离散型随机变量的分布列5
离散型随机变量及其分布列
【精彩点拨】利用随机变量的定义判断.
【自主解答】(1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.
(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.
(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.
X
0
1
…
m
P
…
如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.
练习:
1.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P =________.
【解析】设二级品有k个,∴一级品有2k个,三级品有 个,总数为 个.∴分布列为
ξ
1
2
3
P
P =P(ξ=1)= .【答案】
2.某10人组成兴趣小组,其中有5名团员,从这10人中任选4人参加某种活动,用X表示4人中的团员人数,则P(X=3)=________.【解析】P(X=3)= = .【答案】
分布列及其性质的应用
设随机变量X的分布列为P(X=i)= (i=1,2,3,4),求:(1)P(X=1或X=2);(2)P .
因此随机变量Y的分布列为
Y
0
10
20
50
60
P
1.两点分布的几个特点
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
这个表格称为离散型随机变量X的概率分布列,简称为X的分布列.
为了简单起见,也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.
离散型随机变量的分布列及均值、方差
(2)方差
n
称 D(X)=
(xi-E(X))2pi
i=1
为随机变量 X 的方差,它刻画了随机变量 X 与其均
值 E(X)的 平均偏离程度 ,并称其算术平方根 DX为随机变量 X 的 标准差 .
4.均值与方差的性质 (1)E(aX+b)= aE(X)+b . (2)D(aX+b)= a2D(X) .(a,b 为常数)
题型一 分布列的求法 例 1 长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,
在推出的第二季名师云课中,数学学科共计推出 36 节云课,为了更好地将课程
内容呈现给学生,现对某一时段云课的点击量进行统计:
点击量 [0,1 000] (1 000,3 000] (3 000,+∞)
节数
3 5
题型二 均值与方差 例 2 某投资公司在 2019 年年初准备将 1 000 万元投资到“低碳”项目上,现有 两个项目供选择: 项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利 30%,也 可能亏损 15%,且这两种情况发生的概率分别为79和29;
项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利 50%,可能 损失 30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115. 针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.
3.离散型随机变量的均值与方差 一般地,若离散型随机变量 X 的分布列为
X x1 x2 … xi … xn P p1 p2 … pi … pn (1)均值 称 E(X)= x1p1+x2p2+…+xipi+…+xnpn 为随机变量 X 的均值或 数学期望 .它 刻画了离散型随机变量取值的 平均水平 .
【思维升华】 离散型随机变量的均值与方差的常见类型及解题策略 (1)求离散型随机变量的均值与方差.可依题设条件求出离散型随机变量的分布 列,然后利用均值、方差公式直接求解. (2)由已知均值或方差求参数值.可依据条件利用均值、方差公式得出含有参数的 方程(组),解方程(组)即可求出参数值. (3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题 作出判断.
离散型随机变量及其分布列
p2
„
„
基础知识梳理
称为离散型随机变量X的概率分布 列,简称X的分布列.有时为了表达简 单,也用等式 P(X=xi)=pi,i=1,2, …,n 表示X的分布列. (2)离散型随机变量分布列的性质 ① pi≥0,i=1,2,…,n ;
② i=1 . ③一般地,离散型随机变量在某一 范围内取值的概率等于这个范围内每个 随机变量值的概率 之和 .
pi=1
n
基础知识梳理
如何求离散型随机变量的分 布列? 【思考·提示】 首先确定 随机变量的取值,求出离散型随 机变量的每一个值对应的概率, 最后列成表格.
基础知识梳理
2.常见离散型随机变量的分布列 (1)两点分布 若随机变量X的分布列是 X P 0 1-p 1 p
则这样的分布列称为两点分布列. 如果随机变量X的分布列为两点分 布列,就称X服从 两点 分布,而称p= P(X=1)为成功概率.
课堂互动讲练
课堂互动讲练
所以随机变量X的概率分布列为
X P 2 1 30 3 2 15 4 3 10 5 8 15
【名师点评】 分布列的求解应 注意以下几点:(1)搞清随机变量每个 取值对应的随机事件;(2)计算必须准 确无误;(3)注意运用分布列的两条性 质检验所求的分布列是否正确.
课堂互动讲练
【解】 (1)法一:“一次取出的 3
3 1
个小球上的数字互不相同”的事件记 为 A,则
1 1 C5 C2 C2 C2 2 P(A)= = . 3 C10 3
课堂互动讲练
法二:“一次取出的3个小球上的 数字互不相同”的事件记为A,“一次 取出的3个小球上有两个数字相同”的 事件记为B,则事件A和事件B是互斥 事件. C51C22C81 1 因为 P(B)= = , 3 C10 3 1 2 所以 P(A)=1-P(B)=1- = . 3 3
离散型随机变量及其分布规律
解:
例5. 某射手连续向一目标射击,直到命中为止,
已知他每发命中的概率是p,求射击次数X 的分布列.
