百分数应用题(B)六年级奥数题之专题串讲试题(附答案)2013

合集下载

(完整版)六年级奥数分数百分数应用题汇总,推荐文档

(完整版)六年级奥数分数百分数应用题汇总,推荐文档

分数百分数应用题一、单位“1”定长短。

1)两根1米长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?3)一根绳子,第一次用去1/4,第二次用去1/4米。

哪一次用去的长一些?4)一根绳子,第一次用去4/7,第二次用去4/7米。

哪一次用去的长一些?5)一根绳子分两次用完,第一次用去1/3,第二次用去1/3米。

哪一次用去的长一些?6)一根绳子分两次用完,第一次用去2/3,第二次用去余下的部分。

哪一次用去的长一些?练一练:1)两根1米长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?3)一根绳子,第一次用去1/6,第二次用去1/6米。

哪一次用去的长一些?3)一根绳子,第一次用去3/5,第二次用去2/5米。

哪一次用去的长一些?4)一根绳子分两次用完,第一次用去2/5,第二次用去3/5米。

哪一次用去的长一些?5)一根绳子分两次用完,第一次用去3/8,第二次用去余下的部分。

哪一次用去的长一些?二、量率对应1、修一条水渠,已经修好了2/5.(1)水渠全长20千米,已经修了的比剩下没修的少多少千米?(2)正好已经修了8千米,这条水渠全长多少千米?(3)还剩12千米没修,已经修了多少千米?(4)已经修好了的比剩下没修好的少4千米,还剩下多少千米没修?2、六年级一班,男学生人数相当于女学生人数的4/5,问:(1)女生20人,全班多少人?(2)男生人数比女生人数少4人,女生有多少人?(3)男生16人,女生人数比男生人数多多少人?(4)全班36人,男生有多少人?3、等候公共汽车的人整齐的排成一排,小明也在其中。

他数了数,排在他前面的人数是总人数的2/3,排在他后面的是总人数的1/4.小明排在第几位?4、 甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是元.在人民市场,甲买86一双运动鞋花去了所带钱的,乙买一件衬衫花去了人民币元.这样两人身上所剩的钱4916正好一样多.问甲、乙两人原先各带了多少钱?【巩固】一实验五年级共有学生152人,选出男同学的和5名女同学参加科技小组,剩下的男、女人111数正好相等。

六年级奥数百分数应用题

六年级奥数百分数应用题

百分数应用题例1、服装厂一车间人数占全厂的25%,二车间人数比一车间少20%,三车间人数比二车间多30%。

已知三车间有156人,全厂有多少人?训练、有三块地,第二块地的面积是第一块地的80%,第三块地的面积比第二块多20%,三块地共69公顷,求三块地各多少公顷。

例2、已知甲校学生数是乙校学生数的40%,甲校女生数是甲校学生数的30%,乙校男生数是乙校学生数的42%,那么,两校女生数占两校学生总数的百分之几?训练、某班男生人数占全班人数的60%,男生中有12.5%的人希望长大当教师,女生25%的人希望长大当教师。

问:想当教师的男生人数是想当教师的女生人数的百分之几?例3、一个长方体的长比宽多20%,高是宽的75%,如果将长减少4厘米,高增加5厘米,正好可以得到一个正方体。

问:这个长方体的体积是多少立方厘米?训练、把一个正方形的一边减少20%,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.那么正方形的面积是多少平方米?例4、育红小学四年级学生比三年级学生多25%,五年级学生比四年级学生少10%,六年级学生比五年级学生多10%。

如果六年级学生比三年级学生多38人,那么三至六年级共有多少名学生?训练、林场种植杉树、柏树、梧桐树,其中杉树棵数占这三种树的总棵数的40%,柏树棵数占杉树棵数的7/8,梧桐树比杉树少144棵。

问:这三种树一共种了多少棵?例5、某中学上年度高中男、女生共290人,这一年度高中男生增加4%,女生增加5%,共增加了13人,本年度该校有男、女生各多少人?训练、六(3)班男生人数占全班人数的60%,如果男人减少5人,女生增加3人,则男、女生人数正好相等,问:六(3)班原有学生多少人?例6、有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖占25%,那么这堆糖果中有奶糖多少块?训练、有一堆糖果,其中奶糖占45%,再放入32块水果糖后,奶糖就只占25%,那么这堆糖中有奶糖多少块?例7、在某次数学测试中,六年级的及格率为95%,不及格的学生参加了补考,结果及格率为80%,如果补考后该年级还有2名学生没有及格,那么六年级一共有多少名学生?训练、操场上有200人,一部分站着,另一部分坐着。

小学六年级数学竞赛练习题--百分数应用题及答案

小学六年级数学竞赛练习题--百分数应用题及答案

小学六年级数学竞赛练习题--百分数应用题及答案1.甲数比乙数少20%,那么乙数比甲数多百分之25.2.假设这堆糖果有100块,其中奶糖有45块,那么另外55块就是其他糖果。

放入16块水果糖后,奶糖只占总数的25%,也就是说有25块奶糖。

因此,这堆糖果中有25块奶糖。

3.一个正方体的棱长增加原长的1/2,那么新正方体的棱长为1.5倍原来的长。

表面积是边长平方的6倍,因此新正方体的表面积是原来的2.25倍。

增加的百分比为125%。

4.假设篮球有x个,那么排球有45-x个。

卖出一批篮球后,篮球的数量变成0.25*(45-x),也就是0.25*45-0.25x个。

因此,x=6个。

5.假设原来正方形的一边为x,那么面积为x^2.根据题意,新长方形的面积也是x^2.另一边的长度为0.8x+2,因此新长方形的面积为0.8x+2乘以x,即0.8x^2+2x。

