Abstract Enhanced Parameter Identification for Complex Biomedical Models on the Basis of Fu
农田杂草抗药性概述
杨彩宏等:农田杂草抗药性概述
· 237 ·
害极大。据不完全统计,中国农田有 1290 多种杂草, 分属 105 科 560 属 。 [1] 常年受杂草危害的土地面积超 过 7 400 万 hm2,在中国现有防治水平下,按因杂草危 害农作物平均减产 8%估算,直接经济损失高达 900 多 亿元。而在全世界范围内,农作物受杂草危害平均减 产 9.7%,其中粮食作物减产 10.4%。印度研究人员报 道,仅由于杂草造成水稻产量损失 41.6%,小麦 16.0%, 玉米 39.8%,棉花 30.5%[2]。
1942 年 2,4-D 的发现,揭开了近代化学除草的新 纪元,而不到 10 年的时间,即 1950 年在美国夏威夷的 甘蔗田,发现了多年生杂草竹节花(又称铺散鸭跖草) (Commelina diffusa)对 2,4-D 产生了抗药性,1957 年在 加拿大安大略省,又发现了野胡萝卜(Daucus carota) 对 2,4-D 产生了抗药性[7-12],但是在起初的二十多年中 抗药性杂草只有零星发生。然而从 20 世纪 80 年代开 始,世界范围内大量应用除草剂,化学除草以其先进、 快速、经济、高效而成为现代农业必备的保障。世界除 草剂总产量(有效成分)每年为 70 万~80 万 t,约占化学 农药总量的 40%~50%,1990 年其销售值远远超过杀虫 或杀菌剂,但正如杀虫剂、杀菌剂一样,除草剂参与到 农业生态系统后,它所防治的对象便开始逐步产生生 态、生化或遗传的适应性[13]。1970 年 Ryan 报道了华盛 顿西部欧洲千里光(Senecio dubitabilis)对三氮苯类除 草剂产生抗性,之后全世界报道的抗药性杂草种类不 断增加。
这也给杂草的有效治理和现代农业生产提出了挑战。 20 世纪 90 年代至今农田杂草抗药性研究与治理已取 得了许多进展,笔者主要对农田杂草的危害现状和杂 草产生抗药性的历史、风险评估、检测方法及治理进行 了综述,为解决杂草抗药性问题提供理论参考。 1 农田杂草的危害现状
MatlabGUI在低质量指纹图像增强中的应用
计算机技术与发展
COMPUTER TECHNOLOGY AND DEVELOPMENT
Vol. 23 No. 7 July 2013
Matlab GUI 在低质量指纹图像增强中的应用
郭依正, 焦蓬蓬
( 南京师范大学泰州学院, 江苏 泰州 225300 )
收稿日期: 2012-09-25 修回日期: 2012-12-28
1
指纹识别过程
指纹识别过程通常包括图像获取 、 图像预处理
[2 ]
、
特征提取
[3 ]
、 特征匹配
[4 ]
等步骤, 如图 1 所示 。通常可
以通过光学取像设备 、 晶体传感器和超声波扫描等方 式获取图像; 由于取像设备 、 光照 、 现场环境 、 手指按压 力度 、 手指有油脂或汗渍等影响, 通过取像设备获得的 原始指纹图像是一幅含有多种噪声的灰度图像, 所以 后继要做图像预处理; 接着提取指纹图像的全局特征 和细节特征; 最终通过特征匹配来判断两枚指纹是否
0
引
言
[1 ]
文中结合 低 质 量 指 纹 图 像 增 强 问 题, 以经典的 不但拥有高性能数值计算能力, 而且可 Gabor 滤波图像增强算法为例, 给出了 M atlab GUI 设 计的一般步骤及具体实现过程 。
M 简单的图形用户界面 ( GUI, Graphical User Interfaces ) 。 特别是随着版本的 不断更新, 对 GUI 的支持也越丰富 。 目前已在系统仿 真、 图像处理 、 实验模拟等领域都得到了广泛的应用 。 另外, 随着计算机技术的飞速发展, 指纹识别已成 为生物特征识别的重要研究课题之一, 指纹作为一种 独特的身份特征已经得到了广泛的应用 。指纹识别系 统的性能很大程度上取决于获得的指纹图像质量, 因 各种原因采集到的图像往往存在不同程度的缺陷, 所 以对低质量的指纹图像进行图像增强以达到理想效果 是低质量指纹图像预处理的重要研究内容 。
Abstract常用表达和句式
回顾某领域已取得的研究结果或介绍相关知识常用动词: present, summarize, review, outline句式:… is presented in this paper.This paper reviews the method for dealing with…This article summarizes the theory on…阐明论文写作和研究目的常用词:名词:purpose, aim, objective, goal动词:aim, attempt to, initiate, intend to, seek句式:The purpose of this study is to explore new methods on …The paper attempts to define …in terms of…The study is aimed at finding out the basic similarities between … and …The main objective of the work is to justify…The primary goal of this research is …The main objective of our investigation has been to obtain some knowledge of …Based on recent research, the author intends to outline the framework of…The authors are now initiating some experimental investigation to establish…论文观点和作者观点常用词:argue, account for, address, characterize, concern, contribute, describe, disclose, deal with, devote to, explain, introduce, present, report句式:This paper presents the mathematical model and its algorithm used for …The calibration and experiment design of multivariate force sensors are discussed. This paper reports the preparation and quantum confinement effects of…The principles and methodology of language teaching are described in this article.This paper is mainly devoted to …介绍研究过程和研究范围常用词:过程:analyze, consider, discuss, examine, study, investigate, state, propose 范围:contain, cover, include, outline, scope, field, domain句式:The characteristic of …was investigated.The paper analyzes the possibility