电磁场与电磁波(杨儒贵_第一版)课后思考题答案

合集下载

电磁场与电磁波课后习题及答案一章习题解答

电磁场与电磁波课后习题及答案一章习题解答

一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。

解 (1)23A x y z+-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 c o s AB θ=8==A B A B ,得 1c o s AB θ-=(135.5= (5)A 在B 上的分量 B A =A c o s AB θ==A B B (6)⨯=A C 123502x y z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。

电磁场与电磁波课后习题答案第3章(杨儒贵编着)

电磁场与电磁波课后习题答案第3章(杨儒贵编着)

第三章 静电场3-1 已知在直角坐标系中四个点电荷分布如习题图3-1所示,试求电位为零的平面。

解 已知点电荷q 的电位为rq 4πεϕ=,令)0,1,0(1q q -=,)0,1,3(2q q +=,)0,0,1(3q q -=,)0,0,0(4q q +=,那么,图中4个点电荷共同产生的电位应为∑=414ii r q πεϕ令0=ϕ,得 0 4 4 4 44321=+-+-r qr q r q r q πεπεπεπε 由4个点电荷的分布位置可见,对于x =1.5cm 的平面上任一点,4321 ,r r r r ==,因此合成电位为零。

同理,对于x =0.5cm 的平面上任一点,3241 ,r r r r ==,因此合成电位也为零。

所以,x =1.5cm 及x =0.5cm 两个平面的电位为零。

3-2 试证当点电荷q 位于无限大的导体平面附近时,导体表面上总感应电荷等于)(q -。

证明 建立圆柱坐标,令导体表面位于xy 平面,点电荷距离导体表面的高度为h ,如图3-2所示。

那么,根据镜像法,上半空间的电场强度为32023101 4 4r q r q πεπεr r E -=X 习题图3-1(r , z )习题图3-2电通密度为)(43223110r r q r r E D -==πε 式中 232231])([h z r r -+=; 232232])([h z r r ++=那么,⎥⎥⎥⎦⎤⎪⎪⎪⎭⎫ ⎝⎛+++-++-+⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛++--+=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++--+-+=z z zh z r hz h z r h z h z r r h z r r q h z r h z r h z r h z r q e e e e e e D r r r 232223222322232223222322])([])([ ])([])([4 ])([)(])([)(4ππ 已知导体表面上电荷的面密度n s D =ρ,所以导体表面的感应电荷为2322232223220)(2][][4h r qh h r h h r h q D z zs +-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+-===ππρ 则总的感应电荷为q h r r r qh r r S q s ss -=+-===⎰⎰⎰∞∞2322)(d d 2d 'πρρ3-3 根据镜像法,说明为什么只有当劈形导体的夹角为π的整数分之一时,镜像法才是有效的?当点电荷位于两块无限大平行导体板之间时,是否也可采用镜像法求解。

电磁场与波(杨儒贵_第一版)课后作业答案

电磁场与波(杨儒贵_第一版)课后作业答案

1-1 已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。

试求①|| |,| |,|C B A ;②单位矢量c b a e e e , ,;③B A ⋅;④B A ⨯;⑤C B A ⨯⨯)(及B C A ⨯⨯)(;⑥B C A ⋅⨯)(及C B A ⋅⨯)(。

解 ① ()14321222222=-++=++=z y x A A A A14213222222=++=++=z y x B B B B ()5102222222=-++=++=z y x C C C C② ()z y e e e A A A e x a 3214114-+===()z y e e e B B B e x b 2314114++===()z e e C C C e x c -===2515 ③ 1623-=-+=++=⋅z z y y x x B A B A B A B A④ z y zy zyxz y xz y B B B A A A e e e e e e e e e B A x x x5117213321--=-==⨯ ⑤ ()z y zy e e e e e e C B A x x 223111025117+-=---=⨯⨯ 因z y zy zyxz y xC C C A A A e e e e e e e e e C A x x x x x45212321---=--==⨯ 则()z y zy e e e e e e B C A x x 1386213452+--=---=⨯⨯⑥ ()()()152131532=⨯+⨯-+⨯-=⋅⨯B C A()()()1915027=-⨯-++⨯=⋅⨯C B A 。

1-5 设标量32yz xy +=Φ,矢量z y e e e A x -+=22,试求标量函数Φ在点)1 ,1 ,2(-处沿矢量A 的方向上的方向导数。

电磁场与电磁波课后习题解答全

电磁场与电磁波课后习题解答全

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c += 即只要满足3b+8c=1就可以使向量和向量垂直。

(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=- 可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221a b +=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3) )()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r 的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a )所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223yz A x yze xy e =+ 而 A A A A rot ⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y xe x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。

《电磁场与电磁波》课后习题解答(第八章)

《电磁场与电磁波》课后习题解答(第八章)

