抽象函数和函数的解析式
求抽象函数解析式的常用方法
求抽象函数解析式的常用方法
求抽象函数解析式是数学中一个重要的概念,它可以帮助我们更好地理解函数的特性,从而更好地求解函数。
那么,求抽象函数解析式的常用方法有哪些呢?
首先,我们可以使用极限法来求抽象函数解析式。
极限法是一种求解函数的方法,它可以帮助我们求出函数的极限,从而求出函数的解析式。
其次,我们可以使用微积分的方法来求抽象函数解析式。
微积分是一种求解函数的方法,它可以帮助我们求出函数的导数,从而求出函数的解析式。
此外,我们还可以使用数学归纳法来求抽象函数解析式。
数学归纳法是一种求解函数的方法,它可以帮助我们求出函数的递推公式,从而求出函数的解析式。
总之,求抽象函数解析式的常用方法有极限法、微积分法和数学归纳法。
这些方法都可以帮助我们更好地理解函数的特性,从而更好地求解函数。
因此,在求抽象函数解析式时,我们应该根据实际情况选择合适的方法,以便更好地求解函数。
求抽象函数表达式常见五种方法
求抽象函数表达式常见五种方法1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211x f x x =++,求()f x .2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x +=+,求()f x3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x .5.赋值法:给自变量取特殊值,从而发现规律,求出()f x 的表达式例6:设()f x 的定义域为自然数集,且满足条件(1)()()f x f x f y xy +=++,及(1)f =1,求()f x参考答案:例1:解:设1x u x =+,则1u x u =-∴2()2111u uf u u u -=+=--∴2()1xf x x -=-例2:解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)例3.解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c++-=+++++-+-+ =22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++例4.解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数
抽象函数一、概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质。
二、常用结论:(1)周期:2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+ ⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+ ⇔)(x f y =的周期为a T 2= (2)对称性:(一)函数)(x f y =图象本身的对称性(自身对称)推论1:)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称推论2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、函数)(x f y =与()y f x =-图象关于X 轴对称;2、函数)(x f y =与)(x f y -=图象关于Y 轴对称;3、函数)(x f y =与)(x f y --=图象关于原点对称函数;4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称三、常见问题:(1)求定义域例1:已知函数)(2x f 的定义域是[1,2],求)(x f 的定义域。
函数的对应法则 抽象函数的表达式
函数的对应法则1、待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
例5 设,)1(2)()(x xf x f x f =-满足求)(x f五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f二,练习题1、已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。
2、求一个一次函数f(x),使得f{f[f(x)]}=8x+73、设二次函数f(x)满足f(x-2)=f(-x-2),且在y 轴上的截距为1,在x 轴截得的线段长为22,求f(x )的解析式4、211f (1)1x x +=-5、2211f ()x x x x-=+6、已知f (x )为二次函数, f(x-1)= 2x -4x ,解方程f(x+1)=08、若)()()(y f x f y x f ⋅=+,且2)1(=f , 求值)2004()2005()3()4()2()3()1()2(f f f f f f f f ++++ ..10、已知f (x +x 1)=x 3+x31,求f (x )的解析式。
关于抽象函数问题的解法
抽象函数问题有关解法一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x -=- 2.凑配法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
函数的定义域与解析式 - 解析版
函数定义域与解析式【教学目标】一、函数定义域【知识点】1.函数是一种非空的数集组成的映射,是从自变量x 到应变量y 的对应关系;期中x 的范围叫做定义域;2.定义域的常见形式有分式,根式,指数,对数,复合函数以及抽象函数;【定义域常见类型】一 、具体函数定义域的常见类型:1.分式中分母不为零2.偶次根式非负3.零次幂底数非零4. 当题中出现多个函数的四则运算及复合时,注意考虑每一个函数定义域并取交集二 、抽象函数常见类型1.已知()f x 定义域求()()f g x 定义域2已知()()f g x 定义域求()f x 定义域3. 已知()()f g x 定义域求()()f h x 定义域(一)具体函数【例题讲解】★☆☆例题1:求函数11y x =+的定义域; 答案: {}|1x x ≠−解析: 10,1x x +≠≠−,{}|1x x ∴≠−★☆☆练习1.求函数2123y x x =−−的定义域; 答案:{}|13x x x ≠−≠且解析:2230x x −−≠()()310x x −+≠,{}|13x x x ∴≠−≠且★☆☆例题2. 求函数y答案:{}R|1x x ∈≥解析:,x x −≥≥101,{}R|1x x ∴∈≥★☆☆练习1:求函数y =答案:[)(,-],−∞⋃+∞13解析:2230x x −−≥,()()310x x −+≥13x x ≤−≥或,(][),,∴−∞−⋃+∞13 ★☆☆例题3.求函数()023y x =−的定义域 3,2⎫⎛⎫+∞⎪ ⎪⎭⎝⎭解析:230x −≠3,2⎫⎛⎫+∞⎪ ⎪⎭⎝⎭★☆☆练习1求函数0221x y x −⎛⎫= ⎪+⎝⎭的定义域 ()1,22,2⎫⎛⎫−+∞⎪ ⎪⎭⎝⎭()1,22,2⎫⎛⎫−+∞⎪ ⎪⎭⎝⎭★☆☆例题4..