计算流体力学数值方法134页PPT
合集下载
计算流体力学基础ppt课件
s x ds y ds
如果该曲线G满足:
dx ds
a
dy
ds
b
特征线
x
特征线简化了 方程,在空气 动力学领域应
用广泛
则有:
duaubuc ds x y
特征相容关系 (特征线上物理量的简化方程)
✓偏微方程在特征线上变成了常微分方程 Slide 5
演示: 如何利用特征线计算物理量
a(x,y)ub(x,y)uc(x,y)
特征方程(3) 有两个相同实根,且无法对角化 -> 抛物型
特征方程(3)无实根
-> 椭圆型
Slide 9
4. 讨论Euler方程组
一维非定常流动:
f(U)AU
x
x
U f(U) 0 t x
Uu
E
0
1
0
AU f ((232)u3)u2u/2c21
(3)u c2 32u2 1 2
1
u
推导
u f(U)u2 p
第四章 偏微分方程的性质 Behavior of Partial Differential Equations
Slide 1
超音速钝体绕流问题的解决
Slide 2
偏微方程的分类及特征
1. 一阶偏微分方程
➢ (常用)特例:常系数线性单波方程
u cu 0 t x
初值: u(x,0)(x)
方程的精确解: u(x,t)(xc)t
Slide 31
1.特征线为虚数,故与特征线有关 的解法不适用;
2.无有限影响区域和依赖区域,流 场参数信息可以向任何方向传播;
3.图中P点参数影响整个区域的信息, 同时区域内任意点的参数也影响P 点的参数。
如果该曲线G满足:
dx ds
a
dy
ds
b
特征线
x
特征线简化了 方程,在空气 动力学领域应
用广泛
则有:
duaubuc ds x y
特征相容关系 (特征线上物理量的简化方程)
✓偏微方程在特征线上变成了常微分方程 Slide 5
演示: 如何利用特征线计算物理量
a(x,y)ub(x,y)uc(x,y)
特征方程(3) 有两个相同实根,且无法对角化 -> 抛物型
特征方程(3)无实根
-> 椭圆型
Slide 9
4. 讨论Euler方程组
一维非定常流动:
f(U)AU
x
x
U f(U) 0 t x
Uu
E
0
1
0
AU f ((232)u3)u2u/2c21
(3)u c2 32u2 1 2
1
u
推导
u f(U)u2 p
第四章 偏微分方程的性质 Behavior of Partial Differential Equations
Slide 1
超音速钝体绕流问题的解决
Slide 2
偏微方程的分类及特征
1. 一阶偏微分方程
➢ (常用)特例:常系数线性单波方程
u cu 0 t x
初值: u(x,0)(x)
方程的精确解: u(x,t)(xc)t
Slide 31
1.特征线为虚数,故与特征线有关 的解法不适用;
2.无有限影响区域和依赖区域,流 场参数信息可以向任何方向传播;
3.图中P点参数影响整个区域的信息, 同时区域内任意点的参数也影响P 点的参数。
计算流体力学数值方法
3-43
计算流体力学
高阶精度可通过采用更多的节点值近似来获 得。一个节点允许的最高精度为1阶,两个节点允 许的最高精度为2阶,依此类推。 理论上讲,某种数值方法的精度越高,随着 网格的加密,误差减小的就越大 。也就是说,采 用高精度的数值方法,只需较少的网格数即可获 得要求的精度。 但是,高阶精度的方法常常需要更多的计算 时间,而且常常会导致解的有界性问题。
计算流体力学
解析解:
d dT (kA ) 0 dx dx d 2T 0 2 dx T c1 x c0 T ( x 0) 100 T ( x 1) 500 T 400x 100
3-21
计算流体力学
控制方程扩散项的离散 梯度扩散项的离散几乎 总是采用中心差分格式:
3-44
计算流体力学
3-5
计算流体力学
d (V) (C A ) SV dt n faces
C un A
1,有限体积法直接对上式进行离散 2,本章只考虑稳态问题,即上式左边第一项为 零
3-6
计算流体力学
有限体积法(FVM) (1) 定义流场求解域几何形 状 (2) 将求解域划分为计算网 格,即一组互不重叠的有限 体或单元。 (3) 基于上述划分的单元对 积分方程进行离散,即用节 点值来近似。 (4) 对得到的离散方程进行 数值求解。
3-11
计算流体力学
对于如图所示的一维控制体,物理量的守恒 可表述为如下关系式: [通量]e (fluxe)- [通量]w (fluxw) =源(source) 这里的通量是指穿过单 元表面的输运率。 如果 表示单位质量 的输运量,则总的通量为 对流通量和扩散通量之和, 其中: 对流通量= 扩散通量=
流体力学基础 ppt课件
➢流体介质是由连续的质点组成的;
➢质点运动过程的连续性。
流体的压缩性
不可压缩流体:流体的体积如果不随压力及温度变 化,这种流体称为不可压缩流体。
可压缩流体:流体的体积如果随压力及温度变化, 则称为可压缩流体。
