC 取BC 、AD 的中点M 、N (如图2),则MN 、AC 之间有何确定的关系?②若将△OCD 绕O 旋转(如图2-1、2-2),则①的结论是否变化,加以证明.图2 图2-1 图2-2O C B A M O D C B A M O DC B AM O D B A MO ND C B AMO ND CBA M O N DC B A(3) ①若O 、C 、A 在一条直线上,连AC 、BD ,取CD 、AB 的中点M 、N (如图3),则MN 、AC 之间有何确定的关系?②若将△OCD 绕O 旋转(如图3-1、3-2),则①的结论是否变化,加以证明.图3 图3-1 图3-2(4)①如图4,若D 、O 、B 在一条直线上,连AD 、BC ,取AD 、BC 的中点M 、N ,MP ⊥AD ,N P ⊥BC 相交于P ,则PM+PN 与AD+BC 之间有何确定的关系? ②将△OCD 绕O 旋转(如图4-1、4-2),则①的结论是否变化,加以证明.图4 图4-1 图4-2M O N D CBAM O N D C B A MO N DC B A MO ND CBA P MO N D C BA P MO N D C B A P图 (二)在△CAB , △DEB 中,CA =CB ,DE =DB ,∠ACB =∠EDB =90°,连AE .①若A 、D 、B 在一条直线上,取AE 的中点M (如图5),连CM 、DB ,则CM 、DM 之间有何确定的关系?②若将△DEB 绕B 旋转(如图5-1、5-2、5-3),则①的结论是否变化,加以证明.图5 图5-1 图5-2 图5-3图 (三)在△CAB , △DBE 中,CA =DB ,BE =BD ,∠ACB =∠EBD =90° ①若E 、C 重合,连AD (如图6),则CM 、AE 之间有何确定数量的关系? ②若E 沿射线CA 运动, (如图6-1、6-2),则①的结论是否变化,加以证明.图6 图6-1 图6-2M E D C B A M ED C B A MED C B A ME D C BA M DC (E )B A MEDC B AM E DCB A在△CAB , △DEF 中,CA =CB ,DE =DF ,∠ACB =∠EDF =90°. 若把△DEF 的顶点E 放在AB 的中点处并绕E 旋转,交直线CA 、CB 于M 、N 连CE 、MN ①若△DEF 绕E 旋转到(如图7),则CN 、CM 、MN 、CE 之间有何确定数量的关系? ②若△DEF 绕E 旋转到(如图7-1),①的结论又如何,加以证明.图7 图7-1图 (五)在△CAB 中,CA =CB , ∠ACB = 90°. ①把△ABC 绕B 顺时针旋转a =135°(如图8),将线段AE 射线ED 的方向平移至DF ,连CD 、CF ,则CF 、CD 之间有何确定的关系?②若△ABC 绕B 顺时针旋转a ≠135°(如图8-1),其它条件不变,①的结论是否变化,加以证明. 图8 图8-1MN FED CB A MN F E DC BA F E DC BAF E DC B A(1)△ABC 中,CA =CB ,点D 为AB 的中点,∠A =30°,M 、N 分别为AC 、BC 上的点.且∠MDN +∠ACN =180°①如图9,当CM =CN 时, DM 与DN 的数量关系为___________;∠MDN =__________;CM +CN 与AB 的数量关系为________________________. ②如图9-1,当CM ≠CN 时,①的结论是否成立? ③如图9-2,若点M 在AC 的延长线上,点N 在BC 上, 其它条件不变,CM 、CN 、AB 有何数量关系? ④在图9-1中,若∠A =a ,则DM 和DN 的数量关系为____________,∠MDN =______________.图9 图9-1 图9-2(2)如图10,点I 是Rt △ABC (∠ACB =90°)的内角平分线交点,在CI 的延长线上取点D ,使DA ⊥DB .①判断线段DA 与DB 有何种数量关系?②如图10-1,过点C 作IC 的垂线,在垂线上取点D 使DA ⊥DB ,则线段DA 与DB 有何种数量关系?③如图10-2,在②的条件下,过点D 作DE ⊥AC 于E ,过I 作IF ⊥AB 于点F ,判断AF -BF 与DE图10 图10-1 图10-2A M N D CB A M N DCB A M ND C B。
(完整版)人教版九年级数学上册《旋转》知识点及复习题
第三单元旋转一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征(3分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)单元测试1.下列正确描述旋转特征的说法是()A.旋转后得到的图形与原图形形状与大小都发生变化.B.旋转后得到的图形与原图形形状不变,大小发生变化.C.旋转后得到的图形与原图形形状发生变化,大小不变.D.旋转后得到的图形与原图形形状与大小都没有变化.2.下列描述中心对称的特征的语句中,其中正确的是()A.成中心对称的两个图形中,连接对称点的线段不一定经过对称中心B.成中心对称的两个图形中,对称中心不一定平分连接对称点的线段C.成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分D.成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分3.4.下列图形中即是轴对称图形,又是旋转对称图形的是()A.(l)(2)B.(l)(2)(3)C.(2)(3)(4)D.(1)(2)(3(4)5.下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。
上册《旋转》复习人教版九级数学全一册优质课件
7.【例4】如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC, 连接OD. (1)求证:△COD是等边三角形; (2)当α=150°时,OB=3,OC=4, 求OA的长. (1)略 (2)5 小结:解题的关键是熟练应用旋转的性质.
上册第23章 第6课时 《旋转》单元复习-2020秋人教版九 年级数 学全一 册课件 (共19 张PPT)
上册第23章 第6课时 《旋转》单元复习-2020秋人教版九 年级数 学全一 册课件 (共19 张PPT)
3.如图,在平面直角坐标系中,△ABC的三个顶都在格点 上,点A的坐标为(2,4),
上册第23章 第6课时 《旋转》单元复习-2020秋人教版九 年级数 学全一 册课件 (共19 张PPT)
知识点二:中心对称及中心对称图形 (1)中心对称和中心对称图形的概念. (2)中心对称和中心对称图形的性质. (3)中心对称图形的识别.
上册第23章 第6课时 《旋转》单元复习-2020秋人教版九 年级数 学全一 册课件 (共19 张PPT)
上册第23章 第6课时 《旋转》单元复习-2020秋人教版九 年级数 学全一 册课件 (共19 张PPT)
上册第23章 第6课时 《旋转》单元复习-2020秋人教版九 年级数 学全一 册课件 (共19 张PPT)
精典范例
4.【例1】在平面直角坐标系中,点P(2,3)关于原点对称的点 的坐标是 (-2,-.3)
小结:关于原点对称的两个点的横坐标、纵坐标都互为相反 数.
上册第23章 第6课时 《旋转》单元复习-2020秋人教版九 年级数 学全一 册课件 (共19 张PPT)
人教版 九年级上册数学 第23章 旋转 综合复习(含答案)
人教版九年级数学第23章旋转综合复习一、选择题(本大题共10道小题)1. 如图,如果甲、乙两图关于点O对称,那么乙图中不符合题意的一块是()2. 如图所示的图案中,是中心对称图形的是()3. 把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°4. 如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形菱形OA′B′C′,再作菱形OA′B′C′关于点O的中心对称图形菱形OA″B″C″,则点C的对应点C″的坐标是()图25-K-1A.(2,-1) B.(1,-2)C.(-2,1) D.(-2,-1)5. 2018·绵阳在平面直角坐标系中,以原点为旋转中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为()A.(4,-3) B.(-4,3)C.(-3,4) D.(-3,-4)6. 如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AO B=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是()A.(-1,2+3) B.(-3,3)C.(-3,2+3) D.(-3,3)7. 如图,将△ABC以点O为旋转中心旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后变为线段E′D′.已知BC=4,则线段E′D′的长度为()A.2 B.3 C.4 D.1.58. 如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°-αB.αC.180°-αD.2α9. 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C ,M 是BC 的中点,P 是A′B′的中点,连接PM.若BC =2,∠A =30°,则线段PM 的最大值是( )A .4B .3C .2D .110. 2020·河北模拟如图所示,A 1(1,3),A 2(32,32),A 3(2,3),A 4(3,0).作折线OA 1A 2A 3A 4关于点A 4中心对称的图形,得折线A 8A 7A 6A 5A 4,再作折线A 8A 7A 6A 5A 4关于点A 8中心对称的图形……以此类推,得到一个大的折线.现有一动点P 从原点O 出发,沿着折线以每秒1个单位长度的速度运动,设运动时间为t 秒.当t =2020时,点P 的坐标为( )A .(1010,3)B .(2020,32)C .(2016,0)D .(1010,32)二、填空题(本大题共7道小题)11. 在平面直角坐标系中,将点A (4,2)绕原点按逆时针方向旋转90°后,其对应点A ′的坐标为________.12. 如图,在正方形网格中,格点△ABC 绕某点顺时针旋转角α(0<α<180°)得到格点△A 1B 1C 1,点A 与点A 1,点B 与点B 1,点C 与点C 1是对应点,则α=________°.13. 如图所示,△ABC的顶点都在网格线的交点(格点)上,如果将△ABC绕点C 逆时针旋转90°,那么点B的对应点B′的坐标是________.14. 如图,△ABC,△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2 2.将△BDE绕点B逆时针旋转后得△BD′E′,当点E′恰好落在线段AD′上时,CE′=________.15. 如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为________.16. 如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF,若AB=3,AC=2,且α+β=∠B,则EF=________.17. 如图,在平面直角坐标系中,对点P(1,0)作如下变换:先向上平移(后一次平移比前一次多1个单位长度),再作关于原点的对称点,即向上平移1个单位长度得到点P1,作点P1关于原点的对称点P2,向上平移2个单位长度得到点P3,作点P3关于原点的对称点P4……那么点P2020的坐标为____________.三、解答题(本大题共4道小题)18. 如图,△ABO与△CDO关于点O中心对称,点E,F在线段AC上,且AF =CE.求证:DF=BE.19. 如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与点A,B不重合),连接CD,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE 交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.20. 如图,在△ABC中,∠BAC=90°,AB=AC,D,E是BC边上的点,将△ABD 绕点A逆时针旋转得到△ACD′.(1)求∠DAD′的度数;(2)当∠DAE=45°时,求证:DE=D′E.21. 请认真阅读下面的数学小探究系列,完成所提出的问题:(1)探究1:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.求证:△BCD的面积为1 2a 2.(提示:过点D作BC边上的高DE,可证△ABC≌△BDE)(2)探究2:如图②,在一般的Rt△ABC中,∠ACB=90°,BC=a,将边AB 绕点B顺时针旋转90°得到线段BD,连接CD,请用含a的式子表示△BCD的面积,并说明理由.(3)探究3:如图③,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B 顺时针旋转90°得到线段BD,连接CD,试探究用含a的式子表示△BCD的面积,要有探究过程.人教版九年级数学第23章旋转综合复习-答案一、选择题(本大题共10道小题)1. 【答案】C[解析]2. 【答案】D3. 【答案】C4. 【答案】A[解析] ∵点C的坐标为(2,1),∴点C′的坐标为(-2,1),∴点C″的坐标为(2,-1).故选A.5. 【答案】B[解析] 如图所示,建立平面直角坐标系,点B的坐标为(-4,3).6. 【答案】B7. 【答案】A[解析] ∵ED 是△ABC 的中位线,BC =4,∴ED =2.又∵△A ′B ′C ′和△ABC 关于点O 中心对称,∴E ′D ′=ED =2.8. 【答案】C[解析] 由题意可得∠CBD =α,∠C =∠EDB.∵∠EDB +∠ADB =180°, ∴∠C +∠ADB =180°.由四边形的内角和定理,得∠CAD +∠CBD =180°. ∴∠CAD =180°-∠CBD =180°-α.故选 C.9. 【答案】B[解析] 连接PC.在Rt △ABC 中,∵∠A =30°,BC =2, ∴AB =4.根据旋转的性质可知,∠A′CB′=90°,A′B′=AB =4. ∵P 是A′B′的中点,∴PC =12A′B′=2. ∵M 是BC 的中点,∴CM =12BC =1. 又∵PM≤PC +CM , 即PM≤3,∴PM 的最大值为3(此时点P ,C ,M 共线). 故选B.10. 【答案】A二、填空题(本大题共7道小题) 11. 【答案】(-2,4)12. 【答案】90 [解析] 连接AA 1,CC 1,分别作AA 1和CC 1的垂直平分线,两直线相交于点D ,则点D 即为旋转中心,连接AD ,A 1D ,则∠ADA 1=α=90°.13. 【答案】(1,0)14. 【答案】2+6 [解析] 如图,连接CE′,∵△ABC ,△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2 2,∴AB =BC =2 2,BD =BE =2.∵将△BDE 绕点B 逆时针旋转后得△BD′E′, ∴D′B =BE′=BD =2,∠D′BE′=90°, ∠D′BD =∠ABE′, ∴∠ABD′=∠CBE′, ∴△ABD′≌△CBE′(SAS), ∴∠D′=∠CE′B =45°. 