因此,0.8x^2+2x=x^2,解得x=8.因此原来正方形的面积为64平方公尺。

6.假设乙校学生数为100人,那么甲校学生数为40人。

甲校女生数为12人,乙校男生数为42人,因此两校女生数为(0.4*0.3*40+0.58*100)/(40+100)=50%。

7.盐的重量为25克,盐水的总重量为125克(25克盐+100克水)。

因此盐的含量为25/125=20%。

8.假设昨天参加会议的男代表有x人,那么女代表有x-700人。

今天男代表有0.9x人,女代表有1.05(x-700)人。

因此,0.9x+1.05(x-700)=1995,解得x=3700.因此昨天参加会议的男代表有3700人。

9.假设原来甲店的利润为x,那么乙店的利润为0.8x。

现在甲店的利润为1.2x,乙店的利润为0.9*0.8x=0.72x。

因此,1.2x=0.72x,解得x=0.因此原来甲店的利润为0,乙店的利润为任意值。

10.假设需要蒸发掉y克水,那么盐的重量不变,即3.2%*500=8%*(500-y)。

六年级奥数第11讲百分数应用题

六年级奥数第11讲百分数应用题

百分数应用题的不同题型百分数应用题在日常生活和生产中有着较广泛的应用,是小学数学中重要的基础知识之一。

如“合格率”“成活率”“浓度”“利率”“利润”等,都是有关百分数的知识。

解答百分数应用题与分数应用题的方法基本相似,找准单位“1”,寻找对应关系。

例一、一项工程,甲独做需12 天完成,乙独做需15 天完成。

甲的工作效率比乙的工作效率高百分之几?分析:求甲的工作效率比乙的工作效效率比乙的工作效率多率高百分之几,就是求甲的工作的部分是乙的工作效率的百分之几。

把乙的工作效率(115)当作单位“1”,甲的工作效率比乙的工作效率高112−115,再除以乙的工作效率115。

(112-115)÷115=160÷115=25% 答;甲的工作效率比乙的高25%。

巩固练习11、甲车从A 地开往B 地需要8 小时,乙车从A 地开往B 地需要10 小时。

甲车的速度比乙车快百分之几?2. 甲2 小时所行驶路程的15%和乙12小时所行驶的路程相等,乙的速度比甲的速度慢百分之几?3. 一辆汽车每小时行驶40 千米,自行车每行驶1千米比汽车多用2.5 分钟,自行车速度是汽车速度的百分之几?例二、某化肥厂原计划每月生产6000吨,由于改进技术8 个月生产的化肥就超过了全年计划产量的10%,这8 个月的平均产量超过了原来月计划产量百分之几?分析:将原来月计划产量看作单位“1”,实际8 个月的总产量相当于原来月计划产量的1×12×(1+10%)=13. 2 倍,实际月平均产量为原来量的13. 2÷8=1.65倍。

1×12(1+10%)÷8-1=1. 65-1=65%答:这8个月的平均产量比原来月计划产量超过65%。

巩固练习21.服装厂实际前6个月的产量相当于全年计划产量的80%,原计划每月产量1200套,实际月平均产量比月计划产量超额百分之几?2. 化肥厂第一季度生产化肥0. 24 万吨,比第二季度少25% ,这两个季度化肥产量正好是全年总产量的20%。

百分数应用题(B) 六年级奥数题之专题串讲试题(附答案)

百分数应用题(B) 六年级奥数题之专题串讲试题(附答案)

六 百分数应用题(2)年级 班 姓名 得分一、填空题1.甲数比乙数少20%,那么乙数比甲数多百分之 .2.每天水分排出量(单位为毫升)如图所示.由肺呼出的水分占每天水分排出的百分之 .(400:肺呼出;500: ;100:固体废物;1500:水性废物)3.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%.那么,这堆糖中有奶糖 块.4.把25克盐放进100克水里制成盐水,制成的这种盐水,含盐量是百分之几?有200克这样的盐水,里面含盐 克.5.一个有弹性的球从A 点落下到地面,弹起到B 点后又落下高20厘米的平台上,再弹起到C 点,最后落到地面(如图).每次弹起的高度都是落下高度的80%,已知A 点离地面比C 点离地面高出68厘米,那么C 点离地面的高度是 厘米.6.某次会议,700人,今天男代表减少10%,女代表增加了5%,今天共1995人出席会议,那么昨天参加会议的有 人.7.有甲、乙两家商店,如果甲店的利润增加20%,乙店的利润减少10%,那么这两店的利润就相同,原来甲店的利润是原来乙店的利润的百分之 .8.开明出版社出版某种书.今年每册书的成本比去年增加10%.但是仍保持原售价,因此每本盈利下降了40%,但今年的发行册数比去年增加80%,那么今年发行这种书获得的总盈利比去年增加的百分数是 .9.甲、乙二人分别从A 、B 两地同时出发,相向而行,出发时他们的速度比是3:2.他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B 地时,乙离A 还有14千米.那A 、B 两地间的距离是 .10.有两堆棋子,A 堆有黑子350个和白子500个,B 堆有黑子400个和白子100个,为了使A 堆中黑子占50%,B 堆中黑子占75%,要从B 堆中拿到A 堆;黑子 .个,白子 个.A B C二、解答题11.有一位精明的老板对某商品用下列办法来确定售价:设商品件数是N ,那么N 件商品售价(单位:元)按:每件成本⨯(1+20%)⨯N 算出后,凑成5的整数倍(只增不减),按这一定价方法得到:1件50元;2件95元;3件140元;4件185元;…,如果每件成本是整元,那么这一商品每件成本是多少元?12.盈利百分数=买入价买入价买出价-⨯100% 某电子产品去年按定价的80%出售,能获得20%的盈利,由于今年买入价降低,按同样定价的75%出售,却能获得25%的盈利,那么去年买入价今年买入价是多少? 13.北京九章书店对顾客实行一项优惠措施:每次买书200元至499.99元者优惠5%,每次买500元以上者(包含500元)优惠10%.某顾客到书店买了三次书,如果第一次与第二次合并一起买,比分开买便宜13.5元;如果三次合并一起买比三次分开买便宜38.4元.已经知道第一次的书价是第三次书价的85,问这位顾客第二次买了多少钱的书.14.有A 、B 、C 三根管子,A 管以每秒4克的流量流出含盐20%的盐水,B 管以每秒6克的流量流出含盐15%的盐水,C 管以每秒10克的流量流出水.C 管打开后开始2秒不流,接着流5秒,然后又停2秒,再流5秒…三管同时打开,1分种后都关上,这时得到的混合液中含盐百分之几?———————————————答 案——————————————————————1. 20%÷(1-20%)=25%2. 400÷(400+500+100+1500)=16%3. 16÷[(1-25%)÷25%-(1-45%)÷45%]=9(块)4. 含盐量是: %20%1001002525=⨯+ 200克这样的盐水里面含盐200⨯20%=40克5. [68+20⨯(1-80%)]÷(1-80%⨯80%)-68=132(厘米)6. (1995-700⨯90%)÷(1+5%+90%)⨯2+700=2100(人)7. (1-10%)÷(1+20%)=75%8. 假设每册书成本为4元,售价5元,每册盈利1元,而现在成本为4⨯(1+10%)=4.4元,售价仍为5元,每册盈利0.6元,比原来每册盈利下降了40%.但今年发行册数比去年增加80%,若去年发行100册,则今年发行100⨯(1+80%)=180(册).原来盈1⨯100=100(元),现在盈利0.6⨯180=108(元).故今年获得的总盈利比去年增加了(108-100)÷100=8%.9. 相遇到后,甲乙速度之比为1⨯(1+20%):⨯32(1+30%)=18:13,故A 、B 两地之间的距离是14÷4513185253=⎪⎭⎫ ⎝⎛÷-(千米) 10. 设要从B 堆中拿到A 堆黑子x 个,白子y 个,则有:()()[]()()[]⎩⎨⎧⨯++-=-⨯+++=+%75100400400%50500350350y x x y x x 解得 x =175, y =25. 11. 45÷[(1+20%)⨯1]=37.512. [75%÷(1+25%)]÷[80%÷(1+20%)]=109. 13. 第一次与第二次共应付款13.5÷5%=270(元),故第三次书价必定在 500-270=230(元)以上,这样才能使三次书价总数达到优惠10%的钱数.如果分三次购买,第三次的书价也能优惠5%,从而有:第三次书价总数为518-270=248(元)第一次书价总数为24885⨯=155(元) 第二次书价总数为270-155=115(元)14. 因60÷(5+2)=8…4,故C 管流水时间为5⨯8+2=42(秒),从而混合液中含盐百分数为()()%10%1004210606460%156%2040=⨯⨯+⨯+⨯⨯+⨯。