实际上流体都是可压缩的,一般把液体当作不 可压缩流体;气体应当属于可压缩流体。但是,如 果压力或温度变化率很小时,通常也可以当作不可 压缩流体处理。
1.3 压强
垂直作用于流体单位面积上的力,称为流体的压强, 简称压强。习惯上称为压力。垂直作用于整个面上的 力称为总压力。
在静止流体中,从各方向作用于某一点的压强大小 均相等。
压强的单位: ❖ 帕斯卡, Pa, N/m2 (法定单位); ❖ 标准大气压, atm; ❖ 某流体液柱高度; ❖ bar(巴)或kgF/cm2等。
m v
(1-1)
式中 ρ —— 流体的密度,kg/m3;
m —— 流体的质量,kg;
v —— 流体的体积,m3。
不同的流体密度是不同的,对一定的流体,密度是压力p和 温度T的函数,可用下式表示 :
f(p,T)
(1-2)
液体的密度随压力的变化甚小(极高压力下除外),可忽略
不计,但其随温度稍有改变。气体的密度随压力和温度的变化
解: 首先将摄氏度换算成开尔文:
100℃=273+100=373K
1)求干空气的平均分子量:
Mm = M1y1 + M2y2 + … + Mnyn
=32 × 0.21+28 ×0.78+39.9 × 0.01
=28.96
气体的平均密度为:
T0p 0 Tp0
即
2 2..4 6 8 9 2 3 2 7 7 1 9 .8 3 3 .3 0 1 1 1 1 4 30 0 0 .9k2 /g m 3
➢质点运动过程的连续性。
流体的压缩性
不可压缩流体:流体的体积如果不随压力及温度变 化,这种流体称为不可压缩流体。
可压缩流体:流体的体积如果随压力及温度变化, 则称为可压缩流体。
实际上流体都是可压缩的,一般把液体当作不 可压缩流体;气体应当属于可压缩流体。但是,如 果压力或温度变化率很小时,通常也可以当作不可 压缩流体处理。
1.3 压强
垂直作用于流体单位面积上的力,称为流体的压强, 简称压强。习惯上称为压力。垂直作用于整个面上的 力称为总压力。
在静止流体中,从各方向作用于某一点的压强大小 均相等。
压强的单位: ❖ 帕斯卡, Pa, N/m2 (法定单位); ❖ 标准大气压, atm; ❖ 某流体液柱高度; ❖ bar(巴)或kgF/cm2等。
m v
(1-1)
式中 ρ —— 流体的密度,kg/m3;
m —— 流体的质量,kg;
v —— 流体的体积,m3。
不同的流体密度是不同的,对一定的流体,密度是压力p和 温度T的函数,可用下式表示 :
f(p,T)
(1-2)
液体的密度随压力的变化甚小(极高压力下除外),可忽略
不计,但其随温度稍有改变。气体的密度随压力和温度的变化
解: 首先将摄氏度换算成开尔文:
100℃=273+100=373K
1)求干空气的平均分子量:
Mm = M1y1 + M2y2 + … + Mnyn
=32 × 0.21+28 ×0.78+39.9 × 0.01
=28.96
气体的平均密度为:
T0p 0 Tp0
即
2 2..4 6 8 9 2 3 2 7 7 1 9 .8 3 3 .3 0 1 1 1 1 4 30 0 0 .9k2 /g m 3
工程流体力学的计算方法CFD基础课件
详细描述
云计算技术使得大规模CFD模拟成为 可能,同时提供了灵活的计算资源和 数据管理方式。未来,云计算技术将 进一步优化,以降低计算成本和提高 计算效率。
THANKS
CFX
工业标准的CFD软件
CFX是全球公认的工业标准的CFD软件之一,广泛应用于能源、化工、航空航天、汽车等领域。它具 有强大的求解器和先进的物理模型,能够模拟复杂的流体流动和传热问题,并提供丰富的后处理功能 。
OpenFOAM
开源CFD软件
OpenFOAM是一款开源的CFD软件,由C编写,具有高度的灵活性和可定制性。它提供了丰富的工具包和案例库,适用于各 种流体动力学模拟,包括复杂流动、传热、化学反应等问题。
粘性。
热传导
流体在温度梯度作用下会产生 热传导现象。
流体动力学基本方程
质量守恒方程
表示流体质量随时间的变化规律 。
动量守恒方程
表示流体动量随时间的变化规律。
能量守恒方程
表示流体能量随时间的变化规律。
流体流动的分类
层流流动
均匀流动和非均匀流动
流体质点仅沿流线方向作有规则的线 运动,互不混杂。
根据流动是否具有空间均匀性进行分 类。
06
CFD未来发展与挑战
高精度算法与求解器
总结词
随着计算能力的不断提升,高精度算法和求解器在 CFD领域的应用将更加广泛。
详细描述
高精度算法和求解器能够提供更精确的流场模拟结果 ,有助于更深入地理解流体动力学现象。未来,高精 度算法和求解器将进一步优化,以适应更复杂、更高 要求的CFD模拟。
多物理场耦合模拟
有限体积法的优点在于能够很好地处 理流体流动中的非线性特性和复杂边 界条件,因此在工程流体力学中得到 了广泛应用。
云计算技术使得大规模CFD模拟成为 可能,同时提供了灵活的计算资源和 数据管理方式。未来,云计算技术将 进一步优化,以降低计算成本和提高 计算效率。