of …We study the one-step-synthesis method for … in this paper.This article discusses the method of calculation of …The principle of constructing … is proposedThis paper states the reasons for…This study identifies some procedures for …This article outlines the preliminary process of …The scope of the study covers…The study includes…The paper contains the specific topic on …介绍计算、测量常用词:calculate, compute, determine, estimate, measure, work out句式:This paper determines the proper temperature for …The cooling rate was calculated by means of…The rational rage of power is measured by …In the paper, we measured the orientation and estimated parameter for …The author worked out the probability of …The author has computed equilibrium constant K and …阐明论证常用词:confirm, demonstrate, find, identify, indicate, monitor, note, observe, point out, prove, provide句式:The result of calculation shows that…The initial particles are found to be …It is found that the amorphous silicon nitride show a tendency in…It is noted that … can be found in …The result provides a sound basis for …The study of those properties indicate…The experimental results demonstrate that…The effects of …were observed and monitored.说明试验过程常用词:experiment, test, sample句式:The samples of pyroelectric ceramics (电释热陶瓷)were collected by …We sampled the blood and urine of …The blood screening test for the AIDS antibody has been carried out on…We experimented on the sintering property(流延特性) of …The new protocol architecture for distributed multimedia systems has been tested in …介绍应用、用途常用词:application, use及其动词形式句式:In this paper, the czochralski crystal growth method has been applied in …… technique is used to …The application of the new design is to develop and maintain …展示研究结果常用词:result, cause, increase, lessen, as a result, result in, arrive at句式:As a result we have got pure particle of …The result of observation shows that …The finding of our research on methodologies in … is…The results of calculation show that the minimum velocity arrives at…The relationship between …and …is characterized by …The room temperature resistivity is lessened to …介绍结论常用词:conclude, summary, to sum up, lead to, in conclusion, conclusion句式:It is concluded that the absorption spectra of two kinds of particles include…We concluded that …It is concluded that…The conclusion of our research is …On the basis of …, the following conclusion can be drawn …Finally, a summary is given of …To sum up, we have revealed …Our argument proceeds in …The research has led to the discovery of …进行评述句式:There are hardly any data about …Middle management is considered as the go-between of …The shapes and locations of these inclusions are believed to be related to …The finding is acknowledged as essential to ...Existing methods are not sufficient for …It is difficult to improve the therapy under the conditions of …The disproportion of age groups will unfortunately lead to …The improper use of methods would seriously influence the performance of …The subject will deepen the understanding of …However, it does not mean that there is no limitation of …It is well-known that in the field of …, there are still difficulties and challenges. Environmental protection has become the most important concern of …推荐和建议常用词:propose, suggest, recommend句式:The