《电磁场与电磁波》课后习题解答(第⼋章)第8章习题解答【8.1】已知:原⼦质量=107.9,密度=10.53×3310/kg m ,阿佛加德罗常数 =6.02×2610/kg 原⼦质量,电荷量q =1.6×C 1910- 电⼦质量m =9.11×kg 3110-,绝对介电系数(真空中)0ε=8.85×1210/F m - 银是单价元素,由于价电⼦被认为是⾃由电⼦,因⽽单位体积内的电⼦数⽬等于单位体积内的原⼦数⽬。

9.1071002.61053.10263)()(每⽴⽅⽶的原⼦数⽬=即每⽴⽅⽶的⾃由电⼦数⽬:281088.5?=N 可得 s Nq m 1421074.3/-?==στ(对于银)将上述σ、τ和0ε的值代⼊r k =+-)1(/1220τωεστ和l k =+ωτωεσ)1(2/220中可得 52251061.2)1/(1061.21?-=+?-=τωr k 71055.5?=l k则 7461242/122=??++-=lr r i k k k n故 72104.6-?==in c ωδ【8.4】解:良导体αβ== 场衰减因⼦ 2zxzeeeπαβλ---==当传播距离 z λ=时, 220.002zee πλαπλ---===⽤分贝表⽰即为 55dB 。

【8.2】已知:电导率σ=4.6m s /,原⼦质量=63.5,海⽔平均密度=1.025×3310/kg m ,阿佛加德罗常数 =6.02×2610/kg 原⼦质量,电荷量q =1.6×C 1910- ,m 2=δ,电⼦质量m =9.11×kg 3110-,绝对介电系数(真空中)0ε=8.85×1210/F m -解:(1)与8.1题⼀样,可以求出每⽴⽅⽶的⾃由电⼦数⽬:281034.3?=N s Nq m 2121089.4/-?==στ 910545.2-?=r k f k l 101014.4?=则 fk k k k n l lr r i 102/1221014.424?=≈??++-= ⽽δωcn i =所以: k H z f 8.13=(2)依题意,满⾜%0001.0)exp(2=-δz可以求出 m z 8.13=【8.3】解:当法向⼊射时,1cos ,0==i i θθ,012=-=ωεm Nq n r 所以,20221ωεπm Nq f c =,其中参数的解法与8.1、8.2题公式相同。

《电磁场与电磁波》课后习题解答(全)

《电磁场与电磁波》课后习题解答(全)
由安培环路定律: ,按照上图所示线路积分有
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
【习题4.6】
解:由麦克斯韦方程 ,
引入 ,令 .在库仑规范下, ,所以有
即得
而 的解为
可得
对于线电流,有
所以
习题及参考答案
因为该齐次波动方程是麦克斯韦方程在代入 的条件下导出的,所以 作为麦克斯韦方程的解的条件是:
【习题3.22】
解:已知所给的场存在于无源( )介质中,场存在的条件是满足麦克斯韦方程组。
由 得
所以
积分得
由 ,可得
根据 ,可得
对于无源电介质,应满足 或
比较可知: ,但 又不是x的函数,故满足
同样可以证明: 也可满足
则有

前一式表明磁场 随时间变化,而后一式则得出磁场 不随时间变化,两者是矛盾的。所以电场 不满足麦克斯韦方程组。
(2)若
因为
两边对t积分,若不考虑静态场,则有
因此
可见,电场 和磁场 可以满足麦克斯韦方程组中的两个旋度方程。很容易证明他们也满足两个散度方程。
【习题2.7】
解:由传导电流的电流密度 与电场强度 关系 = 知:
取一线元:
则有
则矢量线所满足的微分方程为
或写成
求解上面三个微分方程:可以直接求解方程,也可以采用下列方法

电磁场与电磁波课后习题及答案三章习题解答

电磁场与电磁波课后习题及答案三章习题解答

三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。

解 由点电荷q 和q -共同产生的电通密度为33[]4q R Rπ+-+-=-=R R D22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e则球赤道平面上电通密度的通量d d z z SSS Φ====⎰⎰D S D e22322232()[]2d 4()()aq a a r r r a r a ππ--=++⎰221211)0.293()aqa q q r a =-=-+3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。

解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZ erπ=D e原子内电子云的电荷体密度为 333434a aZe Zer r ρππ=-=-电子云在原子内产生的电通量密度则为 32234344r rarZe r rr ρπππ==-D e e故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。

求空间各部分的电场。

解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。

但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。

电磁场与电磁波课后习题答案全-杨儒贵

电磁场与电磁波课后习题答案全-杨儒贵

第一章矢量分析第一章 题 解1-1已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。

试求①|| |,| |,|C B A ;②单位矢量c b a e e e , ,;③B A ⋅;④B A ⨯;⑤C B A ⨯⨯)(及B C A ⨯⨯)(;⑥B C A ⋅⨯)(及C B A ⋅⨯)(。