解: 显然,X 可能取的值是1,2,… , 为计算 P(X =k ), k = 1,2, …,
设 Ak = {第k 次命中},k =1, 2, …,
于是
P(X =1)=P(A1)=p,
P(X 2)P(A1A2 ) (1 p)p
P(X 3)P(A1A2 A3)(1 p)2p
可见 P(Xk)(1 p)k1p k1,2,
这就是所求射击次数 X 的分布列.
若随机变量X的分布律如上式, 则称X 服从
几何分布. 不难验证:
(1 p)k1p 1
k 1
几个重要的离散性随机变量模型
(0,1)分布 二项分布 波松分布
一、 (0-1)分布 (二点分布)
按Po
k
n=10 n=20 n=40 n=100 =np=1 p=0. p=0.05 p=0.02 p=0.01
0 10.349 0.3585 0.369 0.366
0
1 0.305 0.377 0.372 0.370
0
2 0.194 0.189 0.186 0.185
0
3 0.057 0.060 0.060 0.061
•• • • • • • 56 7 8 9 10
•
•
•
•
•
•
•
•
•20x
二项分布的图形特点:
X ~ Bn, p
对于固定n 及 P, 当k 增加时 , 概率P (X = k ) 先是随之增加
Pk
直至达到最大值, 随后单调减少.
当 n 1p 不为整数时, n 1p 二项概率 PX k
离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
离散型随机变量
1.离散型随机变量
随着试验结果变化而变化的变量称为随机变量,常用字母X ,Y ,ξ,η,…表示,所有取值可以一一列出的随机变量,称为离散型随机变量. 2.离散型随机变量的分布列及性质
(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表
称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.
(2)离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,…,n ; ② i =1n
p i =1.
3.常见离散型随机变量的分布列 (1)两点分布
若随机变量X 服从两点分布,即其分布列为
其中p =P (X =1)称为成功概率. (2)超几何分布
一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -
k N -M
C n N
,k =0,1,2,…,
m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有下表形式,。
第五节 离散型随机变量及其分布列
1.判断正误.(正确的画“√”,错误的画“×”)
(1)离散型随机变量是指某一区间内的任意值.(
)
答案:(1)×
(2)若随机变量X服从两点分布,则P(X=1)=1-P(X=0).
(
)
答案:(2)√
(3)超几何分布的总体里只有两类物品.
(
)
答案:(3)√
(4)从4名男演员和3名女演员中选出4人,其中女演员的人数X服从超几何分
X
0
1
2
3
4
P
0.2
0.1
0.1
0.3
m
①求2X+1的分布列;
②求随机变量η=|X-1|的分布列.
目录
(2)解 ①由分布列的性质知,0.2+0.1+0.1+0.3+m=1,得m=0.3.
列表为
X
0
1
2
3
4
2X+1
1
3
5
7
9
2X+1
1
3
5
7
9
P
0.2
0.1
0.1
0.3
0.3
从而2X+1的分布列为
目录
ξ
-1
0
1
2
3
P
1
10
1
5
1
10
1
5
2
5
则下列各式正确的是
2
5
(
)
4
5
A.P(ξ<3)=
B.P(ξ>1)=
2
C.P(2<ξ<4)=
5
D.P(ξ<0.5)=0
目录
解析:C
1
1
1
1 3
1 2 3
离散型随机变量的分布列、期望与方差
=2.752.
学例2 (2008·广东卷)随机抽取某厂的某种
产品200件,经质检,其中有一等品126件、 二等品50件、三等品20件、次品4件.已知生 产1件一、二、三等品获得的利润分别为6万 元、2万元、1万元,而1件次品亏损2万元.设 1件产品的利润为ξ(单位:万元).
(1)求ξ的分布列;
(2)求1件产品的平均利润(即ξ的数学期望);
ξ
0
1
…
M
P
C C 0 n0 M NM
C C 1 n1 M NM
CNn
CNn
…
C C m nm M NM
CNn
为⑦超几何分布列.如果随机变量ξ的分布列为超
几何分布列,则称随机变量ξ服从超几何分布.
3.离散型随机变量的分布列的性质 ⑧ Pi≥0,P1+P2+…+Pi+…=1 (i=1,2,3,…) . 4.离散型随机变量的均值 若离散型随机变量ξ的分布列为:
是随机变量的特征数,期望反映了随 机变量的平均取值,方差与标准差都 反映了随机变量取值的稳定与波动、 集中与离散的程度.在进行决策时,一 般先根据期望值的大小来决定,当期 望值相同或相差不大时,再去利用方 差决策.
备选题
某工厂每月生产某种产品三件,经检测发 现,工厂生产该产品的合格率为45.已知生产 一件合格品能盈利25万元,生产一件次品将 亏损10万元.假设该产品任何两件之间合格与 否相互之间没有影响.
设随机变量ξ表示在取得合格品以前
已取出的不合格品数,则ξ=0,1,2,3,
可得P(ξ=0)=
9 12
,
P(ξ=1)=
3× 9
12 11
=
9 44
,
第十章 第五节 离散型随机变量的分布列及数字特征
(1)C 解析:D(3X-1)=9D(X),只需求 D(X)的最大值即可,根据题意 a+b
又 0≤p1≤1,∴0≤13 -d≤1,∴-23 ≤d≤13 .同理,由 0≤p3≤1,p3=d+13 , ∴-13 ≤d≤23 ,∴-13 ≤d≤13 ,即公差 d 的取值范围是-13,13 .