THANKS
CFX
工业标准的CFD软件
CFX是全球公认的工业标准的CFD软件之一,广泛应用于能源、化工、航空航天、汽车等领域。它具 有强大的求解器和先进的物理模型,能够模拟复杂的流体流动和传热问题,并提供丰富的后处理功能 。
OpenFOAM
开源CFD软件
OpenFOAM是一款开源的CFD软件,由C编写,具有高度的灵活性和可定制性。它提供了丰富的工具包和案例库,适用于各 种流体动力学模拟,包括复杂流动、传热、化学反应等问题。
粘性。
热传导
流体在温度梯度作用下会产生 热传导现象。
流体动力学基本方程
质量守恒方程
表示流体质量随时间的变化规律 。
动量守恒方程
表示流体动量随时间的变化规律。
能量守恒方程
表示流体能量随时间的变化规律。
流体流动的分类
层流流动
均匀流动和非均匀流动
流体质点仅沿流线方向作有规则的线 运动,互不混杂。
根据流动是否具有空间均匀性进行分 类。
06
CFD未来发展与挑战
高精度算法与求解器
总结词
随着计算能力的不断提升,高精度算法和求解器在 CFD领域的应用将更加广泛。
详细描述
高精度算法和求解器能够提供更精确的流场模拟结果 ,有助于更深入地理解流体动力学现象。未来,高精 度算法和求解器将进一步优化,以适应更复杂、更高 要求的CFD模拟。
多物理场耦合模拟
有限体积法的优点在于能够很好地处 理流体流动中的非线性特性和复杂边 界条件,因此在工程流体力学中得到 了广泛应用。
流体力学PPT演示文稿
第四十三页,共59页。
作用在平面上的流体静压力1
均质平板形心
x C
1 A
xdA
A
y C
1 A
ydA
A
A 对 x 轴的惯性矩
Ix
y2dA
A
惯性矩移轴定理
Ix Ixc yC2A
x
X
dA
y
(xc , yc)
Y
Ixc为A对通过形心并与x 轴平行的轴的惯性矩
第四十四页,共59页。
作用在平面上的流体静压力2
fx 2x fy 2 y
fz g
-a gf
第三十九页,共59页。
等角速转动液体的平衡3
代入方程
2x 1 p 0 x
2 y 1 p 0 y
g 1 p 0 z
第四十页,共59页。
等角速转动液体的平衡4
等压面
第四十一页,共59页。
z 2 r2 C
2g
一族旋转抛物面 自由面
压p = -2.74104Pa,h = 500mm,h1 = 200mm, h2 = 250mm,h3 = 150mm,求容器A上部的表压
第三十三页,共59页。
差压计
第三十四页,共59页。
p A p B 2 g2 h3 g3 h1 g1h
倾斜式测压计(微压计)
通常用来测量气体压强
p A m2g lsin1g h 1
第九页,共59页。
流体静压强的特性3
流体静压强的方向垂直于
作用面,并指向流体内部
静止流体任意点处静压强的大小与其作 用面方位无关,只是作用点位置的函数
第十页,共59页。
2.2 流体平衡的微分方程式
质量力
fxyz
表面力
作用在平面上的流体静压力1
均质平板形心
x C
1 A
xdA
A
y C
1 A
ydA
A
A 对 x 轴的惯性矩
Ix
y2dA
A
惯性矩移轴定理
Ix Ixc yC2A
x
X
dA
y
(xc , yc)
Y
Ixc为A对通过形心并与x 轴平行的轴的惯性矩
第四十四页,共59页。
作用在平面上的流体静压力2
fx 2x fy 2 y
fz g
-a gf
第三十九页,共59页。
等角速转动液体的平衡3
代入方程
2x 1 p 0 x
2 y 1 p 0 y
g 1 p 0 z
第四十页,共59页。
等角速转动液体的平衡4
等压面
第四十一页,共59页。
z 2 r2 C
2g
一族旋转抛物面 自由面
压p = -2.74104Pa,h = 500mm,h1 = 200mm, h2 = 250mm,h3 = 150mm,求容器A上部的表压
第三十三页,共59页。
差压计
第三十四页,共59页。
p A p B 2 g2 h3 g3 h1 g1h
倾斜式测压计(微压计)
通常用来测量气体压强
p A m2g lsin1g h 1
第九页,共59页。
流体静压强的特性3
流体静压强的方向垂直于
作用面,并指向流体内部
静止流体任意点处静压强的大小与其作 用面方位无关,只是作用点位置的函数
第十页,共59页。
2.2 流体平衡的微分方程式
质量力
fxyz
表面力
流体力学基本知识PPT优秀课件
第一章 流体力学基本知识
第一节 流体的主要物理性质 第二节 流体静压强及其分布规律 第三节 流体运动的基本知识 第四节 流动阻力和水头损失 第五节 孔口、管嘴出流及两相流体简介
2021/6/3
1
第一节 流体的主要物理性质
一、密度和容重 密度:对于均质流体,单位体积的质量称为
流体的密度。 容重:对于均质流体,单位体积的 重量称为
等压面:流体中压强相等的各点所组成 的面为等压面。
2021/6/3
10
压强的度量基准:
(1)绝对压强:是以完全真空为零点计算的 压强,用PA表示。