解 ① ()14321222222=-++=++=z y x A A A A14213222222=++=++=z y x B B B B()5102222222=-++=++=z y x C C C C② ()z y e e e A A A e x a 3214114-+===()z y e e e B B B e x b 2314114++===()z e e C C C e x c -===2515 ③ 1623-=-+=++=⋅z z y y x x B A B A B A B A④ z y zy z y xz y xz y B B B A A A e e e e e e e e e B A x x x5117213321--=-==⨯ ⑤ ()z y z y e e e e e e C B A x x22311125117+-=---=⨯⨯因z y zy zyxz y xC C C A A A e e e e e e e e e C A x x x x x45212321---=--==⨯则()z y z y e e e e e e B C A x x 1386213452+--=---=⨯⨯⑥ ()()()152131532=⨯+⨯-+⨯-=⋅⨯B C A()()()1915027=-⨯-++⨯=⋅⨯C B A 。

1-2 已知0=z 平面内的位置矢量A 与X 轴的夹角为α,位置矢量B 与X 轴的夹角为β,试证βαβαβαsin sin cos cos )cos(+=-证明 由于两矢量位于0=z 平面内,因此均为二维矢量,它们可以分别表示为ααsin cos A A y e e A x += ββsin cos B B y e e B x +=已知()βα-=⋅c o s B A B A ,求得()BA B A B A βαβαβαsin sin cos cos cos +=-即 βαβαβαsin sin cos cos )cos(+=-1-3 已知空间三角形的顶点坐标为)2 ,1,0(1-P ,)3 ,1 ,4(2-P 及)5 ,2 ,6(3P 。

电磁场与电磁波课后习题及答案五章习题解答

电磁场与电磁波课后习题及答案五章习题解答

五章习题解答真空中直线长电流I 的磁场中有一等边三角形回路,如题图所示,求三角形回路内的磁通。

解 根据安培环路定理,得到长直导线的电流I 产生的磁场02I rφμπ=B e 穿过三角形回路面积的磁通为d S ψ==⎰B S 32320002[d ]d d 2d b d b z ddII zz x x x xμμππ=⎰ 由题图可知,()tan63z x d π=-=,故得到320d 3d b d x d x x ψπ-==⎰03[23I b b μπ 通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题图所示。

计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。

解 将空腔中视为同时存在J 和J -的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J -、均匀分布在半径为a 的圆柱内。

由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。

dbIz题 图d S由安培环路定律d CI μ⋅=⎰B l ,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为 020222b b b b b b r b b r b r J r B J r μμ⎧⨯<⎪⎪=⎨⨯⎪>⎪⎩ 电流密度为J -、均匀分布在半径为a 的圆柱内的电流产生的磁场为 020222a a a a a a r a a r a r J r B J r μμ⎧-⨯<⎪⎪=⎨⨯⎪->⎪⎩这里a r 和b r 分别是点a o 和b o 到场点P 的位置矢量。

将a B 和b B 叠加,可得到空间各区域的磁场为圆柱外:22222b a ba b a r r B J r r μ⎛⎫=⨯- ⎪⎝⎭ ()b r b > 圆柱内的空腔外:2022b a a a r B J r r μ⎛⎫=⨯- ⎪⎝⎭ (,)b a r b r a <> 空腔内: ()0022b a B J r r J d μμ=⨯-=⨯ ()a r a < 式中d 是点和b o 到点a o 的位置矢量。

《电磁场与电磁波》课后习题解答(第五章)

《电磁场与电磁波》课后习题解答(第五章)

习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。

导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。

当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。

也可以用静电能计算。

在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+= 移动点电荷Q 到无穷远处以后,系统的静电能为零。