calculation suggests that…Bulk silk is proposed to be the alternative of ordinary silk because …The finite element method is recommended to …提出进一步研究的可能性常用词:demand, desirable, expect, necessary, necessity, need, require, requirement 句式:Another term of the …need addressing because…However, the development of MRI is absolutely necessary for …To establish a …model continues to be a major concern for …The underway measurement of sea surface temperature has made it necessary to……requires more work on …More concern about the blood cleaning point out the need for …There is a growing demand for …There is a surge in the use of …Although there is already an efficient procedure, more study is still needed.突出论文重点句式:The development of… is the primary concern of this paper. Particular attention is paid on the cultivation of …Interface structure is emphasized in the article because …This paper concentrates on the effects of …The chief consideration is …。
中文语义角色标注的特征工程
中文语义角色标注的特征工程1刘怀军2,车万翔,刘挺(哈尔滨工业大学计算机学院,哈尔滨 150001)摘要:基于统计机器学习的语义角色标注在自然语言处理领域越来越受到重视,丰富多样的特征直接决定语义角色标注系统的性能。
本文针对中文的特点,在英文语义角色标注特征的基础上,提出了一些更有效的新特征和组合特征:例如,句法成分后一个词、谓语动词和短语类型的组合、谓语动词类别信息和路径的组合等,并在Chinese Proposition Bank(CPB)语料数据上,使用最大熵分类器进行了实验,系统F-Score由89.76%增加到91.31%。
结果表明,这些新特征和组合特征显著提高了系统的性能。
因此,目前进行语义角色标注应集中精力寻找丰富有效的特征。
关键词:语义分析;语义角色标注;特征工程;最大熵分类器Feature Engineering for Chinese SemanticRole LabelingHuaijun Liu, Wanxiang Che, Ting Liu(School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001)Abstract: In the natural language processing field, researchers have experienced a growth of interest in semantic role labeling by applying statistical and machine-learning methods. Using rich features is the most important part of semantic parsing system. In this paper, some new effective features and combination features are proposed, such as next word of the constituent, predicate and phrase type combination, predicate class and path combination, and so on. And then we report the experiments on the dataset from Chinese Proposition Bank (CPB). After these new features used, the final system improves the F-Score from89.76% to 91.31%. The results show that the performance of the system has a statistically significant increase. Therefore it is very important to find better features for semantic role labeling.key words: Semantic Parsing; Semantic Role Labeling; Feature Engineering; Maximum Entropy Classifier1基金资助:自然科学基金60435020, 60575042, 605030722作者简介:刘怀军(1982-),男,山西人,硕士研究生,hjliu@1引言语义分析就是根据句子的句法结构和句中每个实词的词义,推导出能够反映句子意义的某种形式化表示。
对比度受限自适应直方图均衡方法
对⽐度受限⾃适应直⽅图均衡⽅法龙源期刊⽹ /doc/3217139680.html对⽐度受限⾃适应直⽅图均衡⽅法作者:张丽来源:《电脑知识与技术》2010年第09期摘要:该⽂介绍了对⽐度增强的分类⽅法,主要介绍了对⽐度受限⾃适应直⽅图均衡法,其通过限制局部直⽅图的⾼度来限制局部对⽐度的增强幅度,从⽽限制噪声的放⼤。
关键词:图像;直⽅图;对⽐度中图分类号:TP391.4⽂献标识码:A⽂章编号:1009-3044(2010)09-2238-01Contrast Limited Adaptive Histogram EqualizationZHANG Li(Computer Office, Aviation University of Air Force, Changchun 130022, China)Abstract: The paper introduces the contrast sort methods, and introduces mainly the contrast limited adaptive histogram equalization, which enhance range by confining the height of local histogram, so limit noise magnification.Key words: image; histogram; contrast1 概述图像增强的⽬的就是采⽤各种数字处理技术改善图像的效果,使其更适于⼈或机器的分析处理。
图像的对⽐度增强分为直接法和间接法两⼤类。
直接法是⾸先测量图像的(局部或全局)对⽐度,然后通过提⾼对⽐度值以增强图像。