六年级上册数学百分数应用题专项(完整版)

六年级上册数学百分数应用题专项(完整版)

百分数的认识、百分数应用题学生/课程年级学科授课教师日期时段核心内容百分数的认识、百分数应用题课型一对一/一对N教学目标1、认识百分数的意义2、会转化百分数、分数与小数3、熟练运用百分数相关知识解决问题重、难点百分数的综合应用知识导图导学一百分数意义及与分数、小数互化知识点讲解 1:百分数的意义百分数的意义:表示一个数是另一个数的百分之几,也叫百分率或百分比知识点讲解 2:百分数和分数、小数互化(1)百分数与小数互化; (2)百分数与分数互化例 1. 用百分数、分数和小数表示阴影部分的大小。

小数()小数()小数()分数()分数()分数()百分数()百分数()百分数()我爱展示1. 35:28= = =()8=()%=()(填小数)。

2. 观察下图,图中阴影部分的面积占大圆面积的()%。

导学二百分率的应用知识点讲解 1:一个数是另外一个数的几分之几题型:求A是B的几分之几解题思路:A÷B出勤率= ×100% 成活率= 100%出油率= ×100%出粉率= ×100%发芽率= ×100%合格率= ×100%射击命中率= 出糖率= ×100%例 1. 六(一)班今天出勤的有47人,有1人请病假,有2人去参加数学竞赛,今天该班的出勤率是多少?例 2. 一种核桃的出油率是45%,900千克的核桃可以榨油多少千克?要榨900千克油,需要核桃多少千克?我爱展示1.六年1班有40人,某天请事假的1人,请病假的2人,这天的缺勤率是()%,出勤率是()%。

2.荔红小学有学生800人,今天的出勤率是96%,今天出勤人数是()人。

3.学校春季植树600棵,成活率75%。

而秋季植树的成活率是90%,春秋两季植树成活的棵数一样多。

学校秋季植树多少棵?导学三百分数的应用知识点讲解 1:比一个数多(或少)百分之几的应用题方法:(1)先求出增加(或减少)的具体量,再除以单位“1”的量。

列方程解应用题(A)六年级奥数题之专题串讲试题(附答案)2013

列方程解应用题(A)六年级奥数题之专题串讲试题(附答案)2013

九 列方程解应用题(1)年级 班 姓名 得分一、填空题1.一个分数约分后将是54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是94.那么原分数是 . 2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .3,□,□,□,□,□,□1803.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.5.粮店中的大米占粮食总量的73,卖出600千克大米后,大米占粮食总量的31.这个粮店原来共有粮食 千克. 6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费3059.6元,那么,在运输过程中共损坏 套茶具.10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.二、解答题11.A 、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的?12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的101,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的101,照此类推,第i 班取走树苗100⨯i 棵又取走剩下树苗的101.直到取完为止.最后各班所得树苗都相等.试问这批树苗有多少棵?有几个班?每个班取走树苗多少棵?13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了31的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里?———————————————答 案—————————————————————— 1. 335268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335268675674=⨯⨯. 2. 12设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由24+13x =180,解得 x =12.3. 630设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程14a ⨯5a +182=(14a -13)⨯(5a +13)70a 2+182=70a 2+117a -169解得a =3,所以原长方形的面积为14a ⨯5a =70a 2=630(平方厘米)4. 55设成本是x 元.根据题意可列方程(x +5)⨯11=(x +11)⨯10,解得x =55(元).5. 4200设原来有粮食x 千克,根据现有大米可列方程,31)600(60073⨯-=-⨯x x 解得x =4200(千克).6. 42设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程)5(6020)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30⨯[(55-15)÷(55-5)]=24(千米/小)7. 200浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x ⨯40%+(300-x )⨯10%=300⨯30%,解得x =200(克).8. 20设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x .由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3⨯(2x )+4⨯(3x )=10(工时).即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:2⨯(3x )+10⨯(2x )+14x =40x =20(工时).9. 7设共损坏x 套茶具,依题意,得1.6⨯(1998-x )-18⨯x =3059.6,解得x =7.10. 600设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(31400)100(31 解得x =250,两地相距(x +1)+x =2x +1=600(千米).11. 设甲出发后x 分钟开始减速的,依题意,得20⨯30601)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.12. 设这批树苗有x 棵,则第一班取走树苗(100+)10100-x 棵,第二班取走 树苗10)1010100(200200-+--+x x 棵.依题意,得10)10100100(20020010100100-+--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为99008100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵. 13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504*********+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x 千米,骑马行x 千米,依题意,得1245112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。

(完整版)百分数应用题练习题及答案

(完整版)百分数应用题练习题及答案

百分数应用题练习题及答案1、有一台冰箱,原价2000元,降价后卖1600元,降了百分之几?2、有一台空调,原价1600元,涨价后卖2000元,涨了百分之几?3、有一台电视,原价1200元,降了300元,价格降了百分之几?4、有一种消毒柜,原价2400元,涨价了400元,价格涨了百分之几、5、光明小学去年有篮球24个,今年新买了6个,今天一共有篮球多少个?今年比去年增加了百分之几?6、有一个公园原来的门票是80元,国庆期间打8折,每张门票能节省多少元?相当于降价了百分之几?7、南山小学共占地8000平方米,其中绿地面积占65 %,其余为教学楼和道路等,南山小学的绿地面积有多少平方米?教学楼和道路等有多少平方米?&商场搞打折促销,其中服装类打5折,文具类打8折。

小明买一件原价320元的衣服,和原价120元的书包,实际要付多少钱?9、有一批种子的发芽率为98.5 %,播种下3000粒种子,可能会有多少粒种子没发芽?10、一个果园里去年产了4500千克的苹果,今年因为气候好,比去年增产了2成,今年产了多少千克苹果?11、实验小学六年级的女生人数占全年级的48.75 %,男生占全年级人数的百分之几?如果男生人数比女生人数多12人,那么实验小学六年级人数共有多少人?12、蔬菜基地今年生产了 2.4万吨蔬菜,比去年增产了2成,去年这个蔬菜基地的产量是多少万吨?13、504班参加美术兴趣小组的有20人,比参加体育兴趣小组的人数多20 %,参加体育兴趣小组的有多少人?14、王叔叔把4000元存入银行,整存整存3年,年利率为3.15%,至U期有利息多少元?要缴纳利息税多少元?王叔叔的本金加利息一共多少元?(现在的利息税为5%)15、小明家六月份用电180千瓦时,七月份比六月份多用了20 %,每千瓦时电费为0.54元,小明家七月份的电费为多少元?〕16、林林爸爸2000年的总工资收入13500元,2006年比2001年增加了240 %,林林爸爸2006年的工资是多少元?答案1、答:降了20%o答:涨了25%3、答:价格降了25%。