3.随机变量 X 的概率分布列如下:
X0
1
2
3
4
5
6
P
1 a
1 a
C16
1 a
C26
1 a
C36
1 a
为
X x1 x2 …
xi
…
xn
P p1 p2 …
pi
…
pn
则称 E(X)=x1p1+x2p2+…+xnpn 为 X 的数学期望或均值.
意义:离散型随机变量的数学期望刻画了这个离散型随机变量的平均水平.
(2)离散型随机变量的方差定义:
设离散型随机变量 X 的分布列为
X
x1
x2
…
xi
…
xn
P
p1
p2
…
X
-1
0
1
P
1 4
1 2
1 4
A.0 B.1 C.14
D.12
D 解析:E(X)=-1×14 +0×12 +1×14 =0,
则 D(X)=14 ×(-1-0)2+12 ×(0-0)2+14 ×(1-0)2=12 .
离散型随机变量及其分布列
故 X 的分布列为
X
2
3
P
1 4
3 4
X 的数学期望为 E(X)=2×14+3×34=141.
X 0 10 20 50 60
P
1 3
2 5
1 15
2 15
1 15
某校高三年级某班的数学课外活动小组中有6名 男生,4名女生,从中选出4人参加数学竞赛考试,用 X表示其中的男生人数,求X的分布列.
解:依题意,随机变量 X 服从超几何分布, 所以 P(X=k)=Ck6CC41440-k(k=0,1,2,3,4). ∴P(X=0)=CC06C14044=2110,P(X=1)=CC16C14034=345,
P(X=2)=CC26C14024=37,P(X=3)=CC36C14014=281, P(X=4)=CC46C14004=114,∴X 的分布列为
考题 (2011·湖南高考)某商店试销某种商品20天,获得如
下数据: 日销售量(件) 0 1 2 3
频数
1595
试销结束后(假设该商品的日销售量的分布规律不变),设 某天开始营业时有该商品3件,当天营业结束后检查存货.若 发现存量少于2件,则当天进货补充至3件,否则不进货,将频 率视为概率.
(1)求当天商店不进货的概率; (2)记X为第二天开始营业时该商品的件数,求X的分 布列和数学期望.
【解】 (1)P(当天商店不进货)=P(当天商品销售量为 0
件)+P(当天商品销售量为 1 件)
=210+250=130.
(2)由题意知,X 的可能取值为 2,3. P(X=2)=P(“当天商品销售量为 1 件”)=250=14; P(X=3)=P(“当天商品销售量为 0 件”)+P(“当天商 品销售量为 2 件”)+P(“当天商品销售量为 3 件”)=210+ 290+250=34.
离散型随机变量的分布列
离散型随机变量的分布列1.离散型随机变量的分布列(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,以表格的形式表示如下:X x1x2…x i…x nP p1p2…p i…p n的概率分布列,简称为的分布列.(2)离散型随机变量的分布列的性质:①p i≥0,i=1,2,…,n;(1)离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象.和函数的表示法一样,离散型随机变量的分布列也可以用表格、等式P(X=x i)=p i,i=1,2,…,n 和图象表示.(2)随机变量的分布列不仅能清楚地反映随机变量的所有可能取值,而且能清楚地看到取每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.两个特殊分布(1)两点分布X 0 1P 1-p p若随机变量X p=P(X=1)为成功概率.(2)超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,即X 01…mP C0M C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.(1)超几何分布的模型是不放回抽样.(2)超几何分布中的参数是M,N,n.(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成判断正误(正确的打“√”,错误的打“×”)(1)在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( )(2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( )(3)在离散型随机变量分布列中,所有概率之和为1.( )(4)超几何分布的模型是放回抽样.( )答案:(1)×(2)×(3)√(4)×下列表中能成为随机变量ξ的分布列的是( )A.ξ-10 1P 0.30.40.4B.ξ12 3P 0.40.7-0.1C.ξ-10 1P 0.30.40.3D.ξ12 3P 0.30.10.4答案:C若随机变量X服从两点分布,且P(X=0)=0.8,P(X=1)=0.2.令Y=3X-2,则P(Y=-2)=________. 答案:0.8探究点1 离散型随机变量的分布列某班有学生45人,其中O 型血的有15人,A 型血的有10人,B 型血的有12人,AB 型血的有8人.将O ,A ,B ,AB 四种血型分别编号为1,2,3,4,现从中抽1人,其血型编号为随机变量X ,求X 的分布列. 【解】 X 的可能取值为1,2,3,4. P (X =1)=C 115C 145=13,P (X =2)=C 110C 145=29,P (X =3)=C 112C 145=415,P (X =4)=C 18C 145=845.故X 的分布列为X 1 2 3 4 P1329415845求离散型随机变量分布列的一般步骤(1)确定X 的所有可能取值x i (i =1,2,…)以及每个取值所表示的意义. (2)利用概率的相关知识,求出每个取值相应的概率P (X =x i )=p i (i =1,2,…). (3)写出分布列.(4)根据分布列的性质对结果进行检验.抛掷甲,乙两个质地均匀且四个面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上的数字分别为x ,y .