间接法是对通过修正灰阶直⽅图来增强图像,如灰阶变换和直⽅图均衡;直⽅图均衡实质上也属于灰阶变换,所不同的是其映射函数取决于图像灰度直⽅图的累积分布函数。
2 对⽐度受限⾃适应直⽅图均衡法对⽐度受限⾃适应直⽅图均衡法[1](CLAHE)通过限制局部直⽅图的⾼度来限制局部对⽐度的增强幅度,从⽽限制噪声的放⼤及局部对⽐度的过增强。
通信专业英文缩写名称简介
.通信专业英文缩略语缩略语英语解释中文解释AAM/CM Administration Module/Communication Module 管理和通信模块BBA BCCH Allocation BCCH分配BAM Back Administration Module 后管理模块BCC BTS Color Code 基站色码BCCH Broadcast Control CHannel 广播控制信道BCH Broadcast channel (transport channel) 广播信道(传输信道)BIE Base Station Interface Equipment 基站接口设备BITS Building Integrated Timing Supply 大楼综合定时供给系统BM Basic Module 基本模块BS Base Station 基站BS1 Abis Interface Abis接口BSC Base Station Controller 基站控制器BSIU Base Station Interface Unit 基站接口单元BSS Base Station Subsystem 基站子系统BTS Base Transceiver Station 基站收发信台CCA Cell Allocation 小区分配CBCH Cell Broadcast Channel 小区广播信道CC Country Code 国家码CCCH Common Control Channel 公共控制信道CCS Common Channel Signaling 共路信令方式CDU Combiner and Divider Unit 合分路单元CGI Cell Global Identification 全球小区识别码CIC Circuit Identification Code 电路识别码CRC Cyclic Redundancy Check 循环冗余校验CS-1 Code Scheme-1 编码模式-1(9.05kbit/s)CS-2 Code Scheme-2 编码模式-2(13.4kbit/s)CS-3 Code Scheme-3 编码模式-3(15.6kbit/s)CS-4 Code Scheme-4 编码模式-4(21.4kbit/s)CTN Central Switching Network Board 中央交换网板DDBF Database File 数据库文件DPC Destination (Signaling) Point Code 目的信令点编码DRX Discontinuous Reception 非连续接收DTX Discontinuous Transmission 非连续性发射EE3M E3 Sub-Multiplexer E3子复用设备EAC External Alarm Collection 外部告警采集ECSC Early Classmark Sending Control 早期类标发送控制EDU Enhanced Duplexer Unit 增强型双工单元EFR Enhanced full rate speech code 增强型全速率语音编解码EST Establishment 建立FFACCH Fast Associated Control Channel 快速随路控制信道FBC Photoelectric Conversion Board 光电转换板FBI Optical Fiber Interface Board 光接口板FPU Frame Processing Unit 帧处理单元FTC Full Rate Transcoder 全速率码变换器、全速率变码器FTP File Transfer Protocol 文件传输协议FUL Radio Signaling Link 无线信令链路GGALM Alarm board 告警板GCKS Clock source 时钟板GCTN Central switching Network board 中心交换网板GEMA Emergency Action board 双机倒换板GFBI Fiber Interface board 光纤接口板GLAP LAPD Protocol Process board LAPD协议处理板GMC2 Inter-Module Communication board,模块通信板GMCC Module Communication and Control board 模块通信控制板GMEM Memory board 数据库接口板GMPU Main Process Unit 主处理单元GNET Switching Network board 交换网板GNOD Node Communication Board 节点通信板GOPT Local Optical Interface Board 光纤通信板GPRS General Packet Radio Service 通用分组无线业务GPS Global Position System 全球定位系统GSM Global System for Mobile Communications 全球移动通信系统GSNT GSM Signaling Switching Network Board 信令交换网板HHDLC High-level Data Link Control 高级数据链路控制HO Handover 切换HPA High magnification Power Amplifier board 高增益功放板HSN Hopping Sequence Number 跳频序列号HW Highway 母线IID IDentification/IDentity 识别IND Indication 指示IOMU iSite Operation and Maintenance Unit 操作维护单元板IP Internet Protocol 互联网协议、网际协议LLAPD Link Access Protocol on the D-channel D信道上的链路访问协议LPN7 Common Channel Signaling Processing Board 公共信道信令处理板MMA Mobile Allocation 移动台(频率)分配MAIO Mobile Allocation Index Offset 移动分配索引偏移MCC Mobile Country Code 移动国家码MCK Main Clock board 主时钟板MFU Microcell Frame Unit 微蜂窝帧处理单元MMU Multiplication and Management Unit 复用管理单元MNC Mobile Network Code 移动网编号、移动网编码MS Mobile Station 移动台(手机)MSC Mobile Switching Center 移动交换中心MSM MSC Subrate channel Multiplexer MSC侧子复用板MTP Message Transfer Part 消息传递部分NNCC Network Color Code 网络色码NSS Network SubSystem 网络子系统OOM Opration and Maintenance 操作维护OMC Operation and MaintenanceCenter 