(2)相对压强:是以大气压强为零点计算的 压强,用P表示。
相对压强与绝对压强的关系为: P=PA-Pa (1-9)
2021/6/3
11
第三节 流体运动的基本知识
水力学基本方程式。式中γ和p0都是常数。
方程表示静水压强与水深成正比的直线分布 规律。方程式还表明,作用于液面上的表面 压强p0是等值地传递到静止液体中每一点上。 方程也适用于静止气体压强的计算,只是式 中的气体容重很小,因此,在高差h不大的 情况下,可忽略项,则p=p0。例如研究气 体作用在锅炉壁上的静压强时,可以认为气 体空间各点的静压强相等。
表面压强为: p=△p/△ω (1-6)
点压强为: lim p=dp/dω ( Pa) 点压强就是静压强
2021/6/3
7
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。
(2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
2021/6/3
8
二、流体静压强的分布规律
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
第一节 流体的主要物理性质 第二节 流体静压强及其分布规律 第三节 流体运动的基本知识 第四节 流动阻力和水头损失 第五节 孔口、管嘴出流及两相流体简介
2021/6/3
1
第一节 流体的主要物理性质
一、密度和容重 密度:对于均质流体,单位体积的质量称为
流体的密度。 容重:对于均质流体,单位体积的 重量称为
等压面:流体中压强相等的各点所组成 的面为等压面。
2021/6/3
10
压强的度量基准:
(1)绝对压强:是以完全真空为零点计算的 压强,用PA表示。
(2)相对压强:是以大气压强为零点计算的 压强,用P表示。
相对压强与绝对压强的关系为: P=PA-Pa (1-9)
2021/6/3
11
第三节 流体运动的基本知识
水力学基本方程式。式中γ和p0都是常数。
方程表示静水压强与水深成正比的直线分布 规律。方程式还表明,作用于液面上的表面 压强p0是等值地传递到静止液体中每一点上。 方程也适用于静止气体压强的计算,只是式 中的气体容重很小,因此,在高差h不大的 情况下,可忽略项,则p=p0。例如研究气 体作用在锅炉壁上的静压强时,可以认为气 体空间各点的静压强相等。
表面压强为: p=△p/△ω (1-6)
点压强为: lim p=dp/dω ( Pa) 点压强就是静压强
2021/6/3
7
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。
(2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
2021/6/3
8
二、流体静压强的分布规律
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
计算流体力学数值方法
3-31
计算流体力学
为了简化书写,将质量通量用C表示,譬如 ,单元e面的质量通量表示为:
扩散项和源项的离散采用与前面相同的方 法,于是有:
现在的问题是如何离散对流项?也就是怎样利 用相邻节点值来确定单元面上的变量值。这类 方法就称作对流方案。
3-32
计算流体力学
中心差分法 离散对流项的最明然 的方法就是线性插值,即 中心差分法:
计算流体力学
第三章
数值方法
3-1
计算流体力学
主要内容
空间离散技术 标量输运方程 动量方程 时间离散技术
3-2
计算流体力学
1 标量输运方程
有限体积法 一维对流扩散方程 扩散项的离散 源项的离散 代数方程的组装 二维和三维问题 对流项离散基础 离散特性
3-3
计算流体力学
3-25
计算流体力学
代数方程的组装 当速度u=0时,定常扩散 问题在每个单元上的离散为:
经过整理后:
或表示成如下标量输运方程规范形式:
3-26
计算流体力学
上述方程为离散后的标量输运方程规范形式 ,每个求解变量的输运方程都有相同的形式,只 是各自的矩阵系数不同。对于纯扩散问题,矩阵 系数为:
3-27
3-37
计算流体力学
上风差分法 在上风差分格式种, 单元面上变量的值用其 上风节点的值近似。譬 如,对于单元东(e)面:
于是将上述公式可归结为:
3-38
计算流体力学
采用上风差分格式后,定常对流-扩散问题 的规范离散格式为:
其中:
3-39
计算流体力学
当将上风差分法应用于前述与中心差分同样的 问题后可观察到: (1) 当
流体力学课件 ppt
流体阻力计算
利用流体动力学方程,可以计算 流体在管道中流动时的阻力,为 管道设计提供依据。
管道优化设计
通过分析流体动力学方程,可以 对管道设计进行优化,提高流体 输送效率,减少能量损失。
流体动力学方程在流体机械中的应用
泵和压缩机性能分析
流体动力学方程用于分析泵和压缩机的性能 ,预测其流量、扬程、功率等参数,为机械 设计和优化提供依据。
