大学物理基本要求(正式)word
大学物理教学大纲
《大学物理》I课程教学大纲学分:6理论学时:80一、课程性质与教学目标《大学物理》I课程是适用于电子信息工程等专业本科学生的一门专业基础必修课程。
二、基本要求理论教学要求学生既要了解相关的物理现象及掌握一定的基础理论知识,更要通过这些学习,掌握物理学处理问题的方法。
在教学中注意理论联系实际,授课内容与师范教育特点相结合,多举一些生活中的例子,借助这些例子,不仅可帮助学生理解抽象的物理知识,还可以大大提高他们的学习兴趣。
根据不同的内容,灵活采用讲授法、习题课、讨论法等多种教学方法。
充分运用现代化教学手段,提高教学效率。
三、主要教学方法讲授法、习题课、讨论法、练习法相结合四、教学内容第一讲质点运动学【授课学时】 8学时【基本要求】1.了解相对运动的计算方法。
2.理解参考系、坐标系、物理模型的概念及相对运动中的各个物理量。
3.熟练掌握直角坐标系、位矢、位移、速度及加速度概念和定义。
4.熟练掌握已知质点运动方程求速度,加速度的方法。
5. 掌握自然坐标系中的切线分量与法向分量,极坐标系中的线量和角量及它们之间的关系。
【教学重难点】本章的重点是位矢、位移、速度、和加速度概念和定义及在直角坐标系下的表达形式;难点是速度、加速度在曲线运动中不同坐标系中的表达形式。
【授课内容】1. 参考系坐标系物理模型2. 位矢、位移、速度及加速度3.曲线运动描述4.运动学中的两类问题5. 相对运动第二讲质点动力学【授课学时】 8学时【基本要求】1、理解并掌握冲量、动量、功、保守力的功、动能、势能的概念和表达式。
2、了解质心、惯性系及惯性力的概念。
3、熟练掌握牛顿三大定律、动量守恒定律、机械能守恒定律的应用。
【教学重难点】本章的重点是牛顿三定律、动量守恒定律、机械能守恒定律;难点是动量守恒定律的应用。
【授课内容】1、牛顿运动定律2、非惯性系惯性力2、动量动量守恒定律质心运动定理3、功动能势能机械能守恒定律第三讲刚体力学基础【授课学时】 8学时【基本要求】1、了解刚体的力矩和角动量及角动量定理及角动量守恒定律的概念和物理现象。
非物理类理工学科大学物理课程教学基本要求
非物理类理工学科大学物理课程教学基本要求非物理类专业物理基础课程教学指导分委员会物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。
它的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他自然科学和工程技术的基础。
在人类追求真理、探索未知世界的过程中,物理学展现了一系列科学的世界观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社会生活,是人类文明发展的基石,在人才的科学素质培养中具有重要的地位。
一、课程的地位、作用和任务以物理学基础为内容的大学物理课程,是高等学校理工科各专业学生一门重要的通识性必修基础课。
该课程所教授的基本概念、基本理论和基本方法是构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备的。
大学物理课程在为学生系统地打好必要的物理基础,培养学生树立科学的世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神和创新意识等方面,具有其他课程不能替代的重要作用。
通过大学物理课程的教学,应使学生对物理学的基本概念、基本理论和基本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。
在大学物理课程的各个教学环节中,都应在传授知识的同时,注重学生分析问题和解决问题能力的培养,注重学生探索精神和创新意识的培养,努力实现学生知识、能力、素质的协调发展。
二、教学内容基本要求(详见附表)大学物理课程的教学内容分为A、B两类。
其中:A为核心内容,共74条,建议学时数不少于126学时,各校可在此基础上根据实际教学情况对A类内容各部分的学时分配进行调整;B为扩展内容,共51条。
1. 力学(A:7条,建议学时数≥14学时;B:5条) 14+22. 振动和波(A:9条,建议学时数≥14学时;B:4条) 123. 热学(A:10条,建议学时数≥14学时;B:4条) 144. 电磁学(A:20条,建议学时数≥40学时;B:8条) 345. 光学(A:14条,建议学时数≥18学时;B:9条) 126. 狭义相对论力学基础(A:4条,建议学时数≥6学时;B:3条) 67. 量子物理基础(A:10条,建议学时数≥20学时;B:4条) 128. 分子与固体(B:5条)9. 核物理与粒子物理(B:6条)10. 天体物理与宇宙学(B:3条)11. 现代科学与高新技术的物理基础专题(自选专题)三、能力培养基本要求通过大学物理课程教学,应注意培养学生以下能力:1. 独立获取知识的能力——逐步掌握科学的学习方法,阅读并理解相当于大学物理水平的物理类教材、参考书和科技文献,不断地扩展知识面,增强独立思考的能力,更新知识结构;能够写出条理清晰的读书笔记、小结或小论文。
大学物理学习指导
大学物理学习指导第一章 质点的运动本章基本要求:掌握位置矢量、位移、速度、加速度、角速度、角加速度、切向加速度、法向加速度等描述质点运动状态的物理量。
能借助于直角坐标系计算质点在平面内运动时的速度、加速度。
能计算质点作园周运动时的角速度、角加速度、切向加速度、法向加速度。
理解运动的相对性。
本章重点:1、已知速度和加速度及初始条件,求质点的运动方程;2、已知质点运动方程,求质点的位移、速度、加速度等物理量;3、匀变速直线运动、抛体运动的规律。