过点B 作BH ⊥CE′于点H ,在Rt △BHE′中,BH =E′H =22BE′=2, 在Rt △BCH 中,CH =BC 2-BH 2=6, ∴CE′=2+ 6.故答案为2+ 6.15. 【答案】18[解析] 如图.∵∠BAD =∠BCD =90°,∴∠B +∠ADC =180°.又∵AB =AD ,∴将△ABC 绕点A 逆时针旋转90°后点B 与点D 重合,点C 的对应点E 落在CD 的延长线上,∴AE =AC =6,∠CAE =90°,∴S 四边形ABCD =S △ACE =12AC·AE =12×6×6=18.16. 【答案】13 [解析] ∵α+β=∠B ,∴∠EAF =∠BAC +∠B =90°,∴△AEF是直角三角形,且AE =AB =3,AF =AC =2,∴EF =AE 2+AF 2=13.17. 【答案】(1,-505)[解析] 根据题意可列出下面的表格:观察表格可知:这些点平均分布在四个象限中,序号除以4余1的点在第一象限,横坐标都是1,纵坐标为序号减1除以4的商加1;序号除以4余2的点是序号除以4余1的点关于原点的对称点;序号能被4整除的点在第四象限,横坐标为1,纵坐标为序号除以4的商的相反数;序号除以4余3的点在第二象限,是序号能被4整除的点关于原点的对称点.因为2020÷4=505,所以点P 2020在第四象限,坐标为(1,-505).三、解答题(本大题共4道小题)18. 【答案】证明:∵△ABO 与△CDO 关于点O 中心对称, ∴BO =DO ,AO =CO.∵AF =CE ,∴AO -AF =CO -CE , 即FO =EO.在△FOD 和△EOB 中,⎩⎨⎧FO =EO ,∠FOD =∠EOB ,DO =BO ,∴△FOD ≌△EOB(SAS),∴DF =BE.19. 【答案】解:(1)证明:由题意可知,CD =CE ,∠DCE =90°. ∵∠ACB =90°,∴∠ACB -∠DCB =∠DCE -∠DCB , 即∠ACD =∠BCE.在△ACD 与△BCE 中,⎩⎨⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE(SAS).(2)∵∠ACB =90°,AC =BC ,∴∠A =45°. ∵△ACD ≌△BCE ,∴AD =BE ,∠CBE =∠A =45°. ∵AD =BF ,∴BE =BF , ∴∠BEF =12×(180°-45°)=67.5°.20. 【答案】解:(1)∵将△ABD 绕点A 逆时针旋转,得到△ACD′, ∴∠DAD′=∠BAC.∵∠BAC =90°,∴∠DAD′=90°.(2)证明:∵△ABD 绕点A 逆时针旋转得到△ACD′, ∴AD =AD′,∠DAD′=∠BAC =90°. ∵∠DAE =45°,∴∠D′AE =∠DAD′-∠DAE =90°-45°=45°, ∴∠D′AE =∠DAE.在△AED 与△AED′中,⎩⎨⎧AE =AE ,∠DAE =∠D′AE ,AD =AD′,∴△AED ≌△AED′(SAS), ∴DE =D′E.21. 【答案】解:(1)证明:如图①,过点D 作DE ⊥CB 交CB 的延长线于点E ,∴∠BED =∠ACB =90°.由旋转知,AB =BD ,∠ABD =90°,∴∠ABC +∠DBE =90°.又∵∠A +∠ABC =90°,∴∠A =∠DBE .在△ABC 和△BDE 中,⎩⎨⎧∠ACB =∠BED ,∠A =∠DBE ,AB =BD ,∴△ABC ≌△BDE (AAS),∴BC =DE =a .∵S △BCD =12BC ·DE ,∴S △BCD =12a 2.(2)△BCD 的面积为12a 2.理由:如图②,过点D 作CB 的垂线,与CB 的延长线交于点E ,∴∠BED =∠ACB =90°.∵线段AB 绕点B 顺时针旋转90°得到线段BD ,∴AB =BD ,∠ABD =90°,∴∠ABC +∠DBE =90°.又∵∠A +∠ABC =90°.∴∠A =∠DBE .在△ABC 和△BDE 中,⎩⎨⎧∠ACB =∠BED ,∠A =∠DBE ,AB =BD ,∴△ABC ≌△BDE (AAS),∴BC =DE =a .∵S △BCD =12BC ·DE ,∴S △BCD =12a 2.(3)如图③,过点A 作AF ⊥BC 于点F ,过点D 作DE ⊥CB 交CB 的延长线于点E ,∴∠AFB =∠E =90°,BF =12BC =12a ,∴∠F AB +∠ABF =90°.∵线段AB 绕点B 顺时针旋转90°得到线段BD ,∴∠ABD =90°,AB =BD ,∴∠ABF +∠DBE =90°,∴∠F AB =∠DBE .在△AFB 和△BED 中,⎩⎨⎧∠AFB =∠BED =90°,∠F AB =∠DBE ,AB =BD ,∴△AFB ≌△BED (AAS),∴BF =DE =12a ,∴S △BCD =12BC ·DE =12·a ·12a =14a 2.。
人教版数学九年级上学期课时练习-《旋转》全章复习与巩固(知识讲解)(人教版)
专题23.7《旋转》全章复习与巩固(知识讲解)【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形;3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.特别说明:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA=OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;''').(3)旋转前、后的图形全等(△ABC≌△A B C特别说明:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.特别说明:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.特别说明:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比【典型例题】类型一、旋转三要素1.如图,E是正方形ABCD的边AB上任意一点(不与点A,B重合),DAE△按逆时针方向旋转后恰好能够与DCF重合.(1)旋转中心是________,旋转角为________;(2)请你判断DFE△的形状,并说明理由.【答案】(1) 点D ;90° (2) 等腰直角三角形,理由见分析 【分析】(1)由已知可知,旋转中心为点D ,旋转角∠ADC = 90°,即可求解; (2)由旋转的性质可得DE = DF ,∠EDF = ∠ADC = 90,可得结论. (1)解:由题意得:旋转中心是点D ;旋转角为∠ADC ,在正方形ABCD 中,∠ADC =90°, ∠旋转角为90°; 故答案为:点D ;90°(2)解:根据题意得:DE DF =,90EDF ADC ∠=∠=︒,∠DEF 是等腰直角三角形.【点拨】本题考查了旋转的性质,正方形的性质,掌握旋转的性质是解题的关键. 举一反三:【变式1】在ABC 中,30B ACB ∠+∠=︒,4AB =,ABC 逆时针旋转一定角度后与ADE 重合,且点C 恰好成为AD 中点,如图. (1) 旋转中心是点______,AE =______; (2) 求直线BC 与直线DE 的夹角.【答案】(1) A ,AC (2)30 【分析】(1)根据旋转后A 点与自身对应,则旋转中心为点A ,进而根据12AC AD =,可知AE 与AC 对应,即可求解;(2)延长BC 交ED 于点F ,取AB 中点G ,连接EG ,证明AEG △是等边三角形,进而求得1,120,902EG AB BG EGB BEA ==∠=︒∠=︒在EBF △中,根据三角形内角和定理求得EFB ∠,即直线BC 与直线DE 的夹角.(1)解:∠旋转后A 点与自身对应,∠旋转中心为点A , 12AC AD =,则AC 旋转后与AD 不对应,则AC 与AE 对应 故答案为:A ,AC(2)延长BC 交ED 于点F ,取AB 中点G ,连接EG ,30ABC ACB ∠+∠=︒,4AB =,180150BAC B ACB ∴∠=︒-∠-∠=︒∴ABC 逆时针旋转150︒后与ADE 重合, ∴150CAE BAC ∠=∠=︒,BCA DEA ∠=∠36060EAG EAC DAB ∴∠=︒-∠-∠=︒ G 是AB 的中点,122AG AB ∴== 1,22AD AB AC AD === ∴2AE AC ==∴AEG 是等边三角形60AGE ∴∠=︒ 120EGB ∴∠=︒又2EG AG AE BG ====30∴∠=∠=︒GBE GEB∴∠=∠+∠=︒90BEA BEG GEABEF中∠+∠FBE BEF=∠+∠+∠+∠CBA ABE BEA AED=∠+∠+∠+∠ABE BEA CBA AED()==︒+︒︒12030150∴∠=︒EFB30即直线BC与直线DE的夹角为30【点拨】本题考查了旋转的性质,等边三角形的判定,三角形内角和定理,掌握旋转的性质是解题的关键.【变式2】如图,点P是正方形ABCD内一点,连接P A,PB,PC,将∠ABP绕点B 顺时针旋转到∠CBP′的位置.(1)旋转中心是点__________,旋转角度是__________.(2)连接PP′,∠BPP′的形状是__________ 三角形.(3)若P A=2,PB=4,∠APB=135°,求PC的长.【答案】(1)B,90°;(2)等腰直角;(3)6【分析】(1)根据旋转的定义解答;(2)根据旋转的性质可得BP=BP′,又旋转角为90°,然后根据等腰直角三角形的定义判定;(3)∠根据勾股定理列式求出PP′,先根据旋转的性质求出∠BP′C=135°,再求出∠PP′C=90°,然后根据勾股定理列式进行计算即可得解.解:(1)∠P是正方形ABCD内一点,∠ABP绕点B顺时针旋转到∠CBP′的位置,∠旋转中心是点B,点P旋转的度数是90度,故答案为:B ,90°;(2)根据旋转的性质BP=BP′,旋转角为90°,∠∠BPP′是等腰直角三角形; 故答案为:等腰直角;(3)在等腰Rt ∠BPP '中,∠PB =BP '=4,∠PP ′= ∠∠BP ′C =∠BP A =135°,∠∠PP ′C =∠BP ′C -∠BP ′P =135°-45°=90°, ∠P 'C =P A =2 在Rt ∠PP ′C 中,PC 6==【点拨】本题考查旋转的性质,勾股定理,正方形的性质,等腰直角三角形的判定和性质,解题的关键是熟练掌握旋转的性质和正方形的性质.类型二、利用旋转性质求值或证明2.如图,点E 是正方形ABCD 内一点,将BEC △绕点C 顺时针旋转90°至DFC △. (1) 若30EBC ∠=︒,80BCE ∠=︒,求DFC ∠; (2) 若3CE =,求CEF △的面积.【答案】(1) 70DFC ∠=︒ (2) CEF △的面积为92【分析】(1)根据三角形内角和定理,先算出70BEC ∠=︒,根据旋转性质,得出70DFC BEC ∠=∠=︒;(2)根据旋转性质得出90ECF ∠=︒,3CF CE ==,即可算出∠CEF 的面积. (1)解:∠30EBC ∠=︒,80BCE ∠=︒,∠18070BEC EBC BCE ∠=︒-∠-∠=︒,∠将BEC △绕点C 顺时针旋转90°至DFC △, ∠70DFC BEC ∠=∠=︒.(2)∠将BEC △绕点C 顺时针旋转90°至DFC △, ∠90ECF ∠=︒,3CF CE ==, ∠11933222CEF S CE CF ∆=⨯⨯=⨯⨯=.【点拨】本题主要考查了三角形内角和定理,旋转的性质,根据旋转得出90ECF ∠=︒,3CF CE ==,是解题的关键.举一反三:【变式1】已知在Rt ABC △中,90ACB ∠=︒,AC BC =,CD AB ⊥于点D .在边BC 上取一点E ,连接DE ,将线段DE 绕点E 顺时针旋转90°得到线段EF ,连接AF ,交线段CD 于点G .(1) 如图,若点E 与点C 重合,求证:FCG ADG △△≌; (2) 探究线段AG 与GF 之间满足的数量关系,并说明理由;(3) 若10AB =,请直接写出点C 与点F 之间的最小距离,不必写解答过程. 【答案】(1)见分析(2)AG =GF ,理由见分析(3)5 【分析】(1)根据题意,∠ABC 是等腰直角三角形,CD ∠AB ,所以CD =AD ,根据旋转的性质,CD =CF ,所以CF =AD ,又因为∠GCF =∠GDA =90°,∠CGF =∠DGA ,所以FCG ADG △△≌(ASA );(2)作EH ∠BC ,交CD 于点H ,连接FH ,则可证明∠FEH ≌∠CED (SAS ),得到FH =DC =AD ,∠EHF =∠ECD =45°,从而证明∠FHG =90°,又因为对顶角相等,可证明∠FGH≌∠AGD (AAS ),所以AG =GF ;(3)根据(2)中的结论,CF ,所以当CE 取最小值0时CF有最小值5.解:(1)根据题意,∠ABC 是等腰直角三角形,∠CD AB ⊥∠CD 是斜边AB 的中线 ∠CD =AD∠线段DE 绕点E 顺时针旋转90°得到线段EF ∠∠FCG =∠ADG =90°,CD =CF ∠AD =CF在△FCG 和ADG 中FCG ADG CF ADFGC AGD ∠=∠⎧⎪=⎨⎪∠=∠⎩∠FCG ADG △△≌(ASA ) (2)AG =GF ,理由如下:作EH ∠BC ,交CD 于点H ,连接FH ,如图,∠∠ABC 是等腰直角三角形,CD ∠AB∠∠BCD =12ACB ∠=45°,CD =AD =12AB∠EH ∠BC∠∠EHC =∠BCD =45° ∠CE =HE∠∠FED +∠DEH =∠DEH +∠HEC ∠∠FEH =∠DEC 又∠EF =ED∠∠FEH ≌∠CED (SAS )∠FH =DC =AD ,∠EHF =∠ECD =45° ∠∠CHF =∠CHE +∠EHF =45°+45°=90° ∠∠FHG =90°=∠ADG 又∠∠FGH =∠AGD ∠∠FGH ≌∠AGD (AAS ) ∠AG =GF (3)连接CF ,∠FH =AD =12AB =11052⨯=,CH∠CF当CE 最小时CF 最小,CE 最小值为0,∠CF 5=点C 与点F 之间的最小距离为5.【点拨】本题考查全等三角形的判定与性质,旋转的性质,勾股定理,熟练掌握等腰直角三角形的性质和全等三角形的判定与性质是解题的关键.【变式2】如图,P 是等边ABC 内的一点,且5,4,3PA PB PC ===,将APB △绕点B 逆时针旋转,得到CQB △.(1) 旋转角为_____度; (2) 求点P 与点Q 之间的距离;(3)求BPC∠的度数;S.(4)求ABC的面积ABC【答案】+9.【分析】(1)根据∠QCB是∠P AB绕点B逆时针旋转得到,可知∠ABC为旋转角即可得出答案,(2)连接PQ,根据等边三角形得性质得∠ABC=60°,BA=BC,由旋转的性质得BP =BQ,∠PBQ=∠ABC=60°,CQ=AP=5,BP=BQ=4,∠PBQ=60°,于是可判断∠PBQ 是等边三角形,所以PQ=PB=4;(3)先利用勾股定理的逆定理证明∠PCQ是直角三角形,且∠QPC=90°,再加上∠BPQ =60°,然后计算∠BPQ+∠QPC即可.(4)由直角三角形的性质可求CH,PH的长,由勾股定理和三角形的面积公式可求解.