适用于不可压缩的流体。
方程意义
描述了流体压强与密度、重力加速度和深度之间的 关系。
Part
03
流体动力学基础
流体运动的基本概念
01
02
03
流体
流体是气体和液体的总称 ,具有流动性和不可压缩 性。
流场
流场是指流体在其中运动 的区域,可以用空间坐标 和时间描述。
流线
流线是表示流体运动方向 的曲线,在同一时间内, 流线上各点的速度矢量相 等。
能量损失的形式
流体流动的能量损失可以分为沿程损失和局部损失两种形式。沿程损失是指流体在流动过程中克服摩擦阻力而损 失的能量,局部损失是指流体在通过管道或槽道的局部障碍物时损失的能量。
Part
05
流体动力学方程的应用
流体动力学方程在管道流动中的应用
稳态流动和非稳态
流动
流体动力学方程在管道流动中可 用于描述稳态流动和非稳态流动 ,包括流速、压力、密度等参数 的变化规律。
变化的流动。
流体动力学基本方程
1 2
质量守恒方程
表示流体质量随时间变化的规律,即质量守恒原 理。
动量守恒方程
表示流体动量随时间变化的规律,即牛顿第二定 律。
3
能量守恒方程
表示流体能量随时间变化的规律,即热力学第一 定律。
计算流体力学课件完整版
●真实可靠、是发现流动规律、检验理论和为流体机 械设计提供数据的基本手段。
●实验要受测量技术限制,实验周期长、费用高。
☆ 理论研究 ●在研究流体流动规律的基础上,建立了流体流动基 本方程。 ●对于一些简单流动,通过简化求出研究问题的解析 解。
计算流体力学
●对于实际流动问题,通常需运用流体力学基本方程, 借助于计算机求数值解(计算机数值模拟)— 计算流体力学CFD。
Z
skirt.plt X Y
75 50 25
0 -25 -50 -75
-2
Y(M) 0
2
0 2 4 6 10 8 X(M) 12 14
D) 16 Feb 2003 Velocity Vectors
4.5
4 velocity.plt
3.5
3
2.5
2
1.5
Z
Z
(3D) 16 Feb 2003 IJK-Ordered DZ ata
ijkcyl.plt X Y
Z
-0.4 -0.2 Y0 0.2 0.4
1
0.8
0.6
0.4
0.2
0 -0.4 -0.2 0 X 0.2 0.4
Z
jetflow.plXt Y
0.6 0.5 0.4 0.3 0.2 0.1
0 0 Y0.1 0.2
-0.6 -0.4 -0.2 0 X 0.2 0.4 0.6
轴流叶轮计算与实验叶片表面极限流线
计算流体力学
轴流叶轮计算与实验性能比较
计算流体力学
轴流叶轮计算与实验流场结构比较
计算流体力学
第二章 流体力学数值计算数学模型及定解条件
☆本章所涉及的基本方程有两类: ●流体力学基本方程,基本出发点:质量守恒、动量守恒和能
●实验要受测量技术限制,实验周期长、费用高。
☆ 理论研究 ●在研究流体流动规律的基础上,建立了流体流动基 本方程。 ●对于一些简单流动,通过简化求出研究问题的解析 解。
计算流体力学
●对于实际流动问题,通常需运用流体力学基本方程, 借助于计算机求数值解(计算机数值模拟)— 计算流体力学CFD。
Z
skirt.plt X Y
75 50 25
0 -25 -50 -75
-2
Y(M) 0
2
0 2 4 6 10 8 X(M) 12 14
D) 16 Feb 2003 Velocity Vectors
4.5
4 velocity.plt
3.5
3
2.5
2
1.5
Z
Z
(3D) 16 Feb 2003 IJK-Ordered DZ ata
ijkcyl.plt X Y
Z
-0.4 -0.2 Y0 0.2 0.4
1
0.8
0.6
0.4
0.2
0 -0.4 -0.2 0 X 0.2 0.4
Z
jetflow.plXt Y
0.6 0.5 0.4 0.3 0.2 0.1
0 0 Y0.1 0.2
-0.6 -0.4 -0.2 0 X 0.2 0.4 0.6
轴流叶轮计算与实验叶片表面极限流线
计算流体力学
轴流叶轮计算与实验性能比较
计算流体力学
轴流叶轮计算与实验流场结构比较
计算流体力学
第二章 流体力学数值计算数学模型及定解条件
☆本章所涉及的基本方程有两类: ●流体力学基本方程,基本出发点:质量守恒、动量守恒和能
第一章 流体力学基础ppt课件(共105张PPT)
原
力〔垂直于作用面,记为 ii〕和两个切向 应力〔又称为剪应力,平行于作用面,记为
理
ij,i j),例如图中与z轴垂直的面上受
到的应力为 zz〔法向)、 zx和 zy〔切
电 向),它们的矢量和为:
子
课
件 τ zzix zjy zkz
返回
前页
后页
主题
西
1.1 概述
安
交 • 3 作用在流体上的力
大 化
子 课 件
返回
前页
后页
主题
西
1.2.3 静力学原理在压力和压力差测量上的应用
安
交
大 思索:若U形压差计安装在倾斜管路中,此时读数 R反
化 映了什么?