求函数y解析:1010x x −≥−≥且★☆☆练习1.求函数()04y x =−的定义域; 答案:(][)(),13,44,+−∞−∞解析:2230x x −−≥且40x −≠(][)(),13,44,+x ∴∈−∞−∞(二)抽象函数★☆☆例题5.已知()f x 定义域是[]1,3,求()21f x +的定义域答案:[]0,1解析: 因为()f x 的定义是[]1,3,即()f x 中,[]1,3x ∈,那么()21f x +中,[]211,3x +∈,得[]0,1x ∈则()21f x +中,[]0,1x ∈∴ ()21f x +的定义域是[]0,1★☆☆练习1.已知()f x 定义域是()0,1,求()2f x 的定义域答案: ()()1,00,1−解析:因为()f x 的定义是()0,1,即()f x 中,()0,1x ∈,那么()2f x 中, ()20,1x ∈,得()()1,00,1x ∈−则()2f x 中, ()()1,00,1x ∈−∴ ()2f x 的定义域是()()1,00,1x ∈−★☆☆例题6.已知()1f x −定义域是[]3,3−,求()f x 的定义域.答案:[]4,2−.解析:∵()1f x −的定义域为[]3,3−,即33x −≤≤∴412x −≤−≤即函数()f x 定义域为[]4,2−.★☆☆练习1已知)2f 定义域是[]4,9,求()f x 的定义域答案:[]0,1即函数()f x 定义域为[]0,1.★☆☆例题7.已知()21f x +定义域是()3,5,求()41f x −的定义域答案:()2,3.解析:∵(21)f x +定义域为()3,5,即35x <<,∴72111x <+< ,则()f x 定义域为()7,11,∴(41)f x −定义域为74111x <−<,∴23x <<.即()41f x −的定义域为()2,3.★☆☆练习1已知()1f x +定义域是()2,3−,求()222f x −的定义域2,32⎫⎛⎪ ⎪ ⎭⎝解析:∵()1f x +定义域为()2,3−,即23x −<<,∴114x −<+< ,则()f x 定义域为()1,4−,∴()222f x −定义域为21224x −<−<, 2,32⎫⎛⎪ ⎪ ⎭⎝2,32⎫⎛⎪ ⎪ ⎭⎝★☆☆例题8.若函数()f x = 的定义域为R ,则实数a 的取值范围.答案:(],0−∞解析:偶次根号下非负,当x 的范围为R 时,20x a −≥在R 上恒成立,等价于2a x ≤在R 上恒成立求出a 的范围为0a ≤,(],0a ∴∈−∞★☆☆练习1若函数()212f x x ax a=−+ 的定义域为R ,则实数a 的取值范围. 答案:()0,1解析:分式型函数分母不为零,当x 的范围为R 时,220x ax a −+≠恒成立;2(2)40a a ∆=−−<即01a <<; 所以a 的取值范围是()0,1.知识点要点总结:一 具体函数定义域的常见类型:1.分式中分母不为零2.偶次根式非负3.零次幂底数非零4. 当题中出现多个函数的四则运算及复合时,注意考虑每一个函数定义域并取交集5. 实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求.二.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.二、函数的解析式【知识点】求函数解析式的四种常用方法1. 拼凑法:将等号右侧的式子拼凑成关于f 后括号内东西的表达式,然后将其直接写成x .2. 换元法:已知复合函数(())f g x 的解析式,可用换元法,此时要注意新元的取值范围.3.待定系数法:已知函数类型.①正比例函数:(0)y kx k =≠; ②反比例函数:(0)k y k x=≠; ③一次函数:(0)y kx b k =+≠;④二次函数:2(0)y ax bx c a =++≠.4.方程组法:两个f ,将题目中的x 换成另一个括号内的东西构造方程组.比如:若给出()f x 和()f x −,或()f x 和1()f x 的一个方程,则可以x 代换x −(或1x),构造出另一个方程,解此方程组,消去()f x −(或1()f x)即可求出()f x 的表达式。
抽象函数常见题型和解法
抽象函数的常见题型及解法一、 抽象函数的定义域1. 已知f(x)的定义域,求f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]的定义域,其方法是: 由a<g(x)<b,求得x 的范围,即为f[g(x)]的定义域。
即由内层函数的值域,求内层函数的定义域,即为f[g(x)]的定义域。
例1.已知f(x)的定义域为[1,4],求f()的定义域. 解: 由1≤≤4,得 -1≤≤2 即 -1≤<0 或 0<≤2 解得 X ≤-1 或x ≥∴函数的定义域为:2. 已知f[g(x)]的定义域,求f(x)的定义域若已知f[g(x)]的定义域x (a,b),求f(x)的定义域,其方法是: 由a<x<b,求得g(x)的范围,即为f(x)的定义域。
即由内层函数的定义域,求内层函数的值域,即为f(x)的定义域。
例2. 若已知f(x+2)的定义域为[-2,2],求函数f(x)的定义域. 解:∵f(x+2)的定义域为[-2,2], ∴-2≤x ≤2, ∴ 0≤x+2≤4 故f(x)的定义域为[0,4]3. 已知f[ (x)]的定义域,求f[g(x)]的定义域先由f[ (x)]的定义域,求f(x)的定义域,再由f(x)的定义域,求f[g(x)]的定义域。
即由第一个函数中内层函数的定义域,求得第一个函数内层函数的值域,第一个函数内层函数的值域就是第二个函数内层函数的值域,由第∈21+x21+x x1x 1x121()⎪⎭⎫⎢⎣⎡+∞⋃-∞-,211,∈ϕϕ二个函数内层函数的值域,再求出第二个函数内层函数的定义域。
例3.若已知f(x+1)的定义域为,求函数f ()的定义域. 解:∵f(x+1)的定义域为, ∴-2≤x 3, ∴ -1≤x+1 4 即f(x)的定义域为.∴ -1≤<4,∴ -3≤<2 即 -3≤<0 或 0<<2 解得 X ≤-或 x> ∴函数的定义域为:3. 已知f(x)的定义域,求f[ (x)] + f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]+f[g(x)]的定义域,其方法是:由,求得x 的范围,即为f[ (x)] + f[g(x)]的定义域。
函数的三要素(定义域、值域、对应法则)
函数的三要素函数的三要素是指定义域、值域、对应法则,每个要素里掌握的方向不一样。
定义域从具体函数和抽象函数两个方向去把握,值域掌握求值域的方法有哪些,对应法则也掌握的是方法有哪些。
下面一一介绍。
一、定义域1、具体函数定义域:主要从以下几个方面去掌握:(1)整式函数的定义域是全体实数。
(2)分式函数的定义域是使得分母不为0的自变量的取值。
(3)含有偶次根式是被开放数大于等于0(4)对数函数是真数大于0(5)若f (x )是由几个式子构成的,则函数的定义域要使各个式子都有意义;2、抽象函数的定义域:此部分只需记住2句话即可:(1)、凡是出现定义域三个字,统统是指的取值范围。
(2)、相同准则条件下,相同位置取值范围一样。