因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。

5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。

解:需要加三个镜像电荷代替 导体面上的感应电荷。

在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。

镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。

5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。

证明:使用镜像法分析。

由于导体球不接地,本身又带电Q ,必须在导体球内加上两个镜像电荷来等效导体球对球外的影响。

在距离球心b=R 2/D 处,镜像电荷为q '= -Rq/D ;在球心处,镜像电荷为D Rq Q q Q q /2+='-=。

(完整版)电磁场与电磁波(杨儒贵_版)课后思考题答案.docx

(完整版)电磁场与电磁波(杨儒贵_版)课后思考题答案.docx

电磁场与波课后思考题1-1 什么是标量与矢量?举例说明 .仅具有大小特征的量称为标量.如:长度 ,面积 ,体积 ,温度 ,气压 ,密度 ,质量 ,能量及电位移等.不仅具有大小而且具有方向特征的量称为矢量 .如:力 ,位移 ,速度 ,加速度 ,电场强度及磁场强度 .1-2 矢量加减运算及矢量与标量的乘法运算的几何意义是什么矢量加减运算表示空间位移.矢量与标量的乘法运算表示矢量的伸缩.1-3矢量的标积与矢积的代数定义及几何意义是什么?矢量的标积 : A B A x B x A y B y A z B z A B cos ,A 矢量的模与矢量 B 在矢量 A方向上的投影大小的乘积 .矢积 :e x e y e z矢积的方向与矢量A,B 都垂直 ,且A B A x A y A z e z A B sin由矢量 A 旋转到 B,并与矢积构成右B x B y B z旋关系 ,大小为 A B sin1-4什么是单位矢量 ?写出单位矢量在直角坐标中的表达式.模为 1的矢量称为单位矢量. e a cos e x cos e y cos e z1-5梯度与方向导数的关系是什么?试述梯度的几何意义,写出梯度在直角坐标中的表示式 .标量场在某点梯度的大小等于该点的最大方向导数, 方向为该点具有最大方向导数的方向.梯度方向垂直于等值面,指向标量场数值增大的方向在直角坐标中的表示式:x e x y e y z e z1-6什么是矢量场的通量 ?通量值为正 ,负或零时分别代表什么意义?矢量 A 沿某一有向曲面S 的面积分称为矢量 A 通过该有向曲面S 的通量 ,以标量表示,即Ψ A dS通量为零时表示该闭合面中没有矢量穿过.S; 通量为负时表示闭合面中有洞 .通量为正时表示闭合面中有源1-7给出散度的定义及其在直角坐标中的表示式.d 散度:当闭合面S向某点无限收缩时,矢量 A 通过该闭合面S的通量div Alim S 与该闭合面包围的体积之比的极限称为矢量场 A 在该点的散度。

高等电磁理论-杨儒贵-课后习题详解

高等电磁理论-杨儒贵-课后习题详解

1-1利用fourier 变换,由时域形式的Maxwell方程导出其频域形式解:时域形式的Maxwell方程为:∇×H(r,t)=J(r,t)+ðD(r,t)ðt∇×E(r,t)=−ðB(r,t)ðt∇∙B(r,t)=0∇∙D(r,t)=ρ(r,t) Fourier变换的定义为F(ω)=∫f(t)+∞−∞e−iωt dt 将第一个方程两边同时进行Fourier变换得:∫∇×H(r,t) +∞−∞e−iωt dt=∫[J(r,t)+∞−∞+ðD(r,t)ðt]e−iωt dt对矢量场某点先取旋度再积分等于先积分再取旋度,整理得:∇×∫H(r,t)+∞−∞e−iωt dt=∫J(r,t)+∞−∞e−iωt dt+∫ðD(r,t)ðt+∞−∞e−iωt dt由于∫ðD(r,t)ðt+∞−∞e−iωt dt=∫e−iωt+∞−∞dD(r,t)=e−iωt D(r,t)|−∞+∞+iω∫D(r,t)+∞−∞e−iωt dt由Fourier 变换的绝对可积的条件可得:e−iωt D(r,t)|−∞+∞=0故∫ðD(r,t)ðt+∞−∞e−iωt dt=iω∫D(r,t)+∞−∞e−iωt dt∇×∫H(r,t)+∞−∞e−iωt dt=∫J(r,t)+∞−∞e−iωt dt+iω∫D(r,t)+∞−∞e−iωt dt因此:∇×H(r,ω)=J(r,ω)+iωD(r,ω)同理可得∇×E(r,ω)=−iωB(r,ω)∇∙B(r,ω)=0∇∙D(r,ω)=ρ1-2:各向异性的介电常数为ε̅=ε0[720240003]当外加电场强度为 (1) E 1=e x E 0 (2) E 2=e y E 0 (3) E 3=e z E 0(4) E 4=E 0(e x +2e y ) (5) E 4=E 0(2e x +e y ) 产生的电通密度。

电磁场与电磁波 课后习题答案

电磁场与电磁波 课后习题答案

习题1.1 已知z y x B z y x A ˆ2ˆˆ;ˆˆ3ˆ2-+=-+=,求:(a) A 和B 的大小(模); (b) A 和B 的单位矢量;(c)B A⋅;(d)B A⨯;(e)A 和B 之间的夹角;(f) A 在B 上的投影。