解:(1)∠∠ABC是等边三角形,∠∠ABC=60°,∠∠QCB是∠P AB绕点B逆时针旋转得到的,∠旋转角为60°故答案为:60;(2)连接PQ,如图1,∠∠ABC是等边三角形,∠∠ABC=60°,BA=BC,∠∠QCB是∠P AB绕点B逆时针旋转得到的,∠∠QCB∠∠P AB,∠BP=BQ,∠PBQ=∠ABC=60°,CQ=AP=5,∠BP=BQ=4,∠PBQ=60°,∠∠PBQ是等边三角形,∠PQ=PB=4;(3)∠QC =5,PC =3,PQ =4, 而32+42=52, ∠PC 2+PQ 2=CQ 2,∠∠PCQ 是直角三角形,且∠QPC =90°, ∠∠PBQ 是等边三角形, ∠∠BPQ =60°,∠∠BPC =∠BPQ +∠QPC =60°+90°=150°; (4)如图2,过点C 作CH ∠BP ,交BP 的延长线于H , ∠∠BPC =150°, ∠∠CPH =30°, ∠CH 12=PC 32=,PH=, ∠BH =4 ∠BC 2=BH 2+CH 2232⎛⎫=+ ⎪⎝⎭2425⎛+ ⎝⎭= ∠S △ABC =2, ∠S △ABC 25=+=9.【点拨】本题考查了旋转的性质,等边三角形的判定与性质,全等三角形的性质,勾股定理的逆定理,掌握旋转的性质是本题的关键.类型三、中心对称图形与轴对称图形3、如图,在平面直角坐标系中,ABC 为格点三角形(顶点为网格线的交点),∠ABC =90°,点A 的坐标为(1,4).已知ABC 与DEF 关于点(),0a 成中心对称(点D ,E ,F 分别为A ,B ,C 的对应点,0a ≥且4a ≠).连接AF ,CD .(1) 若0a =,画出此时DEF 的位置;(2) 线段AF 与CD 的位置和大小关系是______;(3) 若四边形AFDC 是一个轴对称图形,则a 的值为______. 【答案】(1)见分析(2)AF CD ∥,且AF CD =(3)1 【分析】(1)当0a =时,点(a ,0)即为原点,作出ABC 关于原点成中心对称的图形即可;(2)设对称中心为点P (a ,0),根据中心对称的性质,即可得出结论; (3)当四边形AFDC 是菱形或矩形时,可得出a 的值. (1)如图,DEF 即为所画;(2)如图所示,AF CD ∥,且AF CD =故答案为:AF CD ∥,且AF CD =(3)∠ABC 是直角三角形,且B (1,0),∠ABC 与DEF 关于点()1,0成中心对称时,四边形AFDC 是菱形,如图,∠1,a = 故答案为:1【点拨】本题考查作图-中心对称、轴对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.举一反三:【变式1】已知:BD 是ABC 的角平分线,点E ,F 分别在BC AB ,上,且DE AB ,BE AF =.(1) 如图1,求证:四边形ADEF 是平行四边形;(2) 如图2,若ABC 为等边三角形,在不添加辅助线的情况下,请你直接写出所有是轴对称但不是中心对称的图形.【答案】(1)证明见分析(2)等边ABC ,等边BEF ,等边CDE ,等腰BDE ,等腰梯形ABED ,等腰梯形ACEF【分析】(1)由角平分线可知ABD CBD ∠=∠,由平行可知BDE ABD ∠=∠,可得CBD BDE ∠=∠,DE BE AF ==,进而结论得证;(2)由题意可得四边形ADEF 是菱形,,,D E F 是等边三角形的中点,然后根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;对图中的三角形与四边形的对称性进行判断即可.(1)证明:∠BD 是ABC 的角平分线∠ABD CBD ∠=∠ ∠DE AB ∥ ∠BDE ABD ∠=∠ ∠CBD BDE ∠=∠ ∠DE BE AF == ∠DE AF ∥,DE AF = ∠四边形ADEF 是平行四边形.(2)解:由(1)知四边形ADEF 是平行四边形∠EF AC∠ABC 是等边三角形 ∠60EFB C B ∠=∠=∠=︒ ∠BE EF DE == ∠四边形ADEF 是菱形 ∠,,AF BF BE CE CD AD === ∠,,D E F 是等边三角形的中点 ∠,BG EF BD EF ⊥⊥∠由轴对称图形与中心对称图形的定义可知,是轴对称图形但不是中心对称图形的有:等边ABC ,等边 BEF ,等边CDE △,等腰BDE ,等腰梯形ABED ,等腰梯形ACEF .【点拨】本题考查了角平分线,等腰三角形的判定与性质,等边三角形的判定性质,平行四边形的判定与性质,菱形的判定与性质,轴对称图形,中心对称图形等知识.解题的关键在于对知识的熟练掌握与灵活运用.【变式2】 在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,ABC 的顶点都在格点上,请解答下列问题:(1)作出ABC 向左平移4个单位长度后得到的111A B C △,并写出点1C 的坐标; (2)作出ABC 关于原点O 对称的222A B C △,并写出点2C 的坐标;222A B C △可看作111A B C △以点(________,________)为旋转中心,旋转________°得到的.(3)已知ABC 关于直线l 对称的333A B C △的顶点3A 的坐标为()4,2--,请直接写出直线l 的函数解析式________.【答案】(1)图见详解,C 1(-1,2);(2)图见详解,C 2(-3,-2),(-2,0),180;(3)y =-x【分析】(1)根据平移的性质即可画出ABC 向左平移4个单位后的111A B C △;(2)根据中心对称的性质即可作出ABC 关于原点O 对称的222A B C △,再根据旋转的性质即可得出结论;(3)根据轴对称的性质,可以知道直线必过点(-1,1),即可求出解析式. 解:(1)如图所示,点C 1的坐标(-1,2);(2)如图所示,点C 2的坐标(-3,-2),222A B C △可看作111A B C △以点(-2,0)为旋转中心,旋转180°得到的;(3)因为A 的坐标为(2,4),A 3的坐标为(-4,-2),所以直线必过点(-1,1),所以直线的解析式为y =-x .【点拨】本题主要考查了平移,轴对称,中心对称的作图,熟练其概念准确的画出图形是解决本题的关键.类型四、直角坐标系中的中心对称图形4、已知∠ABC的三个顶点的坐标分别为A(-5,0)、B(-2,3)、C(-1,0).(1)画出∠ABC关于坐标原点O成中心对称的∠A′B′C′;(2)将∠ABC绕坐标原点O顺时针旋转90°,画出对应的∠A′′B′′C′′;(3)若以A′、B′、C′、D′为顶点的四边形为平行四边形,则在第四象限中的点D′坐标为.【答案】(1)见分析(2)见分析(3)(6,-2)【分析】(1)根据关于原点对称的点的横坐标与纵坐标都互为相反数解答;(2)根据网格结构找出点A、B、C绕坐标原点O顺时针旋转90°的点A″、B″、C″的坐标,然后顺次连接即可;(3)根据平行四边形的对边平行且相等解答.(1)如图所示,∠A′B′C′就是求作的图形;(2)如图所示,∠A′′B′′C′′就是求作的三角形;(3)如图所示,点D′坐标为(6,-2);【点拨】本题考查了利用旋转变换作图,平行四边形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.举一反三:【变式1】如图,△ABC 三个顶点的坐标分别是A (1,1),B (4,2),C (3,4).(1) 若ABC 经过平移后得到111A B C △,已知点C 的对应点1C 的坐标为()2,4-,画出111A B C △;(2) 请画出△ABC 关于原点对称的△A 2B 2C 2. 【答案】(1)见分析(2)见分析 【分析】(1)根据C 点的平移方式依次得到A 点和B 点的对应点的位置,顺次相连即可; (2)根据中心对称的定义确定对应点的位置后顺次连接即可. (1)如图,△A 1B 1C 1即为所求. (2)如图,△A 2B 2C 2即为所求.【点拨】本题考查了平面直角坐标系内的图形的平移和中心对称,解题关键是牢记平移作图与中心对称图形的作图方法.【变式2】 已知抛物线y =﹣2x 2+8x ﹣7.(1) 二次函数的图象与已知抛物线关于y 轴对称,求它的解析式;(2) 二次函数y =ax 2+bx +c 的图象与已知抛物线关于原点对称,求a ,b ,c 的值. 【答案】(1)y =﹣2x 2﹣8x ﹣7(2)a =2,b =8,c =7 【分析】(1)抛物线y =﹣2x 2+8x ﹣7的图象关于y 轴对称的抛物线x 互为相反数,y 不变进行求解即可;(2)抛物线y =﹣2x 2+8x ﹣7的图象关于原点对称的抛物线x 、y 均互为相反数进行求解即可;(1)解:抛物线y =﹣2x 2+8x ﹣7的图象关于y 轴对称的抛物线x 互为相反数,y 不变,∠y =﹣2(﹣x )2+8(﹣x )﹣7=﹣2x 2﹣8x ﹣7;(2)抛物线y =﹣2x 2+8x ﹣7的图象关于原点对称的抛物线x 、y 均互为相反数,∠﹣y =﹣2(﹣x )2+8(﹣x )﹣7=﹣2x 2﹣8x ﹣7, 即y =2x 2+8x +7∠二次函数y =ax 2+bx +c 中的a =2,b =8,c =7.【点拨】本题主要考查二次函数的图象及性质,掌握二次函数的图象及性质是解题的关键.类型五、旋转几何综合拓展5、∠ABC 和∠DEC 是等腰直角三角形,90ACB DCE ∠=∠=︒,AC BC =,CD CE =.(1)【观察猜想】当∠ABC 和∠DEC 按如图1所示的位置摆放,连接BD 、AE ,延长BD 交AE 于点F ,猜想线段BD 和AE 有怎样的数量关系和位置关系.(2)【探究证明】如图2,将∠DCE 绕着点C 顺时针旋转一定角度()090αα︒<<︒,线段BD 和线段AE 的数量关系和位置关系是否仍然成立?如果成立,请证明:如果不成立,请说明理由.(3)【拓展应用】如图3,在∠ACD 中,45ADC ∠=︒,CD =4=AD ,将AC 绕着点C 逆时针旋转90°至BC ,连接BD ,求BD 的长.【答案】(1)BD AE = ,BD AE ⊥(2)成立,理由见分析(3)【分析】(1)通过证明BCD ACE ≅,即可求证;(2)通过证明BCD ACE ≅,即可求证;(3)过点C 作CH CD ⊥,垂足为C ,交AD 于点H ,根据旋转的性质,等腰直角三角形的性质,勾股定理,即可求解.解:(1)BD AE = ,BD AE ⊥,证明如下:在BCD △和ACE 中,90ACB DCE ∠=∠=︒,AC BC =,CD CE =,BCD ACE ∴≅,,BD AE CBD CAE ∴=∠=∠,90ACB ∠=︒,90CBD BDC ∴∠+∠=︒,BDC ADF ∠=∠,90CAE ADF ∴∠+∠=︒,BD AE ∴⊥;(2)成立,理由如下:∠ACB DEC ∠=∠,∠ACB ACD DCE ACD ∠+∠=∠+∠,即BCD ACE ∠=∠,在BCD △和ACE 中,∠AC BC =,BCD ACE ∠=∠,CD CE =,∠BCD ACE ≌,∠BD AE =,CBD CAE ∠=∠,∠BGC AGF ∠=∠,∠CBD BGC CAE AGF ∠+∠=∠+∠,∠90ACB ∠=︒,∠90CBD BGC ∠+∠=︒,∠90CAE AGF ∠+∠=︒,∠90AFB ∠=︒,∠BD AE ⊥;(3)如图,过点C 作CH CD ⊥,垂足为C ,交AD 于点H ,由旋转性质可得:90ACB ∠=︒,AC BC =,∠CH CD ⊥,∠90DCH ∠=︒,∠90ADC CHD ∠+∠=︒,且45ADC ∠=︒,∠45CHD ∠=︒,∠CHD ADC ∠=∠,∠CD CH ==在Rt DCH 中:2DH =,∠90ACB DCH ∠=∠=︒,∠ACB ACH DCH ACH ∠+∠=∠+∠,即ACD BCH ∠=∠,在ACD △和BCH 中,∠AC BC =,ACD BCH ∠=∠,CD CH =,∠ACD BCH ≌△△,∠4BH AD ==,CBH DAC ∠=∠,∠12CBH DAC ∠+∠=∠+∠,∠90ACB ∠=︒,∠190CBH ∠+∠=︒,∠290DAC ∠+∠=︒,∠90∠=°,BHA∠BH AD⊥,∠BHD△是直角三角形,在Rt BDH中,BD=【点拨】本题考查了全等三角形的判定和性质,勾股定理,旋转的性质,等腰直角三角形的性质等,熟练掌握知识点是解题的关键.举一反三:【变式1】如图1,在∠ABC中,∠C=90°,∠ABC=30°,AC=1,D为∠ABC内部的一动点(不在边上),连接BD,将线段BD绕点D逆时针旋转60°,使点B到达点F的位置;将线段AB绕点B顺时针旋转60°,使点A到达点E的位置,连接AD,CD,AE,AF,BF,EF.(1)求证:∠BDA∠∠BFE;(2)∠CD+DF+FE的最小值为;∠当CD+DF+FE取得最小值时,求证:AD∠BF.(3)如图2,M,N,P分别是DF,AF,AE的中点,连接MP,NP,在点D运动的过程中,请判断∠MPN的大小是否为定值.若是,求出其度数;若不是,请说明理由.【答案】(1)见解答;(2);∠见解答;(3)是,∠MPN=30°.【分析】(1)由旋转60°知,∠ABD=∠EBF、AB=AE、BD=BF,故由SAS证出全等即可;(2)∠由两点之间,线段最短知C、D、F、E共线时CD+DF+FE最小,且CD+DF+FE 最小值为CE,再由∠ACB=90°,∠ABC=30°,AC=1求出BC和AB,再由旋转知AB=BE,∠CBE=90°,最后根据勾股定理求出CE即可;∠先由∠BDF 为等边三角形得∠BFD =60°,再由C 、D 、F 、E 共线时CD +DF +FE 最小,∠BFE =120°=∠BDA ,最后ADF =∠ADB -∠BDF =120°-60°=60°,即证;(3)由中位线定理知道MN ∠AD 且PN ∠EF ,再设∠BEF =∠BAD =α,∠P AN =β,则∠PNF =60°-α+β,∠FNM =∠F AD =60°+α-β,得∠PNM =120°.(1)证明:∠∠DBF =∠ABE =60°,∠∠DBF -∠ABF =∠ABE -∠ABF ,∠∠ABD =∠EBF ,在∠BDA 与∠BFE 中,BD BF ABD EBF AB BE ⎧⎪∠∠⎨⎪⎩===,∠∠BDA ∠∠BFE (SAS );(2)∠∠两点之间,线段最短,即C 、D 、F 、E 共线时CD +DF +FE 最小,∠CD +DF +FE 最小值为CE ,∠∠ACB =90°,∠ABC =30°,AC =1,∠BE =AB =2,BC∠∠CBE =∠ABC +∠ABE =90°,∠CE=∠证明:∠BD =BF ,∠DBF =60°,∠∠BDF 为等边三角形,即∠BFD =60°,∠C 、D 、F 、E 共线时CD +DF +FE 最小,∠∠BFE =120°,∠∠BDA ∠∠BFE ,∠∠BDA =120°,∠∠ADF =∠ADB -∠BDF =120°-60°=60°,∠∠ADF =∠BFD ,∠AD ∠BF ;(3)∠MPN 的大小是为定值,理由如下:如图,连接MN ,∠M ,N ,P 分别是DF ,AF ,AE 的中点,∠MN ∠AD 且PN ∠EF ,∠AB =BE 且∠ABE =60°,∠∠ABE 为等边三角形,设∠BEF =∠BAD =α,∠P AN =β,则∠AEF =∠APN =60°-α,∠EAD =60°+α,∠∠PNF =60°-α+β,∠FNM =∠F AD =60°+α-β,∠∠PNM =∠PNF +∠FNM =60°-α+β+60°+α-β=120°,∠∠BDA ∠∠BFE ,∠MN =12AD =12FE =PN , ∠∠MPN =12(180°-∠PNM )=30°. 【点拨】本题是三角形与旋转变换的综合应用,熟练掌握旋转的性质、三角形全等的判定与性质、平行线的判定、勾股定理的应用、中位线的性质及等腰、等边三角形的判定与性质是解题关键 .【变式2】 如图1,正方形ABCD 的边长为4,点P 在边AD 上(P 不与,A D 重合),连接,PB PC .