设ξ为随机变量,若x y为整数,则ξ=0;若x y 为小于1的分数,则ξ=-1;若xy为大于1的分数,则ξ=1. (1)求概率P (ξ=0); (2)求ξ的分布列.解:(1)依题意,数对(x ,y )共有16种情况,其中使xy为整数的有以下8种:(1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2), 所以P (ξ=0)=816=12.(2)随机变量ξ的所有取值为-1,0,1. 由(1)知P (ξ=0)=12;ξ=-1有以下6种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故P (ξ=-1)=616=38;ξ=1有以下2种情况:(3,2),(4,3),故P (ξ=1)=216=18,所以随机变量ξ的分布列为ξ -1 0 1 P381218探究点2 设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值; (2)求P (X ≥35);(3)求P (110<X <710). 【解】 (1)由P (X =k5)=ak ,k =1,2,3,4,5可知,∑k =15P (X =k5)=∑k =15ak =a +2a +3a +4a +5a =1,解得a =115. (2)由(1)可知P (X =k 5)=k15(k =1,2,3,4,5),所以P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45. (3)P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25.离散型随机变量分布列的性质的应用(1)利用离散型随机变量的分布列的性质可以求与概率有关的参数的取值或范围,还可以检验所求分布列是否正确.(2)由于离散型随机变量的各个可能值表示的事件是彼此互斥的,所以离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.(2018·河北邢台一中月考)随机变量X 的分布列为P (X =k )=c k (k +1),k=1,2,3,4,c 为常数,则P ⎝ ⎛⎭⎪⎫23<X <52的值为( )A.45 B.56 C.23D.34解析:选B.由题意c 1×2+c 2×3+c 3×4+c4×5=1,即45c =1,c =54, 所以P ⎝ ⎛⎭⎪⎫23<X <52=P (X =1)+P (X =2) =54×⎝ ⎛⎭⎪⎫11×2+12×3=56.故选B. 探究点3 两点分布与超几何分布一个袋中装有6个形状大小完全相同的小球,其中红球有3个,编号为1,2,3;黑球有2个,编号为1,2;白球有1个,编号为1.现从袋中一次随机抽取3个球. (1)求取出的3个球的颜色都不相同的概率.(2)记取得1号球的个数为随机变量X ,求随机变量X 的分布列.【解】 (1)从袋中一次随机抽取3个球,基本事件总数n =C 36=20,取出的3个球的颜色都不相同包含的基本事件的个数为C 13C 12C 11=6,所以取出的3个球的颜色都不相同的概率P =620=310. (2)由题意知X =0,1,2,3.P (X =0)=C 33C 36=120,P (X =1)=C 13C 23C 36=920,P (X =2)=C 23C 13C 36=920,P (X =3)=C 33C 36=120,所以X 的分布列为1.[变问法]在本例条件下,记取到白球的个数为随机变量η,求随机变量η的分布列. 解:由题意知η=0,1,服从两点分布,又P (η=1)=C 25C 36=12,所以随机变量η的分布列为2.[变条件]3次球,每次抽取1个球”其他条件不变,结果又如何?解:(1)取出3个球颜色都不相同的概率P =C 13×C 12×C 11×A 3363=16. (2)由题意知X =0,1,2,3. P (X =0)=3363=18,P (X =1)=C 13×3×3×363=38. P (X =2)=C 23C 13×3×363=38, P (X =3)=3363=18.所以X 的分布列为求超几何分布问题的注意事项(1)在产品抽样检验中,如果采用的是不放回抽样,则抽到的次品数服从超几何分布. (2)在超几何分布公式中,P (X =k )=C k M C n -kN -MC n N ,k =0,1,2,…,m ,其中,m =min{M ,n },且0≤n ≤N ,0≤k ≤n ,0≤k ≤M ,0≤n -k ≤N -M .(3)如果随机变量X 服从超几何分布,只要代入公式即可求得相应概率,关键是明确随机变量X 的所有取值.(4)当超几何分布用表格表示较繁杂时,可用解析式法表示.某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求文学院至少有一名学生入选代表队的概率;(2)某场比赛前,从代表队的6名学生再随机抽取4名参赛,记X 表示参赛的男生人数,求X 的分布列.解:(1)由题意,参加集训的男、女学生各有6人,参赛学生全从理学院中抽出(等价于文学院中没有学生入选代表队)的概率为:C 33C 34C 36C 36=1100,因此文学院至少有一名学生入选代表队的概率为:1-1100=99100.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,X 表示参赛的男生人数, 则X 的可能取值为:1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 13C 33C 46=15.所以X 的分布列为X 1 2 3 P1535151.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( ) A .0 B.13 C.12D.23解析:选B.设P (ξ=1)=p ,则P (ξ=0)=1-p .依题意知,p=2(1-p),解得p=23 .故P(ξ=0)=1-p=13 .2.