解题指导:本章的习题一般分两大类:第一类是已知质点的运动方程,利用微分法求各物理量(速度、加速度等);第二类是已知速度和加速度及初始条件利用积分法求运动方程。
第二类问题及学会用速度合成定理处理运动的矢量性和相对性问题是本章的难点。
质点运动学问题的一般解题顺序为:a. 审清题意,确定研究对象,分析研究对象的运动情况。
b. 建立适当的坐标系。
c. 根据所求物理量的定义列式并求解。
或根据运动的特点和题设条件列方程求解。
d. 必要时进行分析讨论。
第二章 牛顿运动方程本章基本要求:掌握牛顿三定律及适用条件,掌握运用微积分方法求解一维变力作用下质点的动力学问题。
本章重点:1、质量和力的概念以及力学中常见的三种力——万有引力、弹性力和摩擦力的特点。
2、牛顿运动定律及其适用条件。
3、练运用隔离法分析物体受力,正确列出物体受力方程,求解简单的质点动力学问题。
解题指导:(一)物体的受力分析画物体受力图的步骤:a. 隔离出研究对象,并画出已知力;b. 画重力;c. 考察并画出研究对象与周围物体相接触处的弹性力和摩擦力。
d. 应注意:每画出一力必须能找出该力的施力物体。
(二)牛顿运动定律的应用牛顿运动定律主要解决二类问题: 1、 1、 已知运动求力,即已知物体的运动现象或规律(运动方程()t r r =r = r(t)),求作用于物体的外力。
一般可先求得a 后再求力。
2、 2、 已知力求力运动,即求物体的加速度、速度和运动方程,这可用积分法得。
大学物理实验 数据处理和实验基本要求
有一个反映准确程度的极限误差指标,习惯上称之为仪器
误差,用来 仪表示。这个指标在仪器说明书中都有明确的
说明。
第五节 测量结果的不确定度
对一个量进行测量后,应给出测量结果,并要对测 量结果的可靠性作出评价。
近年来,引入了不确定度这一概念来评价测量结果的 可靠程度。
系统误差按产生原因的不同可分为: 原因可知,有规律
(1)仪器误差
(2) 方法误差
(4)环境 条件误差
注意:
依靠多次重复测量一般不能发现系统误差的存在。
(3)个人误差
2、随机误差
15
相同的实验条件下
系统误差产生的因素
每次测量结果可能都不一样, 测量误差或大或小、或正或负, 完全是随机的
次数足够多
/94
所以
lim
n
A
A0
结论
可以用有限次数重复测量的算术平均值 A作为真值 A0
的最佳估计值。
由于平均值只是最接近真值但不是真值,因此, 误差也是无法得到的。在实际测量的数据处理中,用偏 差来估算每次测量对真值的偏差。偏差的定义为
i Ai A
4.有限次测量的标准偏差
(i 1,2, , n)
可以证明,当测量次数为有限时,可以用标准偏
1.不确定度的基本概念 测量结果的不确定度也称实验不确定度,简称为不确
定度,是对被测量的真值所处量值范围的评定。 不确定度给出了在被测量的平均值附近的一个范围,
真值以一定的概率落在此范围中。 不确定度越小,标志着测量结果与真值的误差可能值
越小;不确定度越大,标志着测量结果与真值的误差可能值越
2.不确定度分量的分类及其性质 按照“国际计量局实验不确定度的规定建议书”
大学物理实验数据处理和实验基本要求
图Ⅱ-2 随机误差的正态分布曲 线 图中横坐标为误差,纵坐标为误 差的概率密度分布函数。
随机误差具有的性质: --绝对值小的误差出现的概率大,绝对值大的误差出现的概率小。
(1)单峰-性-大小相等、符号相反的误差出现的概率相等。 --绝对值非常大的正、负误差出现的概率趋近于零 。 --当测量次数趋近于无限多时,由于正负误差互相抵消,各误差的代数和趋近于零。
测量误差x
3. 测量列的平均值 用测量列A1, A2, An表示对物理量进行次测量所得的测量值,那么每次测量的误差为:
将以上各式相加得: 由此可得:
x1 A1 A0 x2 A2 A0
xn An A0
n
n
xi Ai nA0
i 1
i 1
A0
1 n
n i 1
Ai
1 n
n i 1
xi
1. 伽利略把实验和逻辑引入物理学,使物理学最终成为一门科学。 2. 经典物理学规律是从实验事实中总结出来的。 3. 近代物理学是从实验事实与经典物理学的矛盾中发展起来的。
Galileo Galilei 1564~1642
以诺贝尔物理学奖为例:
• 80%以上的诺贝尔物理学奖给了实验物理学家。 20%的奖中很多是实验和理论物理学家分享的。 • 实验成果可以很快得奖,而理论成果要经过至少两个实验的检验。 • 1956李政道(1926年11月24日-) 、杨振宁(1922年10月1日-)提出弱相互作用中宇称不守恒,同年,
i Ai A (i 1,2, , n)
4.有限次测量的标准偏差
可以证明,当测量次数为有限时,可以用标准偏差S作为标准误差的最佳估计值。S 的计算公式 为
S
1 n 1
n i1
(完整word版)大学物理实验电子Ⅰ单人单组
《大学物理实验Ⅰ》教学大纲课程名称:大学物理实验Ⅰ课程编号:课程类别:专业基础课、必修课学时/学分:30/1开设学期:1开设单位:物理与机电工程学院适用专业:电子信息科学与技术说明一、课程性质专业课、必修课程二、教学目标通过本课程的学习,使学生完成9—18个包括力学、热学、电磁学、光学或其他方面的实验,应达到如下基本要求:1.使学生独立完成实验预习、学习实验目的和实验原理,了解实验过程的物理思想,初步掌握实验过程的物理规律和物理方法。
2.学习物理量的一般测量方法,如:长度、时间、温度、速度、功率、热量等.3.培养学生正确处理实验数据、正确表达和评价实验结果的初步能力。
能根据实验数据设计数表并作图,写出正规的实验报告。