将线段PB 绕点P 顺时针旋转90°得到PE ,将线段PC 绕点P 逆时针旋转90°得到PF .连接EF EA FD ,,.(1)求证:∠PDF ∆的面积212S PD =; ∠EA FD =;(2)如图2,EA FD.的延长线交于点M,取EF的中点N,连接MN,求MN的取值范围.【答案】(1)∠见详解;∠见详解;(2)4≤MN<【分析】≌,即可得到结论;(1)∠过点F作FG∠AD交AD的延长线于点G,证明PFG CPD∠过点E作EH∠DA交DA的延长线于点H,证明PEH BPA≌,可得≌,结合PFG CPDGD=EH,同理:FG=AH,从而得AHE FGD≌,进而即可得到结论;(2)过点F作FG∠AD交AD的延长线于点G,过点E作EH∠DA交DA的延长线于点EF,HG= 2AD=8,EH+FG= AD=4,然后求出当点P与点D重H,可得∠AMD=90°,MN=12合时,EF最大值=P与AD的中点重合时,EF最小值= HG=8,进而即可得到答案.解:(1)∠证明:过点F作FG∠AD交AD的延长线于点G,∠∠FPG+∠PFG=90°,∠FPG+∠CPD=90°,∠∠FPG=∠CPD,又∠∠PGF=∠CDP=90°,PC=PF,∠PFG CPD ≌(AAS ),∠FG =PD ,∠PDF ∆的面积21122S PD FG PD =⋅=; ∠过点E 作EH ∠DA 交DA 的延长线于点H ,∠∠EPH +∠PEH =90°,∠EPH +∠BP A =90°,∠∠PEH =∠BP A ,又∠∠PHE =∠BAP =90°,PB =PE ,∠PEH BPA ≌(AAS ),∠EH =P A ,由∠得:FG =PD ,∠EH +FG =P A +PD =AD =CD ,由∠得:PFG CPD ≌,∠PG =CD ,∠PD +GD = CD = EH +FG ,∠FG + GD = EH +FG ,∠GD =EH ,同理:FG =AH ,又∠∠AHE =∠FGD ,∠AHE FGD ≌,∠EA FD =;(2)过点F 作FG ∠AD 交AD 的延长线于点G ,过点E 作EH ∠DA 交DA 的延长线于点H ,≌,由(1)得:AHE FGD∠∠HAE=∠GFD,∠∠GFD+∠GDF=90°,∠∠HAE+∠GDF=90°,∠∠HAE=∠MAD,∠GDF=∠MDA,∠∠MAD+∠MDA=90°,∠∠AMD=90°,∠点N是EF的中点,EF,∠MN=12∠EH=DG=AP,AH=FG=PD,∠HG=AH+DG+AD=PD+AP+AD=2AD=8,EH+FG=AP+PD=AD=4,当点P与点D重合时,FG=0,EH=4,HG=8,此时EF最大值当点P与AD的中点重合时,FG=2,EH=2,HG=8,此时EF最小值= HG=8,【点拨】本题主要考查全等三角形的判定和性质,正方形的性质,勾股定理,旋转的性质,添加辅助线,构造直角全等的直角三角形,是解题的关键.。
九年级数学旋转复习教案
九年级数学旋转复习教案一、教学目标:1. 知识与技能:使学生掌握旋转的定义、性质及运用,能够运用旋转解决一些实际问题。
2. 过程与方法:通过复习,让学生进一步理解旋转在现实生活中的应用,提高学生运用数学知识解决实际问题的能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和实践能力。
二、教学重点与难点:1. 教学重点:旋转的定义、性质及运用。
2. 教学难点:如何运用旋转解决实际问题。
三、教学过程:1. 复习导入:回顾旋转的定义和性质,引导学生思考旋转在现实生活中的应用。
2. 实例分析:出示一些实际问题,让学生运用旋转的知识解决,如图形变换、物体运动等。
四、教学策略:1. 情境创设:通过生活实例,激发学生学习兴趣,引导学生主动参与。
2. 问题驱动:提出实际问题,激发学生思考,培养学生解决问题的能力。
3. 分组合作:组织学生分组讨论,培养学生的团队协作能力和沟通能力。
五、课后作业:1. 完成练习题:巩固旋转的基本知识,提高运用旋转解决实际问题的能力。
2. 创新实践:让学生运用旋转的知识解决生活中的问题,培养学生的创新能力。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组合作中的表现,了解学生的学习状态。
2. 作业评价:通过学生完成的练习题和创新实践作业,评估学生对旋转知识的掌握程度以及运用能力。
3. 学生自评与互评:鼓励学生自我评价,进行同学之间的相互评价,促进学生自我发现不足,互相学习,共同进步。
七、教学反思:本节课结束后,教师应认真反思教学效果,包括学生的学习兴趣、课堂氛围、教学内容的难易程度、学生的参与度等,以便在今后的教学中进行调整和改进。
八、教学拓展:1. 深入了解旋转在几何图形中的应用,如圆的性质、坐标系中的旋转等。
2. 探索旋转在艺术、工程、计算机科学等领域的应用,拓宽学生的知识视野。
九、教学资源:1. 教材:九年级数学教材相关章节。
部编数学九年级上册23.10《旋转》全章复习与巩固(培优篇)(人教版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题23.10 《旋转》全章复习与巩固(培优篇)(专项练习)一、单选题1.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形又是关于坐标原点O 成中心对称的图形.若点A 的坐标是(1,3),则点M 和点N 的坐标分别是( )A .M (1,﹣3),N (﹣1,﹣3)B .M (﹣1,﹣3),N (﹣1,3)C .M (﹣1,﹣3),N (1,﹣3)D .M (﹣1,3),N (1,﹣3)2.如图,在Rt △ABC 中,∠ACB =90°,AC BC ==△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则12BE AB +的值为( )A B .C D 3.如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC △绕点A 逆时针旋转后,得到MAB △,则APB Ð等于( ).A .120°B .135°C .150°D .160°4.如图,在Rt ABC V 中,90BAC Ð=°,AB AC =,点D 为BC 的中点,直角MDN Ð绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①DEF V 是等腰直角三角形;②AE CF =;③12ABC AEDF S S =△四边形;④BE CF EF +=,其中正确结论的个数是( )A .1B .2C .3D .45.在矩形ABCD 中,AB =4,BC =3,CE =2BE ,EF =2,连按AF ,将线段AF 绕着点A 顺时针旋转90°得到AP ,则线段PE 的最小值为( )A .B 2C .4D 16.如图,在平面直角坐标系中,Y OABC 的顶点A 在x 轴上,定点B 的坐标为(8,4),若直线经过点D (2,0),且将平行四边形OABC 分割成面积相等的两部分,则直线DE 的表达式是( )A .y=x-2B .y=2x-4C .y=x-1D .y=3x-67.如图,已知等腰直角三角形ABC 中,AC=BC ,把AB 绕点B 逆时针旋转一定角度到点D ,连接AD 、DC ,使得∠DAC=∠BDC ,当时,线段AC 的长 ( )A .3B .C .D 8.对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P (2,3)经1次斜平移后的点的坐标为(3,5).已知点A 的坐标为(2,0),点Q 是直线l 上的一点,点A 关于点Q 的对称点为点B ,点B 关于直线l 的对称点为点C ,若点B 由点A 经n 次斜平移后得到,且点C 的坐标为(8,6),则△ABC 的面积是( )A .12B .14C .16D .189.在平面直角坐标系中,抛物线245y x x =-+与y 轴交于点C ,则该抛物线关于点C 成中心对称的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---10.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()2,0,()0,2,()2,0-.一个电动玩具从原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点2P 与点1P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称;第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;….电动玩具照此规律跳下去,则点2021P 的坐标是( ).A .()4,-0B .()4,0C .()4,4D .()0,4-二、填空题11.如图,已知△ABC 中,∠C =90°,AC =BC =△ABC 绕点A 逆时针反向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为_____.12.如图,在Rt △ABC 中,90ACB Ð=o ,30BAC Ð=o ,BC =2,线段BC 绕点B 旋转到BD ,连AD ,E 为AD 的中点,连接CE ,则CE 的最大值是___.13.如图,在平行四边形ABCD 中,2AB =,60ABC Ð=°,点E 为射线AD 上一动点,连接BE ,将BE 绕点B 逆时针旋转60°得到BF ,连接AF ,则AF 的最小值是______.14.如图,点P 是等边三角形ABC 内一点,且PA =PB =PC个等边三角形ABC 的边长为________.15.如图,在矩形ABCD 中,5AB =,9BC =,E 是边AB 上一点,2AE =,F 是直线BC 上一动点,将线EF 绕点E 逆时针旋转90°得到线段EG ,连接CG ,DG ,则+CG DG 的最小值是________.16.如图,C 为线段AB 的中点,D 为AB 垂直平分线上一点,连接BD ,将BD 绕点D顺时针旋转60°得到线段DE ,连接AE ,若AB =6AE =,则CD 的长为 __________ .17.如图所示,抛物线y =x 2+2x ﹣3顶点为Q ,交x 轴于点E 、F 两点(F 在E 的右侧),T 是x 轴正半轴上一点,以T 为中心作抛物线y =x 2+2x ﹣3的中心对称图形,交x 轴于点K 、L 两点(L 在K 的右侧),已知∠FQL =45°,则新抛物线的解析式为 __.18.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形AB 1C 1D 1 ;把正方形 A 1 B 1 C 1 D 1 边长按原法延长一倍得到正方形 A 2 B 2 C 2 D 2 (如图1(2));以此下去,则正方形 A n B n C n D n 的面积为________.三、解答题19.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(1,1).(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,画出△ABC关于原点O对称的△A2B2C2,并写出点B2的坐标____________;(3)请在x 轴上找一点D 得到▱ACDB ,则点D 的坐标为________,若直线y =32-x +b 平分▱ACDB 的面积,则b =_______.20.如图,一伞状图形,已知120AOB Ð=°,点P 是AOB Ð角平分线上一点,且2OP =,60MPN Ð=°,PM 与OB 交于点F ,PN 与OA 交于点E .(1)如图一,当PN 与PO 重合时,探索PE ,PF 的数量关系(2)如图二,将MPN Ð在(1)的情形下绕点P 逆时针旋转a 度()060a <<°,继续探索PE ,PF 的数量关系,并求四边形OEPF 的面积.21.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB V V ≌;②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE V 的面积,求S 的取值范围(直接写出结果即可).22.[问题提出](1)如图,ABC ADE V V ①、均为等边三角形,点D E 、分别在边AB AC 、上.将ADE V绕点A 沿顺时针方向旋转,连结BD CE 、.在图②中证明△≌△ADB AEC .[学以致用](2)在()1的条件下,当点D E C 、、在同一条直线上时,EDB Ð的大小为 度.[拓展延伸](3)在()1的条件下,连结CD .若6,4,BC AD ==直接写出DBC △的面积S 的取值范围.23.(1)发现如图,点A 为线段BC 外一动点,且BC a =,AB b =.填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .①找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM Ð=°,求线段AM 长的最大值及此时点P 的坐标.24.(1)观察理解:如图 1,ABC D 中,90,ACB AC BC Ð=°=,直线l 过点C ,点,A B 在直线l 同侧, ,BD l AE l ^^,垂足分别为,D E ,由此可得:90AEC CDB Ð=Ð=°,所 以90CAE ACE Ð+Ð=°, 又 因为90ACB Ð=°, 所以90BCD ACE Ð+Ð=°,所以CAE BCD Ð=Ð,又因为AC BC =,所以AEC CDB D @D ( );(请填写全等判定的方法)(2)理解应用:如图2,AE AB ^,且,AE AB BC CD =^,且BC CD =,利用(1)中的结论,请按照图中所标的数据计算图中实线所围成的图形的面积S =_________;(3)类比探究:如图 3, Rt ABC D 中,90ACB Ð=°,4AC =,将斜边AB 绕点A 逆时针旋转 90°至AB ¢,连接B C ¢,则AB C ¢D 的面积=_________ .(4)拓展提升:如图4,等边EBC D 中,3EC BC ==cm ,点O 在BC 上,且2OC =cm ,动点P 从点E 沿射线EC 以1cm/s 速度运动,连接OP ,将线段OP 绕点O 逆时针旋转 120°得到线段OF ,设点P 运动的时间为t 秒.①当t =________秒时,OF ∥ED ;②当t =________秒时,点F 恰好落在射线EB 上.参考答案1.C解:M 点与A 点关于原点对称,A 点与N 点关于x 轴对称,由平面直角坐标中对称点的规律知:M 点与A 点的横、纵坐标都互为相反数,N 点与A 点的横坐标相同,纵坐标互为相反数.所以M (-1,-3),N (1,-3).2.C【分析】连接EC ,过E 作EH ⊥BC 于H ,先利用勾股定理、旋转的性质可得2,60AB CAE =Ð=°,再根据等边三角形的判定与性质可得AE CE ==,然后根据勾股定理分别求出EH BE 、,由此即可得出答案.解:连接EC ,过E 作EH ⊥BC 于H ,在Rt △ABC 中,AC BC ==∴2AB ===,∴112AB =,由旋转可知:60AC AE CAE ==Ð=°,∴ACE V 是等边三角形,∴60AC AE EC ACE ===Ð=°,∴30BCE Ð=°,∴12EH EC ==∴CH ==∴BH BC CH =-=,∴1BE =====,∴1112BE AB +=+=故选:C.