操作维护中心OML Operation and Maintenance Link 操作与维护链路OMU Operation and Maintenance Unit 操作维护单元OPC Originating Point Code 源信令点编码PPb Pb Interface Pb接口PBCCH Packet Broadcast Control Channel 分组广播控制信道PBGT Power Budget 功率预算PBU Power Boost Unit 功率增强单元PCCCH Packet Common Control Channel 分组公共控制信道PCIC Packet Circuit Identity Code 分组电路标识码PCM Pulse-Code Modulation 脉冲编码调制PCU Packet Control Unit 分组控制单元PDH Plesiochronous Digital Hierarchy 准同步数字系列PDTCH Packet Data Traffic Channel 分组业务数据信道PLMN Public Land Mobile Network 公用陆地移动(通信)网PMU Power and Environment Monitoring Unit 电源环境监测板PSU Power Supply Unit 供电单元PWC Secondary Power Supply Board 二次电源板RRACH Random Access CHannel 随机接入信道RSL Radio Signaling Link 无线信令链路SSACCH Slow Associated Control Channel 慢速随路控制信道SAPI Service Access Point Identifier 业务接入点标识SCCP Signaling Connection Control Part 信令连接控制部分SCU Simple Combiner Unit 简单合路单元SDCCH Stand-alone Dedicated Control Channel 独立专用控制信道SITE Site 站点SM Sub-Multiplexer Interface 子复用板SMBCB Short Message Service Cell Broadcast 短消息业务小区广播SMI Sub-Multiplexer Interface 子复用板缩略语英语解释中文解释SP Signaling Point 信令点SS7 Signaling System Number 7 七号信令STP Signaling Transfer Point 信令转接点TTA Timing Advance 时间提前量TC Transcoder 码变换器TCH Traffic CHannel 业务信道TCSM Transcoder and Sub-Multiplexer 码变换与子复用单元(器)TEI Terminal Equipment Identifier 终端设备标识TES Transmission Extension power Supply unit 传输扩展供电单元TEU Transmission Extension Unit 传输扩展单元TFO Tandem Free Operation 免汇接运营TMU Timing/Transmission and Management Unit 定时/传输管理单元TRAU Transcoder & Rate Adaptation Unit 码变换器/速率适配单元TRX Transceiver 收发信机TS Timeslot 时隙TSC Training Sequence Code 训练系列号(编码)VVSWR Voltage Standing Wave Ratio 电压驻波比WWS Workstation 操作台A, Asub A-interface A接口AC Alternating Current 交流AC Access Class (C0 to C15) 接入级别(C0到C15)ACCH Associated Control Channel 随路控制信道ACELP Algebraic code excitation linear prediction 代数码激励线性预测ACOM Antenna Combiner 天线合路器AGCH Access Grant Channel 接入允许信道AM/CM Administration Module/ Communication Module 管理和通信模块ANSI American National Standard Institute 美国国家标准组织APC Automatic Power Control 自动功率控制API Application Program Interface 应用程序接口APL Advanced Phase Locking 高级时钟锁相ARFCN Absolute Radio Frequency Channel Number 绝对射频信道号ASIC Application Specific Integrated Circuit 专用集成电路AuC Authentication Center 鉴权中心BBA BCCH Allocation BCCH分配BAM Back Administration Module 后管理模块BCC BTS Color Code 基站色码BCCH Broadcast Control CHannel 广播控制信道BCF Base Control Function 基本控制功能BCH Broadcast channel (transport channel) 广播信道BER Bit Error Rate 误码率BHCA Busy Hour Call Attempt 忙时尝试呼叫BIE Base station Interface Equipment (board) 基站接口设备(板)BIOS Basic Input Output System 基本输入输出系统BITS Building Integrated Timing Supply 大楼综合定时供给系统BM Basic Module 基本模块BP Burst Pulse 突发脉冲BQ Bad Quality 质量差BS Base Station 基站BS1 Abis Interface Abis接口BSC Base Station Controller 基站控制器BSIC Base Station Identity Code 基站识别码BSMU Base Station Interface Unit 基站接口单元BSS Base Station Subsystem 基站子系统BSSAP Base Station Subsystem Application Part 基站子系统应用部分BSSGP Base Station Subsystem GPRS Protocol 基站系统GPRS协议BSSMAP Base Station Subsystem Management Application Part 基站子系统管理应用部分BSSOMAP Base Station Subsystem Operation and Maintenance Application Part 基站子系统操作与维护应用部分BTS Base Transceiver Station 基站收发信台BTSM Base Transceiver Station Management BTS管理BVC BSSGP Virtual Connection BSSGP虚拟连接CCA Cell Allocation 小区分配CAMEL