4.培养学生的实验能力,尤其是进行实验时的动手能力.注意使学生初步养成良好的实验习惯和工作作风.三、学时分配表学习物理实验的基本理论、基本思想、基本方法、数据处理等。
通过实验,学生应具有对物理现象的观察能力和分析能力,将物理问题抽象成数学模型的初步能力。
培养学生进行科学实验研究的素养,初步形成科学实验研究的能力五、考核方式及要求大学物理实验课程的考核包括操作能力的考核和理论考核两部分.操作能力考核主要实验操作和实验报告为依据。
理论考核通过笔试进行。
基本内容包括:实验预习、实验操作、实验记录、实验报告, 由此得出考核成绩.成绩按百分记。
本文实验一长度的测量一、实验性质实验类别:专业基础必修实验类型:验证型计划学时:3学时实验分组:单人单组二、实验目的1. 练习使用测长度的几种仪器;2。
练习做好记录和计算不确定度.三、实验的基本内容和要求1.阅读绪论的有关知识,理解游标卡尺和螺旋测微器、移测显微器的原理,并掌握其使用方法.2.测滚珠的直径、测圆管的高与直径。
3.计算体积,并计算直接测量量和间接测量量的误差。
四、实验仪器设备及材料米尺,游标卡尺,螺旋测微器,移测显微器,被测物(滚珠、金属丝)五、实验操作要点仔细阅读相关实验仪器说明,严格按照要求操作。
非物理类理工学科大学物理课程教学基本要求
非物理类理工学科大学物理课程教学基本要求
二、教学内容基本要求(详见附表)
A为核心内容,共74条;B为扩展内容,共51条。
1.力学(A:7条,建议学时数≥14学时;B:5条)
2.振动和波(A:9条,建议学时数≥14学时;B:4条)
3.热学(A:10条,建议学时数≥14学时;B:4条)
4.电磁学(A:20条,建议学时数≥40学时;B:8条)
5.光学(A:14条,建议学时数≥18学时;B:9条)
6.狭义相对论力学基础(A:4条,建议学时数≥6学
时;B:3条)
7.量子物理基础(A:10条,建议学时数≥20学时;B:4条)
8.分子与固体(B:5条)
9.核物理与粒子物理(B:6条)
10.天体物理与宇宙学(B:3条)
附表:教学内容基本要求
说明:1. A类内容构成大学物理课程教学内容的基本框架,是核心内容;B类是扩展内容,它们常常是理解现代科学技术进展的基础,讲述这些内容可以使学生对大学物理的基本规律的理解更加深刻和充实。
2.应适当加强近代物理基础知识的教学,近代物理的内容一般不应少于总学时的五分之一。
3.为了拓展学生视野,培养学生的创新意识,夯实学生进一步发展的物理基础,在基本要求的
内容中包含了现代科学与高新技术物理基础专题。
专题内容可用以拓展物理知识面,例如:介观物理、等离子体物理、软凝聚态物理、信息光学、耗散结构理论等;也可以介绍物理学在科学技术应用中的新理论、新知识、新技术,例如:激光、超导、液晶、量子信息、红外辐射与遥感、扫描隧道显微镜、核磁共振、超声等。
《大学物理》学习指南
《大学物理》学习指南《大学物理》是理工科及医学类学生的一门公共基础课,该课程内容多,课时少,建议学生课前预习,上课认真听讲,理解物理概念、掌握物理定理和定律,学会分析物理过程,课后适当做些习题,以巩固物理知识。
为了学生更好学好《大学物理》,给出了每章的基本要求及学习指导。
第一章 质点力学一、基本要求1.掌握描述质点运动状态的方法,掌握参照系、位移、速度、加速度、角速度和角加速度的概念。
2.掌握牛顿运动定律。
理解惯性系和非惯性系、保守力和非保守力的概念。
3.掌握动量守恒定律、动能定理、角动量守恒定律。
4.理解力、力矩、动量、动能、功、角动量的概念。
二、学习指导1.运动方程: r = r (t )=x (t )i +y (t )j +z (t )k 2.速度:平均速度 v =t ∆∆r 速度 v =t d d r平均速率 v =t ∆∆s 速率 dtdsv =3.加速度:平均加速度 a =t ∆∆v 加速度 a =t d d v =22d d tr4.圆周运动角速度t d d θω==Rv角加速度 t t d d d d 2θωβ== 切向加速度 βτR tva ==d d 法向加速度 a n =22ωR R v = 5.牛顿运动定律 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,直至其他物体所施的力迫使它改变这种运动状态为止.牛顿第二定律:物体受到作用力时所获加速度的大小与物体所受合外力的大小成正比,与物体质量成反比,加速度a 的方向与合外力F 的方向相同。
即dtPd a m F ρρρ==牛顿第三定律:力总是成对出现的。
当物体A 以力F 1作用于物体B 时,物体B 也必定以力F 2作用于物体A ,F 1和F 2总是大小相等,方向相反,作用在一条直线上。
6.惯性系和非惯性系:牛顿运动定律成立的参考系称为惯性系。
牛顿运动定律不成立参考系称为非惯性系。
7.变力的功 )(dz F dy F dx F r d F W z y x ++=⋅=⎰⎰ρρ 保守力的功 pb pa p ab E E E W -=∆-= 8.动能定理 k k k E E E W ∆=-=129.功能原理 W 外+W 非保守内力=E -E 010.机械能守恒定律 ∆E k =-∆E p (条件W 外+W 非保守内力=0)11.冲量 ⎰=21t t dt F I ρρ12.动量定理 p v m v m I ρρρρ∆=-=12质点系的动量定理 p 系统末态-p 系统初态=∆p13.动量守恒定律 p =∑=n i 1p i =恒矢量 (条件 0=∑ii F ρ)14.力矩、角动量 F r M ρρρ⨯= P r L ρρρ⨯=15.角动量定理 1221L L dt M t t ρρρ-=⎰16.角动量守恒 恒矢量=∑i L ρ (条件0=∑ii M ρ第二章 刚体力学一、基本要求1.掌握描述刚体定轴转动运动状态的方法,掌握角速度和角加速度的概念。