【点拨】本题考查了勾股定理、旋转的性质、等边三角形的判定与性质、,通过作辅助线,构造等边三角形是解题关键.3.C【分析】利用旋转变换的性质、勾股定理及其逆定理、等边三角形判定与性质等知识点,通过旋转的性质得出△APM为等边三角形以及△PMB是直角三角形,从而求得∠APB的度数.解:连接PM,如图,由旋转性质可知,△APC≌△AMB,∴AP=AM,MB=PC=10,∵∠MAP=60°,∴△APM是等边三角形,∴PM=AP=6,∵PB=8,∴MB2=PB2+MP2,∴△PMB是直角三角形,∴∠MPB=90°,∵∠MPA=60°,∴∠APB=150°.【点拨】本题主要考查了旋转变换的性质、勾股定理及其逆定理、等边三角形判定与性质等知识点,难度较大.通过旋转的性质得出△APM 为等边三角形以及△PMB 是直角三角形是解答本题的第一个关键.4.C【分析】根据等腰直角三角形的性质可得∠CAD =∠B =45°,根据同角的余角相等求出∠ADF =∠BDE ,然后利用“角边角”证明△BDE 和△ADF 全等,判断出③正确;根据全等三角形对应边相等可得DE =DF 、BE =AF ,从而得到△DEF 是等腰直角三角形,判断出①正确;再求出AE =CF ,判断出②正确;根据BE +CF =AF +AE ,利用三角形的任意两边之和大于第三边可得BE +CF >EF ,判断出④错误.解:∵∠BAC =90°,AB =AC ,∴△ABC 是等腰直角三角形,∠B =45°,∵点D 为BC 中点,∴AD =CD =BD ,AD ⊥BC ,∠CAD =45°,∴∠CAD =∠B ,∠BDE +∠ADE =∠ADB =90°∵∠MDN 是直角,∴∠ADF +∠ADE =90°,∴∠ADF =∠BDE ,在△BDE 和△ADF 中,CAD B AD BD ADF BDE ÐÐìïíïÐÐî===,∴△BDE ≌△ADF (ASA ),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①正确;∵AE =AB -BE ,CF =AC -AF ,∴AE =CF ,故②正确;∵△BDE ≌△ADF∴BDE ADFS S =V V ∴12ADE ADF ADE BDE BDA ABC AEDF S S S S S S S =+=+==△△△△△△四边形故③正确;∵BE +CF =AF +AE >EF ,∴BE +CF >EF ,故④错误;综上所述,正确的是①②③,故选:C.【点拨】本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质、三角形的三边关系、同角的余角相等,熟练掌握等腰直角三角形的性质,并能进行推理论证是解决问题的关键.5.B【分析】连接AE ,过点A 作AG ⊥AE ,截取AG =AE ,连接PG ,GE ,通过SAS 证明△AEF ≌△AGP ,得PG =EF =2,再利用勾股定理求出GE 的长,在△GPE 中,利用三边关系即可得出答案.解:连接AE ,过点A 作AG ⊥AE ,截取AG =AE ,连接PG ,GE ,∵将线段AF 绕着点A 顺时针旋转90°得到AP ,∴AF =AP ,∠PAF =90°,∴∠FAE +∠PAE =∠PAE +∠PAG =90°,∴∠FAE =∠PAG ,在△AEF 和△AGP 中,,AF AP FAE PAG AE AG =ìïÐ=Ðíï=î∴△AEF ≌△AGP (SAS ),∴PG =EF =2,∵BC =3,CE =2BE ,∴BE =1,在Rt △ABE 中,由勾股定理得:AE ==,∵AG =AE ,∠GAE =90°,∴GE =,在△GPE 中,PE >GE -PG ,∴PE 的最小值为GE -PG 2,故选:B .【点拨】本题主要考查了旋转的性质,全等三角形的判定与性质,三角形的三边关系等知识,作辅助线构造出全等三角形是解题的关键.6.A【分析】过平行四边形的对称中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形对称中心的坐标,再利用待定系数法求一次函数解析式解答即可.解:∵点B 的坐标为(8,4),∴平行四边形的对称中心坐标为(4,2),设直线DE 的函数解析式为y=kx+b ,则4220k b k b +=ìí+=î,解得12k b =ìí=-î,∴直线DE 的解析式为y=x-2.故选:A .【点拨】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.7.D【分析】如图(见分析),先根据等腰直角三角形的性质可得45,BAC AC AB Ð=°=,再根据旋转的性质、等腰三角形的性质可得,45AB BD ADC BAC =Ð=Ð=°,然后根据三角形全等的判定定理与性质可得45,BEC ADC BE AD Ð=Ð=°=,从而可得,2,4BE AD AE DE BE AD ^====,最后利用勾股定理即可得.解:如图,过点C 作CE CD ^,交AD 于点E ,连接BE ,ABC Q V 是等腰直角三角形,AC BC =,45,BAC AB \Ð=°==,即AC AB =,由旋转的性质得:AB BD =,BAD BDA \Ð=Ð,DAC B B C C AC AD D \Ð+=ÐÐ+Ð,DAC BDC Ð=ÐQ ,45ADC BAC \Ð=Ð=°,CDE \V是等腰直角三角形,2,45CE CD DE CED \====Ð=°,又90DCE ACB Ð=Ð=°Q ,DCE ACE ACB ACE \Ð+Ð=Ð+Ð,即ACD BCE Ð=Ð,在BCE V 和ACD △中,BC AC BCE ACD CE CD =ìïÐ=Ðíï=î,()BCE ACD SAS \@V V ,45,BEC ADC BE AD \Ð=Ð=°=,90BED BEC CED \Ð=Ð+Ð=°,即BE AD ^,又AB BD =Q ,2AE DE \==(等腰三角形的三线合一),24BE AD DE \===,在Rt ABE △中,AB ==AC AB \===故选:D .【点拨】本题考查了等腰直角三角形的判定与性质、三角形全等的判定定理与性质、旋转的性质、勾股定理等知识点,通过作辅助线,构造等腰直角三角形和全等三角形是解题关键.8.A【分析】连接CQ ,根据中心和轴对称的性质和直角三角形的判定得到∠ACB =90,延长BC 交x 轴于点E ,过C 点作CF ⊥AE 于点F ,根据待定系数法得出直线的解析式进而解答即可.解:连接CQ ,如图:由中心对称可知,AQ =BQ ,由轴对称可知:BQ =CQ ,∴AQ =CQ =BQ ,∴∠QAC =∠ACQ ,∠QBC =∠QCB ,∵∠QAC +∠ACQ +∠QBC +∠QCB =180°,∴∠ACQ +∠QCB =90°,∴∠ACB =90°,∴△ABC 是直角三角形,延长BC 交x 轴于点E ,过C 点作CF ⊥AE 于点F ,如图,∵A (2,0),C (8,6),∴AF =CF =6,∴△ACF 是等腰直角三角形,∵18090ACE ACB Ð=°-Ð=°,∴∠AEC =45°,∴E 点坐标为(14,0),设直线BE 的解析式为y =kx +b ,∵C ,E 点在直线上,可得:14086k b k b ì+=ïí+=ïî,解得:114k b ì=-ïí=ïî,∴y =﹣x +14,∵点B 由点A 经n 次斜平移得到,∴点B (n +2,2n ),由2n =﹣n ﹣2+14,解得:n =4,∴B (6,8),∴△ABC 的面积=S △ABE ﹣S △ACE =12×12×8﹣12×12×6=12,故选:A .【点拨】本题考查轴对称的性质,中心对称的性质,等腰三角形的判定与性质,求解一次函数的解析式,得到B 的坐标是解本题的关键.9.A【分析】先求出C 点坐标,再设新抛物线上的点的坐标为(x ,y ),求出它关于点C 对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.解:当x =0时,y =5,∴C (0,5);设新抛物线上的点的坐标为(x ,y ),∵原抛物线与新抛物线关于点C 成中心对称,由20x x ´-=-,2510y y ´-=-;∴对应的原抛物线上点的坐标为(),10x y --;代入原抛物线解析式可得:()()21045y x x -=--×-+,∴新抛物线的解析式为:245y x x =--+;故选:A .【点拨】本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.10.A【分析】根据题意,先求出前几次跳跃后1P 、2P 、3P 、4P 、5P 、6P 、7P的坐标,可得出规律,继而可求点2021P 的坐标.解:由题意得:点()14,0P 、()24,4P -、()30,4P -、()44,4P 、()54,0P -、()60,0P 、()74,0P ,∴点P 的坐标的变化规律是6次一个循环,∵20216336...5¸=,∴点2021P 的坐标是()4,-0.故选:A .【点拨】本题主要考查了中心对称及点的坐标的规律,解题的关键是求出前几次跳跃后点的坐标并总结出一般规律.11.1【分析】连接BB ′,设BC ′与AB ′交点为D ,根据∠C =90°,AC =BC =AB=2,根据旋转,得到∠AC ′B ′=∠ACB =90°,AC ′=AC =B ′C ′=BC ,AB =AB ′=2,∠BAB ′=60°,推出BC ′垂直平分AB ′,△ABB ′为等边三角形,得到C ′D 12=AB ′=1,'60ABB Ð=°,推出1''302ABD B BD ABB Ð=Ð=Ð=°,得到BD =′C ′B =C ′D +BD =1.解:连接BB ′,设BC ′与AB ′交点为D ,如图,△ABC中,∵∠C=90°,AC=BC=∴AB===2,∵△ABC绕点A逆时针反向旋转60°到△AB′C′的位置,∴∠AC′B′=∠ACB=90°,AC′=AC=B′C′=BC,AB=AB′=2,∠BAB′=60°,∴BC′垂直平分AB′,△ABB′为等边三角形,∴C′D12=AB′=1,'60ABBÐ=°,∴1''302ABD B BD ABBÐ=Ð=Ð=°,∴BD=∴C′B=C′D+BD=1故答案为1【点拨】本题考查了旋转图形全等的性质,线段垂直平分线判定和性质,等边三角形的判定与性质,等腰直角三角形的性质,含30°角的直角三角形边的性质,作辅助线构造出等边三角形,求出'C D,BD的长是解题的关键.12.3【分析】通过已知求得D在以B为圆心,BD长为半径的圆上运动,∵E为AD的中点,∴E在以BA中点为圆心,12B D长为半径的圆上运动,再运用圆外一定点到圆上动点距离的最大值=定点与圆心的距离+圆的半径,求得CE的最大值.解:∵BC=2,线段BC绕点B旋转到BD,∴BD =2,∴112BD =.由题意可知,D 在以B 为圆心,BD 长为半径的圆上运动,∵E 为AD 的中点,∴E 在以BA 中点为圆心,12B D 长为半径的圆上运动,CE 的最大值即C 到BA 中点的距离加上12BD 长.∵90ACB Ð=o ,30BAC Ð=o ,BC =2,∴C 到BA 中点的距离即122AB =,又∵112BD =,∴CE 的最大值即1121322AB BD +=+=.故答案为3.【点拨】本题考查了与圆相关的动点问题,正确识别E 点运动轨迹是解题的关键.13【分析】以AB 为边向右作等边△ABK ,连接EK ,证明△ABF ≌△KBE (SAS ),推出AF =EK ,根据垂线段最短可知,当KE ⊥AD 时,EK 的值最小,求出EK 即可解决问题.解:如图,以AB 为边向右作等边△ABK ,由60ABC Ð=°可知点K 在BC 上,连接EK ,∵BE=BF,BK=BA,∠EBF=∠ABK=60°,∴∠ABF=∠KBE,∴△ABF≌△KBE(SAS),∴AF=EK,根据垂线段最短可知,当KE⊥AD时,EK的值最小,即AF的值最小,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAK=∠AKB=60°,∴∠AKE=30°,∵AB=AK=2,AK=1,∴AE=12∴EK=,∴AF【点拨】本题考查旋转的性质,平行四边形的性质,等边三角形的性质,全等三角形的判定和性质,垂线段最短,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.14【分析】将三角形BCP绕点B逆时针旋转60°得三角形BDA,过B作BH⊥直线AP于H,先证明三角形BDP为等边三角形,利用勾股定理逆定理得∠DPA=90°,进而得∠BPH=30°,利用勾股定理解直角三角形即可得答案.解:将三角形BCP绕点B逆时针旋转60°,得三角形BDA,BC边落在AB上,过B作BH ⊥直线AP 于H ,如图所示,由旋转知,△BDP 为等边三角形,AD =PC =,∴BP =PD =BD ,∠BPD =60°,∵PA ,∴222PD PA AD +=,∴∠APD =90°,∴∠BPH =30°,∴BH =12BP =,由勾股定理得:AB.【点拨】本题考查了等边三角形的性质与判定、勾股定理逆定理、旋转变换的应用等知识点,解题关键是作旋转变换,将分散的条件集中在同一三角形中.15.13【分析】将FBE V 绕点E 逆时针旋转90°得到GHE △,延长GH 交BC 于点M ,延长CB 至点N ,使CM NM =,连接DN ,由矩形的条件和旋转的性质可得3EH EB ==,90B BEH EHG Ð=Ð=Ð=°,可说明四边形EBMH 是矩形,然后由正方形的性质可得到12CN =,GM CN ^,从而说明GM 是CN 的垂直平分线,进一步推导出CG DG NG DG ND +=+³,当点N ,G ,D 三点共线时,+CG DG 取最小值,最后由勾股定理可求解.解:将FBE V 绕点E 逆时针旋转90°得到GHE △,延长GH 交BC 于点M ,延长CB 至点N ,使CM NM =,连接DN ,∵在矩形ABCD 中,5AB =,9BC =,2AE =,∴3EB AB AE =-=,90B BCD Ð=Ð=°,5CD =,∴3EH EB ==,90B BEH EHG Ð=Ð=Ð=°,∴90EHM Ð=°,∴四边形EBMH 是矩形,∴3BM EH ==,90BMH Ð=°,∴()229312CN CM ==´-=,GM CN ^,∴GM 是CN 的垂直平分线,∴CG NG =,∵F 是直线BC 上一动点,∴CG DG NG DG ND +=+³,∴当点N ,G ,D 三点共线时,+CG DG 取最小值ND ,在Rt NCD V 中,12CN =,5CD =,13ND ===,∴+CG DG 的最小值是13.故答案为:13.【点拨】本题考查了旋转的性质,矩形的性质,垂直平分线,三角形三边的关系,勾股定理等知识,采用了转化的思想方法.确定点C 关于GM 的对称点N 是解题的关键.16.9【分析】连接AD 、BE ,过点E 作EH ⊥AB 于H ,由旋转知,DE =DB ,∠BDE =60°,可证△BDE 是等边三角形,利用等边对等角结合三角形内角和为180°求出18018022ADB ADE BAD EAD °-а-ÐÐ=Ð=,,从而得到3601502BDE BAE °-ÐÐ==°,进而可求出∠HAE =30°.再根据含30度角的直角三角形的性质可求出EH ,AH ,再利用勾股定理即可先后求出BE 和CD .解:如图,连接AD 、BE ,过点E 作EH ⊥AB 于H ,由旋转知,DE =DB ,∠BDE =60°,∴△BDE 是等边三角形,∴BE =BD .