Customized Applications for Mobile network Enhanced Logic 移动网络增强逻辑的客户化应用CBA Cell Bar Access 小区禁止接入CBC Cell Broadcast Center 小区广播中心CBCH Cell Broadcast CHannel 小区广播信道CBCCH Cell Broadcast Control Channel 小区广播控制信道CBQ Cell Bar Qualify 小区禁止限制CBSM Cell Broadcast Short Message 小区广播短消息CC Country Code 国家码CC Calling Control 呼叫控制CC Connection Confirm 呼叫控制CCB Call Control Block 呼叫控制块CCBS Completion of Calls to Busy Subscribers 遇忙回呼CCCH Common Control Channel 公共控制信道CCH Control Channel 控制信道CCS Common Channel Signaling 共路信令方式CD Call Deflection 呼叫偏移CDB Cell Broadcast Database 小区广播数据库CDU Combining and Distribution Unit 合分路单元CELP Code Excited Linear Prediction 码激励线性预测CGI Cell Global Identity 小区全球识别码CI Cell Identity 小区识别CIC Circuit Identify Code 电路识别码CIC Carrier Interface Controller board 载频接口控制器CIR Carrier to Interference Ratio 载干比CKSN Ciphering Key Sequence Number 密钥序列号CKV Clock Drive board 时钟驱动板CM Connection Management 接续管理CPU Central Processing Unit 中央处理单元CR Connection Request 连接请求CRC Cyclic Redundancy Check 循环冗余校验CRO Cell Reselect Offset 小区重选偏移CS Coding Scheme (信道)编码方式CS-1 Code Scheme-1 编码模式-1(9.05kbit/s)CS-2 Code Scheme-2 编码模式-2(13.4kbit/s)CS-3 Code Scheme-3 编码模式-3(15.6kbit/s)CS-4 Code Scheme-4 编码模式-4(21.4kbit/s)CTN Central Switching Network Board 中央交换网板DDB DataBase 数据库DBF Database File 数据库文件DBMS Database Management System 数据库管理系统DC Direct Current 直流DCCH Dedicated Control Channel 专用控制信道DCL Diagnostic Control Link 诊断控制链路DDN Digital Data Network 数字数据网DL Downlink 下行链路DLC Data Link Connection 数据链路连接DLCEP Data Link Connection End Point 数据链路连接端点DLCEPI Data Link Connection End Point Identifier 数据链路连接端点标识DLCI Digital Link Connection Identity 数据链路连接标识DNS Domain Name Server 域名服务器DPC Destination (Signaling) Point Code 目的信令点编码DRDBMS Distributed Relational DBMS 分布式关系数据库管理系统DRX Discontinuous Reception (mechanism) 不连续接收DSC Downlink Signaling fault Count 下行信令故障计数DSP Digital Signal Processor 数字信号处理器DTAP Direct Transfer Application Part 直接传输应用部分DTMF Dual Tone Multi-frequency 双音多频(收号器)DTX Discontinuous transmission (mechanism) 不连续发送(机制)EE-Abis Enhanced Abis 增强型AbisE3M E3 Sub-Multiplexer 增强型E1子复用设备EA Early Allocation 预分配EAC External Alarm Collection 外部告警采集EC Emergency Call 紧急呼叫ECSC Early Classmark Sending Control 早期类标发送控制ECT Explicit Call Transfer 显示呼叫转移EDU Enhanced Duplexer Unit 增强型双工单元EFR Enhanced full rate speech code 增强型全速率语音编解码EIR Equipment Identity Register 设备识别寄存器EM Extended Measurement 扩展测量EMC Electromagnetic Compatibility 电磁兼容性EST Establishment 建立ETS European Telecommunication Standard 欧洲电信标准ETSI European Telecommunication Standard Institute 欧洲电信标准组织FFACCH Fast Associated Control CHannel 快速随路控制信道FBC Photoelectric Conversion Board 光电转换板FBI Optical Fiber Interface Board 光接口板FCCH Frequency Correction CHannel 频率校正信道FCS Frame Check Sequence 帧校验序列FDMA Frequency Division Multiple Access 频分多址FH Frequency Hopping 跳频FIR Finity Impulsion Response 有限冲击响应FN Frame Number 帧号FPU Frame Processing Unit 帧处理单元FR Frame Relay 帧中继FTAM File Transfer Access and manipulation 文件传输、接入及使用FTC Full Rate Transcoder 码变换板FTP File Transfer Protocol 全速率码变换器FUC Frame Unit Controller 帧单元控制器FUL Radio Signaling Link 无线信令链路GG-Abis GPRS Abis GPRS AbisGALM Alarm board 告警板GCKS Clock source 时钟板GCTN Central switching Network board 中心交换网板GEMA Emergency Message Automatic Transmission System 双机倒换板GFBI