理工科类大学物理课程教学基本要求
。标目述上现实证保施措等分学算计当适或课修选过通以可校学的件条有 。证验量定半或性定行进�题问析分和考思�验实察观手动己自生学导引和励鼓�室验实示演理物的性放 开立建倡提。等廊走验实示演、室验实示演放开、示演物实堂课如�行进式形种多用采以可验实示演物实 。个 04 于少应不目数的验实示演物实中其��示演真仿体媒多和示演物实�验实示演有应都容内要主的程 课理物学大。趣兴习学高提�识知性感加增�象现理物察观生学助帮验实示演用利分充应——验实示演.3
B 。位地的中学理物在其及系 关互相的性称对与律定恒守明说要简可 。用应的中学理物在法 B .4 A 。法方究研学科的型模立建会学生 学使步逐�体流想理和体刚、点质�型模 想理个三为象抽象对究研的学力把过通 。复重免避以�度适应开展中学教 故�触接有已段阶学中在生学念概数多大 绝外分部体流和体刚、量动角除中学力 。件条立成其及律定 恒守个三和律定动运顿牛是点重的学力 议 建 和 明 说 学 .1 A 别 类 力、 一 .2 A B A .3 A A B 方等算运分积微、算运量矢习学意注应 .5 A B
。性理合的果结究研断判 �解理的度深定一有题问涉所对并�力能的题问出提和题问现发生学养培法方等验实、想联比类、象抽学科 、纳归、绎演、合综、析分、察观过通�点观本基和论理本基的学理物用运——力能的维思和察观学科.2
。文论小或结小、记笔 书读的晰清理条出写够能�构结识知新更�力能的考思立独强增�面识知展扩地断不�献文技科和书考参 、材教类理物的平水理物学大于当相解理并读阅�法方习学的学科握掌步逐——力能的识知取获立独 .1
。率效和量质学教 高提�量息信学教大扩�势优的术技育教化代现等学教络网、学教助辅机算计用利分充�件条造创极积应 。术技体媒多用利效有倡提 �的目学教于务服应段手学教 �用作的道渠主学教堂课好挥发应——段手学教.2
大学物理学习指导(第3章)
,'定轴转动时刚体的转动定律
^ 刚体紐定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转 动惯量成反比,这称为刚体的转动定律。 31
:
//?
叫
式 ^ 、 7、必须是对同一刚体、同一转轴而言。
8,角动量守恒定律
物体所受的合外力矩等于零,或者不受外力矩的作用,物体的角动量保持不 变。这个结论叫做角动量守恒定律。 I 二加^常矢量
一 转动惯量为/ ^ ^ ^ ^
、
12001^8 ^ 0 1 2 。 一 质 量 为 ^ : 801^8的人,开始时站在转台的中心, ^ 2111时,转台的角速度是多大?
^ 』:2
"; 2 ^ 。 第 页
山# 、理工大学备课紙
年
质量连续分布的刚体 】二 厂2(1^ ^ 厂2一3^
月
日
刚体的转动惯量是刚体作转动时惯性大小的量度。其大小决定于刚体转轴的 位置,刚体本身的形状,质量的大小及其质量分布情况。 6,刚体的角动量 刚体上各质点的角动量之和,即为刚体的角动量。一个刚体绕某一定轴转动, 其角动量为 :加
+ 爐 2 ―威2
由碎块和破盘组成的系统总角动量守恒。
】00 ―】产;十771^^^
^为破盘的角速度。
~ ^ 嫩 、 ^ (^]^!!^^
―
7 ^ ^ 十 卿 0 尺
^ = 0
^0
圆盘余下部分的角动量为
第
页
山系理工大学备课紙
年
I ^ (告魔2 一肌尺2》
月
日
一平面转台绕中心轴转动,每转一周所需时间为纟^ 108,转台对轴的
距轴为「处,取一小段^!厂,其质量01加: 9^^ ,这一小段(!"所受摩擦力矩 习题3-6图 整个杆所受摩擦力矩 1^1 ^2 「2 〃
大学物理实验课程教学基本要求
大学物理实验课程教学基本要求(第四征求意见稿)物理学是研究物质的基本结构、基本运动形式、相互作用及其转化规律的学科。
它的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是自然科学和工程技术的基础。
在人类追求真理、探索未知世界的过程中,物理学展现了一系列唯物主义的哲学观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社会生活,在人才的科学素质培养中具有重要的地位。
物理学本质上是一门实验科学。
物理实验是科学实验的先驱,体现了大多数科学实验的共性,在实验思想、实验方法以及实验手段等方面是各学科科学实验的基础。
一、课程的地位、作用和任务物理实验课是高等理工科院校对学生进行科学实验基本训练的必修基础课程,是本科生接受系统实验方法和实验技能训练的开端。
物理实验课覆盖面广,具有丰富的实验思想、方法、手段,同时能提供综合性很强的基本实验技能训练,是培养学生科学实验能力、提高科学素质的重要基础。
这在培养学生严谨的治学态度、活跃的创新意识、理论联系实际和适应科技发展的综合应用能力等方面具有其他实践类课程不可替代的作用。
本课程的具体任务是:1、培养学生的基本科学实验技能,提高学生的科学实验基本素质,使学生初步掌握实验科学的思想和方法。
2、培养学生的科学思维和创新意识,使学生掌握实验研究的基本方法,提高学生的分析能力和创新能力。
3、提高学生的科学素养,培养学生理论联系实际和实事求是的科学作风,认真严谨的科学态度,积极主动的探索精神,遵守纪律,团结协作,爱护公共财产的优良品德。