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为( )A.1220 B.2755C.27220D.2125解析:选C.X=4表示取出的3个球为2个旧球1个新球,故P(X=4)=C23C19C312=27220.3.随机变量η的分布列如下则x=________,P解析:由分布列的性质得0.2+x+0.35+0.1+0.15+0.2=1,解得x=0.故P(η≤3)=P(η=1)+P(η=2)+P(η=3)=0.2+0.35=0.55.答案:0 0.554.某高二数学兴趣小组有7位同学,其中有4位同学参加过高一数学“南方杯”竞赛.若从该小组中任选3位同学参加高二数学“南方杯”竞赛,求这3位同学中参加过高一数学“南方杯”竞赛的同学数ξ的分布列及P(ξ<2).解:由题意可知,ξ的可能取值为0,1,2,3.则P(ξ=0)=C04C33C37=135,P(ξ=1)=C14C23C37=1235,P(ξ=2)=C24C13C37=1835,P(ξ=3)=C34C03C37=435.所以随机变量ξ的分布列为P(ξ<2)=P(ξ=0)+P(ξ=1)=35+35=35.知识结构 深化拓展1.离散型随机变量分布列的性质是检验一个分布列正确与否的重要依据(即看分布列中的概率是否均为非负实数且所有的概率之和是否等于1),还可以利用性质②求出分布列中的某些参数,也就是利用概率和为1这一条件求出参数. 2.超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -kN -MC n N 求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义.[A 基础达标]1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( ) A .5 B .9 C .10 D .25 解析:选B.号码之和可能为2,3,4,5,6,7,8,9,10,共9种.2.随机变量X 所有可能取值的集合是{-2,0,3,5},且P (X =-2)=14,P (X =3)=12,P (X=5)=112,则P (X =0)的值为( )A .0 B.14 C.16 D.18解析:选C.因为P (X =-2)+P (X =0)+P (X =3)+P (X =5)=1,即14+P (X =0)+12+112=1,所以P (X =0)=212=16,故选C. 3.设随机变量X 的概率分布列为X 1 2 3 4 P13m1416则P (|X -3|=1)=A.712B.512C.14D.16解析:选B.根据概率分布列的性质得出:13+m +14+16=1,所以m =14,随机变量X 的概率分布列为所以P (|X -3|=1)=P (X =4)+P (X =2)=12.故选B. 4.若随机变量η的分布列如下:则当P (η<x )=0.8A .x ≤1 B .1≤x ≤2 C .1<x ≤2 D .1≤x <2 解析:选C.由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1)=0.1+0.2+0.2+0.3=0.8, 所以P (η<2)=0.8,故1<x ≤2.5.(2018·湖北武汉二中期中)袋子中装有大小相同的8个小球,其中白球5个,分别编号1,2,3,4,5;红球3个,分别编号1,2,3,现从袋子中任取3个小球,它们的最大编号为随机变量X ,则P (X =3)等于( )A.528B.17C.1556D.27解析:选D.X =3第一种情况表示1个3,P 1=C 12·C 24C 38=314,第二种情况表示2个3,P 2=C 22·C 14C 38=114,所以P (X =3)=P 1+P 2=314+114=27.故选D. 6.随机变量Y 的分布列如下:则(1)x =________(3)P (1<Y ≤4)=________.解析:(1)由∑6i =1p i =1,得x =0.1. (2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6)=0.1+0.15+0.2=0.45. (3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4)=0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.557.某篮球运动员在一次投篮训练中的得分X 的分布列如下表,其中a ,b ,c 成等差数列,且c =ab .则这名运动员得3分的概率是________. 解析:由题意得,2b =a +c ,c =ab ,a +b +c =1,且a ≥0,b ≥0,c ≥0, 联立得a =12,b =13,c =16,故得3分的概率是16.答案:168.一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.从袋中任意摸出3个球,记得到白球的个数为X ,则P (X =2)=________.解析:设10个球中有白球m 个,则C 210-m C 210=1-79,解得:m =5.P (X =2)=C 25C 15C 310=512.答案:5129.设离散型随机变量X 的分布列为:试求:(1)2X +1的分布列; (2)|X -1|的分布列.解:由分布列的性质知0.2+0.1+0.1+0.3+m=1,所以m=0.3.列表为:(1)2X+1的分布列为:(2)|X-1|10.从集合{1,2,3,4,5}中,等可能地取出一个非空子集.(1)记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;(2)记所取出的非空子集的元素个数为X,求X的分布列.解:(1)记“所取出的非空子集满足性质r”为事件A.基本事件总数n=C15+C25+C35+C45+C55=31.事件A包含的基本事件是{1,4,5},{2,3,5},{1,2,3,4},事件A包含的基本事件数m=3.所以P(A)=mn=331.(2)依题意,X的所有可能值为1,2,3,4,5.又P(X=1)=C1531=531,P(X=2)=C2531=1031,P(X=3)=C3531=1031,P(X=4)=C4531=531,P (X =5)=C 5531=131.