解:(a) A 和B 的大小74.314132222222==++=++==z y x A A A A A45.26211222222==++=++==z y x B B B B B(b) A 和B 的单位矢量z y x z y x A A aˆ267.0ˆ802.0ˆ535.0)ˆˆ3ˆ2(74.31ˆ-+=-+==z y x z y x B B bˆ816.0ˆ408.0ˆ408.0)ˆ2ˆˆ(45.21ˆ-+=-+==(c)A B ⋅7232=++=++=⋅z z y y x x B A B A B A B A(d) B A ⨯ z y x zyxB B B A A A z y xB A zyxz y xˆˆ3ˆ5211132ˆˆˆˆˆˆ-+-=--==⨯(e)A 和B 之间的夹角α根据αcos AB B A =⋅得764.0163.97cos ==⋅=AB B A α 019.40=α (f) A 在B 上的投影86.245.27ˆ==⋅=⋅B B A bA1.2如果矢量A 、B 和C 在同一平面,证明A ·(B ⨯C )=0。

证明:设矢量A 、B 和C 所在平面为xy 平面y A x A A y x ˆˆ+=y B xB B y x ˆˆ+=y C xC C y x ˆˆ+=z C B C B y C B C B x C B C B C C C B B B zy xC B x y y x z x x z y z z y zyxz y xˆ)(ˆ)(ˆ)(ˆˆˆ-+-+-==⨯zC B C B x y y x ˆ)(-= 0ˆˆ)(0)(=⋅-⨯=⨯⋅z zC B C B C B A x y y x1.3已知A =ααsin ˆcos ˆy x+、B ββsin ˆcos ˆy x -=和C ββsin ˆcos ˆy x +=,证明这三个矢量都是单位矢量,且三个矢量是共面的。

电磁场与电磁波课后习题及答案九章习题解答

电磁场与电磁波课后习题及答案九章习题解答

九章习题解答9.1 设元天线的轴线沿东西方向放置,在远方有一移动接收台停在正南方而收到最大电场强度,当电台沿以元天线为中心的圆周在地面移动时,电场强度渐渐减小,问当电场强度减小到解:元天线(电基本振子)的辐射场为j k rjθ-=E e可见其方向性函数为(),sin f θφθ=,当接收台停在正南方向(即090θ=)时,得到最大电场强度。

由s i n θ=得 045θ=此时接收台偏离正南方向045±。

9.2 上题中如果接收台不动,将元天线在水平面内绕中心旋转,结果如何?如果接收天线也是元天线,讨论收发两天线的相对方位对测量结果的影响。

解: 如果接收台处于正南方向不动,将天线在水平面内绕中心旋转,当天线的轴线转至沿东西方向时,接收台收到最大电场强度,随着天线地旋转,接收台收到电场强度将逐渐变小,天线的轴线转至沿东南北方向时,接收台收到电场强度为零。

如果继续旋转元天线,收台收到电场强度将逐渐由零慢慢增加,直至达到最大,随着元天线地不断旋转,接收台收到电场强度将周而复始地变化。

当接收台也是元天线,只有当两天线轴线平行时接收台收到最大电场强度;当两天线轴线垂直时接收台收到的电场强度为零;当两天线轴线任意位置,接收台收到的电场强介于最大值和零值之间。

9.3 如题9.3图所示一半波天线,其上电流分布为()11cos 22m I I kz z ⎛⎫=-<< ⎪⎝⎭(1)求证:当0r l >>时,020cos cos 22sin jkr m z I eA kr πθμπθ-⎛⎫ ⎪⎝⎭=⋅ (2)求远区的磁场和电场;(3)求坡印廷矢量; (4)已知22cos cos 20.609sin d ππθθθ⎛⎫ ⎪⎝⎭=⎰,求辐射电阻; (5)求方向性系数。

题9.3(1)图解:(1)沿z 方向的电流z I 在空间任意一点()0,P r θ产生的矢量磁位为 ()/20/2,4l jkrz z l I eA r dz rμθπ--=⎰假设0r l >>,则 1020cos cos r r z r r z θθ≈-⎧⎨≈+⎩120111r r r ≈≈ 将以上二式代入()0,z A r θ的表示式得()()()()()()()()12000/20000/2cos cos /20000/2cos cos 00cos cos ,4cos cos 4cos 4l jkrjkr m z l jk r z jk r z l ml jkr jkz jkz mkz ekz eI A r dz dz r r kz e kz e I dz r r I ekz e e dz r θθθθμθπμπμπ------+--⎧⎫⎡⎤⎡⎤⎪⎪=+⎨⎬⎢⎥⎢⎥⎪⎪⎣⎦⎣⎦⎩⎭⎡⎤=+⎢⎥⎢⎥⎣⎦⎡⎤=+⎣⎦⎰⎰⎰⎰()()()()(){}()()0/20000/20002200,2cos cos cos 4cos 1cos cos 1cos 41cos cos cos 1cos cos cos 224sin sin cos 2l jkr mz l jkr mjkr mjkr mI A r ekz kz dzr I ekz kz dz r I er I ekr μθθπμθθπππθθθθμπθθπμπ----=⎡⎤⎣⎦=++-⎡⎤⎡⎤⎣⎦⎣⎦⎡⎤⎛⎫⎛⎫-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭=+⎢⎥⎢⎥⎢⎥⎣⎦=⎰⎰2cos 2sin θθ⎛⎫ ⎪⎝⎭由此得证。