二、教学内容基本要求大学物理实验应包括普通物理实验(力学、热学、电学、光学实验)和近代物理实验,具体的教学内容基本要求如下:1、掌握测量误差的基本知识,具有正确处理实验数据的基本能力。
(1)测量误差与不确定度的基本概念,能逐步学会用不确定度对直接测量和间接测量的结果进行评估。
(2)处理实验数据的一些常用方法,包括列表法、作图法和最小二乘法等。
《大学物理学》课程标准(教学大纲)
《大学物理学》课程标准(教学大纲)课程名称:《大学物理学》课程性质:职业能力必修课学分:4分计划学时:160学时适用专业:电气自动化专业选用教材:《大学物理学》1.前沿1.1课程定位大学物理学是生物医学工程专业重要的核心基础课。
定位于为培养创新型人才打好物理基础,以“培养创新型人才”的现代教育理念和新的课程标准。
它是研究物质世界最普通、最基本的运动形式及其规律的科学。
它是自然科学和工程技术的基础。
本课程的教学目的是使学生深入系统地加强物理基础理论、基本知识和基本技能的学习,从而为其它专业课程的学习和将来从事本专业的工作,特别是进一步学习新理论、新技术,不断更新知识奠定必要的基础。
与创新能力。
在教学目标的设置和组织上,与学校建设国际先进的研究型军医大学的定位相匹配,坚持学生为主体,教员为主导的教学理念。
在教学方法上要突出启发式教学,灵活利用讨论式教学、案例式教学、问题式教学等先进的教学方法,运用视频录像、课件、网络课程等多种现代化教学手段,提高学生学习兴趣、调动学生的积极主动性。
1.2设计思路《大学物理学》课程标准是在充分理解总参军训和兵种部印发的《军队院校制定课程标准的基本要求》精神的前提下,结合国家教委工科物理课程教学指导委员会审定通过的《高等工业学校物理课程教学基本要求》以及外校生物医学工程专业的培养目标,并结合我校实际情况以及教研室多年的教学经验,在进一步调查、研究的基础上形成的。
(1)课程标准符合《军队院校制定课程标准的基本要求》精神,体现“创新思维”,“以人为本”,“为军服务”的现代教育观念。
(2)课程标准力求构建我校新的大学物理学课程体系,更新、拓展课程内容和最新研究成果。
不局限于课堂基本理论教学,而是把实验教学、前沿专题讲座、读书报告、课外科研活动等内容纳入课程体系教学中,丰富大学物理学课程的内涵。
(3)课程标准在全面贯彻《军队院校制定课程标准的基本要求》精神下,结合我校学生状况、教学资源等实际,力求使课程达到既有前瞻性、科学性又实事求是。
《大学物理》课程教学大纲
《大学物理》课程教学大纲课程编号:07004212课程名称:大学物理英文名称:University Physics课程类型:公共基础课程要求:必修学时/学分:56/3.5适用专业:软件类本科专业一、课程性质与任务物理学是研究物质基本结构、相互作用和物质最基本最普遍的运动形式及其相互转化规律的科学。
它的基本理论渗透在自然科学的许多领域,应用于生产技术的各个部门,它是自然科学的许多领域和工程技术的理论基础。
大学物理课的任务一方面在于为学生较系统的打好必要的物理基础;另一方面,使学生初步掌握科学的思维方法和提高分析解决问题的能力,对开阔思想、激发探索和创新精神,增强适应能力,提高人才素质起着重要作用。
二、课程与其他课程的联系本课程的先修课程:高等数学。
大学物理课程是高等理工科学校各专业学生一门重要的必修的公共基础课。
通过该课程学习,能为学生学习其他的相关课程奠定所需要的物理基础。
三、课程教学目标1.掌握大学物理中的基本概念、定理和定律,了解各种理想物理模型,对所研究的对象能进行合理的简化,培养学生对终身学习的正确认识,提高学生的自学能力。
2.能运用物理的理论、观点和方法以及矢量、微积分等数学工具分析、计算一般难度的物理问题,并能根据单位、数量级和与已知典型结果的比较,判断结果的合理性,培养学生灵活运用物理分析问题和解决问题的方法和意识,具备较强的物理应用能力。
3.注重物理思想、科学思维方法的传授,着眼于学生能力的培养和物理素质的提高,激发和培养学生的创新思维能力、逻辑推理能力、独立获取知识的能力。
4.通过大学物理的学习,使学生对自然界中物质的最基本最普遍的运动形态及其基本规律有比较系统的认识,培养获取新知识的能力。
5.了解物理在自然科学和工程技术中的应用,以及相关科学互相渗透的关系,为理工科各专业课及其技术基础课打好基础,也为学生将来走向社会从事科学技术工作和科学研究工作打下基础,培养学生具备综合运用物理知识分析和解决实际问题的能力。
《大学物理》教学大纲
《大学物理》教学大纲一、课程基本信息课程编码:072106B中文名称:大学物理英文名称:College Physics课程类别:专业基础课总学时:60总学分:4适用专业:电子科学与技术专业、电气工程及其自动化专业、印制电路技术与工艺专业先修课程:高等数学二、课程的性质、目标和任务大学物理课程是印制电路技术与工艺专业的一门专业基础课,它为进一步学习后继课程提供必要的基础和准备。
本课程教学目标:(1)使学生系统地掌握物理学的基本原理和基本知识,了解物质世界的基本现象及基本规律,对典型的物理问题要形成清晰的物理图象,深入理解其内涵。
(2)培养学生熟练运用数学工具的能力,坚持理论联系实际的原则,通过实验和列举学生熟悉的、容易理解的物理现象,分析总结出概念和规律的实质,掌握观察—实验—假设—实践—理论体系的研究方法。
(3)建立科学的世界观,培养严密的科学思维能力,了解物理学的研究方法,培养学生独立分析问题和解决问题的能力及辩证唯物主义世界观。
本课程的任务是使学生获得力学、热学、光学、电磁学方面的基本理论,培养学生具有分析日常生活中的物理现象和解决物理方面问题的能力。
同事,也为后续课程及从事本专业相关的工程技术工作提供必要的理论基础。