Fiber Interface board 光纤接口板GGSN Gateway GPRS Support Node 网关GPRS支持节点GLAP LAPD Protocol Process board LAPD协议处理板GMC2 Inter-Module Communication board 模块通信板GMCC Module Communication and Control board 模块通信控制板GMEM Memory board 数据库接口板GMM GPRS Mobility Management GPRS移动性管理GMPU Main Processing Unit 主处理单元GMSC Gateway Mobile Switching Center 关口局GMSK Gaussian Minimum Shift-frequency Keying 高斯滤波最小移频键控GNET Intra-module switching network board 交换网板GNOD Node Communication Board 节点通信板GOPT Local Optical Interface Board 光纤通信板GPRS General Packet Radio Service 通用分组无线业务GPS Global Position System 全球定位系统GPWS GSM Secondary Power board 二次电源板GSM, GSM900, GSM1800 Global System for Mobile communications 全球移动通信系统,900MHz的GSM系统,1800MHz的GSM系统GSN GPRS Support Node GPRS支持节点GSNT GSM Signaling Switching Network Board 信令交换网板GT Global Title 全局码GTP GPRS Tunnelling Protocol GPRS隧道协议HHC/HY COM Hybrid Combiner 混合桥型合路器HCS Hierarchical Cell Structure 小区分层结构HDLC High level Data Link Control 高级数据链路控制HDSL High speed Digital Subscriber Line 高速数字用户线HLR Home Location Register 归属位置寄存器HO Handover 切换HPA High magnification Power Amplifier board 高增益功放板HSC Hot Swap Controller 热倒换控制器HSN Hopping Sequence Number 跳频序列号HW Highway 高速通路IID IDentification/IDentity 识别IEC International Electrotechnical Commission 国际电工委员会IMEI International Mobile station Equipment Identity 国际移动终端设备标识IMSI International Mobile Station Identity 国际移动用户识别码IND Indication 指示IOMU iSite Operation and Maintenance Unit 操作维护单元板IP Internet Protocol 互联网协议ISDN Integrated Services Digital Network 综合业务数字网ISO International Standard Organization 国际标准化组织ISR Interrupt Service 中断服务程序ISUP Integrated Services Digital Network User Part/ISDN User Part (七号信令之)ISDN用户部分ITU International Telecommunication Union 国际电信联盟ITU-T International Telecommunication Union - Telecommunication Standardization Sector 国际电信联盟-电信标准部IWF Inter-working Function 互连功能J- -KLL2ML Layer 2 Management Link 层2管理链路L3MM Layer-3 Mobility Management 层三移动管理LA Location Area 位置区LAC Location Area Code 位置区码(LAC)LAI Location Area Identity 位置区标识LAP Link Access Protocol 协议处理板LAPD Link Access Protocol on the D-channel D信道上的链路访问协议LAPDMAIL LAPD Mail Box LAPD邮箱LAPDm Link Access Protocol on the Dm channel Dm信道上的链路访问协议LLC Logical Link Control 逻辑链路控制LMT Local Maintenance Terminal 本地维护终端LNA Low Noise Amplifier 低噪声放大器LPN7 Common Channel Signaling Processing Board 公共信道信令处理板MMA Mobile Allocation 移动台(频率)分配MAC Media Access Control 媒质接入控制MAIO Mobile Allocation Index Offset 移动分配索引偏移MAP Mobile Application Part 移动应用部分MBR Multiband Report 多频报告MCC Mobile Country Code 移动国家码MCK Main ClocK board 主时钟板MCP Multiple Communication-Protocol Processor 多重通信协议处理器MDC Message Discrimination 消息鉴别MDSL Medium Bit-rate Digital Subscriber Loop 中速数字用户环线MDT Message Distribution 消息分配ME Mobile Equipment 移动设备MFU Microcell Frame Unit 微蜂窝帧处理单元MM Mobility Management 移动性管理MMU Multiplication and Management Unit 复用管理单元MNC Mobile Network Code 移动网号MNS Mobile Network Signaling 移动网信令MR Measurement Result 测量结果MR Measurement Report 测量报告MRP Multiple Reuse Pattern 多重复用方式MRT Message Routing 消息路由MS Mobile Station 测量报告MSC Mobile services Switching Centre, Mobile Switching Centre 移动交换中心MSISDN Mobile Station International ISDN Number 移动台国际ISDN号码MSM MSC Subrate channel Multiplexer MSC侧子复用板MT Mobile Terminal 移动终端MTBF Mean Time Between Failure 平均无故障时间MTP