故X 的分布列为X 1 2 3 4 5 P5311031103153113111.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,13B.⎣⎢⎡⎦⎥⎤-13,13 C .[-3,3] D .[0,1] 解析:选B.设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1, 故a =13,由⎩⎪⎨⎪⎧13-d ≥013+d ≥0,解得-13≤d ≤13.12.袋中装有5只红球和4只黑球,从袋中任取4只球,取到1只红球得3分,取到1只黑球得1分,设得分为随机变量ξ,则ξ≥8的概率P (ξ≥8)=________. 解析:由题意知P (ξ≥8)=1-P (ξ=6)-P (ξ=4)=1-C 15C 34C 49-C 44C 49=56.答案:5613.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本,称出它们的质量(单位:g),质量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求质量超过505 g 的产品数量;(2)在上述抽取的40件产品中任取2件,设Y 为质量超过505 g 的产品数量,求Y 的分布列.解:(1)根据频率分布直方图可知,质量超过505 g 的产品数量为40×(0.05×5+0.01×5)=40×0.3=12(件).(2)随机变量Y 的可能取值为0,1,2,且Y 服从参数为N =40,M =12,n =2的超几何分布,故P (Y =0)=C 012C 228C 240=63130,P (Y =1)=C 112C 128C 240=2865,P (Y =2)=C 212C 028C 240=11130.所以随机变量Y 的分布列为14.(选做题)袋中装着外形完全相同且标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求: (1)取出的3个小球上的数字互不相同的概率; (2)随机变量X 的分布列;(3)计算介于20分到40分之间的概率.解:(1)“一次取出的3个小球上的数字互不相同”的事件记为A , 则P (A )=C 35C 12C 12C 12C 310=23.(2)由题意,知X 的所有可能取值为2,3,4,5, P (X =2)=C 22C 12+C 12C 22C 310=130, P (X =3)=C 22C 14+C 12C 24C 310=215, P (X =4)=C 22C 16+C 12C 26C 310=310, P (X =5)=C 22C 18+C 12C 28C 310=815. 所以随机变量X 的分布列为2 15+310=1330.则P(C)=P(X=3)+P(X=4)=。
离散型随机变量及其分布列
(3)经技术革新后,仍有四个等级的产品,
但次品率降为 1%,一等品率提高为 70%.
如果此时要求 1 件产品的平均利润不小于
4.73 万元,则三等品率最多是多少?
基础知识
题型分类
思维启迪
思想方法
解析
探究提高
练出高分
题型分类·深度剖析
题型二
离散型随机变量的分布列的求法及应用
【例 2】 随机抽取某厂的某种产品 200 件,
经质检,其中有一等品 126 件、二等品 50
件、三等品 20 件、次品 4 件.已知生产 1
件一、二、三等品获得的利润分别为 6 万元、
2 万元、1 万元,而 1 件次品亏损 2 万元.设
1 件产品的利润(单位:万元)为 ξ.
(1)求 ξ 的分布列;
(2)求 1 件产品的平均利润(即 ξ 的均值);
A
D
题型分类
思想方法
解析
练出高分
题型分类·深度剖析
题型一
离散型随机变量的分布列的性质
【例 1】 设随机变量 ξ 的分布列为 思维启迪 解析 答案 探究提高 Pξ=k5=ak(k=1,2,3,4,5),则常
数 a 的值为________, Pξ≥35=________.
基础知识
件{X=k}发生的概率:P(X=k)=
CkMCnN--kM ____C__nN______(k=0,1,2,…,m),
其中 m=min{M,n},且 n≤N,
M≤N,n、M、N∈N*,则称分布列
值以及取这些值或取某一集 合内的值的概率,对于离散型 随机变量,它的分布列正是指 出了随机变量 X 的取值范围 以及取这些值的概率. (2)利用离散型随机变量的分
新高考数学复习考点知识讲解5---离散型随机变量及其分布列
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
称为离散型随机变量X的概率分布列,简称为X的分布列,有时为了表达简单,也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.
3、性质
①pi≥0(i=1,2,…,n);② pi=1.
4、若随机变量X的分布列为
X
0
1
P
1-p
p
则称该分布列为两点分布列或0-1分布.若随机变量X的分布列为两点分布列,则称X服从两点分布,称p=P(X=1)为成功概率
答案】设(i,j)表示掷两次骰子后出现的点数,i表示第一次的点数,j表示第二次的点数.
(1)Y的可能取值为1,2,3,4,5,6.
当Y=1时,(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1).故P(Y=1)= ,同理P(Y=2)= = ,P(Y=3)= ,P(Y=4)= ,P(Y=5)= = ,P(Y=6)= .所以Y的概率分布列为
A.20B.24C.4D.18
【答案】B
【解析】由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有 =24(种).
题型三离散型随机变量的分布列
例3 将一颗骰子掷2次,求下列随机事件的分布列.
(1)两次掷出的最小点数Y;
(2)第一次掷出的点数减去第二次掷出的点数之差ξ.
P(X=1)= = ,
P(X=2)= = .