通俗一句话就是括号里的取值范围一样。
3、实际问题:既要使构建的函数解析式有意义,又要考虑实际问题的要求.命题点1 求具体函数的定义域例1 求下列函数的定义域.(1)y =3-12x ; (2)y =2x -1-7x ;(3)y =(x +1)0x +2; (4)y =2x +3-12-x +1x. 考点 函数的定义域题点 求具体函数的定义域解 (1)函数y =3-12x 的定义域为R . (2)由⎩⎪⎨⎪⎧x ≥0,1-7x ≥0,得0≤x ≤17, 所以函数y =2x -1-7x 的定义域为⎣⎡⎦⎤0,17. (3)由于0的零次幂无意义,故x +1≠0,即x ≠-1.又x +2>0,即x >-2,所以x >-2且x ≠-1.所以函数y =(x +1)0x +2的定义域为{}x | x >-2且x ≠-1.(4)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0, 解得-32≤x <2,且x ≠0, 所以函数y =2x +3-12-x +1x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪ -32≤x <2,且x ≠0.例2 (1)、(2018·江苏)函数f (x )=log 2x -1的定义域为________.答案 {x |x ≥2}解析 由log 2x -1≥0,即log 2x ≥log 22,解得x ≥2,满足x >0,所以函数f (x )=log 2x -1的定义域为{x |x ≥2}.(2)、函数f (x )=1xln x 2-3x +2+-x 2-3x +4的定义域为________________. 答案 [-4,0)∪(0,1)解析 由⎩⎪⎨⎪⎧ x ≠0,x 2-3x +2>0,-x 2-3x +4≥0,解得-4≤x <0或0<x <1,故函数f (x )的定义域为[-4,0)∪(0,1). (3)、函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 答案 (0,1]解析 函数的定义域满足⎩⎪⎨⎪⎧ x ≠0,1+1x >0,1-x 2≥0,解得⎩⎪⎨⎪⎧x >0或x <-1,-1≤x ≤1,∴0<x ≤1.命题点2 求抽象函数的定义域1、设f (x )的定义域为[0,1],要使函数f (x -a )+f (x +a )有定义,则a 的取值范围为____________.答案 ⎣⎡⎦⎤-12,12 解析 函数f (x -a )+f (x +a )的定义域为[a,1+a ]∩[-a,1-a ],当a ≥0时,应有a ≤1-a ,即0≤a ≤12;当a <0时,应有-a ≤1+a ,即-12≤a <0.所以a 的取值范围是⎣⎡⎦⎤-12,12.思维升华 (1)求给定函数的定义域往往转化为解不等式(组)的问题,可借助于数轴,注意端点值的取舍.(2)求抽象函数的定义域①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域; ②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域.(3)已知函数定义域求参数的值或范围,可将问题转化成含参数的不等式,然后求解.2、若函数y =f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域是( ) A .[0,1)B .[0,1]C .[0,1)∪(1,4]D .(0,1) 答案 A解析 函数y =f (x )的定义域是[0,2],要使函数g (x )有意义,可得⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1,故选A.命题点3 已知定义域求参数的值或范围例2 (1)若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.答案 -92解析 函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧ a <0,1+2=-b ,1×2=b a ,解得⎩⎪⎨⎪⎧a =-32,b =-3, 所以a +b =-32-3=-92. (2)设f (x )的定义域为[0,1],要使函数f (x -a )+f (x +a )有定义,则a 的取值范围为____________.答案 ⎣⎡⎦⎤-12,12 解析 函数f (x -a )+f (x +a )的定义域为[a,1+a ]∩[-a,1-a ],当a ≥0时,应有a ≤1-a ,即0≤a ≤12;当a <0时,应有-a ≤1+a ,即-12≤a <0.所以a 的取值范围是⎣⎡⎦⎤-12,12. (4)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是________. 答案 [0,4]解析 由题意知,mx 2+mx +1≥0对x ∈R 恒成立.当m =0时,f (x )的定义域为一切实数;当m ≠0时,由⎩⎪⎨⎪⎧m >0,m 2-4m ≤0,得0<m ≤4, 综上,m 的取值范围是[0,4].二、对应法则函数解析式的求法(1)待定系数法:若已知函数的类型,可用待定系数法(例如一次函数、二次函数);(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(4)消去法(构造方程组法):已知f (x )与f ⎝⎛⎭⎫1x 或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).命题角度1 待定系数法求函数解析式例1 已知f (x )为一次函数,且f (f (x ))=2x -1,求f (x )的解析式.解 由题意,设f (x )=ax +b (a ≠0),则f (f (x ))=af (x )+b =a (ax +b )+b=a 2x +ab +b =2x -1,由恒等式性质,得⎩⎪⎨⎪⎧a 2=2,ab +b =-1, ∴⎩⎨⎧ a =2,b =1-2或⎩⎨⎧a =-2,b =1+ 2.∴所求函数解析式为f (x )=2x +1-2或f (x )=-2x +1+ 2.反思感悟 适合用待定系数法求解析式的函数类型,通常为已知的函数类型,如一次函数,二次函数等.跟踪训练 f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x )的解析式.考点 求函数的解析式题点 待定系数法求函数解析式解 由题意,设f (x )=ax +b (a ≠0),∵3f (x +1)-f (x )=2x +9,∴3a (x +1)+3b -ax -b =2x +9,即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9, ∴a =1,b =3.∴所求函数解析式为f (x )=x +3.命题角度2 换元法(或配凑法)求函数解析式例2 (1)设函数f ⎝⎛⎭⎪⎫1-x 1+x =x ,则f (x )的表达式为( ) A.1+x 1-x(x ≠1) B.1+x x -1(x ≠1) C.1-x 1+x(x ≠-1) D.2x x +1(x ≠-1) 答案 C解析 令t =1-x 1+x ,则x =1-t 1+t(t ≠-1), ∴f (t )=1-t 1+t (t ≠-1), 即f (x )=1-x 1+x(x ≠-1). (2)若f (2x +1)=6x +5,求f (x )的表达式.