∵C 为AB 中点,点D 在AB 的垂直平分线上,∴AD =BD =DE ,12BC AB ==∴18018022ADB ADE BAD EAD °-а-ÐÐ=Ð=,,∴()36036022ADB ADE BDE BAD EAD °-Ð+а-ÐÐ+Ð==,即3602BDE BAE °-ÐÐ=.∵∠BDE =60°,∴∠BAE =150°,∴∠HAE =180°-150°=30°.∵AE =6,∴132EH AE ==,∴AH ==∴BH AH AB =+=∴BE ==,∴BD =,∴9CD ==.故答案为:9.【点拨】本题考查了图形的旋转,三角形内角和定理,线段垂直平分线的性质,勾股定理以及含30°的直角三角形的性质等知识,通过作辅助线构造出直角三角形是解题的关键.17.y=﹣x2+18x﹣77【分析】根据顶点式求得Q点的坐标,进而令0y=求得点,E F的坐标,作QP⊥x轴于P,过F点作FM⊥FQ交QL于M.作MN⊥x轴于N,根据∠FQL=45°,证明△PQF≌△NFM(AAS),进而求得点M的坐标,求得直线QL的解析式为y11133x=-,继而求得L(11,0),T点坐标为(4,0),根据中心对称的性质可得K(7,0),根据交点式即可写出新抛物线的解析式.解:∵y=x2+2x﹣3=(x+1)2﹣4,∴Q(﹣1,﹣4),当y=0时,x2+2x﹣3=0,解得x1=﹣3,x2=1,∴E(﹣3,0),F(1,0),作QP⊥x轴于P,过F点作FM⊥FQ交QL于M.作MN⊥x轴于N,如图,∵∠FQL=45°,∴△QFM为等腰直角三角形,∴FQ=FM,∵∠PFQ+∠PQF=90°,∠PFQ+∠MFN=90°,∴∠PQF=∠MFN,∴△PQF≌△NFM(AAS),∴PQ=FN=4,MN=PF=2,∴M(5,﹣2),设直线QL的解析式为y=kx+b,把Q (﹣1,﹣4),M (5,﹣2)代入得452k b k b -+=-ìí+=-î,解得13113k b ì=ïïíï=-ïî,∴直线QL 的解析式为y 11133x =-,当y =0时,11133x -=0,解得x =11,∴L (11,0),∵点E (﹣3,0)和点L (11,0)关于T 对称,∴T 点坐标为(4,0),∵点F 与点K 关于T 点对称,∴K (7,0),∵新抛物线与抛物线y =x 2+2x ﹣3关于T 对称,∴新抛物线的解析式为y =﹣(x ﹣7)(x ﹣11),即y =﹣x 2+18x ﹣77.故答案为y =﹣x 2+18x ﹣77.【点拨】本题考查了二次函数的性质,中心对称的性质,等腰直角三角形的性质与判定,求抛物线的解析式,求得对称中心是解题的关键.18.5n解:根据三角形的面积公式,知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.如图(1),已知小正方形ABCD 的面积为1,则把它的各边延长一倍后,三角形AA 1B 1的面积是1,新正方形A 1B 1C 1D 1的面积是5,从而正方形A 2B 2C 2D 2的面积为5×5=25,正方形A n B n C n D n 的面积为5n .考点:找规律-图形的变化【点拨】解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题.19.(1)见分析(2)画图见分析,B 2(-5,-2)(3)(3,0),6【分析】(1)分别作出点A、B以C为中心,顺时针旋转90°后的对应点A1、B1即可解答;(2)根据中心对称的坐标特征:横纵坐标互为相反数;求得A2、B2、C2的坐标即可;(3)C点先向下平移1个单位,再向右平移2个单位,即可得到点D(3,0);求出平行四边形ACDB的中心坐标,根据中心对称图形的性质可得直线y经过中心坐标,进而求得b;(1)解:如图,分别作出点A、B以C为中心,顺时针旋转90°后的对应点A1、B1,连接相应顶点得△A1B1C即为所求;(2)解:∵A(3,3),B(5,2),C(1,1),∴A、B、C关于原点的对称点坐标为:A2(-3,-3),B2(-5,-2),C2(-1,-1),如图,△A2B2C2即为所求,(3)解:如图,C点先向下平移1个单位,再向右平移2个单位,得到点D(3,0),连接相应顶点,四边形ACDB为平行四边形;∵A 点先向下平移1个单位,再向右平移2个单位,可得到点B ,∴BD 可由AB 平移得到,即BD ∥AB ,BD =AB ,∴四边形ACDB 是平行四边形,∵C (1,1),B (5,2),平行四边形是中心对称图形,∴平行四边形ACDB 的中心坐标为(3,32),如图所示,当直线y 经过平行四边形中心时,直线两侧的图形关于中心点对称面积相等,∴(3,32)代入直线y =32-x +b ,可得b =6;【点拨】本题考查了图形旋转,中心对称图形的性质,坐标的平移和对称变换,平行四边形的判定和性质;掌握中心对称图形的性质是解题关键.20.(1)=PE PF ,证明详见分析;(2)=PE PF 【分析】(1)根据角平分线定义得到∠POF=60°,推出△PEF 是等边三角形,得到PE=PF ;(2)过点P 作PQ ⊥OA ,PH ⊥OB ,根据角平分线的性质得到PQ=PH ,∠PQO=∠PHO=90°,根据全等三角形的性质得到PE=PF ,S 四边形OEPF =S 四边形OQPH ,求得OQ=1,解:(1)∵120AOB а=,OP 平分AOB Ð,∴60POF а=,∵60MPN а=,∴60MPN FOP Ðа== ,∴PEF D 是等边三角形,∴=PE PF ;(2)过点P 作PQ OA ^,PH OB ^,∵OP 平分AOB Ð,∴PQ PH =,90PQO PHO Ðа==,∵120AOB а=,∴∠QPH =60°,∴QPE FPH EPH Ð+Ð+Ð,∴QPE EPF ÐÐ=,在QPE D 与HPF D 中EQP FHP QPE HPF PQ PH Ð=ÐìïÐ=Ðíï=î,∴QPE HPF AAS D D ≌(),∴=PE PF ,OEPF OQPH S S 四边形四边形=,∵PQ OA ^,PH OB ^,OP 平分AOB Ð,∴30QPO а=,∴1OQ =,QP=∴112OPQ S D ´´=∴四边形OEPF 的面积=2OPQ S D【点拨】本题考查了旋转的性质,角平分线的性质,全等三角形的判定和性质,三角形的面积,正确的作出辅助线是解题的关键.21.(Ⅰ)点D 的坐标为(1,3).(Ⅱ)①证明见分析;②点H 的坐标为17(,3)5.(Ⅲ)S £分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x ,在直角三角形ACD 中运用勾股定理可CD 的值,从而可确定D 点坐标;(Ⅱ)①根据直角三角形全等的判定方法进行判定即可;②由①知BAD BAO Ð=Ð,再根据矩形的性质得CBA OAB Ð=Ð.从而BAD CBA Ð=Ð,故BH=AH ,在Rt △ACH 中,运用勾股定理可求得AH 的值,进而求得答案;(ⅢS ££解:(Ⅰ)∵点()5,0A ,点()0,3B ,∴5OA =,3OB =.∵四边形AOBC 是矩形,∴3AC OB ==,5BC OA ==,90OBC C Ð=Ð=°.∵矩形ADEF 是由矩形AOBC 旋转得到的,∴5AD AO ==.在Rt ADC V 中,有222AD AC DC =+,∴DC = 4==.∴1BD BC DC =-=.∴点D 的坐标为()1,3.(Ⅱ)①由四边形ADEF 是矩形,得90ADE Ð=°.又点D 在线段BE 上,得90ADB Ð=°.由(Ⅰ)知,AD AO =,又AB AB =,90AOB Ð=°,∴Rt ADB Rt AOB V V ≌.②由ADB AOB V V ≌,得BAD BAO Ð=Ð.又在矩形AOBC 中,//OA BC ,∴CBA OAB Ð=Ð.∴BAD CBA Ð=Ð.∴BH AH =.设BH t =,则AH t =,5HC BC BH t =-=-.在Rt AHC V 中,有222AH AC HC =+,∴()22235t t =+-.解得175t =.∴175BH =.∴点H 的坐标为17,35æöç÷èø.(ⅢS ££【点拨】本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.22.(1)见分析;(2)60或120;(3)1212S ££【分析】(1)运用SAS 证明△≌△ADB AEC 即可;(2)分“当点E 在线段CD 上”和“当点E 在线段CD 的延长线上”两种情况求出EDB Ð的大小即可;(3)分别求出DBC △的面积最大值和最小值即可得到结论解:(1),ABC ADE Q V V 均为等边三角形,AD AE \=,AB AC =,DAE BAE BAC BAE \Ð-Ð=Ð-Ð,即BAD CAEÐ=Ð在ADB △和AEC △中AD AE BAD CAEAB AC =ìïÐ=Ðíï=î()ABD ACE SAS \@V V ;(2)当,,D E C 在同一条直线上时,分两种情况:①当点E 在线段CD 上时,如图,∵ADE V 是等边三角形,60ADE AED \Ð=Ð=°,180120AEC AED \Ð=-Ð=°°,由(1)可知,ADB AEC @V V ,120ADB AEC \Ð=Ð=°,1206060EDB ADB ADE \Ð=Ð-=-°=°Ð°②当点E 在线段CD 的延长线上时,如图,ADE Q V是等边三角形,60ADE AED \Ð=Ð=°180120ADC ADE \Ð=-Ð=°°,由(1)可知,ADB AEC@V V 60ADB AEC \Ð=Ð=°,60EDB ADB ADE \Ð=Ð+Ð=° 60120+=°°综上所述,EDB Ð的大小为60°或120°(3)过点A 作AF BC ^于点F ,当点D 在线段AF 上时,点D 到BC 的距离最短,此时,点D 到BC 的距离为线段DF 的长,如图:ABC Q V 是等边三角形,AF BC ^,6BC =6AB BC \==,132BF BC ==AF \==4DF \=此时1164)1222DBC S BC DF =×=´´=V ; 当D 在线段FA 的延长线上时,点D 到BC 的距离最大,此时点D 到BC 的距离为线段DF 的长,如图,ABC Q V 是等边三角形,AF BC ^,6BC =6AB BC \==,132BF BC ==,AF \==4AD =Q4DF AF AD \=+=此时,1164)1222DBC S BC DF =×=´´=V ;综上所述,DBC △的面积S 取值是1212S -££【点拨】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.23.(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见分析;②BE 的最大值是4;(3)AM 的最大值是P 的坐标为()【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN。
九年级数学旋转复习教案
九年级数学旋转复习教案一、教学目标:1. 知识与技能:使学生掌握旋转的定义、性质及应用,能够运用旋转解决一些实际问题。
2. 过程与方法:通过复习,提高学生的逻辑思维能力、空间想象能力和数学运用能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
二、教学内容:1. 旋转的定义及性质2. 旋转在实际问题中的应用3. 旋转变换与坐标轴的交点4. 旋转变换与图形的大小、形状5. 旋转变换与图形的位置关系三、教学重点与难点:1. 教学重点:旋转变换的性质,旋转变换在实际问题中的应用。
2. 教学难点:旋转变换与坐标轴的交点,旋转变换与图形的大小、形状,旋转变换与图形的位置关系。
四、教学过程:1. 复习导入:回顾旋转的定义及性质,引导学生思考旋转在实际问题中的应用。
2. 自主学习:学生自主探究旋转变换与坐标轴的交点,旋转变换与图形的大小、形状,旋转变换与图形的位置关系。
3. 合作交流:学生分组讨论,分享各自的探究成果,解决存在的疑问。
4. 课堂讲解:教师针对学生的探究成果进行讲解,梳理知识点,解答学生的疑问。
5. 练习巩固:布置相关的练习题,让学生运用所学知识解决问题。
五、课后作业:1. 完成练习册上的相关习题。
2. 选择一道与旋转相关的实际问题,进行解答。
3. 总结旋转变换的性质及其在实际问题中的应用,准备课堂交流。
六、教学评估:1. 课堂讲解评估:观察学生在课堂讲解中的参与程度、理解程度和表达能力。
2. 练习巩固评估:检查学生在练习中的正确率,分析其错误原因,及时进行针对性讲解。
3. 课后作业评估:审阅学生的课后作业,了解学生对课堂知识的掌握情况,对存在的问题进行反馈。
七、教学策略:1. 针对不同学生的学习基础,采取分层教学,使每个学生都能在复习过程中得到提高。
2. 利用多媒体课件,直观展示旋转变换的过程,帮助学生更好地理解旋转变换的性质。
3. 鼓励学生积极参与课堂讨论,培养学生的团队合作精神和口头表达能力。
九年级数学复习:旋转图形的性质
九年级数学复习:旋转图形的性质1.旋转图形的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.2.中心对称与中心对称图形的概念与性质.3.点P (x ,y )关于原点的对称点P 为(-x ,-y ).【板块一】利用旋转图形的性质求角度方法技巧1.利用等腰求角度;2.通过旋转“化散为聚”求角度.题型一利用旋转角求角度【例1】如图,在△ABC 中,∠CAB =70°,将△ABC 绕点A 逆时针旋转到△AB C ⅱ的位置,使得CC ¢//AB ,则∠BAB ¢的度数是()A .70°B .35°C .40°D .50°答案:C【解析】由CC ¢//AB 得∠C CA ¢=∠CAB =70°,又AC ¢=AC ,故∠AC C ¢=∠C CA ¢=70°,可得∠CAC ¢=40°;由∠C AB ⅱ=∠CAB 得∠B AB ¢=∠CAC ¢=40°,故选C .题型二利用旋转的位置关系求角度【例2】如图,把Rt △ABC 绕点A 逆时针旋转40°,得到Rt △AB C ⅱ,点C ¢恰好落在边AB 上,连接BB ¢,则∠BB C ⅱ=.答案:【解析】AB ¢=AB ,∠ABB ¢=1802B AB¢-Ð=70°,∠BB C ⅱ=90°-∠ABB ¢=20°.【例3】一副三角尺按如图的位置摆放(顶点B ,C ,D 在一条直线上,点C ,F 重合),将三角尺DEF 绕着点F 按顺时针方向旋转n °后得到△D E F ⅱ(0<n <180),如果E F ¢//AB ,那么n 的值为.【解析】当E F¢//AB时,∠ACE¢=∠BAC=45°,n=45.题型三利用旋转构造全等求角度【例4】如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,,求∠BPQ 的度数.答案:【解析】将△APD绕点A顺时针旋转90°,得△AP B¢;)2+()2)2,利用勾股定理逆定理可得到△BPP¢是直角三角形,∠APB=135°,故∠BPQ=145°.【例5】如图,在五边形ABCDE中,AB=AE,BC=CD,∠BAE+∠BCD=180°,M是ED的中点,连接AM,CM,且AM=CM,求∠BCD的度数.答案:【解析】将△CDM绕点M旋转180°得△FEM,则△CDM≌△FEM,∴EF=CD=BC,∠FEM=∠D,∴∠ABC=∠AEF,证△AEF≌△ABC,∴∠BAC=∠EAF,AC=AF,又MF=MC=AM,∴△ACF为等腰直角三角形,∴∠CAF=90°,又∠BAC=∠EAF,∴∠BAE=∠CAF=90°,∴∠BCD=180°-∠BAE=90°.【点评】这一类题型具有的特点是:等线段、共端点以及特殊角.通过旋转“使相等的边重合,得出特殊图形”.