六年级奥数十二.分数百分数应用题.教师版

六年级奥数十二.分数百分数应用题.教师版

六年级奥数十二.分数百分数应用题.教师版第一篇:六年级奥数十二.分数百分数应用题.教师版学远教育小六奥数资料小六奥数专题十二:分数百分数应用题一、知识点概述1.分析题目确定单位“1”2.准确找到量所对应的率,利用量÷对应率=单位“1”解题3.抓住不变量,统一单位“1”4.分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.二、解题技巧:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a是b的几分之几,就把数b看作单位“1”.1,乙比甲少几分之几?819191方法一:可设乙为单位“1”,则甲为1+=,因此乙比甲少÷=.888891方法二:可设乙为8份,则甲为9份,因此乙比甲少1÷9=.9(2)甲比乙多三、怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

小学六年级奥数系列讲座比例和百分数(含答案解析)

小学六年级奥数系列讲座比例和百分数(含答案解析)

比例和百分数成本、利润、价格等基本经济术语,以及它们之间的关系.各种已知数据或所求结果中包含比例与百分数的应用题,有时恰当选取较小的量作为一个单位,司以实现整数化计算.1.迎春农机厂计划生产一批插秧机,现已完成计划的56%,如果再生产5040台,总产量就超过计划产量的16%.那么,原计划生产插秧机多少台?【分析与解】 : 5040÷(1+16%56%)=8400(台).2.圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?【分析与解】:设圆珠笔的价格为4,那么铅笔的价格为3,则20支圆珠笔和21支铅笔的价格为20×4+21×3=143,则单位“1”的价格为71.5÷143:0.5元. 所以圆珠笔的单价是O.5×4=2(元).3.李大娘把养的鸡分别关在东、西两个院内.已知东院养鸡40只;现在把西院养鸡总数的14卖给商店,13卖给加工厂,再把剩下的鸡与东院全部的鸡相加,其和恰好等于原来东、西两院养鸡总数的50%.原来东、西两院一共养鸡多少只?【分析与解】:方法一:设原来东西两院一共养鸡x 只,那么西院养鸡()40x -只. 依题意:.()11140140432x x ⎛⎫-⨯--+= ⎪⎝⎭,解出280x =. 即原来东、西两院一共养鸡280只.方法二:50%即12,东、西两院剩下的鸡等于东院的12加上西院的12,即20+12西院原养鸡数.有东院剩下40只鸡,西院剩下原11514312--=的鸡.所以有西院原养鸡(40—20)÷15212⎛⎫-⎪⎝⎭=240只,即原来东、西两院一共养鸡40+240=280只.4.用一批纸装订一种练习本.如果已装订120本,剩下的纸是这批纸的40%;如果装订了185本,则还剩下1350张纸.这批纸一共有多少张?【分析与解】方法一:装订120本,剩下40%的纸,即用了60%的纸.那么装订185本,需用185×(60%÷120)=92.5%的纸,即剩下192.5%=7.5%的纸,为1350张.所以这批纸共有1350÷7.5%=18000张.方法二:120本对应(140%=)60%的总量,那么总量为120÷60%=200本.当装订了185本时,还剩下200185:15本未装订,对应为1350张,所以每本需纸张:1350÷15=90张,那么200本需200×90=18000张.即这批纸共有18000张.5.有男女同学325人,新学年男生增加25人,女生减少5%,总人数增加16人.那么现有男同学多少人?【分析与解】男生增加25人,女生减少5%,而总人数增加了16人,说明女生减少了2516=9人,那么女生原来有9÷5%=180人,则男生有325180=145人.增加25人后为145+25=170人,所以现有男同学170人.6.有一堆糖果,其中奶糖占45%,再放人16块水果糖后,奶糖就只占25%那么,这堆糖果中有奶糖多少块?【分析与解】方法一:原来奶糖占45910020=,后来占2511004=,因此后来的糖果数是奶糖的4倍,也比原来糖果多16粒,从而原来的糖果是16+(9420⨯- 1)=20块. 其中奶糖有20×920=9块.方法二:原来奶糖与其他糖(包含水果糖)之比是45%:(145%)=9:11, 设奶糖有9份,其他糖(包含水果糖)有11份.现在奶糖与其他糖之比是25%:(125%)=1:3=9:27,奶糖的份数不变,其他糖的份数增加了2711=16份,而其他糖也恰好增加了16块,所以,l 份即1块.奶糖占9份,就是9块奶糖.7.甲乙两包糖的重量比是4:l ,如果从甲包取出10克放入乙包后,甲乙两包糖的重量比变为7:5.那么两包糖重量的总和是多少克?【分析与解】两包糖数量的总数是 4713210104641756013⎛⎫÷-=÷= ⎪++⎝⎭克.8.有若干堆围棋子,每堆棋子数一样多,且每堆中自子都占28%.小明从某一堆中拿走一半棋子,而且拿走的都是黑子,现在,在所有的棋子中,白子将占32%.那么,共有棋子多少堆?【分析与解】 方法一:设有x 堆棋子,每堆有棋子“1”.根据拿走黑子白子总数不变.列方程得1282x x ⎛⎫⨯=- ⎪⎝⎭×32%,化简得28x =32(x 12),两边同除以4,得7x =8(x12),解得x =4. 即共有棋子4堆.方法二:注意到所有棋子中的白子个数前后不变,所以设白子数为“1”. 那么有: .黑子变化了1817257856-=,对应为12堆;所以2528对应l堆.而开始共有棋子l+182577=,所以共有25254728÷=堆.9.幼儿园大班和中班共有32名男生,18名女生.已知大班中男生数与女生数的比为5:3,中班中男生数与女生数的比为2:1,那么大班有女生多少名?【分析与解】设大班女生有x名,则中班女生有(18x)名.根据男生数可列出方程:x×53+(18x)×21=32,解得x=12.所以大班有女生12名.10.某校四年级原有2个班,现在要重新编为3个班,将原一班的号与原二班的丢组成新一班,将原一班的{与原二班的吉组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多10%,那么原一班有多少人?【分析与解】有新三班的为原一、二班总人数的1751212=,为30人.所以原来两班总人数是:30÷512=72(人).则新一班与新二班人数总和是7230=42(人).现在再把新二班人数算作1份.新一班人数=421101101+⨯++ =22(人),新二班人数=4222=20(人).(原一班人数)(原二班人数)=(2220)÷1134⎛⎫- ⎪⎝⎭=2×12=24(人). 原一班人数=(72+24)÷2=48(人).11.有两包糖,每包糖内装有奶糖、水果糖和巧克力糖.已知:①第一包糖的粒数是第二包糖的23;②在第一包糖中,奶糖占25%,在第二包糖中,水果糖占50%;③巧克力糖在第一包糖中所占的百分比是在第二包糖中所占的百分比的两倍.当两包糖合在一起时,巧克力糖占28%,那么水果糖所占百分比等于多少?【分析与解】表述1:设第一包有2a 粒糖,则第二包有3a 粒糖,设第二包有3b 粒巧克力糖,则第一包有4b 粒巧克力糖.4323b b a a +=+28%,所以57b a =×28%=20%.于是第一包中,巧克力糖占42ba=40%,水果糖占140%25%=35%.在两包糖总粒数中,水果糖占23535023a a a a⨯+⨯=+44%.表述2:设第一包糖总数为“2”,那么第二包糖总数为“3”,并设第一包糖含有巧克力糖2c ,第二包糖含有巧克力糖c .那么有2×2c+3×c=28%×(2+3),有7c=140%,所以c=20%,那么有如下所示的每种糖所占的百分数.所以水果糖占总数的(35%×2+50%×3)÷(2+3)=44%.12.某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等:⑦甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?【分析与解】表述1:不妨设甲校有60人获奖,由①、②,乙校有50人获奖.由③知两校获二等奖的共有(60+50)×20%=22人;由⑤知甲校获二等奖的有22÷(4.5+1)×4.5=18人;由④知甲校获一等奖的有6060×50%18=12人,从而所求百分数等于12÷50×100%=24%.表述2:(这有一个“5”)1.2÷5×100%=24%,即乙校获一等奖的人数占该校获奖总人数的24%.13.①某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?【分析与解】表述1:由②知,一、二、三班的男生总数比二、三班总人数多1.③知,四至九班的男生总数比七、八、九班总人数少1.因此,一至九班的男生总数是二、三、七、八、九共五个班的人数,则女生总数等于四个班的人数.所以,男、女生之比是5:4.表述2:.有“一、二、三班男生”加上“四、五、六、七、八、九班男生”即为一至九班全体男生数,恰为“二、三班总人数”加上“四、五、六班总人数”,即为五个班总人数,则女生总数等于四个班的人数.所以,男、女生之比是5:4.14.某商品按原定价出售,每件利润为成本的25%;后来按原定价的90%出售,结果每天售出的件数比降价前增加了1.5倍.问后来每天经营这种商品的总利润比降价前增加了百分之几?【分析与解】设这种商品的成本为“1”,共卖出商品“1”,则利润为25%,总利润为0.25,定价为1.25.那么按原定价的90%出售,即以1.25× 90%=1.125的价格出售,现在销售的件数比原来增加了1.5倍,利润为0.125×(1.5+1)=O.3125,而原来的总利润为O.25,现在增加了0.3125一O.25=0.0625,0.0625÷0.25:25%.所以,后来每天经营这种商品的总利润比降价前增加了25%.15.赢利百分数=100-⨯卖出价买入价买入价某电子产品去年按定价的80%出售,能获得20%的赢利;由于今年买入价降低,按同样定价的75%出售,却能获得25%的赢利.那么今年买入价去年买入价是多少?【分析与解】 根据题中给出的公式知: 赢利百分数×买入价=卖出价一买入价 则买入价×(赢利百分数+1)=卖出价,那么买入价=卖出价赢利百分数+1今年买入价去年买入价=()()÷÷今年卖出价1+25去年卖入价1+25=7512580120⨯÷⨯÷定价定价=。