三、课程教学基本要求《大学物理》课程的教学环节主要是课堂教学,教师要依据培养方案,严格按照教学大纲所规定的教学内容精心组织、设计课堂教学;根据课程特点建议采用多媒体辅助教学方法,对力学、热学、光学、电磁学方面采用三维立体图和动画形式,帮助学生理解相应的教学内容;提高学生分析和解决问题的能力。
四、课程教学内容及要求绪论(2学时)【教学目标与要求】1、对上述问题作简要介绍,使学生对物理学的研究对象、发展过程、历史地位和作用等有一个基本的、概括的了解,形成一个初步的认识。
2、掌握矢量的运算,掌握质点运动学描述和质点动力学中的一些基本定理和定律。
【教学重点与难点】1、教学重点:矢量的本质、矢量代数。
大学物理实验课程教学基本要求
非物理类理工学科大学物理实验课程教学基本要求(正式报告稿)物理学是研究物质的基本结构、基本运动形式、相互作用及其转化规律的学科。
它的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是自然科学和工程技术的基础。
在人类追求真理、探索未知世界的过程中,物理学展现了一系列科学的世界观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社会生活,是人类文明的基石,在人才的科学素质培养中具有重要的地位。
物理学本质上是一门实验科学。
物理实验是科学实验的先驱,体现了大多数科学实验的共性,在实验思想、实验方法以及实验手段等方面是各学科科学实验的基础。
一、课程的地位、作用和任务物理实验课是高等理工科院校对学生进行科学实验基本训练的必修基础课程,是本科生接受系统实验方法和实验技能训练的开端。
物理实验课覆盖面广,具有丰富的实验思想、方法、手段,同时能提供综合性很强的基本实验技能训练,是培养学生科学实验能力、提高科学素质的重要基础。
它在培养学生严谨的治学态度、活跃的创新意识、理论联系实际和适应科技发展的综合应用能力等方面具有其他实践类课程不可替代的作用。
本课程的具体任务是:1.培养学生的基本科学实验技能,提高学生的科学实验基本素质,使学生初步掌握实验科学的思想和方法。
培养学生的科学思维和创新意识,使学生掌握实验研究的基本方法,提高学生的分析能力和创新能力。
2.提高学生的科学素养,培养学生理论联系实际和实事求是的科学作风,认真严谨的科学态度,积极主动的探索精神,遵守纪律,团结协作,爱护公共财产的优良品德。
二、教学内容基本要求大学物理实验应包括普通物理实验(力学、热学、电学、光学实验)和近代物理实验,具体的教学内容基本要求如下:1.掌握测量误差的基本知识,具有正确处理实验数据的基本能力。
(1)测量误差与不确定度的基本概念,能逐步学会用不确定度对直接测量和间接测量的结果进行评估。
(2)处理实验数据的一些常用方法,包括列表法、作图法和最小二乘法等。
大学物理课程教学基本要求
非物理类理工学科大学物理课程教学基本要求(正式报告稿)物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。
它的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他自然科学和工程技术的基础。
在人类追求真理、探索未知世界的过程中,物理学展现了一系列科学的世界观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社会生活,是人类文明发展的基石,在人才的科学素质培养中具有重要的地位。
一、课程的地位、作用和任务以物理学基础为内容的大学物理课程,是高等学校理工科各专业学生一门重要的通识性必修基础课。
该课程所教授的基本概念、基本理论和基本方法是构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备的。
— 1 —大学物理课程在为学生系统地打好必要的物理基础,培养学生树立科学的世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神和创新意识等方面,具有其他课程不能替代的重要作用。
通过大学物理课程的教学,应使学生对物理学的基本概念、基本理论和基本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。
在大学物理课程的各个教学环节中,都应在传授知识的同时,注重学生分析问题和解决问题能力的培养,注重学生探索精神和创新意识的培养,努力实现学生知识、能力、素质的协调发展。
二、教学内容基本要求(详见附表)大学物理课程的教学内容分为A、B两类。
其中:A为核心内容,共74条,建议学时数不少于126学时,各校可在此基础上根据实际教学情况对A类内容各部分的学时分配进行调整;B为扩展内容,共51条。
1.力学(A:7条,建议学时数≥14学时;B:5条)2.振动和波(A:9条,建议学时数≥14学时;B:4条)3.热学(A:10条,建议学时数≥14学时;B:4条)4.电磁学(A:20条,建议学时数≥40学时;B:8条)— 2 —5.光学(A:14条,建议学时数≥18学时;B:9条)6.狭义相对论力学基础(A:4条,建议学时数≥6学时;B:3条)7.量子物理基础(A:10条,建议学时数≥20学时;B:4条)8.分子与固体(B:5条)9.核物理与粒子物理(B:6条)10.天体物理与宇宙学(B:3条)11.现代科学与高新技术的物理基础专题(自选专题)三、能力培养基本要求通过大学物理课程教学,应注意培养学生以下能力:1. 独立获取知识的能力——逐步掌握科学的学习方法,阅读并理解相当于大学物理水平的物理类教材、参考书和科技文献,不断地扩展知识面,增强独立思考的能力,更新知识结构;能够写出条理清晰的读书笔记、小结或小论文。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非物理类理工学科大学物理课程教学基本要求(正式报告稿)物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。