【例6】如图,点P为等边△ABC内一点,且PA=2,PB=1,PC,求∠APB的度数.【解析】将△APC 绕点A 顺时针旋转60°,得△ADB ,连接DP ,得AD =AP ,DB =PC =,∠DAP =60°,从而可证△ADP 为等边三角形,所以DP =AP =2,∠DPA =60°,在△DPB 中,利用勾股定理逆定理可得∠DBP =90°,∠DPB =60°,从而可得∠APB =120°.针对练习11.如图,点P 是正三角形ABC 内的一点,且PA =6,PB =8,PC =10.若将△PAC 绕点A 逆时针旋转后得到△P AB ¢.(1)求点P 与点P ¢之间的距离;(2)求∠APB 的度数.答案:解:(1)连接PP ¢,由题意可知AP ¢=AP ,∠PAC =∠P AB ¢,PC =P B ¢,又∵∠PAC +∠BAP =60°,∴∠PAP ¢=60°.∴△APP ¢为等边三角形,∴PP ¢=AP =AP ¢=6.(2)∵2PP ¢+BP 2=2BP ¢,∴△BPP ¢为直角三角形,且∠BPP ¢=90°,∴∠APB =90°+60°=150°.2.如图,点P 为等边△ABC 内一点,∠APB =113°,∠APC =123°,求证:以AP ,BP ,CP 为边可以构成一个三角形,并确定所构成的三角形的各个内角的度数.答案:解:将△APC 绕点C 逆时针旋转60°,得△BCP 1,∴AP =BP 1,∠BP 1C =∠APC =123°,由CP =CP 1,∠PCP 1=60°得△PCP 1为等边三角形,∴PP 1=CP ,∠CPP 1=∠CP 1P =60°,这时,△BPP 1就是以BP ,AP ,CP 为三边构成的三角形,∠BP 1P =∠BP 1C -∠CP 1P =∠APC -60°=63°,又∠BPC =360°-113°-123°=124°,∴∠BPP 1=∠BPC -∠CPP 1=64°,∠PBP 1=180°-63°-64°=53°.3.如图,若点P 是正方形ABCD 外一点,PA =3,PB =1,PC ,求∠APB 的度数.答案:解:将△BPC 绕点B 逆时针旋转90°得△BP A ¢,易证△BPP ¢为等腰直角三角形,∴PP ¢,AP ¢=PC ,在△APP ¢中,AP 2+2PP ¢=2AP ¢,∴∠APP ¢=90°,∴∠APB =45°.【板块二】利用旋转图形的性质求线段长或面积题型一利用旋转图形性质求线段长【例1】如图,△ABC 为等腰直角三角形,AB =BC =,∠ABC =90°,把△ABC 绕点A 顺时针旋转至△ADE ,AE ,DC 交于点F ,当F 为CD 的中点时,求AF 的长.答案:【解析】过点D 作DM ⊥AE 于点M ,过点C 作CN ⊥AE 于点N ,DM =12AE =4,由△DMF ≌△CNF 得CN =DM =4,在Rt △ANC 中,AN =AM =DM =4,MN =MF =12MN =故AF =AM +MF =4+题型二利用旋转图形性质求面积【例2】如图,边长为1的正方形ABCD 绕点A 逆时针旋转45°得到正方形AB 1C 1D 1,边B 1C 1与CD 交于点O ,求四边形AB 1OD 的面积.答案:【解析】AC =,AB 1=1,故B 1C -1,在Rt △OB 1C 中,∠OCB 1=45°,故OB 1=CB 1-1,1OB C S D =12OB 1·B 1C =32-,S △ADC =12DA ·DC =12,故S 1AB CD 四边形=S △ADC -1OB C S D =12-32-=22-1.【例3】在正方形ABCD 中,点P 是对角线AC 上一点,连接DP ,将DP 绕点D 逆时针旋转90°后得到线段DE ,连接PE ,点C 关于直线PE 的对称点是C ¢,连接C E ¢,C P ¢,C A ¢,若四边形AC ED ¢是平行四边形,PC =2,则平行四边形AC ED ¢的面积是.答案:【解析】过点P 作PQ ⊥CD 于点Q ,延长PC ¢交AD 于点G ,设C E ¢交DC 于点H ,则△PQD ≌△DHE ,∵PC =2,∴PQ =GD =DH =C G ¢=,∵点C ¢与点C 关于PE 对称,∴PC ¢=PC =QH =2,∴CD =AD ,∴AC ED S ¢ =AD ·DH .针对练习21.如图,在Rt △ABC 中,∠ACB =90°,∠B =60°,BC =2,△A B C ⅱ是由△ABC 绕点C 顺时针旋转得到,其中点A ¢与点A 是对应点,点B ¢与点B 是对应点,连接AB ¢,且点A ,B ¢,A ¢在同一条直线上,则AA ¢的长为()A .6B C D .3答案:解:在Rt △ABC 中,∠B =60°,BC =2,故AB =4,AC A C ¢=AC ,∠A ¢=∠A AC ¢=30°,故∠A CA ¢=120°,过点C 作CH ⊥A A ¢于点H ,则HC =12AC ,A H ¢=3,AA ¢=2A H ¢=6,故选A .2.如图.在△ABC 中,∠BAC =150°,D ,E 为线段BC 上的两点,∠DAE =60°,且AD =AE ,若DE =3,CE =5,则BD 的长为.答案:解:将△ABC 沿BA 向上翻折至△BAF ,连接AF ,EF ,FC ,可得∠BAF =∠BAC =150°,∠FAC =60°,△AFC 为等边三角形,可证△ADC ≌△AEF ,∠AFE =∠ACD ,可得∠FEC =∠FAC =60°,过点F 作FH ⊥BC 于点H ,EH =12EF =8×12=4,HC =1,FH =43,设BD =x ,则BF =BC =x +8,在Rt △BFH 中,BF 2-BH 2=FH 2即(x +8)2-(x +7)2=48,x =332,故BD =332.3.如图,P 为等边△ABC 内一点,PA =3,PB =4,PC =5,求S △AB C .答案:解:在AC 右侧取点D ,使∠DAP =60°且DA =PA ,连接PD ,则△APD 为等边三角形,可证△ABP ≌△ACD (SAS ),DC =BP =4,PD =3,PC =5,PC 2=PD 2+DC 2,∠PDC =90°,过点A 作AE ⊥DC 于点E ,AE =12AD =32,DE =332EC 332,AC 2=AE 2+EC 2=94+16+27433,过点A 作AF ⊥BC 于点F ,在Rt △AFC 中,FC =12AC ,AF =22AC FC -32AC ,S △ABC =12×BC ×AF 34AC 22534+9.【板块三】旋转图形中线段关系的探究方法技巧利用旋转“化散为聚”解决线段关系.题型一旋转图形中线段数量关系的探究【例1】如图,在等边△ABC 内有一点O ,试证明:OA +OB >O C .答案:【解析】把△AOC以点A为旋转中心顺时针方向旋转60°后,到△AO B¢的位置,则△AOC≌△AO B¢,¢,∴∠OAO¢=60°,∴△AO O¢为等边三角形,∴AO=OO¢,∴AO=AO¢,OC=O B¢,∠OAC=∠O AB在△BOO¢中,OO¢+OB>BO¢,即OA+OB>O C.【例2】如图1,△ABC和△ADE都是等边三角形,将△ADE绕点A旋转.(1)求证:BD=CE;(2)如图2,若∠ADB=90°,DE的延长线交BC于点F,交AB于点G.①求证:点F是BC中点;②若DA=DB,BF=2,直接写出AG的长为.答案:【解析】(1)证△ABD≌△ACE即可;(2)连EC,在DF上截取DN=EF,连BN,由(1)知BD=CE,可证∠BDN=∠CEF=30°,∴△DNB≌△EFC,∴BN=FC,∠DNB=∠EFC,∴∠BNF=∠BFN,∴BN=BF,∴BF=FC,即F为BC的中点;(3)AG=326,由题知BC=2BF=2,∴AB=22,∴DA=DB=2,过G作GH⊥AD于H,∵∠GDH=60°,∴设DH=a,则GH=AH=3a,AG6a,又AD=a3a,∴a3AG63326.题型二旋转图形中图形形状的确定【例3】如图,在正方形ABCD中,点E,F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90后,得到△ABQ连接EQ(1)求证:EA是∠QED的平分线;(2)探求以EF,BE,DF为三边的三角形的形状【解析】(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ∴QB=DF,AQ=AF,∠BAQ=∠DAF,由∠EAF=45,得∠DAF+∠BAE=45°,故∠QAE=45°.故∠QAE=∠FAE可证△AQE≌△AFE(SAS)∴∠AEQ=∠AEF∴EA是∠QED的平分线(2)由(1)得△AQE≌△AFE,QE=EF.又∠ABQ=∠ADF=∠ABD=45°,故∠QBE=90°在Rt△QBE中,QB2+BE2=QE2∴EF2=BE2+DF2,即以EF,BE,DF为三边的三角形是直角三角形针对练习31.如图,△BAD是由△BEC在平面内绕点B逆时针旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由解:(1)∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°∵AB⊥BC,;∠ABC=90.∴∠DBE=∠CBE=30,∴△BDE≌△BCE(SAS)(2)四边形ABED为菱形,理由如下:由(1)得△BDE≌△BCE∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC∴BA=BE,AD=EC=ED又BE=EC,故AB=BE=ED=AD,故四边形ABED为菱形2.给出定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形。
2022-2023学年人教版九年级数学上册《第23章旋转》期末综合复习题(附答案)
2022-2023学年人教版九年级数学上册《第23章旋转》期末综合复习题(附答案)一.选择题1.如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A.3种B.6种C.8种D.12种2.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5C.4D.3.正方形ABCD与正五边形EFGHM的边长相等,初始如图所示,将正方形绕点F顺时针旋转使得BC与FG重合,再将正方形绕点G顺时针旋转使得CD与GH重合…按这样的方式将正方形依次绕点H、M、E旋转后,正方形中与EF重合的是()A.AB B.BC C.CD D.DA4.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=()A.1:B.1:2C.:2D.1:5.若一个图形绕着一个定点旋转一个角α(0°<α≤180°)后能够与原来的图形重合,那么这个图形叫做旋转对称图形.例如:等边三角形绕着它的中心旋转120°(如图),能够与原来的等边三角形重合,因而等边三角形是旋转对称图形.显然,中心对称图形都是旋转对称图形,但旋转对称图形不一定是中心对称图形.下面四个图形中,旋转对称图形个数有()A.1B.2C.3D.46.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B 为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2022的坐标是()A.(2022,2)B.(2022,﹣2)C.(2024,﹣2)D.(0,2)7.如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2)B.(2,5)C.(2,1)D.(1,2)8.如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a.﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b﹣2)9.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()A.4种B.5种C.6种D.7种10.对如图的几何体变换位置或视角,则可以得到的几何体是()A.B.C.D.二.填空题11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有种.12.如图所示,在正方形网格中,图①经过变换可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点(填“A”或“B”或“C”).13.如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为平方单位.14.如图,AB⊥BC,AB=BC=2cm,弧OA与弧OC关于点O中心对称,则AB、BC、弧CO、弧OA所围成的面积是cm2.15.如图是两张全等的图案,它们是轴对称图形,其中的三角形是正三角形,它们完全重合地叠放在一起,按住下面的图案不动,将上面图案绕点O顺时针旋转,至少旋转度角后,两张图案构成的图形是中心对称图形.16.如图所示是一个坐标方格盘,你可操纵一只遥控机器蛙在方格盘上进行跳步游戏,机器蛙每次跳步只能按如下两种方式(第一种:向上、下、左、右可任意跳动1格或3格;第二种跳到关于原点的对称点上)中的一种进行.若机器蛙在点A(﹣5,4),现欲操纵它跳到点B(2,﹣3),请问机器蛙至少要跳次.三.解答题17.在平面直角坐标系中有△ABC与△A1B1C1,其位置如图所示,(1)将△ABC绕C点按(填“顺”或“逆”)时针方向旋转度时与△A1B1C1重合.(2)若将△ABC向右平移2个单位后,只通过一次旋转变换能与△A1B1C1重合吗?若能,请直接指出旋转中心的坐标、方向及旋转角度;若不能,请说明理由.18.某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.19.附加题:A、计算:2﹣1=;B、在正方形、直角三角形、梯形这三个图形中,为中心对称图形的是.20.如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.(1)写出点A,C的坐标;(2)求点A和点C之间的距离.21.如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中点C1所经过的路径长.22.如图,△ABC三个顶点均在边长为1的正方形网格点上,以网格点O为坐标原点建立平面直角坐标系.请按要求解答下列问题.(1)作出△ABC关于x轴对称的图形△A1B1C1.并求写出sin∠B1的值.(2)画出△ABC关于原点O对称的图形△A2B2C2.(3)将△ABC绕原点O顺时针旋转90°,画出旋转后的图形△A3B3C3.23.如图,梯形ANMB是直角梯形.(1)请在图上拼上一个直角梯形MNPQ,使它与梯形ANMB构成一个等腰梯形;(2)将补上的直角梯形MNPQ以点M为旋转中心,逆时针旋转180°得梯形MN1P1Q1,再向上平移一格得B1M1N2P2.(不要求写作法,但要保留作图痕迹)参考答案一.选择题1.解:由网格可知:a=,b=d=,c=2,则能组成三角形的只有:a,b,d可以分别通过平移ab,ad,bd得到三角形,平移其中任意两条线段方法各有两种,即能组成三角形的不同平移方法有6种.故选:B.2.解:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°﹣30°=60°,∴∠ACD=90°﹣60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠CAB=45°,∴△ACO是等腰直角三角形,∴∠ACO=∠BCO=45°,∵CA=CB,∴AO=CO=AB=×6=3,∵DC=7,∴D1C=DC=7,∴D1O=7﹣3=4,在Rt△AOD1中,AD1===5.