方程组(B)六年级奥数题之专题串讲试题(附答案)2013

方程组(B)六年级奥数题之专题串讲试题(附答案)2013

十 方程组(2)年级 班 姓名 得分一、填容题1.甲数比乙数多15,当甲数减少28,乙数增加28以后,这时甲数是乙数的43,原来甲数比乙数多 %.(百分号前保留两位小数)2.某校六年级学生为校运动会制做了红蓝两色的花束580支,其中红色花束的41与蓝色花束的51是由一班同学制做的,其余的448支是由其它几个班同学制做的,那么一班同学制做了 支红色花束.3.一个六位数它能被9和11整除,去掉这个六位数的首、尾两个数字,中间的四个数字是1997.那么这个六位数是 .4.2个蟹将和4个虾兵能打扫龙宫的103,8个蟹将和10个虾兵就能打扫完全部龙宫.如果是单让蟹将去打扫,与单让虾兵去打扫进行比较,那么要打扫完全部龙宫,虾兵比蟹将要多 个.5.甲、乙、丙、丁四人,每三个人的平均年龄加上余下一人的年龄分别为29、23、21和17.这四人中最大年龄与最小年龄的差是 .6.商店里有大、小两种书包.买大书包4个,小书包6个,需392元;买大书包7个,小书包3个,需416元;买小书包9个,大书包1个,需 元.7.甲、乙两邮递员分别A ,B 两地同时以匀速相向而行,相遇时甲比乙多走18千米,相遇后甲走4.5小时到达B 地,乙走8小时到达A 地,那么A ,B 两地的距离是 .8.一个装满了水的水池有一个进水阀及三个口径相同的排水阀.如果同时打开进水阀一个排水阀,则30分钟能把水池的水排完;如果同时打开进水阀及两个排水阀,则10分钟把水池的水排完.那么,关闭进水阀并且同时打开三个排水阀,需 分钟才能排完水池的水.9.如图所示,在3 3的方格内已填好了两个数19和99,可以在其余空格中填上适当的数,使得每一行、每一列以及两条对角线上的三个数和都相等.则x = .10.甲、乙二人同时从A 地出发,经过B 地到达C 地,甲先骑自行车达B 地,然后步行,乙先步行到B 地,然后骑自行车,结果二人同时到达C 地.已知甲乙二人的步行速度分别为4千米/时和3千米/小时,骑自行车的速度都是15千米/小时.那么甲从A 地到C 地的平均速度是 千米/小时.二、解答题11.从甲地到乙地的公路,只有上坡路和下坡路,没有平路.一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米.车从甲地开往乙地需9小时,从乙地到甲地需217小时.问:甲、乙两地间的公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?12.如右图,AD 、BE 、CF 把△ABC 分成六个小三角形,其中四个小三角形的面积已在图上标明,试求△ABC 的面积.(单位:平方厘米)13.某校初一有甲、乙、丙三个班,甲班比乙班多4个女同学,乙班比丙班多1个女同学,如果把甲班的第一组调到乙班,乙班的第一组调到丙班,丙班的第一组调到甲班,则三个班女生人数相等.已知丙班第一组有2个女同学.问甲、乙两班第一组各有女同学多少人?14.一水池有A 、B 两个进水龙头和一个出水龙头C ,如果在水池空时同时将A 、C 打开,2小时可注满水池;同时打开B 、C 两龙头3小时可注满水池.当水满时,先打开C ,7小时后把A 、B 同时打开(C 仍开着),1小时后水池可注满.那么单独打开A ,几小时可注满水池?———————————————答 案——————————————————————1. 11.03设甲、乙两数分别为x 、y ,依题意,得⎪⎩⎪⎨⎧⨯+=-+=43)28(2815y x y x解得 x =151,y =136.甲比乙多(151-136)÷136≈11.03%2. 80设红色花束共有x 支,蓝色花束共有y 支,依题意,得⎪⎩⎪⎨⎧-=+=+44858054580y x y x解得 x =320,y =260.所以一班制做的红色花束320⨯41=80(支). 3. 219978设这个数为b a 1997.由能被9整除,推知a +b =1或10;由能被11整除,推知a -b =5或b -a =5.综上求得a =2,b =8. 4. 18设1个蟹将、1个虾兵打扫的工作量分别为x 、y ,依题意,得⎪⎩⎪⎨⎧=+=+110810342y x y x解得 301,121==y x .因此,单让蟹将打扫全部龙宫需要1211÷=12(个),单让虾兵打扫全部龙宫需要303011=÷(个),则虾兵应比蟹将多用30-12=18(个). 5. 18设四人的年龄分别是x 、y 、z 、w .依题意,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=+++173213233293z y x w y x w z x w z y w z y x 所以 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++++=++++=++++=++++17323213232332329323z w z y x y w z y x x w z y x w w z y x 比较①,②,③,④易知 z <y <x <w . ①-④整理得 ()1232=-z w ,故w -z =18,即最大年龄与最小年龄之差为18.6. 368⎩⎨⎧++=+4163739264小大小大 2⨯②-①得,10大=440.所以每个大书包44元,代入①,解得每个小书包36元.所以,9小+1大=36⨯9+44⨯1=368(元). 7. 126千米设甲速为a 千米/时,乙速为b 千米/时,A ,B 两地的距离为2S ,依题意有⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+=-=+b S a S a S b S 995.4989 ① ② ③ ④①② ① ② ③由①,②得b a S S 16999=+-. 由③得 baS S =-+99. 所以 916916992=⋅=⎪⎭⎫⎝⎛-+a b b a S S ,所以3499=-+S S ,所以 S =63(千米),2S =126(千米) 8. 5设水池容量为A ,每个排水阀每分钟排水量为x ,进水阀每分钟进水量为y ,于是 A =(x -y )⨯30 A =(2x -y )⨯10即 30x -30y =20x -10y 或10x =20y ,即x =2y .于是A =30y .30y ÷3x =30y ÷6y =5(分钟).9. 179如图,依题意有⎩⎨⎧++=++++=++991999d b d c c a b x a①+②整理,得x =179.10 71505.设AB =a ,BC =b ,依题意可知,甲、乙二人从A 到C 所用时间相等,即 153415b a b a +=+,整理得 a =b 1611. 因此,甲从A 到C 的平均速度是71505416111511611415=+⨯+=++b b bb b a b a (千米/时) 11. 设从甲地到乙地的上坡路为x 千米,下坡路为y 千米.依题意得:93520=+y x ① 2172035=+y x ② 于是(x +y )(351201+)=16.5. 所以,x +y =210.将y =210-x 代入①式, 得91404352101407=-+x x , 即961403=+x ,解得x =140(千米). 12. 设.,y S x S AOE BOF ==∆∆① ②因为 CDA BDA CDO BDO S S S S ∆∆∆∆=::. 所以 40:30=(40+84+x ):(30+35+y ), 整理得 4y -3x =112 ①又因为 AEB CEB AEO CEO S S S S ∆∆∆∆=:: 所以 35:y =(35+30+40):(84+x +y ) 整理得 70y -35x =2940 ② 由①、②解得 x =56,y =70又因为=∆ABC S AEO CEO BDO BFO AEO AFO S S S S S S ∆∆∆∆∆∆+++++ 所以353040567084+++++=∆ABC S=315(平方厘米)13. 设丙班有n 个女同学,甲班第一组有x 个女同学,乙班第一组有y 个女同学,则乙班原有n +1个女同学,甲班原有n +5个女同学,依题意,列出方程(n +5)-x +2=(n +1)-y +x =n -2+y 7-x =1-y +x =y -2即 ⎩⎨⎧-=+-=-,221127y x y x 解得 x =5,y =4.答:甲班第一组有5个女同学,乙班第一组有4个女同学.14. 设单独打开A 、B 龙头(或C 龙头),分别可在x 、y (或z )小时内注满水池(或放尽池水),依题意,得122=-zx ① 133=-z y ② 1)111(71=+++-zy x z ,(7≥z ) ③ 或1111=-+zy x (z <7) ④ 联立①、②、③解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===.536,1736,2336z y x 联立①、②、④解得⎪⎪⎩⎪⎪⎨⎧===6,2,23z y x答:当独打开C 龙头放完一池水所需时间不少于7小时(事实上为536小时)时,单独打开A 龙头,2326小时可注满水池,当单独打开C 龙头放完一池水所需时间少于7小时(事实上为6小时)时,单独打开A 龙头,23小时可注满水池.。