所以X的分布列为
X
0
1
2
P
4、设离散型随机变量X服从两点分布,若 ,则
离散型随机变量及其分布列
离散型随机变量及其分布列如果随机试验每一个可能结果e ,都唯一地对应着一个实数X(e),则这个随着试验结果不同而变化的变量称为随机变量.随机变量通常用X ,Y…表示。
如果随机变量X 的所有取值都可以逐个列举出来,则称X 为离散型随机变量。
一般地,设离散型随机变量X 的可能取值为n x x x ,,,...21,其相应的概率为n p p p ,,,...21,记:)...2,1()(n i p x X P i i ,,===或把上式列成下表:上表或上式称为离散型随机变量X 的概率分布列(简称X 的分布列).离散型随机变量的分布列具有如下性质:(1)n i p i ,,,,...210=≥;(2)1...21=+++n p p p 【例题1】全班有40名学生,某次综合素质单项测评的成绩(满分5分)如下:现从该班中任选一名学生,用X 表示这名学生的单项测评成绩,求随机变量X 的分布列.【例题2】设随机变量X 的分布列为4,321)1()(,,,=+==k k k c k X P ,其中c 为常数,求2521(<<X P 的值。
【练习】1.写出下列各随机变量可能的取值,并说明随机变量的取值所表示的随机试验的结果:(1)将10个质地、大小一样的球装入袋中,球上依次编号1~10,现从袋中任取1个球,被取出的球的编号为X;(2)将15个质地、大小一样的球装入袋中,其中10个红球,5个白球,现从中任取4个球,其中所含红球的个数为X;(3)投掷两枚骰子,所得点数之和为X.2.用X表示某人进行10次射击击中目标的次数,分别说明下列随机事件的含义.(1){X=8};(2){1<X≤10};(3){X≥1};(4){X<1}3.离散型随机变量X的分布列如下表所示,求p的值4.将6个质地、大小一样的球装入袋中,球上依次编号1~6.现从中任取3个球,以X表示取出球的最大号码,(1)求X的分布列;(2)求X>4的概率.两点分布如果随机变量X 只取值0或1,且其概率分布是)1,0(1)0(,)1(∈-====p p X P p X P ,则称随机变量X 服从两点分布,记作:)1(~p B X ,两点分布又称0-1分布,是我们在现实生活中经常会遇到的一种分布,例如,检查产品是否合格,投篮是否命中,一粒种子是否发芽,等等,当只考虑成功与否时,都可以用服从两点分布的随机变量米描述。
104552_离散型随机变量的分布列_周新
增城市高级中学starsun@离散型随机变量的分布列增城市高级中学周新增城市高级中学starsun@一、试验与随机试验凡是对现象的观察或为此而进行的实验,都称之为试验。
一个试验如果满足下述条件:1、试验可以在相同的情形下重复进行;2、试验的所有可能结果是明确可知的,并且不止一个;3、每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果。
它就被称为一个随机试验。
增城市高级中学starsun@例1:判断下面问题是否构成随机试验1、京广T15特快列车到达广州站是否正点。
解:是随机试验。
因为它满足随机试验的三个条件:即在相同的情况下可重复进行(每天一次);所有可能的结果是明确的(正点或误点);试验之前不能肯定会出现哪种结果。
2、1976年辽宁海城地震。
解:不是随机试验,因为它不可重复进行。
增城市高级中学starsun@二、随机变量1、随机变量的定义如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量。
随机变量常用希腊字母ξ、η等表示。
2、离散型随机变量如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
3、连续型随机变量如果随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量。
增城市高级中学starsun@离散型随机变量与连续型随机变量的区别离散型随机变量和连续型随机变量都是用来刻画随机试验所出现的结果的,但二者之间又有着根本的区别:对于离散型随机变量而言,它所可能取的值为有限个或至多可列个,或者说能将它的可取值按一定次序一一列出.而连续型随机变量可取某一区间内的一切值,我们无法对其中的值一一列举。
增城市高级中学starsun@例2:指出下列随机变量是离散型随机变量还是连续型随机变量:1、郑州至武汉的电气化铁道线上,每隔50米有一电线铁塔,从郑州至武汉的电气化铁道线上电线铁塔的编号ξ;解:是离散型随机变量,因为铁塔为有限个,其编号从1开始可一一列出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 离散型随机变量的分布列
例题讲解 解:(Ⅰ)依题意得 η = 2(ξ − 4) + 10 ,即 η = 2ξ + 2 :(Ⅰ (Ⅱ)由 38 = 2ξ + 2 ,得 ξ = 18,5 × (18 − 15) = 15. 所以,出租车在途中因故停车累计最多15分钟. 分钟. 所以,出租车在途中因故停车累计最多 分钟
1.1 离散型随机变量的分布列
练习: 练习: 课后练习: , 课后练习:1,2 课堂小结 随机变量,离散型随机变量, 随机变量,离散型随机变量,连续型随机变量概念的理 解. 作业: 作业: P8 习题 习题1.1 1
ห้องสมุดไป่ตู้
1.1 离散型随机变量的分布列
例题讲解 例3、某城市出租汽车的起步价为 元,行驶路程不超出 、某城市出租汽车的起步价为10元 4km,则按 元的标准收租车费.若行驶路程超出 元的标准收租车费. ,则按10元的标准收租车费 若行驶路程超出4km,则按 , 每 超 出 1 km 加 收 2 元 计 费 ( 超 出 不 足 1 km 的 部 分 按 1 km 从这个城市的民航机场到某宾馆的路程为15km.某司 计).从这个城市的民航机场到某宾馆的路程为 . 机常驾车在机场与此宾馆之间接送旅客, 机常驾车在机场与此宾馆之间接送旅客 , 由于行车路线的不 同以及途中停车时间要转换成行车路程(这个城市规定, 同以及途中停车时间要转换成行车路程 ( 这个城市规定 , 每 停车5分钟按 分钟按1km路程计费),这个司机一次接送旅客的行车 路程计费) 停车 分钟按 路程计费 路程多是一个随机变量, 路程多是一个随机变量,他收旅客的租车费 η 也是一个随机变 量. (Ⅰ)求租车费 η关于行车路程 ξ 的关系式; 的关系式; 已知某旅客实付租车费38元 (Ⅱ)已知某旅客实付租车费 元,而出租汽车实际行驶 了15km,问出租车在途中因故停车累计最多几分钟? ,问出租车在途中因故停车累计最多几分钟?