电磁场与电磁波课后习题及答案--第四章习题解答

电磁场与电磁波课后习题及答案--第四章习题解答

习题解答4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为U ,求槽内的电位函数。

解 根据题意,电位(,)x y ϕ满足的边界条件为 ① (0,)(,)0y a y ϕϕ== ② (,0)0x ϕ= ③0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a a ππϕ∞==∑由条件③,有01sinh()sin()n n n b n x U A a a ππ∞==∑两边同乘以sin()n x a π,并从0到a 对x 积分,得到002sin()d sinh()an U n xA x a n b a a ππ==⎰02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩L L ,故得到槽内的电位分布1,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a a ππϕππ==∑L4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。

上板和薄片保持电位U ,下板保持零电位,求板间电位的解。

设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。

a题4.1图解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为: ①22(,0)(,)0x x b ϕϕ==②2(,)0()x y x ϕ=→∞③002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b d b ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()en x bn n n y x y A b ππϕ∞-==∑由条件③有00100(0)sin()()n n U U y y d n y b A U U b y yd y b d b π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑两边同乘以sin()n yb π,并从0到b 对y 积分,得到0002211(1)sin()d ()sin()d dbn d U U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d b ππ故得到 (,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d n b b ππππ∞-=+∑4.3 求在上题的解中,除开0U y 一项外,其他所有项对电场总储能的贡献。

杨儒贵版高等电磁理论课后习题解答 第 4 章

杨儒贵版高等电磁理论课后习题解答 第 4 章
位分别为:
r2 r d cos r d sin sin
r d 时,电流源及其镜像在空间产生的矢量
Il r
1
2
1
A2 ez
Il jkr Il jkr e ez e 4 r2 4 r
2
所以空间的辐射场为:
1
1
kr kr kr Il Il (je jjkr1 je j kr2 ) sin E je je A1 A11sin sinsin ) EE j( (( sinsin A2 A22 sin ) jjje (e e A A ) e e e ) sin 44 r r Il kr kr Z Z kr IlIl je jjkr sin sin(kd sin sin ) e 0 Il 0 Il je j kr sin ee e sin( sin sin ) e e sinsin sin(kd sin sin e e sin sin( kd kd sin sin sin(kd sin sin ) 现方式做保护处理对用户上传分享的文档内容本身不做任何修改或编辑并不能对任何下载内容负责
4-2 应用镜像原理,如图4-2所示,r为场点到原点的距离,r1、r2分别为电流 源及其镜像到场点的距离,则
r1 r d cos r d sin sin
2
2
H e
E Il jkr e e sin sin(kd sin sin ) Z0 r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场与波课后思考题2-1 电场强度的定义是什么如何用电场线描述电场强度的大小及方向电场对某点单位正电荷的作用力称为该点的电场强度,以E 表示。

用曲线上各点的切线方向表示该点的电场强度方向,这种曲线称为电场线。

电场线的疏密程度可以显示电场强度的大小。

2-2给出电位与电场强度的关系式,说明电位的物理意义。

静电场中某点的电位,其物理意义是单位正电荷在电场力的作用下,自该点沿任一条路径移至无限远处过程中电场力作的功。

!2-3什么是等位面电位相等的曲面称为等位面。

2-5给出电流和电流密度的定义。

电流是电荷的有规则运动形成的。

单位时间内穿过某一截面的电荷量称为电流。

分为传导电流和运流电流两种。

传导电流是导体中的自由电子(或空穴)或者是电解液中的离子运动形成的电流。

运流电流是电子、离子或其它带电粒子在真空或气体中运动形成的电流。

电流密度:是一个矢量,以J 表示。

电流密度的方向为正电荷的运动方向,其大小为单位时间内垂直穿过单位面积的电荷量。

2-10运动电荷,电流元以及小电流环在恒定磁场中受到的影响有何不同 &运动电荷受到的磁场力始终与电荷的运动方向垂直,磁场力只能改变其运动方向,磁场与运动电荷之间没有能量交换。