六年级百分数的奥数题

六年级百分数的奥数题

六年级百分数的奥数题一、基础概念类。

1. 把10克盐放入90克水中,盐水的含盐率是多少?解析:含盐率 = 盐的质量÷盐水的质量×100%。

盐的质量是10克,盐水的质量是盐的质量 + 水的质量 = 10+90 = 100克。

所以含盐率 = 10÷100×100% = 10%。

2. 一个数增加20%后是120,这个数是多少?解析:设这个数为x,增加20%后的数就是x(1 + 20%)。

已知x(1+20%)=120,即1.2x = 120,解得x=120÷1.2 = 100。

3. 某工厂去年的产量是800件,今年比去年增产25%,今年的产量是多少件?解析:今年的产量 = 去年的产量×(1 + 增产的百分数)。

去年产量是800件,增产25%,所以今年产量 = 800×(1 + 25%)=800×1.25 = 1000件。

二、折扣与利润类。

4. 一件商品原价200元,打八折出售,售价是多少元?解析:打八折就是按原价的80%出售。

售价 = 原价×折扣率,所以售价 = 200×80% = 200×0.8 = 160元。

5. 某商品按20%的利润定价,然后按八八折卖出,共得利润84元,这件商品的成本是多少元?解析:设成本是x元,定价就是x(1 + 20%),售价就是x(1 + 20%)×0.88。

利润= 售价成本,可列方程x(1 + 20%)×0.88−x = 84。

化简得1.2x×0.88 x=84,即1.056x x = 84,0.056x = 84,解得x = 1500元。

6. 商店以每双13元购进一批凉鞋,售价为14.8元,卖到还剩5双时,除去购进这批凉鞋的全部开销外还获利88元。

问:这批凉鞋共多少双?解析:设这批凉鞋有x双。

已经卖出的凉鞋是(x 5)双。

总售价是14.8(x 5),总成本是13x。

六年级数学百分数的应用试题答案及解析

六年级数学百分数的应用试题答案及解析

六年级数学百分数的应用试题答案及解析1.某汽车厂12月份实际生产300辆汽车,比计划多生产60辆,超产了百分之几?【答案】25%【解析】计划产量:300-60=240(辆)60÷240=25%答:超产了25%。

【考点】百分数的概念。

2.公园售两种门票,个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票可优惠15%,某单位208人去公园,按以上规定最少应付多少元?【答案】208÷10≈21需要购买21张团体票。

21×30×(1-15%)=630×0.85=535.5(元)答:按规定至少需要付535.5元钱。

【解析】208个人,可以买208÷10≈21张团体票,超过10张,每张可以优惠15%,则总价是21×30×(1-15%)。

3.修一条公路,已修好750千米,还剩2050千米,剩下的是修了的百分之几?修了全程的百分之几?【答案】(1)2050÷750≈273.3%(2)750÷(750+2050)=750÷2800≈26.8%答:剩下的是修了的273.3%,修了全程的26.8%。

【解析】要求剩下的是修了的百分之几,就是求2050千米是750的百分之几,用除法计算;要求修了全程的百分之几,需要先求出全程的千米数,进一步得解。

4.一堆煤,第一次用去总量的15%,第二次用去总量的40%,两次一共用去总量的百分之几?还剩百分之几?【答案】15%+40%=55%1-55%=45%答:两次一共用去总量的55%,还剩45%。