故选:B.3.解:∵正方形ABCD与正五边形EFGHM的边长相等,∴从BC与FG重合开始,正方形ABCD的各边依次与正五边形EFGHM的各边重合,而与EF重合是正方形的边与正五边形的边第五次重合,∴正方形中与EF重合的是BC.故选:B.4.解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:3,∴AP=3P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=3x,根据勾股定理,PP′===2x,∴PP′=PB=2x,解得PB=2x,∴P′A:PB=x:2x=1:2.故选:B.5.解:图1绕中心旋转60°后能够与原来的图形重合,所以这个图形是旋转对称图形;图2中,无论怎么样旋转都无法重合,除非旋转360度,但超出条件范围,故图2不是旋转对称图形;图3绕中心旋转120°后能够与原来的图形重合,所以这个图形是旋转对称图形;图4绕中心旋转72°后能够与原来的图形重合,所以这个图形是旋转对称图形.故选:C.6.解:根据题意,以A为对称中心作点P(0,2)的对称点P1,即A是PP1的中点,又由A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(2,0);同理P2的坐标是(2,﹣2),记P2(a2,b2),其中a2=2,b2=﹣2.根据对称关系,依次可以求得:P3(﹣4﹣a2,﹣2﹣b2),P4(2+a2,4+b2),P5(﹣a2,﹣2﹣b2),P6(4+a2,b2),令P6(a6,b2),同样可以求得,点P10的坐标为(4+a6,b2),即P10(4×2+a2,b2),由于2022=4×505+2,所以点P2022的坐标是(2022,﹣2),故选:B.7.解:如图,分别连接AD、CF,然后作它们的垂直平分线,它们交于P点,则它们旋转中心为P,根据图形知道△ABC绕P点顺时针旋转90°得到△DEF,∴P的坐标为(5,2).故选:A.8.解:把AA′向上平移1个单位得A的对应点A1坐标为(a,b+1).因A1、A2关于原点对称,所以A′对应点A2(﹣a,﹣b﹣1).∴A′(﹣a,﹣b﹣2).故选:D.9.解:得到的不同图案有:,共6种.故选:C.10.解:本题中,只有B的几何体和题目中的几何体一致.故选:B.二.填空题11.解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,3处,7处,6处,5处,选择的位置共有5处.故答案为:5.12.解:根据题意:观察可得:图①与图②对应点位置不变,通过平移可以得到;根据旋转中心的确定方法,两组对应点连线的垂直平分线的交点,可确定图②经过旋转变换得到图③的旋转中心是A.故答案为:平移,A.13.解:设B′C′和CD的交点是O,连接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=,S四边形AB′OD=2S△AOD=2××=2,∴S阴影部分=S正方形﹣S四边形AB′OD=6﹣2.14.解:连接AC.∵与关于点O中心对称,∴点O为AC的中点,∴AB、BC、弧CO、弧OA所围成的面积=△BAC的面积==2cm2.故答案为:2.15.解:正三角形要想变成和正偶数边形有关的多边形,边数最少也应是6边形,而六边形的中心角是60°,所以至少旋转60°角后,两张图案构成的图形是中心对称图形.16.解:若机器蛙在点A(﹣5,4),根据跳步游戏规则,可以先向右跳三步,再向下跳一步,然后跳到关于原点的对称点即可跳到点B(2,﹣3).这个路径步数最少是3步.三.解答题17.解:(1)依题意根据图形可知将△ABC绕C点按逆时针方向旋转90度时与△A1B1C1重合;(2)若将△ABC向右平移2个单位后,只通过一次旋转变换能与△A1B1C1重合,如图,分别连接A1A′,B1B′,然后分别作C1C′、B1B′、A1A′的垂直平线,三条垂直平分线交于P点,故把平移后的△A′B′C′绕点O逆时针旋转90°后即可与△A1B1C1重合.18.(1)证明:∵用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),∴AB=AF,∠BAM=∠F AN,在△ABM和△AFN中,,∴△ABM≌△AFN(ASA),∴AM=AN;(2)解:当旋转角α=30°时,四边形ABPF是菱形.理由:连接AP,∵∠α=30°,∴∠F AN=30°,∴∠F AB=120°,∵∠B=60°,∴∠B+∠F AB=180°,∴AF∥BP,∴∠F=∠FPC=60°,∴∠FPC=∠B=60°,∴AB∥FP,∴四边形ABPF是平行四边形,∵AB=AF,∴平行四边形ABPF是菱形.19.解:A、2﹣1=;B、正方形既是中心对称图形,也是轴对称图形;直角三角形和梯形既不是轴对称图形,也不是中心对称图形,故是中心对称图形的是正方形.20.解:(1)点A的坐标是(﹣2,0),点C的坐标是(1,2).(2)连接AC,在Rt△ACD中,AD=OA+OD=3,CD=2,∴AC2=CD2+AD2=22+32=13,∴AC=.21.解:(1)Rt△A1B1C1如图所示,A1(﹣4,0);(2)Rt△A2B2C2如图所示,根据勾股定理,A1C1==,所以,点C1所经过的路径长==π.22.解:(1)△A1B1C1如图所示,根据勾股定理,B1C1==2,所以,sin∠B1==;(2)△A2B2C2如图所示;(3)△A3B3C3如图所示.23.解:(1)按要求作出梯形MNPQ.(2)按要求作出梯形MN1P1Q1.按要求作出梯形B1M1N2P2.。
九年级上册第二十三章旋转单元总结(共38张PPT)
作法: 连——延——截——连
D A
B'
C
A'
O B
D' C'
【画一画】
1.下图是中心对称图形的一部分及对称中心,请你
补全它的另一部分. A
B
如何寻找中心对称
图形的对称中心?
H
两组对应点连线的
G
C D
交点就是对称中心 F
E
探究新知
2.如图,有一个平行四边形请你用无刻度的直尺 画一条直线把他们分成面积相等的两部分,你怎 么画?
巩固练习
变式题1
如何确定它们的旋转中心位置?
A
E
F B
D C
答:找到两条对应点连线段的垂直平分线的交点.
探究新知
平移和旋转的异同
①相同:都是一种运动;运动前后不改变图形的形状和大小.
②不同
图形变换 平移 旋转
运动方向
运动量的衡量
直线
移动一定距离
顺时针或逆时针 转动一定的角度
课堂小结
旋转的作 图
图案的设计方法.
探究新知
旋转的概念
把一个平面图形绕着平面内某一个定点O转动一
个角度,叫做图形的旋转。
这个定点O叫做旋转中心,转动的角叫做旋转
角。
如果图形上的点P经过 A
B
旋转变为点P’,那么这 两个点叫做这个旋转的
P 旋转角 P’
对应点。线段OP与OP’
叫做对应线段.
O 旋转中心
探究新知
O
0
45
2.中心对称的两个图形是全等形.
中心对称与轴对称的异同
A
C1
B1
O
B
C
A1
第二十三章旋转小结与复习课件人教版九年级数学上册
课 堂 小 结
旋转及其性质
平移及其性质
轴对称及其性质
本章知识结构图 中心对称图形
中心对称 关于原点对称的点的坐标
图案设计
【解析】作∠CAC1=90°,且AC= AC1,得到C的对应点C1,由同样的 方法得到其余各点的对应点.
A
C
解:如图所示:
典 考点三 中心对称 例 例5 下列图形中,既是轴对称图形,又是中心对称图形的是( 精 析
D)
A
B
C
D
方
法
总
中心对称图形和轴对称图形的主要区别在于一个是绕一点
结 旋转,另一个是沿一条直线对折.这是易错点,也是辨别它们不
第二十三章 旋 转
小结与复习
要 一、旋转的特征
点 1.旋转过程中,图形上 每一点都绕旋转中心 按 同一旋转方向
梳 旋转
同样大小的角度
.
理 2.任意一对对应点与旋转中心的连线所成的角都是 旋转角 ,
对应点到旋转中心的距离都
相等
.
3.旋转前后对应线段、对应角分别 相等 ,图形的大小、形
状
不变 .
要 二、中心对称
练(1)补充完成图形;
A
(2)若EF∥CD,求证:∠BDC=90°.
(2)解:由旋转的性质得 DC=FC,∠DCF=90°
E
∴∠DCE+∠ECF=90°
F
∵∠ACB=90° ∴∠DCE+∠BCD=90°
D
∴∠ECF=∠BCD
∵EF∥DC ∴∠EFC+∠DCF=180°
60°
∴∠EFC=90°∴△BDC≌△EFC(SAS) ∴∠BDC=∠EFC=90°
平分 .
理
3.中心对称图形 把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形
2019九年级数学上册知识点旋转复习
2019九年级数学上册知识点旋转复习
九年级数学上册知识点旋转复习
一、旋转
1、定义:把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质:(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
⑶旋转前后的图形全等。
二、中心对称
1、定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质:1)关于中心对称的两个图形是全等形。
2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形:把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
5、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)
6、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)。
7、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上数学《旋转》复习学案
知识点梳理:
1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做,转动的角度叫做。
练习 1.下列图形中,不是旋转图形的是( )
练习2、如图,如果正方形ABCD旋转后能与正方形CDEF重合,那么图形所在的平面内可作旋转中心的点共有()个
A.1 B.2 C.3 D.4
2.旋转的性质
(1)对应点到的距离相等。
(2)对应点与旋转中心所连线段的夹角等于。
(3)旋转前后两个图形
练习3:如图1,P是正△ABC内的一点,若将△PBC绕点B旋转到△P’BA,则∠PBP’的度数是()
A.45° B.60° C.90° D.120°
练习4如图,四边形ABCD是正方形,△ADE旋转后能与△ABF重合.则旋转中心是_________ ,旋转角等于_________ 度,如果连接EF,那么△AEF是_________
3、中心对称图形与中心对称:
(1)中心对称图形:如果把一个图形绕着某一点旋转度后能与自身重合,那么我们就说,这个图形成中心对称图形。
(2)中心对称:如果把一个图形绕着某一点旋转度后能与重合,那么我们就说,这两个图形成中心对称。
注意:中心对称和中心对称图形的区别
(3)中心对称的性质:
关于中心对称的两个图形 。
关于中心对称的两个图形,对称点连线都经过 心,并且被 心平分。
关于中心对称的两个图形,对应线段 (或者在同一直线上)且 。
练习4:下列图形中,既是轴对称图形,又是中心对称图形的是( )
A .等腰梯形
B .平行四边形
C .正三角形
D .矩形
练习5:如图是一个中心对称图形,A 为对称中心,若∠C=90°, ∠B=30°,BC=1,则BB ’的长为( )
A .4
B .33
C .332
D .3
34 4、坐标系中对称点的特征
(1)关于原点对称的点的特征 两个点关于原点对称时,它们的坐标的符号 ,即点P (x ,y )关于原点的对称点为P’( , )
(2)关于x 轴对称的点的特征
两个点关于x 轴对称时,它们的坐标中,x ,y 的符号 ,即点P (x ,y )关于x 轴的对称点为P’( )
(3)关于y 轴对称的点的特征
两个点关于y 轴对称时,它们的坐标中,y ,,x 的符号 ,即点P (x ,y )关于y 轴的对称点为P’( )
练习6 在平面直角坐标系中,点A 的坐标是(﹣6,8),则点A 关于x 轴对称的点的坐标是 _________ ,点A 关于y 轴对称的点的坐标是 _________ ,点A 关于原点对称的点的坐标是 _________ .
中考点击
1、下列图形中,既是轴对称图形又是中心对称图形的是( )
A B C D
2、如图2,在Rt △ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )
A. 30,2
B.60,2
C. 60,2
3 D. 60,3
3、如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .
4、如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ;②△ABE ≌△ACD ;③BE DC DE +=;④222BE DC DE += 其中正确的是( )
A .②④;
B .①④;
C .②③; D
5
、(2009年梅州市)如图
过____________次旋转而得到, 每一次旋转_______度.
6、(2009年抚顺市)如图所示,在平面直角坐标系中,OAB △三个顶点的坐标是(00)3452O A B ,、(,)、(,)
.将O AB △绕原点O 按逆时针方向旋转90°后得到11OA B △,则点1A 的坐标是 . 7、如图,已知梯形ABCD 中,AD ∥BC ,AB=CD=AD ,AC ,BD 相交
于O 点,∠BCD=60°,则下列说法不正确的是( )
A .梯形ABCD 是轴对称图形
B .BC=2AD
C .梯形ABC
D 是中心对称图形 D .AC 平分∠DCB
8、如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按
顺时针转动一个角度到A 1BC 1的位置,使得点A 、B 、C 1在同一条直
线上,那么这个旋转的角度等于( )
A.120°
B.90°
C. 60°
D. 30°
9、下面图形:①四边形,②等边三角形,③正方形,④等腰梯形,⑤平行四边形,⑥圆,其中既是轴对称图形又是中心对称图形的有 .(填序号)
10、如图,Rt A BC ''△是由Rt ABC △绕B 点顺时针旋转而得,且点A B C ',,在同一条直线上,在Rt ABC △中,若90C = ∠,2BC =,AB 则斜边AB 旋转到A B '所扫过的扇形面积为 , 点A 在旋转过程中走过的路线长是 11如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(3,5),(4,3),(A B C ---.
C ' B ' (第8题图)A
B C
D
E F B A C ' A '
(1)作出ABC ∆向右平移5个单位的11A B C ∆;
(2)作出ABC ∆关于x 轴对称的222A B C ∆,并写出点2C 的坐标.
12、在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,ABC △的三个顶点都在格点上(每个小方格的顶点叫格点).画出ABC △绕点O 逆时针旋转90°后的A B C '''△.。