工 原
理 p1p2
p2
p1 z2
电 子
(0)gR(z2z1)g z1
课
R
件
A A’
返回
前页
后页
主题
西 1.2.3 静力学原理在压力和压力差测量上的应用
安
交 大
•
2.压差计
化 • (2〕双液柱压差计
p1
p2
工•
原•
理
电•
子•
课
件
又称微差压差计适用于压差较小的场合。
z1
1
z1
密度接近但不互溶的两种指示
液1和2 , 1略小于 2 ;
R
扩p 大1 室p 内2 径与2 U 管1 内g 径之R 比应大于10 。 2
图 1-8 双 液 柱 压 差 计
返回
安
交 大
•
1.压力计
化 • (2〕U形压力计
pa
工 • 设U形管中指示液液面高度差为RA,1 指• 示液
流体流动数值模拟.pptx
5、计算方法与求解过程的选择与确定: 6、湍流模型的选择与确定:两方程模型中有三种常用模型,即
1)、标准k 模型;
学海无涯
2 、RNG k 模型(重整化群模型);和 3 、Realizable k 模型
7、离散方法与格式的选择与确定:离散包括两部分内容,即计算域空间的离散和控制 方程与湍流模型在网格节点上的离散两个部分;离散的方法根据因变量在节点之间分布的假 设及推导离散方程的方法不同而不同;有有限差分法(FDM)、有限元法(FEM)、有限体积 法(FVM),等等。
第一节 计算流体动力学概述
计算流体动力学(CFD)技术用于流体机械内部流动分析及其性能预测,具有成本低, 效率高,方便、快捷用时少等优点。近年来随着计算流体力学和计算流体动力学及计算机技 术的发展, CFD 技术已成为解决各种流体运动和传热,以及场问题的强有力、有效的工具, 广泛应用于水利、水电,航运,海洋,冶金,化工,建筑,环境,航空航天及流体机械与流 体工程等科学领域。利用数值计算模拟的方法对流体机械的内部流动进行全三维整机流场模 拟,进而进行性能预测的方法越来越广泛地被从事流体机械及产品性能取决于各种场特性的 设计、科研等科技人员所使用;过去只有通过实验才能获得的某些结果或结论,现在完全可 借助 CFD 模拟的手段来准确地获取。这不仅既可以节省实验资源,还可以显示从实验中不能 得到的许多场特性的细节信息。
学海无涯
流动的分离及其表面的压力分布、受力的大小及其随时间的变化等。数值模拟实质上就是在 计算机上进行的数值试验,可以形象地再现流动的场景。在本质上讲,与做物理实体实验没 有什么区别。
与实验方法相比,其突出的优点是: 1、CFD 方法所需要的设备与条件只是计算机和相应的 CFD 软件,因而,所需花费与 损耗小,试验与产品开发周期短; 2、 在计算机上可以方便地任意改变流场中固体结构件的形状和尺寸以及流动条件,即 可马上进行计算,且流场不受试验装置与测试仪器仪表的干扰。即很容易实现各种条件下的 流动计算,且保持了流场的原态; 3、可定量地刻画、详细地描述出流动随时间的变化以及总体流场与局部细节,并能定 量地给出各种物理量的物性参数值;同时,还可随意进行流场的重构和分析、诊断,等。 二、流体动力学计算的基本内容和步骤 所有流动或流场的计算与模拟工作,首先都应根据所要求解的物理问题及预期目标拟定 出合理、周密的技术路线与求解方案,以保证顺利地实现意图,达到预期的目的。为此,在 拟定流场数值模拟求解方案时,主要应考虑如何选定以下一些必须解决的问题: 1、物理模型的流型:根据所要研究的问题,分析该流动是可压缩流还不可压缩流,是 有粘流动还是无粘流动,是层流还是湍流,流动是稳态还是瞬态?由此确定该流动的流型; 2、CFD 方法的模型目标:即确定要建立什么样的 CFD 计算模型,并要从该模型中获 得怎样的模拟结果?获取这些结果的使用目的,由此确定计算模型是按二维还是三维构造及 需要什么样的计算精度; 3、计算域的确定:根据确定的流型和计算模型,分析该问题的流动特征是否对称或存 在回流与尾迹流或射流,即考虑对于该问题计算域是否需要外延,或取其一部分;
1)、标准k 模型;
学海无涯
2 、RNG k 模型(重整化群模型);和 3 、Realizable k 模型
7、离散方法与格式的选择与确定:离散包括两部分内容,即计算域空间的离散和控制 方程与湍流模型在网格节点上的离散两个部分;离散的方法根据因变量在节点之间分布的假 设及推导离散方程的方法不同而不同;有有限差分法(FDM)、有限元法(FEM)、有限体积 法(FVM),等等。
第一节 计算流体动力学概述
计算流体动力学(CFD)技术用于流体机械内部流动分析及其性能预测,具有成本低, 效率高,方便、快捷用时少等优点。近年来随着计算流体力学和计算流体动力学及计算机技 术的发展, CFD 技术已成为解决各种流体运动和传热,以及场问题的强有力、有效的工具, 广泛应用于水利、水电,航运,海洋,冶金,化工,建筑,环境,航空航天及流体机械与流 体工程等科学领域。利用数值计算模拟的方法对流体机械的内部流动进行全三维整机流场模 拟,进而进行性能预测的方法越来越广泛地被从事流体机械及产品性能取决于各种场特性的 设计、科研等科技人员所使用;过去只有通过实验才能获得的某些结果或结论,现在完全可 借助 CFD 模拟的手段来准确地获取。这不仅既可以节省实验资源,还可以显示从实验中不能 得到的许多场特性的细节信息。
学海无涯