当电流元的电流方向与磁感应强度B 平行时,受力为零;当电流元的方向与B 垂直时,受力最大,电流元在磁场中的受力方向始终垂直于电流的流动方向。

当电流环的磁矩方向与磁感应强度B 的方向平行时,受到的力矩为零;当两者垂直时,受到的力矩最大2-11什么是安培环路定理试述磁通连续性原理。

为真空磁导率,70 10π4-⨯=μ (H/m),I 为闭合曲线包围的电流。

安培环路定理表明:真空中恒定磁场的磁通密度沿任意闭合曲面的环量等于曲线包围的电流与真空磁导率的乘积。

真空中恒定磁场通过任意闭合面的磁通为0。

^磁场线是处处闭合的,没有起点与终点,这种特性称为磁通连续性原理。

2-12什么是感应电动势和感应磁通 ϕ-∇=E S J Id d ⋅=tqI d d =Bv q ⨯=F Bl I F⨯=d ISB B Il IlBl Fl T ====2)(B S I T ⨯=S I =m BT ⨯=m Il B l⎰=⋅ 0 d μ ⎰=⋅SS B 0d tl E ld d d Φ-=⋅⎰感应电场强度沿线圈回路的闭合线积分等于线圈中的感应电动势,即穿过闭合线圈中的磁通发生变化时,线圈中产生的感应电动势e 为线圈中感应电流产生的感应磁通方向总是阻碍原有刺磁通的变化,所以感应磁通又称反磁通。

2-13什么是电磁感应定律" 称为电磁感应定律,它表明穿过线圈中的磁场变化时,导线中产生感应电场。

它表明,时变磁场可以产生时变电场。

3-1、试述真空中静电场方程及其物理意义。

积分形式:∮sE•dS=q/ε ∮lE•dL=0 微分形式:!•E=ρ/ε !×E=0 物理意义:真空中静电场的电场强度在某点的散度等于该点的电荷体密度与真空介电常数之比;旋度处处为零。

3-2、已知电荷分布,如何计算电场强度?根据公式E (r )=∫v’ ρ(r’)(r-r’)dV’/4πε|r-r’|^3已知电荷分布可直接计算其电场强度。

3-3、电场与介质相互作用后,会发生什么现象? 会发生极化现象。

3-7、试述静电场的边界条件。

在两种介质形成的边界上,两侧的电场强度的切向分量相等,电通密度的法向分量相等;在两种各向同性的线性介质形成的边界上,电通密度切向分量是不连续的,电场强度的法向分量不连续。

介质与导体的边界条件:en×E=0 en•D=ρs :若导体周围是各向同性的线性介质,则En=ρs/ε φ/n=-ρs/ε。

3-8、自由电荷是否仅存于导体的表面由于导体中静电场为零,由式▽·D=p 得知,导体内部不可能存在自由电荷的体分布。

因此,当导体处于静电平衡状态时,自由电荷只能分布在导体的表面。

3-9、处于静电场中的任何导体是否一定是等为体 " 由于导体中不存在静电场,导体中的电位梯度▽=0,这就意味着到导体中电位不随空间变化。

所以,处于静电平衡状态的导体是一个等位体。

3-10、电容的定义是什么如何计算多导体之间的电容由物理学得知,平板电容器正极板上携带的电量 q 与极板间的电位差 U 的比值是一个常数,此常数称为平板电容器的电容3-11、如何计算静电场的能量点电荷的能量有多大为什么t e d d Φ-=⎰⎰⋅∂∂-=⋅S l S B tl E d d已知在静电场的作用下,带有正电荷的带电体会沿电场方向发生运动,这就意味着电场力作了功。

静电场为了对外作功必须消耗自身的能量,可见静电场是具有能量的。

如果静止带电体在外力作用下由无限远处移入静电场中,外力必须反抗电场力作功,这部分功将转变为静电场的能量储藏在静电场中,使静电场的能量增加。

由此可见,根据电场力作功或外力作功与静电场能量之间的转换关系,可以计算静电场能量。

点电荷的能量为: 设带电体的电量Q 是从零开始逐渐由无限远处移入的。

由于开始时并无电场,移入第一个微量d q 时外力无须作功。

当第二个d q 移入时,外力必须克服电场力作功。

若获得的电位为,则外力必须作的功为d q ,因此,电场能量的增量为d q 。

已知带电体的电位随着电荷的逐渐增加而不断升高,当电量增至最终值Q 时,外力作的总功,也就是电量为Q 的带电体具有的能量为·已知孤立导体的电位等于携带的电量q 与电容C 的之比,即代入上式,求得电量为Q 的孤立带电体具有的能量为3-12如何计算电场力什么是广义力及广义坐标如何利用电场线判断电场力的方向为了计算具有一定电荷分布的带电体之间的的电场力,通常采用虚位移法 广义力:企图改变某一个广义坐标的力广义坐标:广义坐标是不特定的坐标。