考点 求函数的解析式题点 换元法求函数解析式解 方法一 设2x +1=t ,则x =t -12, ∴f (t )=6·t -12+5=3t +2. ∴f (x )=3x +2.方法二 f (2x +1)=6x +5=3(2x +1)+2,∴f (x )=3x +2.反思感悟 对于形如y =f (g (x ))的函数,求y =f (x )的解析式,通常用换元法,令t =g (x ),从中求出(x =φ(t )),然后代入表达式,求出f (t )即得f (x )的表达式.特别注意:换元法要注意新元的范围.跟踪训练 (1)若g (x )=1-2x ,f (g (x ))=1-x 2x 2,则f (x )等于( ) A.4(1-x )2+1(x ≠1) B.4(1-x )2-1(x ≠1) C.4(1-x )2(x ≠1) D.2(1-x )2-1(x ≠1)答案 B解析 令g (x )=1-2x =t ,则x =1-t 2(t ≠1),代入得f (t )=4(1-t )2-1(t ≠1), ∴f (x )=4(1-x )2-1(x ≠1). (2)若f (x +1)=x 2+4x +1,求f (x )的表达式.考点 求函数的解析式题点 换元法求函数解析式解 方法一 设x +1=t ,则x =t -1,f (t )=(t -1)2+4(t -1)+1,即f (t )=t 2+2t -2.∴所求函数解析式为f (x )=x 2+2x -2.方法二 f (x +1)=(x +1-1)2+4(x +1-1)+1=(x +1)2+2(x +1)-2,∴f (x )=x 2+2x -2.命题角度3 构造方程组求函数解析式例3 若f (x )+2f (-x )=x 2+2x ,求f (x )的表达式.考点 求函数的解析式题点 方程组法求函数解析式解 ∵f (x )+2f (-x )=x 2+2x ,将x 换成-x ,得f (-x )+2f (x )=x 2-2x ,∴联立以上两式消去f (-x ),得3f (x )=x 2-6x ,∴f (x )=13x 2-2x . 反思感悟 已知关于f (x )与f (-x )的表达式或f (x )与f ⎝⎛⎭⎫1x 的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).跟踪训练 已知2f ⎝⎛⎭⎫1x +f (x )=x (x ≠0),求f (x )的表达式.考点 求函数的解析式题点 方程组法求函数解析式解 ∵f (x )+2f ⎝⎛⎭⎫1x =x ,将原式中的x 与1x互换, 得f ⎝⎛⎭⎫1x +2f (x )=1x.于是得关于f (x )的方程组⎩⎨⎧f (x )+2f ⎝⎛⎭⎫1x =x ,f ⎝⎛⎭⎫1x +2f (x )=1x,解得f (x )=23x -x 3(x ≠0). 三、求值域:求值域的方法:(1)分离常数法:适合分子分母都是一次函数(2)反解法(3)配方法(4)不等式法(5)单调性法(6)换元法(7)数形结合法(8)导数法例 求下列函数的值域:(1)y =3x 2-x +2,x ∈[1,3];(2)y =3x +1x -2;(3)y =x +41-x ;(4)y =2x 2-x +12x -1⎝⎛⎭⎫x >12.解 (1)(配方法)因为y =3x 2-x +2=3⎝⎛⎭⎫x -162+2312,所以函数y =3x 2-x +2在[1,3]上单调递增.当x =1时,原函数取得最小值4;当x =3时,原函数取得最大值26.所以函数y =3x 2-x +2(x ∈[1,3])的值域为[4,26].(2)(分离常数法)y =3x +1x -2=3(x -2)+7x -2=3+7x -2,因为7x -2≠0,所以3+7x -2≠3,所以函数y =3x +1x -2的值域为{y |y ≠3}.(3)(换元法)设t =1-x ,t ≥0,则x =1-t 2,所以原函数可化为y =1-t 2+4t =-(t -2)2+5(t ≥0),所以y ≤5,所以原函数的值域为(-∞,5].(4)(均值不等式法)y =2x 2-x +12x -1=x (2x -1)+12x -1=x +12x -1=x -12+12x -12+12, 因为x >12,所以x -12>0, 所以x -12+12x -12≥2⎝⎛⎭⎫x -12·12⎝⎛⎭⎫x -12=2, 当且仅当x -12=12x -12,即x =1+22时取等号. 所以y ≥2+12,即原函数的值域为⎣⎡⎭⎫2+12,+∞.思维升华 配方法、分离常数法和换元法是求函数值域的有效方法,但要注意各种方法所适用的函数形式,还要注意函数定义域的限制.换元法多用于无理函数,换元的目的是进行化归,把无理式转化为有理式来解.二次分式型函数求值域,多采用分离出整式再利用基本不等式求解.。
函数基本性质题型及解题技巧
函数基本性质题型及解题技巧函数基本性质题型及解题技巧一、函数解析式的求法:1.配凑法:将关系式配凑成括号内的形式。
例如,已知$f(x+)=\frac{x^2}{2}$,求解析式$f(x)$。
解:因为$f(x+)=\frac{x^2}{2}=(x+)^2-2$,所以$f(x)=x^2-2$,$x\in(-\infty,-2]\cup[2,\infty)$。
2.换元法:令括号内的部分等于$t$,然后解出$x$,带入得到关于$t$的解析式,最后再换回$x$。
例如,已知$f(x+1)=x+2x$,求$f(x)$的解析式。
解:令$t=x+1$,则$x=(t-1)^2$,$(t\geq1)$,因此$f(t)=(t-1)^2+2(t-1)=t^2-1$。
所以$f(x)=x^2-1$,$(x\geq1)$。
3.待定系数法:根据已知函数类型,设相应的函数解析式,然后根据已知条件算出相应系数。
例如,已知$f(x)$是二次函数,且$f(0)=2$,$f(x+1)-f(x)=x-1$,求$f(x)$。
解:设$f(x)=ax^2+bx+c$,由$f(0)=2$得$c=2$,由$f(x+1)-f(x)=x-1$,得恒等式$2ax+a+b=x-1$,解得$a=\frac{1}{2}$,$b=-\frac{1}{2}$。
因此,所求函数的解析式为$f(x)=\frac{1}{2}x^2-\frac{1}{2}x+2$。
4.消元法(方程组法):若函数方程中同时出现$f(x)$与$f(-x)$,则一般用$x$代之或用$-x$代之,构造另一个方程,然后联立解方程组得到$f(x)$。
例如,已知$3f(x)+2f(-x)=x+3$,求$f(x)$。
解:因为$3f(x)+2f(-x)=x+3$,令$x=-x$得$3f(-x)+2f(x)=-x+3$,消去$f(-x)$得$f(x)=\frac{x}{5}+\frac{3}{5}$。
二、绝对值图像的画法:5.对于函数$y=ax^2+b|x|+c$,找出$x=0$的点和两个对称轴上的点,然后将它们连起来。
抽象函数的常见解法