它的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他自然科学和工程技术的基础。
在人类追求真理、探索未知世界的过程中,物理学展现了一系列科学的世界观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社会生活,是人类文明发展的基石,在人才的科学素质培养中具有重要的地位。
一、课程的地位、作用和任务以物理学基础为内容的大学物理课程,是高等学校理工科各专业学生一门重要的通识性必修基础课。
该课程所教授的基本概念、基本理论和基本方法是构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备的。
大学物理课程在为学生系统地打好必要的物理基础,培养学生树立科学的世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神和创新意识等方面,具有其他课程不能替代的重要作用。
通过大学物理课程的教学,应使学生对物理学的基本概念、基本理论和基本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。
在大学物理课程的各个教学环节中,都应在传授知识的同时,注重学生分析问题和解决问题能力的培养,注重学生探索精神和创新意识的培养,努力实现学生知识、能力、素质的协调发展。
二、教学内容基本要求(详见附表)大学物理课程的教学内容分为A、B两类。
其中:A为核心内容,共74条,建议学时数不少于126学时,各校可在此基础上根据实际教学情况对A类内容各部分的学时分配进行调整;B为扩展内容,共51条。
1.力学(A:7条,建议学时数14学时;B:5条)2.振动和波(A:9条,建议学时数14学时;B:4条)3.热学(A:10条,建议学时数14学时;B:4条)4.电磁学(A:20条,建议学时数40学时;B:8条)5.光学(A:14条,建议学时数18学时;B:9条)6.狭义相对论力学基础(A:4条,建议学时数6学时;B:3条)7.量子物理基础(A:10条,建议学时数20学时;B:4条)8.分子与固体(B:5条)9.核物理与粒子物理(B:6条)10.天体物理与宇宙学(B:3条)11.现代科学与高新技术的物理基础专题(自选专题)三、能力培养基本要求通过大学物理课程教学,应注意培养学生以下能力:1. 独立获取知识的能力——逐步掌握科学的学习方法,阅读并理解相当于大学物理水平的物理类教材、参考书和科技文献,不断地扩展知识面,增强独立思考的能力,更新知识结构;能够写出条理清晰的读书笔记、小结或小论文。
2. 科学观察和思维的能力——运用物理学的基本理论和基本观点,通过观察、分析、综合、演绎、归纳、科学抽象、类比联想、实验等方法培养学生发现问题和提出问题的能力,并对所涉问题有一定深度的理解,判断研究结果的合理性。
3.分析问题和解决问题的能力——根据物理问题的特征、性质以及实际情况,抓住主要矛盾,进行合理的简化,建立相应的物理模型,并用物理语言和基本数学方法进行描述,运用所学的物理理论和研究方法进行分析、研究。
四、素质培养基本要求通过大学物理课程教学,应注重培养学生以下素质:1. 求实精神——通过大学物理课程教学,培养学生追求真理的勇气、严谨求实的科学态度和刻苦钻研的作风。
2. 创新意识——通过学习物理学的研究方法、物理学的发展历史以及物理学家的成长经历等,引导学生树立科学的世界观,激发学生的求知热情、探索精神、创新欲望,以及敢于向旧观念挑战的精神。
3. 科学美感——引导学生认识物理学所具有的明快简洁、均衡对称、奇异相对、和谐统一等美学特征,培养学生的科学审美观,使学生学会用美学的观点欣赏和发掘科学的内在规律,逐步增强认识和掌握自然科学规律的自主能力。
五、教学过程基本要求在大学物理课程的教学过程中,应以培养学生的知识、能力、素质协调发展为目标,认真贯彻以学生为主体、教师为主导的教育理念;应遵循学生的认知规律,注重理论联系实际,激发学习兴趣,引导自主学习,鼓励个性发展;要加强教学方法和手段的研究与改革,努力营造一个有利于培养学生科学素养和创新意识的教学环境。
1.教学方法——采用启发式、讨论式等多种行之有效的教学方法,加强师生之间、学生之间的交流,引导学生独立思考,强化科学思维的训练。
习题课、讨论课是启迪学生思维,培养学生提出、分析、解决问题能力的重要教学环节,提倡有条件的学校以小班形式进行,并应在教师引导下以讨论、交流为主,学时数应不少于总学时的10%,争取做到不少于15%。
鼓励通过网络资源、专题讲座、探索性实践、小课题研究等多种方式开展探究式学习,因材施教,激发学生的智力和潜能,调动学生学习的主动性和积极性。
2.教学手段——应发挥好课堂教学主渠道的作用,教学手段应服务于教学目的,提倡有效利用多媒体技术。
应积极创造条件,充分利用计算机辅助教学、网络教学等现代化教育技术的优势,扩大教学信息量,提高教学质量和效率。
3.演示实验——应充分利用演示实验帮助学生观察物理现象,增加感性知识,提高学习兴趣。
大学物理课程的主要内容都应有演示实验(实物演示和多媒体仿真演示),其中实物演示实验的数目不应少于40个。