描述完整系统(见约束)位形的独立变量 利用电场线具有的纵向收缩与横向扩张的趋势可以判断电场力的方向。

<3-13试述镜像法原理及其应用是以一个或几个等效电荷代替边界的影响,将原来具有边界的非均匀空间变成无限大的均匀自由空间,从而使计算过程大为简化。

静电场惟一性定理表明。

只要这些等效电荷的引入后,原来的边界条件不变,那么原来区域中的静电场就不会改变,这是确定等效电荷的大小及其位置的依据。

这些等效电荷通常处于镜像位置,因此称为镜像电荷,而这种方法称为镜像法。

应用:第一,点电荷与无限大的导体表面 第二,电荷与导体球第三,线电荷与带电的导体圆柱 第四,点电荷与无限大的介质表面 3-15给出点电荷与导体球的镜像关系若导体球接地,导体球的电位为零。

为了等效导体球边界的影响,令镜像点电荷q' 位于球心与点电荷q 的连线上。

那么,球面上任一点电位为 可见,为了保证球面上任一点电位为零,必须选择镜像电荷为为了使镜像电荷具有一个确定的值,必须要求比值r r '对于球面上任一点均具有同一数值。

由图可见,若要求三角形△OPq 与△OqP相似,则=='f ar r =常数。

由此获知镜像电荷应为,镜像电荷离球心的距离d 应为这样,根据q 及q' 即可计算球外空间任一点的电场强度。

`CQ W 2e21=qq W Qed )( 0⎰=ϕCq =ϕC Q W 2e21=r qr q ''+=ϕ π4 π4εεqrr q '-='qfaq -='fad 2=I l B l ⎰=⋅ 0 d μ⎰=⋅SS B 0d 70 10π4-⨯=μJ B 0 μ=⨯∇若导体球不接地,则位于点电荷一侧的导体球表面上的感应电荷为负值,而另一侧表面上的感应电荷为正值。

导体球表面上总的感应电荷应为零值。

因此,对于不接地的导体球,若引入上述的镜像电荷q' 后,为了满足电荷守恒原理,必须再引入一个镜像电荷q",且必须令 显然,为了保证球面边界是一个等位面,镜像电荷q"必须位于球心。

事实上,由于导体球不接地,因此,其电位不等零。

由q 及q'在球面边界上形成的电位为零,因此必须引入第二个镜像电荷q"以提供一定的电位。

4-1、什么是弛豫时间它与导电介质的电参数关系如何 4-2、给出恒定电流场方程式的积分形式和微分形式。

积分形式: 微分形式:4-3、试述恒定电流场的边界条件。

在两种导电介质的边界两侧,电流密度矢量的切向分量不等,但其法向分量连续。

)4-4、如何计算导电介质的热耗 单位体积中的功率损失: 总功率损失:4-5、如何计算导电介质的电阻导电介质的电位满足拉普拉斯方程 ,利用边界条件求出导电介质中的电位,根据求出电流密度,进一步求出电流 .从而求电阻。

5-1、试述真空中恒定磁场方程式及其物理意义 ,物理意义:安培环路定理,式中0为真空磁导率,(H/m),I 为闭合曲线包围的电流。

真空中恒定磁场方程的微分形式为: 左式表明,真空中某点恒定磁场的磁感应强度的旋度等于该点的电流密度与真空磁导率的乘积。

右式表明,真空中恒定磁场的磁感应强度的散度处处为零。

可见,真空中恒定磁场是有旋无散的。

5-2、已知电流分布,如何求解恒定磁场 利用 }5-3、给出矢量磁位满足的微分方程式。

矢量磁位: 其满足矢量泊松方程: 0=⋅∇B V r r r r r J r B V ''-'-⨯'=⎰'d ) ()( 4π)(3 0 μS r r r r r J r B S S ''-'-⨯'=⎰'d )()(π4)( 30 μ⎰''-'-⨯'=l r r r r l I r B 30 )(d π4)(μA⨯∇=B 0=⋅∇J 0 =⨯∇J ⎰=⋅SS J 0d⎰=⋅l l J 0d J E p l⋅=UI V p P l ==d EJ σ=⎰⋅=SS J I d02=∇ϕJA 0 2μ-=∇q q '-=''无源区满足矢量拉普拉斯方程:5-4、磁场与介质相互作用后,会发生什么现象什么是顺磁性介质、抗磁性介质和铁磁性介质会发生磁化现象。

顺磁性介质:正常情况下原子中的合成磁矩不为零,宏观合成磁矩为零,在外加磁场作用下,磁偶极子的磁矩方向朝着外加磁场方向转动,因此使得合成磁场增强的介质 > 抗磁性介质:正常情况下原子中的合成磁矩为零,当外加磁场时电子发生进动,产生的附加磁矩方向总是与外加磁场方向相反,导致合成磁场减弱的介质。

铁磁性介质:在外磁场作用下,大量磁畴发生转动,各个磁畴方向趋向一致,且畴界面积还会扩大,因而产生较强的磁性的介质。

5-5、什么是磁化强度它与磁化电流的关系如何单位体积中磁矩的矢量和称为磁化强度。

相关文档
最新文档