抽象函数的常见解法兴义八中李明生抽象函数是指函数的三种表示法:列表法、图象法、解析法均未给出,只给出函数记号f(x)的一类函数.这类函数解决起来较抽象,但却能有效地反映学生对知识的掌握、理解、应用及迁移的能力,对培养、提高学生的发散思维和创造思维等能力有很好的促进作用。
因此,这类问题在高中数学的各类考试中经常出现。
下面谈谈这类问题常见的几种解法:一、赋值法先以特殊值作尝试,在探索中发现题中条件遵循某些规律或特点,从而使问题得以解决。
这类问题经常出现,要认真理解其解题的要领和方法。
例1设函数f(x)的定义域为自然数集,若f(x+y) = f(x)+f(y)+x 对任意自然数x,y恒成立,且f(1) = 1,求f(x)的解析式。
分析:当令y=1时,可得f(x+1)=f(x)+x+1,这相似于数列中的递推关系,再利用相应的递推关系可求出函数的解析式。
解:令y = 1, 则f(x+1) = f(x)+f(1)+x = f(x)+x+1,∴ f(1) = 1f(2)= f(1) +2f(3) = f(2) +3…f(n) = f(n-1) +n各式相加得:f(n) = 1+2+3+…+n = n(n+1)2∴ f(x) = x(x+1)2例2已知函数f(x)满足f(x+y)+f(x-y) = 2 f(x) · f(y),x∈R, y∈R,且f(0)≠0,求证:f(x)是偶函数。
分析: 当令 x=y=0时,可得f(0)=1,再利用题中条件变形求解。
证明:令x = y = 0∴ f(0) +f(0) = 2f 2 (0)∵ f(0) ≠ 0, ∴ f(0) = 1令 x = 0 , 则 f(y) + f(-y) = 2f(0) · f(y)∴ f(-y) = f(y), ∵ y∈R,∴ f(x)是偶函数例3 已知函数f(x)的定义域为(0 , + ∞ ),对任意x > 0, y> 0恒有f(xy) = f(x) + f(y)求证:当x > 0时, f( 1x) = -f(x)分析:当令x=y=1时,可得f(1)=0,再灵活运用f(1)=f(x·1x)可求得。
求抽象函数解析式的几种方法及适用范围
求函数的解析式的几种方法一:方法名称:配凑法适用范围:已知f(g(x))的解析式,求f(h(x))的解析式方法步骤:1把f(g(x))内的g(x)当做整体,在解析式的右端整理成只含有g(x)的形式2再把g(x)用h(x)代替例:的解析式。
已知求的解析式。
已知f(x+1)=x-3, 求f(x) 的解析式。
已知,求的解析式。
二:方法名称:换元法适用范围:已知f(g(x))的解析式,求f(h(x))的解析式方法步骤:1先把形如f(g(x))内的g(x)设为t(换元后要确定新元t的取值范围)2在用一个只含有t的式子把x表示出来3然后把这个式子在解析式的右端的x中,使右边只含有t4再把t用h(x)代替。
例题:已知求的解析式。
已知f()=x2+5x,则f(x)的解析式。
三方法名称:待定系数法适用范围:已知对应法则f(x)的函数模型(如一次函数,二次函数等)方法步骤:1先设出函数解析式(如f(x)=ax+b)2把解析式的左端用这个函数模型表示出来4求出函数模型的系数例:四方法名称:方程组法适用范围:一般等号左边有两个抽象函数(如f(x),f(-x))。
等号右边也含有变量x。
方法步骤:将左边的两个抽象函数看成两个变量。
变换变量构造一个方程,与原方程组成一个方程组,利用消元法求f(x)的解析式例:设f(x)满足关系式 ,求函数的解析式.五:方法名称:赋值法适用范围:一般包含一句话“对任意实数满足”方法步骤:一般的,已知一个关于x,y的抽象函数,利用特殊值去掉一个未知数x或者y,得出关于x或者y的解析式。
例:。
抽象函数的定义域的求法-解析式的求法-很全面
题型3:复合函数及其定义域的求法一.基本知识(1)函数的概念:设是A,B非空数集,如果按某个确定的对应关系f,使对于集合A中的任意一个x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:ATB为集合A到集合B的函数,记作:y=f(x),xeA。
其中x叫自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值.(2)复合函数的定义:一般地:若y=f(u),又u=g(x),且g(x)值域与f(u)定义域的交集不空,则函数y=f[g(x)]叫x的复合函数,其中y=f(u)叫外层函数,u=g(x)叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数.例如:f(x)二3x+5,g(x)二x2+1;复合函数f(g(x))即把f(x)里面的x换成g(x),f(g(x))=3g(x)+5=3(x2+1)+5=3x2+8(3)复合函数的定义域函数f(g(x))的定义域还是指x的取值范围,而不是g(x)的取值范围.①已知f(x)的定义域,求复合函数f[g GM的定义域由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若f(x)的定义域为xe(a,b),求出f[g(x)]中a<g(x)<b的解x的范围,即为f[g(x)]的定义域。
②已知复合函数f[g6》的定义域,求f(x)的定义域方法是:若f[gQ的定义域为xe(a,b),则由a<x<b确定g(x)的范围即为f(x)的定义域③已知复合函数f[g(x)]的定义域,求f[h(x)]的定义域结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由f[g(x》定义域求得fC)的定义域,再由fG)的定义域求得f[hGR的定义域。
④已知f(x)的定义域,求四则运算型函数的定义域若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。
函数的对应法则 抽象函数的 表达式
函数的对应法则
1、待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1设是一次函数,且,求
二、配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。
但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。
例2已知,求的解析式
三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3已知,求
四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
例5设求
五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
已知:,对于任意实数x、y,等式恒成立,求
二,练习题
1、已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。
2、求一个一次函数f(x),使得f{f[f(x)]}=8x+7
3、设二次函数f(x)满足f(x-2)=f(-x-2),且在y轴上的截距为1,在x轴截得的线段长为
,求f(x)的解析式
4、
5、
6、已知f(x)为二次函数, f(x-1)= -4x,解方程f(x+1)=0 8、若,且,
求值.