1.1 离散型随机变量的分布列
1.1 离散型随机变量的分布列
新授课 如果随机试验的结果可以用一个变量来表示,那么这样的 如果随机试验的结果可以用一个变量来表示, η 等表示. 变量叫做随机变量. 变量叫做随机变量.随机变量常用希腊字母 ξ 、 等表示.
1.1 离散型随机变量的分布列
例题讲解 例1、写出下列随机变量可能取的值,并说明随机变量所取 、写出下列随机变量可能取的值, 的值表示的随机试验的结果. 的值表示的随机试验的结果. 只同样大小的白球, (1)一袋中装有 只同样大小的白球,编号为 ,2,3,4, )一袋中装有5只同样大小的白球 编号为1, , , , 5.现从该袋内随机取出 只球,被取出的球的最大号码数 ξ ; 只球, .现从该袋内随机取出3只球 解: 1) 可取 ,4, ( ξ (2)某单位的某部电话在单位时间内收到的呼叫次数η. ) ) 可取3, , 5. η . 表示取出的3个球的编号为 n, 3; 个球的编号为1,2, ; ξ = 3 ,表示取出的 个球的编号为 ,,…. 解:(2) 可取 ,1,2,…, , . ) 可取0, , , , ξ = 4 ,表示取出的 个球的编号为 ,2,4或1,3,4或2,3,4 表示取出的3个球的编号为 个球的编号为1, , 或 , , 或 , , η = i ,表示被呼叫 次,其中 =0,1,2,…. 表示被呼叫i 其中i= , , , . ξ = 5 ,表示取出的 个球的编号为 ,2,5或1,3,5或1,4,5 表示取出的3个球的编号为 个球的编号为1, , 或 , , 或 , , 或2,3,5或2,4,5或3,4,5. , , 或 , , 或 , , .
1.1 离散型随机变量的分布列
典型例题 例2、抛掷两枚骰子各一次,记第一枚骰子掷出的点数与 、抛掷两枚骰子各一次, 试问: ξ 第二枚骰子掷出的点数的差为 ξ ,试问:“ >4”表示的试 ” 验 结果是什么? 结果是什么? 因为一枚骰子的点数可以是1, , , , , 六种 答:因为一枚骰子的点数可以是 ,2,3,4,5,6六种 ξ 结果之一, 也就是说“ 结果之一,由已知得 − 5 ≤ ξ ≤ 5 ,也就是说“ >4”就是 ”
ξ ξ “ =5”.所以,“ ” 所以, 点.
>4”表示第一枚为 点,第二枚为 ”表示第一枚为6点 第二枚为1
1.1 离散型随机变量的分布列
新授课 分析上述两道例题及课本上两个例子中的随机变量的特点. 分析上述两道例题及课本上两个例子中的随机变量的特点 按一定次序一一列出 对于随机变量可能取的值,我们可以按一定次序一一列出, 对于随机变量可能取的值,我们可以按一定次序一一列出, 这样的随机变量叫做离散型随机变量. 这样的随机变量叫做离散型随机变量. 离散型随机变量 分析下列例子中的随机变量的共同特点: 分析下列例子中的随机变量的共同特点: ξ 某一自动装置无故障运转的时间 ξ , ∈ ( 0,+∞ ) η 某林场树木最高达30 , 某林场树木最高达 m,则此林场树木的高度 η , ∈ (0,30] 取某一区间内的一切值 随机变量可以取某一区间内的一切值, 随机变量可以取某一区间内的一切值,这样的随机变量叫 做连续型随机变量. 连续型随机变量. 是随机变量, 是常数) 若 ξ 是随机变量,则 η = aξ + b 其中 、b是常数)也是随 (其中a 是常数 机变量 .