流动的分离及其表面的压力分布、受力的大小及其随时间的变化等。数值模拟实质上就是在 计算机上进行的数值试验,可以形象地再现流动的场景。在本质上讲,与做物理实体实验没 有什么区别。
与实验方法相比,其突出的优点是: 1、CFD 方法所需要的设备与条件只是计算机和相应的 CFD 软件,因而,所需花费与 损耗小,试验与产品开发周期短; 2、 在计算机上可以方便地任意改变流场中固体结构件的形状和尺寸以及流动条件,即 可马上进行计算,且流场不受试验装置与测试仪器仪表的干扰。即很容易实现各种条件下的 流动计算,且保持了流场的原态; 3、可定量地刻画、详细地描述出流动随时间的变化以及总体流场与局部细节,并能定 量地给出各种物理量的物性参数值;同时,还可随意进行流场的重构和分析、诊断,等。 二、流体动力学计算的基本内容和步骤 所有流动或流场的计算与模拟工作,首先都应根据所要求解的物理问题及预期目标拟定 出合理、周密的技术路线与求解方案,以保证顺利地实现意图,达到预期的目的。为此,在 拟定流场数值模拟求解方案时,主要应考虑如何选定以下一些必须解决的问题: 1、物理模型的流型:根据所要研究的问题,分析该流动是可压缩流还不可压缩流,是 有粘流动还是无粘流动,是层流还是湍流,流动是稳态还是瞬态?由此确定该流动的流型; 2、CFD 方法的模型目标:即确定要建立什么样的 CFD 计算模型,并要从该模型中获 得怎样的模拟结果?获取这些结果的使用目的,由此确定计算模型是按二维还是三维构造及 需要什么样的计算精度; 3、计算域的确定:根据确定的流型和计算模型,分析该问题的流动特征是否对称或存 在回流与尾迹流或射流,即考虑对于该问题计算域是否需要外延,或取其一部分;
计算流体力学基础ppt课件
可利用计算机进行各种数值试验,例如,选择不同流动参数进行 物理方程中各项有效性和敏感性试验,从而进行方案比较
它不受物理模型和实验模型的限制,省钱省时,有较多的灵活性, 能给出详细和完整的资料,很容易模拟特殊尺寸、高温、有毒、 易燃等真实条件和实验中只能接近而无法达到的理想条件。
8
数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适 用、适合于在计算机上进行计算的离散的有限数学模型,且最终结果 不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并 有一定的计算误差。
对于初始条件和边界条件的处理,直接影响计算结果的精度。
16
划分计算网 采用数值方法求解控制方程时,都是想办法将控制方程在空间区
域上进行离散,然后求解得到的离散方程组。要想在空间域上离 散控制方程,必须使用网格。现已发展出多种对各种区域进行离 散以生成网格的方法,统称为网格生成技术。
不同的问题采用不同数值解法时,所需要的网格形式是有一定区 别的,但生成网格的方法基本是一致的。目前,网格分结构网格 和非结构网格两大类。简单地讲,结构网格在空间上比较规范, 如对一个四边形区域,网格往往是成行成列分布的,行线和列线 比较明显。而对非结构网格在空间分布上没有明显的行线和列线。
数学模型就好理解了,就是对物理模型的数学描写。 比如N-S方程就是对粘性流体动力学的一种数学描写,值得注意的是,数学 模型对物理模型的描写也要通过抽象,简化的过程。
14
建立控制方程 确立初始条件及边界条件 划分计算网格,生成计算节点
建立离散方程
离散初始条件和边界条件
给定求解控制参数
解收敛否
否
显示和输出计算结果
21
给定求解控制参数 在离散空间上建立了离散化的代数方程组,并施加离散化的
它不受物理模型和实验模型的限制,省钱省时,有较多的灵活性, 能给出详细和完整的资料,很容易模拟特殊尺寸、高温、有毒、 易燃等真实条件和实验中只能接近而无法达到的理想条件。
8
数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适 用、适合于在计算机上进行计算的离散的有限数学模型,且最终结果 不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并 有一定的计算误差。
对于初始条件和边界条件的处理,直接影响计算结果的精度。
16
划分计算网 采用数值方法求解控制方程时,都是想办法将控制方程在空间区
域上进行离散,然后求解得到的离散方程组。要想在空间域上离 散控制方程,必须使用网格。现已发展出多种对各种区域进行离 散以生成网格的方法,统称为网格生成技术。
不同的问题采用不同数值解法时,所需要的网格形式是有一定区 别的,但生成网格的方法基本是一致的。目前,网格分结构网格 和非结构网格两大类。简单地讲,结构网格在空间上比较规范, 如对一个四边形区域,网格往往是成行成列分布的,行线和列线 比较明显。而对非结构网格在空间分布上没有明显的行线和列线。
数学模型就好理解了,就是对物理模型的数学描写。 比如N-S方程就是对粘性流体动力学的一种数学描写,值得注意的是,数学 模型对物理模型的描写也要通过抽象,简化的过程。
14
建立控制方程 确立初始条件及边界条件 划分计算网格,生成计算节点
建立离散方程
离散初始条件和边界条件
给定求解控制参数
解收敛否
否
显示和输出计算结果
21