.
10、已知f(x+)=x3+,求f(x)的解析式。
11、已知
,求;
14、已知满足,求.。
抽象函数解析式的几种常用求法
f ( x + 1) + f ( x - 1) = 2ax 2 + 2bx + 2( a +
c) = 2x2 - 4x
2a = 2 2b = - 4 , 解为 2( a + c) = 0
a= 1 b=- 2 c=- 1
故 f ( x ) = x2 - 2x - 1
评注: 先设出函数解析式, 然后根据题设 条
这种方法即为换元法。
例 3: 若 f
x+ 1 = x
x2 + x2
1+
1, 求 f ( x )。 x
解: 利用换元法
设x
+ x
1
=
u, 则 x =
1 u-
1,
u
X
1
则 f(u)
=f
x+ x
1
=
x2 + x2
1+
1 x
=
1+
1 x2
+
1 x
=
1+
(u -
1)2 +
(u -
1)
=
u2 - u + 1
f( x ) = x 2 - x + 1( x X 1)
77
时, 要注意自变量的取值范围的变化情况, 否 则 就得不到正确的表达式。
三、待定系数法
一般地, 若已 知 f ( x ) 的 解析 式类 型, 则 可
根据所掌握函数知识, 先写出 f ( x ) 一般表达 式
(式中含有未确定的若干系 数 ), 然 后利用题 目
中的已知 条件确定出相 关系数, 从而求得 f ( x )
-
高考数学中抽象函数的解法
抽象函数问题有关解法由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、解析式问题:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1xf x x-=- 2.凑配法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x +=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数和函数的解析式
抽象函数和函数的解析式一、解析式的求法1.代入法f (x ) =2x +1,求f (x +1)f (x ) 满足f (x +3) =f (1-x ) ,且f (x ) =0的两实根平方和为10,图像过点2. 待定系数法二次函数(0,3); 已知f (x ) 二次实函数,且f (x +1) +f (x -1) =x 2+2x +43.换元法f (3x +1) =9x 2-6x +5, f (f (3x +1) =9x 2-6x +5,f (x ) +f (-x ) =x -1,33224. 配凑法x) =2x +1, x +111f (x +) =x 3+3x x5. 6.消元法(构造方程组法)利用函数的性质求解析式例1. 已知函数y =f (x ) 是定义在区间[-, ]上的偶函数,且x ∈[0,]时,f (x ) =-x 2-x +5 32f (x ) 解析式答案:3⎧2-x -x +5(0≤x ≤) ⎧⎧2f (x ) =⎧⎧-x 2+x +5(-3≤xy =f (x ) 为奇函数, 当 x >0时, f (x ) =lg(x +1) , 求f (x )例2. 已知解:∵f (x ) 为奇函数,∴f (x ) 的定义域关于原点对称,故先求x 0,∴f (-x ) =lg(-x +1) =lg(1-x ) ,∵f (x ) 为奇函数,∴lg(1-x ) =f (-x ) =-f (x ) ∴当x⎧lg(1+x ), x ≥0f (x ) =⎧-lg(1-x ), x例3.一已知f (x ) 为偶函数,g (x ) 为奇函数,且有f (x ) +g (x ) =1,求f (x ) , g (x ) . x -1解:∵f (x ) 为偶函数,g (x ) 为奇函数,∴f (-x ) =f (x ) , g (-x ) =-g (x ) ,不妨用-x 代换f (x ) +g (x ) =………①中的x ,x -1∴f (-x ) +g (-x ) =11即f (x ) -g (x ) =-……②-x -1x +1显见①+②即可消去g (x ) , 求出函数f (x ) =1x再代入①求出g (x ) =x 2-1x 2-17. 赋值法:给自变量取特殊值,从而发现规律,求出f (x ) 的表达式例:设解:∵f (x ) 的定义域为自然数集,且满足条件f (x +1) =f (x ) +f (y ) +xy , 及f(1)=1,求f (x )f (x ) 的定义域为N ,取y =1,则有f (x +1) =f (x ) +x +1∵f (1)=1,∴f (2)=f (1)+2,f (3)=f (2)+3……f (n ) =f (n -1) +nn (n +1) 1x (x +1), x ∈N 以上各式相加,有f (n ) =1+2+3+……+n =∴f (x ) =22f (x ) 的有关问题二、利用函数性质,解1. 判断函数的奇偶性:例:已知数。
抽象函数考法梳理
微专题 抽象函数的考法题型归纳模块一、定义域例题1 若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=xf y 的定义域 【解析】),21(]31,(+∞--∞【小结】函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1+x 与21+x的范围等同。
模块二、值域例题2 函数f (x )的定义域为(0,)+∞,对 任意正实数x ,y 都有f (xy )= f (x )+f (y )且f (4)=2 ,则f = 【解析】12模块三、解析式角度1 对称性:定义证明是根本、图象变换是捷径、特值代入是妙法结论1:设函数f (x )的定义域为R ,且f (a+x )=f (b-x ),则函数f (x )的图象关于直线 2ba x +=对称;特别地,当f (a+x )=f (a-x )时,f(x)的图象关于x=a 对称(自身对称)结论2:对于定义在R 上的函数y=f(x),函数y=f(a+x)与y=f(b-x)的图象关于直线2a b x -=对称(相互对称)例题3 设)(x f y =定义在实数集上,则函数)1(-=x f y 与)1(x f y -=图象关于( ) A 、直线0=y 对称 B 直线0=x 对称 C 直线1=y 对称 D 直线1=x 对称 【解析】D巩固1 已知函数y =f (x )满足f (x +2)=f (2-x );若方程f (x )=0有三个不同的实根,则这三个根的和为______ 【解析】6角度2 周期性:充分理解与运用相关的抽象式是关键结论3:设)(x f y =是定义在R 上的奇函数,其图象关于直线1=x 对称。
证明)(x f y =是周期函数。
【证明】由)(x f y =的图象关于直线1=x 对称,得)()2(x f x f -=+, 又)(x f y =是定义在R 上的奇函数,所以)()(x f x f -=-∴)()2(x f x f -=+,则)()]([)2()]2(2[)4(x f x f x f x f x f =--=+-=++=+由周期函数的定义可知4是它的一个周期。