实物演示实验可以采用多种形式进行,如课堂实物演示、开放演示实验室、演示实验走廊等。
提倡建立开放性的物理演示实验室,鼓励和引导学生自己动手观察实验,思考和分析问题,进行定性或半定量验证。
有条件的学校可以通过选修课或适当计算学分等措施保证实现上述目标。
4. 习题与考核——习题与考核是引导学生学习、检查教学效果、保证教学质量的重要环节,也是体现课程要求规范的重要标志。
习题的选取应注重基本概念,强调基本训练,贴近应用实际,激发学习兴趣。
考核要避免应试教育的倾向,积极探索以素质教育为核心的课程考核模式。
5. 双语教学——在保证教学效果的前提下,有条件的学校可开展物理课程的双语教学,以提高学生查阅外文资料和科技外语交流的能力。
六、有关说明1.本教学基本要求适用于各类高等院校的工科专业和理科非物理专业的本科物理课程,其中A类内容是本科生学习本课程应达到的最低要求。
2.本课程宜从一年级第二学期开始,以确保学生学习本课程具有所需要的数学基础。
3.本基本要求建议的最低学时数为126学时。
为了体现加强基础的教育思想,增强学生的发展潜力,各学校应根据人才培养目标和专业特点增加一定数量的B类内容和学时数,例如:对于理科、师范类非物理专业和某些需要加强物理基础的工科专业,其大学物理课程的学时数不应少于144学时。
教育部高等学校非物理类专业物理基础课程教学指导分委员会2004年12月3日结合电子科大的实际,电子科大大学物理教研组教学要求的内容用√表示,不要求的内容用×表示(在类别栏后面的符号)。
附表:教学内容基本要求一、力学序号内容类别说明和建议1 质点运动的描述、相对运动A (√) 1 力学的重点是牛顿运动定律和三个守恒定律及其成立的条件2 力学中除角动量、刚体和流体部分外绝大多数概念学生在中学阶段已有接触,故教学中展开应适度,以避免重复。
3 通过把力学的研究对象抽象为三个力学模型,质点、刚体和理想流体,逐步使学生学会建立模型的科学研究方法。
4 应该学习矢量运算、微积分运算等方法在物理中的运用5 可简要说明守恒定律和对称性的相互关系及在物理中的地位2 牛顿运动定律及其应用、变力作用下的质点动力学基本问题A (√)3 非惯性系和惯性力B (√)4 质点与质点系的动量定理和动量守恒定律A (√)5 质心、质心运动定理A (√)6 变力的功、动能定理、保守力的功、势能、机械能守恒定律A (√)7 对称性和守恒定律B (√)8 刚体定轴转动定律、转动惯量A (√)9 刚体转动中的功和能B (√)10 质点、刚体的角动量、角动量守恒定律A (√)11 刚体进动B (×)12理想液体的性质、伯努利方程B (×)二、振动和波序号内容类别说明和建议1 简谐运动的基本特征和表述、振动的相位、旋转矢量法A(√)1.振动和波是自然界极为普遍的运动形式,简谐运动是研究一切复杂振动的基础。
应强调简谐运动以及平面简谐波的描述特点及研究方法,突出相位及相位差的物理意义。
2.要阐明平面简谐波波函数的物理意义以及波是能量传播的一种重要形式,突出相位传播的概念和相位差在波的叠加中的作用。
讲述机械波要为讨论电磁波(光波),以及物质波的概念提供基础。
3.要求学生进一步掌握线性运动叠加原理,并通过在周期性外力作用下阻尼摆的混沌现象分析对非线性问题的特征有所了解。
4.振动和波是应用演示手段最为丰富的部分,教学中应充分应用演示实验和多媒体手段阐述旋转矢量法;展示阻尼振动、受迫振动和共振现象、振动的合成、驻波、多普勒效应等内容。
并可鼓励学生自己设计展示物理思想和物理现象的多媒体课件。
2 简谐运动的动力学方程A(√)3 简谐运动的能量A(√)4 阻尼振动、受迫振动和共振B(√)5 非线性振动简介B(×)6 一维简谐运动的合成、拍现象A(√)7 两个相互垂直、频率相同或为整数比的简谐运动合成B(×)8 机械波的基本特征、平面简谐波波函数A(√)9 波的能量、能流密度A(√)10 惠更斯原理、波的衍射A(√)11 波的叠加、驻波、相位突变A(√)12 机械波的多普勒效应A(√)13 声波、超声波和次声波;声强级B(×)三、热学序号内容类别说明和建议1 平衡态、态参量、热力学第零定律A (√) 1.对于中学物理介绍得比较多的气体宏观规律,如气体的状态方程、热力学第一定律等应注意展开适度,减少不必要的重复。
2.温度是热学的重要概念,除了说明温度的统计意义外,还应讲述为其提供实验基础的热力学第零定律。
3.注重讲授大量粒子组成的系统的统计研究方法和统计规律,以及热现象研究中宏观量与微观量之间的区别与联系。
4.通过理想气体的压强和气体分子平均自由程等公式的建立以及气体范德瓦耳斯方程的导出,进一步讲授科学研究的建模方法。
5.要强调热力学第二定律的重要性,使学生理解和掌握熵和熵增加原理是自然界(包括自然科学和社会科学)最为普遍实用的定律之一。
2 理想气体状态方程A (√)3 准静态过程、热量和内能A (√)4 热力学第一定律、典型的热力学过程A (√)5 多方过程B (√)6 循环过程、卡诺循环、热机效率、致冷系数A (√)7 热力学第二定律、熵和熵增加原理、玻尔兹曼熵关系式A (√)8 范德瓦耳斯方程B (×)9 统计规律、理想气体的压强和温度A (√)10 理想气体的内能、能量按自由度均分定理A (√)11 麦克斯韦速率分布律、三种统计速率A (√)12 玻耳兹曼分布B (√)13 气体分子的平均碰撞频率和平均自由程A (√)14输运现象B (×)四、电磁学序号内容类别说明和建议1 库仑定律、电场强度、电场强度叠加原理及其应用A (√) 1.对中学物理介绍得比较多的电力、磁力、静电感应及电磁感应现象等内容,讲述中应注意与中学教学的衔接,减少不必要的重复。