给定求解控制参数 在离散空间上建立了离散化的代数方程组,并施加离散化的
计算流体力学课件
求解过程 方程组和边界条件确定、方程离散(格式)、 代数方程求解等
后处理阶段 计算结果分析、数值计算不确定度的估计
2020/1/26
23
五、 CFD的研究内容 (离散+解法)
前提:方程组和边界条件确定 物理模型、
离散:方程离散(格式)、 网格划分(时、空间离散)
解法:代数方程组求解(单独、联立;)
广泛性:大气、海洋;能源动力、石油化工、
钢铁冶金、国防、环保;
复杂性:数学描述;几何域;多种现象;
理论、实验、计算流体力学
重要性:CFD提高企业的竞争能力和设计水平;
企业数值化的重要部分;带来了崭新的设计理念 和提供了新的途径。
2020/1/26
3
现状: 1. 条件:
硬件:发展迅速 软件: CFD比较成熟,FLOWLAB 效果:例子,飞机阻力
from this important technology. (CFD) "
2020/1/26
8
CFD拥有包括流体流动、传热、辐射、多相流 、化学反应、燃烧等问题丰富的通用物理模 型;还拥有诸如气蚀、凝固、沸腾、多孔介 质、相间传质、非牛顿流、喷雾干燥、动静 干涉、真实气体等大批复杂
现象的实用模型。
计算流体力学基础
Computational fluid Dynamics
第一章 引 言
1.1 绪论 一、概述
二、CFD及其应用例 三、数值(虚拟)实验的特点
四、CFD分析的一般过程 五、CFD的研究内容 六、CFD的发展史
2020/1/26
2
一、 概述
流体问题
广泛性、复杂性、重要性
2020/1/26
10
后处理阶段 计算结果分析、数值计算不确定度的估计
2020/1/26
23
五、 CFD的研究内容 (离散+解法)
前提:方程组和边界条件确定 物理模型、
离散:方程离散(格式)、 网格划分(时、空间离散)
解法:代数方程组求解(单独、联立;)
广泛性:大气、海洋;能源动力、石油化工、
钢铁冶金、国防、环保;
复杂性:数学描述;几何域;多种现象;
理论、实验、计算流体力学
重要性:CFD提高企业的竞争能力和设计水平;
企业数值化的重要部分;带来了崭新的设计理念 和提供了新的途径。
2020/1/26
3
现状: 1. 条件:
硬件:发展迅速 软件: CFD比较成熟,FLOWLAB 效果:例子,飞机阻力
from this important technology. (CFD) "
2020/1/26
8
CFD拥有包括流体流动、传热、辐射、多相流 、化学反应、燃烧等问题丰富的通用物理模 型;还拥有诸如气蚀、凝固、沸腾、多孔介 质、相间传质、非牛顿流、喷雾干燥、动静 干涉、真实气体等大批复杂
现象的实用模型。
计算流体力学基础
Computational fluid Dynamics
第一章 引 言
1.1 绪论 一、概述
二、CFD及其应用例 三、数值(虚拟)实验的特点
四、CFD分析的一般过程 五、CFD的研究内容 六、CFD的发展史
2020/1/26
2
一、 概述
流体问题
广泛性、复杂性、重要性
2020/1/26
10
计算流体动力学(CFD)简介PPT优秀课件
选择“开始”→“程序”→Fluent Inc Products→Gambit2.2.30→Set environment,单击Set environment,进入如图3-4所示的对话框。单击 “是”按钮就设置好了Gambit的环境变量。另外,注意以上两种环境变 量设置好后需要重启系统,否则仍会提示找不到环境变量。
多 块网格,以及二维混合网格和三维混合网格。
图3-1 Fluent使用的网格的形状 ➢10
1.2.2 各软件之间的协同关系 如图3-2所示,最基本的流体数值模拟可以通过以上软件的合作而
完成:UG/AutoCAD属于CAD,用来生成数值模拟所在区域的几何形状; Tgrid和Gambit 是把计算区域离散化,或网格的生成,其中Tgrid可以从 已有边界网格中生成体网格,而Gambit自身就可以生成几何图形和划分 网格的;Fluent求解器是对离散化且定义了边界条件的区域进行数值模 拟;Tecplot可以把从Fluent求解器导出的特定格式的数据进行可视化, 形象地描述各种量在计算区域内的分布。
TGrid用于从现有的边界网格生成体网格,Filters可以转换由其他软件生 成的网格从而用于Fluent计算。与Filters接口的程序包括ANSYS、 I-DEAS、NASTRAN 、 PATRAN等。
(2)求解器: 它是流体计算的核心,根据专业领域的不同,求解 器主要分以下几种类型。
①Fluent4.5:基于结构化网格的通用CFD求解器。 ②Fluent6.2.16:基于非结构化网格的通用CFD求解器。 ③ Fidap:基于有限元方法,并且主要用于流固耦合的通用CFD求 解器。 ④ Polyflow:针对粘弹性流动的专用CFD求解器。 ⑤ Mixsim:针对搅拌混合问题的专用CFD软件。 ⑥ Icepak: 专用的热控分析CFD软件。 (3)后处理器:Fluent求解器本身就附带有比较强大的后处理功 能。另外,Tecplot也是一款比较专业的后处理器,可以把一些数据可视 化,这对于数据处理要求比较高的用户来说是一个理想的选择。