求抽象函数解析式的几种方法及适用范围
求函数的解析式的几种方法一:方法名称:配凑法适用范围:已知f(g(x))的解析式,求f(h(x))的解析式方法步骤:1把f(g(x))内的g(x)当做整体,在解析式的右端整理成只含有g(x)的形式2再把g(x)用h(x)代替例:的解析式。
已知求的解析式。
已知f(x+1)=x-3,求f(x)的解析式。
已知,求的解析式。
二:方法名称:换元法适用范围:已知f(g(x))的解析式,求f(h(x))的解析式方法步骤:1先把形如f(g(x))内的g(x)设为t(换元后要确定新元t的取值范围)2在用一个只含有t的式子把x表示出来3然后把这个式子在解析式的右端的x中,使右边只含有t4再把t用h(x)代替。
例题:已知求的解析式。
已知f()=x2+5x,则f(x)的解析式。
三方法名称:待定系数法适用范围:已知对应法则f(x)的函数模型(如一次函数,二次函数等)方法步骤:1先设出函数解析式(如f(x)=ax+b)2把解析式的左端用这个函数模型表示出来4求出函数模型的系数例:四方法名称:方程组法适用范围:一般等号左边有两个抽象函数(如f(x),f(-x))。
等号右边也含有变量x。
方法步骤:将左边的两个抽象函数看成两个变量。
变换变量构造一个方程,与原方程组成一个方程组,利用消元法求f(x)的解析式例:设f(x)满足关系式,求函数的解析式.五:方法名称:赋值法适用范围:一般包含一句话“对任意实数满足”方法步骤:一般的,已知一个关于x,y的抽象函数,利用特殊值去掉一个未知数x或者y,得出关于x或者y的解析式。
例:。
抽象函数求解的常用求法
抽象函数求解的几种求法抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数。
如函数的定义域、解析递推式、特定点的函数值、特定的运算性质等。
它是高中数学函数部分的难点,由于抽象函数没有具体的解析式作为载体,因此理解起来比较困难,那么怎样求解抽象函数问题呢?以下介绍几种解抽象函数问题的方法。
一. 特殊化方法1. 在求函数解析式或研究函数性质时,一般用“代换”的方法,如将x 换成x -或将x 换成1x等。
2. 在求函数值时,可用特殊值(如0或1或-1)“代入” 例1.已知()f x 满足()123363f x f x x ⎛⎫+=⎪⎝⎭,求()f x 的解析式。
解:先令3u x =,解出3ux =,于是有:()1232f u f u u ⎛⎫+= ⎪⎝⎭-----------①再以1u代替u 得:()1223f f u u u ⎛⎫+= ⎪⎝⎭------------②联立①、②式解方程组,并消去1f u ⎛⎫ ⎪⎝⎭,解得()6455uf u u =-即所求解析式为:()6455x f x x =-例2. 若对一切自然数a 、b 都有()()()f a b f a f b ab +=++且()11f =,求()f x 的解析式。
解:利用特殊值法 令1a =,等式变为:()()()()111f b f f b b f b b +=++=++,即:()()11f b f b b +-=+,注意到上式是一个关于自然数b 的递推关系式,令1b =,有()()2111f f -=+2b =,有()()3221f f -=+1b n =-,有()()()111f n f n n --=-+将以上1n -条等式左右两边分别相加,得:()()()()1123111f n f n n -=++++-+⨯-即:()()()1123111f n n n =+++++-+⨯-()11232n n n -=++++=即所求解析式为:()()12x x f x -=二. 函数性质法函数的特征是通过其性质(如奇偶性、单调性、周期性、对称性、特殊点等)反应出来的,抽象函数也是如此。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010 年 7 月 17 日
一、解析式的求法
1. 代入法
f ( x ) = 2 x + 1 ,求 f ( x + 1)
二次函数
2.
待定系数法
f ( x ) 满足 f ( x + 3) = f (1 − x ) ,且 f ( x ) = 0 的两实根平方和为 10, 图像过 点
(0,3) ;
数字教育
II
函数相关习题集合
2010 年 7 月 17 日
x ∈ [−2, 0] 时 f ( x ) 的解析式
二、四类抽象函数解法
1、 线性函数型抽象函数 例 1、已知函数 f(x)对任意实数 x,y,均有 f(x+y)=f(x)+f(y),且当 x>0 时,f(x)>0,f(-1)=-2, 求 f( x)在区间[-2,1]上的值域。
,求:
分析:由题设可猜测 f(x)是对数函数
的抽象函数, f(1)=0,f(9)=2。
解:(1)∵
,∴f(1)=0。
(2)
,从而有 f(x)+f(x-8)≤f(9),
即
,∵f(x)是(0,+∞)上的增函数,故
,解之得:8<x≤9。 4、幂函数型抽象函数 例 5、已知函数 f(x)对任意实数 x、 y 都有 f(xy)= f(x)·f(y),且 f(-1)=1,f(27)=9,当 。 (1)判断 f(x)的奇偶性; (2)判断 f(x)在[0,+∞)上的单调性,并给出证明; 时,
,有
,这与题设矛盾,∴ f(x)
(2)令 y=x≠0,则 >0,故对任意 x,f(x)>0 恒成立。 3、对数函数型抽象函数
,又由(1)知 f(x)≠0,∴ f(2x)>0,即 f(x)
例 4、设 f(x)是定义在(0,+∞)上的单调增函数,满足 (1)f(1); (2)若 f(x)+f(x-8)≤2,求 x 的取值范围。
数字教育
IV
函数相关习题集合
2010 年 7 月 17 日
(3)∵f(27)=9,又
,
∴
,∴
,∵
,∴
,
∵
,∴
,又
,故
。
数字教育
V
(3)若
,求 a 的取值范围。
分析:由题设可知 f(x)是幂函数
的抽象函数,从而可猜想 f(x)是偶函数,且在[0,+∞)上是增函数。
解:(1)令 y=-1,则 f(-x)=f(x)·f(-1),∵ f(-1)=1,∴
f(-x)=f(x),f(x)为偶函数。
(2)设
,∴
,
,
∵
时,
,∴
,∴f(x1 )<f(x2),故 f(x)在 0,+∞)上是增函数。
在①中令
y =0 则 2 f (0) =2 f (0) ∵ f (0) ≠0∴ f (0) =1∴ f ( y ) + f (− y ) = 2 f ( y ) ∴
f (− y ) = f ( y ) ∴ f ( x ) 为偶函数。
2.确定参数的取值范围 例:奇函数
f ( x ) 在定义域(-1,1)内递减,求满足 f (1 − m) + f (1 − m 2 ) < 0 的实数 m 的取值范围。 f (1 − m) + f (1 − m 2 ) < 0 得 f (1 − m ) < − f (1 − m 2 ) ,∵ f ( x ) 为函数,∴
1 , x −1
求
f ( x) , g ( x) .