【解析】第一次用去总量的15%,第二次用去总量的40%,根据分数加法的意义,两次共用去总量的15%+40%;用单位“1”减去两次用去的占总数的分率,即得还剩百分之几。

5.一副羽毛球拍现价35元,比原价降低了5元。

现价是原价的百分之几?降低了百分之几?【答案】(1)35÷(35+5)=35÷40=87.5%(2)5÷(35+5)=5÷40=12.5%答:现价是原价的87.5%,降低了12.5%。

同步奥数培优六年级上----第九讲百分数(百分数应用题)

同步奥数培优六年级上----第九讲百分数(百分数应用题)
根据“第一次卖出40乐第二次卖出的相当于第一次的80%”,把革果的总千克数看作单位“1”,第一次卖出40%,第 二次卖出总千克数40%的80%,也就是40%X80⅝=32%,第二次卖出总千克数的32%,60X32%=19.2
(千克)。
同步精练
.一种电子产品原售价120元,出售时第一次降价20%,第二次又降了新售价的10%,这种产品现在售价多少元?
甲、乙两地相距多少千米?
.李大伯饲养鸡的只数的60%与鹅的只数的*相等。已知李大伯饲养了120只鸡,那么李大伯饲养了多少只鹅?
.师徒两人共同制造840个零件,完成任务时,师傅做的零件的10%相当于徒弟做的零件的25%,徒弟做了多少个 零件?
练习卷
一、填空。
1.( ):5=0.8=^-=( )%o
()
.六年级男生人数相当于女生人数的80%,那么,
男生人数相当于全年级人数的J―:。
.甲数的:等于乙数的75%,已知乙数是80,那
么甲数是( )o
.小红从家到学校,用了10分钟,从学校沿原路返回家用了8分钟,速度提高了(
二、判断。
.小王加工101个零件,合格100个,这批零件的合格率是100%。 (

.甲数比乙数多25%,则乙数就比甲数少20%。 ()
例题精学
例1一本故事书共100页,芳芳第一天看了总页数的20%,第二天费了总页数的25%,剩下的第星亮看完,第第瓦及 ;⅛了多劳罪??页
【思路点拨】根据题意图线段图:
把这本故事书的总页数看作单位“1”,第一天弄了总页数的20乐也就是看了100页的20%,用100×20%=20(页) ,同样第二天才了100页的25%,用100X25%=25(页),从100页里去掉两天看的页数,剜下的

百分数应用题(A) 六年级奥数题之专题串讲试题(附答案)

百分数应用题(A) 六年级奥数题之专题串讲试题(附答案)