解:∵
f ( x ) 为偶函数, g ( x ) 为奇函数,∴ f (− x ) = f ( x ) , g (− x ) = − g ( x ) ,
x 代换 f ( x ) + g ( x ) =
1 x −1
………①中的
不妨用-
x,
数字教育
பைடு நூலகம்
I
函数相关习题集合
分析:由题设可知,函数 f(x)是
的抽象函数,因此求函数 f( x)的值域,关键在于研究它的单调性。
解:设
,∵当
,∴
,
∵
,
∴
,即
,∴f(x)为增函数。
在条件中,令 y=-x,则 =f(x),f(x)为奇函数, ∴
,再令 x=y=0,则 f(0)=2 f(0),∴ f(0)=0,故 f(- x)
f(1)=- f(-1)=2,又 f(-2)=2 f(-1)=-4,
式中的函数符号,从而可求得不等式的解。 解:设
,∵当
,∴
,则
,
即
,∴f(x)为单调增函数。 ∵
, 又∵ f(3)=
5,∴f(1)=3。∴ 解为-1 < a < 3。 2、指数函数型抽象函数
,∴
, 即
,解得不等式的
例 3、设函数 f( x)的定义域是(-∞,+∞),满足条件:存在
,使得
,对任何 x 和 y,
3. 换元法
已知
f ( x ) 二次实函数,且 f ( x + 1) + f ( x − 1) = x 2 +2 x +4 x ) = 2x +1, x +1 1 1 f ( x + ) = x3 + 3 x x f(
f (3x + 1) = 9 x 2 − 6 x + 5 , f (3x + 1) = 9 x 2 − 6 x + 5 , f ( x ) + f (− x ) = x − 1 ,
二、利用函数性质,解 1.判断函数的奇偶性: 例: 已知 数。 证明:令
f ( x + y ) + f ( x − y ) = 2 f ( x) f ( y ) ,对一切实数 x 、 y 都成立,且 f (0) ≠ 0 ,求证 f ( x ) 为偶函
x =0,
则已知等式变为
f ( y ) + f (− y ) = 2 f (0) f ( y ) ……①
∵
f ( x ) 为奇函数,∴ lg(1 − x ) = f (− x ) = − f ( x ) ∴当 x <0 时 f ( x ) = − lg(1 − x ) ∴
⎧lg(1 + x), x ≥ 0 f ( x) = ⎨ ⎩− lg(1 − x ), x < 0
例 3.一已知
f ( x ) 为偶函数, g ( x ) 为奇函数,且有 f ( x ) + g ( x ) =
f ( x ) 的表达式
例:设 解:∵
f ( x ) 的定义域为自然数集,且满足条件 f ( x + 1) = f ( x ) + f ( y ) + xy ,及 f (1) =1,求 f ( x )
f ( x ) 的定义域为 N,取 y =1,则有 f ( x + 1) = f ( x ) + x + 1 ∵ f (1) =1,∴ f (2) = f (1) +2, f (3) = f (2) + 3 …… f ( n ) = f ( n − 1) + n n(n + 1) 1 以上各式相加,有 f ( n ) =1+2+3+……+ n = ∴ f ( x) = x ( x + 1), x ∈ N 2 2 f ( x ) 的有关问题
∴ f(x)的值域为[-4,2]。
例 2、已知函数 f(x)对任意
,满足条件 f(x)+f(y)=2 + f( x+y),且当 x>0 时, f( x)>2, f(3)
=5,求不等式
的解。
分析:由题设条件可猜测: f(x)是 y=x+2 的抽象函数,且 f( x)为单调增函数,如果这一猜想正确,也就可以脱去不等
4.
配凑法
5. 6.
消元法(构造方程组法) 利用函数的性质求解析式 例 1. 已 知 函 数
y = f ( x)
是 定 义 在 区 间
[− , ]
3 3 2 2
上 的 偶 函 数 , 且
x ∈[0, ]
3 2
时 ,
f (x) = − x 2 − x + 5
求
f ( x ) 解析式
3 ⎧ 2 − x − x + 5(0 ≤ x ≤ ) ⎪ 2 f (x) = ⎪ ⎨ ⎪− x 2 + x + 5(− 3 ≤ x < 0) ⎪ ⎩ 2
答案:
例 2.已知
y = f ( x ) 为奇函数,当 x >0 时, f ( x ) = lg( x + 1) ,求 f ( x )
解:∵
f ( x ) 为奇函数,∴ f ( x ) 的定义域关于原点对称,故先求 x <0 时的表达式。∵- x >0,∴
f (− x ) = lg( − x + 1) = lg(1 − x ) ,
成立。求: (1)f(0); (2)对任意值 x,判断 f(x)值的正负。
数字教育
III
函数相关习题集合
2010 年 7 月 17 日
分析:由题设可猜测 f(x)是指数函数
的抽象函数,从而猜想 f(0)=1 且 f(x)>0。
解:(1)令 y=0 代入
,则
,∴
。若 f( x)=0,则对任意 ≠0,∴f(0)=1。
2010 年 7 月 17 日
1 1 即 f ( x) - g ( x) = − ……② −x −1 x +1 1 x 显见①+②即可消去 g ( x ) ,求出函数 f ( x ) = 再代入①求出 g ( x ) = 2 2 x −1 x −1
∴
f (− x ) + g (− x ) =