六 百分数应用题(1)一、填空题1.一个正方体的棱长增加原长的21,它的表面积比原表面积增加百分之 .2.体育用品商店有篮球和排球共45个,其中篮球占60%,当卖出一批篮球后,篮球占现存总数的25%,卖出的篮球是 个.3.把一个正方形的一边减少20%,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.那么正方形的面积是 平方米.4.已知甲校学生数是乙校学生数的40%,甲校女生数是甲校学生数的30%,乙校男生数是乙校学生数的42%,那么,两校女生数占两校学生总数的百分之 .5.有甲、乙、丙三个车间,它们工人总数少于1000人,其中女工人数恰好是男工人数是43%,已知甲车间比乙车间多38人,丙车间比甲车间多70人.三个车间总人数是 .6.有浓度为3.2%的食盐水500克,为了把它变成浓度是8%的食盐水,需要使它蒸发掉 克的水.7.某校四年级原有两个班,现在要重新编为三个班.将原一班的31与原二班的41组成新一班,将原一班的41与原二班的31组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多10%,那么原一班人数有 人.8.A 种酒精中纯酒精的含量为40%,B 种酒精中纯酒精的含量为36%,C 酒精中纯酒精的含量为35%.它们混合在一起得到了纯酒精的含量为38.5%的酒精11升.其中B 种酒精比C 种酒精多3升.那么其中的A 种酒精有 升.9.某商店有两件商品,其中一件商品按成本增加25%出售,一件商品按成本减少20%出售,售价恰好相同,那么两件商品成本总和两件商品售价总和 .10.有甲、乙两个同样的杯子,甲杯中有半杯清水,乙杯中盛满了含50%酒精的溶液.先将乙杯中酒精溶液的一半倒入甲杯,搅匀后,再将甲杯中酒精溶液的一半倒入乙杯.问这时乙杯中的酒精是溶液的 分之 .二、解答题11.A 容器有浓度为2%的盐水180克,B 容器中有浓度9%的盐水若干克.从B 容器中倒出240克到A 容器,然后再把清水倒入B 容器,使A 、B 两容器中盐水的重量相等.结果发现,现在两个容器中盐水浓度相同,那么B 容器中原来有9%的盐水多少克?12.有两包糖,每包糖内都有奶糖、水果糖和巧克糖.(1)第一包的粒数是第二包粒数的32;(2)第一包糖中奶糖占25%,第二包中水果糖占50%;(3)巧克力糖在第一包糖中所占的百分比是在第二包糖中所占百分比的两 倍.当两包糖合在一起时,巧克力糖占28%,那么水果糖占百分之几?13.甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合.第二次将乙容器中一部分混合液倒入甲容器.这样甲容器中纯酒精含量为62.5%,乙容器中酒精含量为25%,那么,第二次从乙容器倒入甲容器的混合液多少升?14.新昌茶叶店运到一级茶和二级茶一批,其中二级茶的数量是一级茶的21.一级茶的买进价每千克24.8元;二级茶的买进价是每千克16元.现在照买进价加价12.5%出售,当二级茶全部售完,一级茶剩下31时,共盈利460元.那么,运到的一级茶有多少千克?———————————————答 案——————————————————————1. ()%12516116211211=-⨯⨯÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫⎝⎛+⨯⎪⎭⎫ ⎝⎛+2. 45⨯60%-18⨯()[]6%251%25=-÷(个)3. ()[]=÷-⨯2%20%201264(平方米)4. ()[]()%50%401%421%30%40=+÷-+⨯5. 全厂总人数比乙车间人数的3倍还多38+(38+70)=146人,又全厂人数是43+100=143的倍数,在小于1000人的143的倍数中,仅572满足条件,故全厂共有572人.6. 500-500⨯3.2%÷8%=300(克)7. 原来两班总人数为30÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-41311=72(人),新一班与新二班人数之和 是72-30=42(人),新二班人数为72()[]20%1011=++÷(人).新一班人数为20⨯(1+10%)=22(人),原一班人数与原二班人数之差为(22-20)÷244131=⎪⎭⎫⎝⎛-(人),原一班人数为(72+24)÷2=48(人).8. 假设B 种酒精减少3升,就与C 种酒精升数相等,则A 、B 、C 三种酒精总升数是11-3=8(升),其纯酒精含量是11⨯38.5%-3⨯36%=3.155(升).假设8升都是A 种酒精,纯酒精含量是8⨯40%=3.2(升),造成纯酒精含量超出3.2-3.155=0.045(升),用B 种酒精1升和C 种酒精合起来与A 种酒精升数置换直到消去0.045升为止:8-2⨯()()[]7%351%361%402155.32.3=⨯-⨯-⨯÷-(升). 9. (1+1)÷()[]4140%2011%5.121=-÷+÷.10. 50%⨯21+50%⨯21⨯21=83.11. (180⨯2%+240⨯9%⨯2)÷9%=520(克)12. 把第一包糖的粒数看作单位“1”,第二包糖粒数是第一包糖粒数的23, 巧克力在第二包中占的百分比是第一包中占的百分比的21,因此巧克力在第二包糖中的粒数是在第一包糖中粒数的2123⨯=43.巧克力在第一包的粒数占两包所有糖的粒数的28%÷16431=⎪⎭⎫⎝⎛+%,巧克力在第一包糖中的粒数占第一包糖粒数的16%⨯⎪⎭⎫⎝⎛+321=40%,这样水果糖在第一包糖中的粒数占第一包糖的总粒数的1-25%-40%=35%.13. 因25%:(1-25%)=1:3,故第一次要从甲容器倒5升纯酒精到乙容器,这样就使乙容器中纯酒精之比恰好是5:15=1:3.又因62.5%:(1-62.5%)=5:3,故第二次倒后,要使甲容器中纯酒精与水之比是5:3,设从甲容器倒入乙容器的混合酒精为1份,水算作3份,那么甲容器中剩下酒精为11-5=6(升)应算作4份,这样恰好配成5=3,所以倒过来的混合液总共是1+3=4(份).因此也应是6升.14. 460÷12.5%÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯+3118.2416⨯2=75(千克).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六 百分数应用题(2)
年级 班 姓名 得分
一、填空题
1.甲数比乙数少20%,那么乙数比甲数多百分之 .
2.每天水分排出量(单位为毫升)如图所示.由肺呼出的水分占每天水分排出的百分之 .
(400:肺呼出;500: ;100:固体废物;1500:水性废物)
3.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%.那么,这堆糖中有奶糖 块.
4.把25克盐放进100克水里制成盐水,制成的这种盐水,含盐量是百分之几?有200克这样的盐水,里面含盐 克.
5.一个有弹性的球从A 点落下到地面,弹起到B 点后又落下高20厘米的平台上,再弹起到C 点,最后落到地面(如图).每次弹起的高度都是落下高度的80%,已知A 点离地面比C 点离地面高出68厘米,那么C 点离地面的高度是 厘米.
6.某次会议,
昨天参加会议的男代表比女代表多700人,今天男代表减少10%,女代表增加了5%,今天共1995人出席会议,那么昨天参加会议的有 人.
7.有甲、乙两家商店,如果甲店的利润增加20%,乙店的利润减少10%,那么这两店的利润就相同,原来甲店的利润是原来乙店的利润的百分之 .
8.开明出版社出版某种书.今年每册书的成本比去年增加10%.但是仍保持原售价,因此每本盈利下降了40%,但今年的发行册数比去年增加80%,那么今年发行这种书获得的总盈利比去年增加的百分数是 .
9.甲、乙二人分别从A 、B 两地同时出发,相向而行,出发时他们的速度比是3:2.他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B 地时,乙离A 还有14千米.那A 、B 两地间的距离是 .
10.有两堆棋子,A 堆有黑子350个和白子500个,B 堆有黑子400个和白子100个,为了使A 堆中黑子占50%,B 堆中黑子占75%,要从B 堆中拿到A 堆;黑子 .
个,白子 个.
A B C
二、解答题
11.有一位精明的老板对某商品用下列办法来确定售价:设商品件数是N ,那么N 件商品售价(单位:元)按:每件成本⨯(1+20%)⨯N 算出后,凑成5的整数倍(只增不减),按这一定价方法得到:1件50元;2件95元;3件140元;4件185元;…,如果每件成本是整元,那么这一商品每件成本是多少元?
12.盈利百分数=买入价买入价
买出价-⨯100%
某电子产品去年按定价的80%出售,能获得20%的盈利,由于今年买入价降低,按同样定价的75%出售,却能获得25%的盈利,那么去年买入价今年买入价
是多少?
13.北京九章书店对顾客实行一项优惠措施:每次买书200元至499.99元者优惠5%,每次买500元以上者(包含500元)优惠10%.某顾客到书店买了三次书,如果第一次与第二次合并一起买,比分开买便宜13.5元;如果三次合并一起买比三次分开买便宜38.4元.已经知道第一次的书价是第三次书价的85
,问这位顾客第二次买了多少钱的书.
14.有A 、B 、C 三根管子,A 管以每秒4克的流量流出含盐20%的盐水,B 管以每秒6克的流量流出含盐15%的盐水,C 管以每秒10克的流量流出水.C 管打开后开始2秒不流,接着流5秒,然后又停2秒,再流5秒…三管同时打开,1分种后都关上,这时得到的混合液中含盐百分之几?
———————————————答 案——————————————————————
1. 20%÷(1-20%)=25%
2. 400÷(400+500+100+1500)=16%
3. 16÷[(1-25%)÷25%-(1-45%)÷45%]=9(块)
4. 含盐量是: %20%1001002525
=⨯+
200克这样的盐水里面含盐200⨯20%=40克
5. [68+20⨯(1-80%)]÷(1-80%⨯80%)-68=132(厘米)
6. (1995-700⨯90%)÷(1+5%+90%)⨯2+700=2100(人)
7. (1-10%)÷(1+20%)=75%
8. 假设每册书成本为4元,售价5元,每册盈利1元,而现在成本为
4⨯(1+10%)=4.4元,售价仍为5元,每册盈利0.6元,比原来每册盈利下降了40%.
但今年发行册数比去年增加80%,若去年发行100册,则今年发行100⨯(1+80%)=180(册).
原来盈1⨯100=100(元),现在盈利0.6⨯180=108(元).故今年获得的总盈利比去年增加了(108-100)÷100=8%.
9. 相遇到后,甲乙速度之比为1⨯(1+20%):⨯32
(1+30%)=18:13,故A 、B 两地之间的距离是14÷4513185253=⎪⎭⎫ ⎝⎛÷-
(千米)
10. 设要从B 堆中拿到A 堆黑子x 个,白子y 个,则有:
()()[]()()[]⎩⎨⎧⨯++-=-⨯+++=
+%75100400400%50500350350y x x y x x 解得 x =175, y =25.
11. 45÷[(1+20%)⨯1]=37.5
12. [75%÷(1+25%)]÷[80%÷(1+20%)]=109
.
13. 第一次与第二次共应付款13.5÷5%=270(元),故第三次书价必定在 500-270=230(元)以上,这样才能使三次书价总数达到优惠10%的钱数.如果分三次购买,第三次的书价也能优惠5%,从而有:
第三次书价总数为518-270=248(元)
第一次书价总数为24885
⨯=155(元)
第二次书价总数为270-155=115(元)
14. 因60÷(5+2)=8…4,故C 管流水时间为5⨯8+2=42(秒),从而混合液中含盐百分数为
()()%10%1004210606460%156%2040=⨯⨯+⨯+⨯⨯+⨯。

相关文档
最新文档