Message Transfer Part 消息传输部分NNC Network Control 网络控制NCC Network Color Code 网络色码NCH Notification Channel 通知信道NE Network Equipment 网络设备NM Network Management 网络管理NS Network Service 网络服务NSE Network Service Entity 网络服务实体NSS Network SubSystem 网络子系统OO&M, OM Operations & Maintenance 操作与维护OACSO Off Air Call Set up 不占用空中通道的呼叫启动OAM Operation Administration and Maintenance 运行管理和维护OMAP Operation and Maintenance Application Part 操作维护应用部分OMC Operations & Maintenance Centre 操作维护中心OML Operation and Maintenance Link 操作与维护链路OMU Operations & Maintenance Unit (board) 操作维护单元(板)OOP Object Oriented Programming 面向对象的程序设计OPC Originating Point Code 源信令点编码OPT Optic Interface board 光纤通信板OS Operation System 操作系统OSI Open System Interconnection 开放系统互连模型PPA Power Amplifier 功率放大器PAGCH Packet Access Grant Channel 分组接入允许信道PBCCH Packet Broadcast Control Channel 分组广播控制信道PBGT Power Budget 功率预算PBU Power Boost Unit 功率增强单元Pb Pb Interface Pb接口PbSL PCU-BSC Signaling Link PCU-BSC间信令链路PCCCH Packet Common Control Channel 分组公共控制信道PCH Paging CHannel 寻呼信道PCIC Packet Circuit Identity Code 分组电路标识码PCM Pulse-Code Modulation 脉冲编码调制PCU Packet Control Unit 分组控制单元PD Protocol Discrimination 协议识别码PDCH Packet Data Channel 分组数据信道PDH Plesiochronous Digital Hierarchy 准同步数字系列PDN Packet Data Network 分组数据网PDP Packet Data Protocol 分组数据协议PDTCH Packet Data Traffic Channel 分组业务数据信道PI Peripheral Interface 外设接口部件PIN Personal Identity Number 个人识别码PLL Phase Locked Loop 锁相环路PLMN Public Land Mobile Network 公用陆地移动网络PMU Power and Environment Monitoring Unit 电源环境监测板PNCH Packet Notification Channel 分组通知信道POMU Packet Operation & Maintenance Unit 分组操作维护单元PON Passive Optical Network 无源光网络PPCH Packet Paging Channel 分组寻呼信道PRACH Packet Random Access Channel 分组随机接入信道PSDN Public Switched Data Network 公用数据交换网PSI Packet System Information 分组系统消息PSK Phase Shift Keying 相移键控PSTN Public Switched Telephone Network 公用电话交换网PSU Power Supply Unit 供电单元PT Penalty Time 惩罚时间PTCCH Packet Timing advance Control Channel 分组定时提前控制信道PTM Point To Multipoint 点到多点PTM-M Point To Multipoint Multicast 点对多点广播PTM-SC Point to Multipoint Service Center 点到多点数据服务中心PTP Point To Point 点对点PWC Secondary Power Supply Board 电源控制板QQoS Quality of Service 业务质量RRACH Random Access Channel 随机接入信道RE Reestablishment 呼叫重建RF Radio Frequency 射频RLC Radio Link Control 无线链路控制RLM Radio Link Management 无线链路管理RPE-LTP Regular Pulse Excitation-Long Term Prediction 规则脉冲激励-长期预测RPPU Radio Packet Process Unit 无线分组处理单元RR Radio Resource 无线资源RSA Rivest-Shamir-Adleman 通用关键子密码方法RSL Radio Signaling Link 无线信令链路RTE Radio Test Equipment 天线测试设备RX Receiver/Reception 收信机/接收RXLEV Received signal level 接收信号等级RXQUAL Received Signal Quality 接收信号质量SSABM Set Asynchronous Balanced Mode 置异步平衡模式SACCH Slow Associated Control Channel 慢速随路控制信道SACCH/C4 Slow Associated Control Channel/SDCCH/4 慢速随路控制信道/SDCCH/4 SACCH/C8 Slow Associated Control CHannel/SDCCH/8 慢速随路控制信道/SDCCH/8 SACCH/T Slow Associated Control CHannel/Traffic channel 慢速随路控制信道/业务信道SACCH/TF Slow Associated Control Channel/Traffic channel Full rate 慢速随路控制信道/全速率业务信道SAP Service Access Point 服务接入点SAPI Service Access Point Identifier 业务接入点标识SCCP Signaling Connection Control Part 信令连接控制部分SCH Synchronization CHannel 同步信道SCMG SCCP Management SCCP管理SCU Simple combining Unit 简单合路单元SDCCH Stand-alone Dedicated Control CHannel 独立专用控制信道SDH Synchronous Digital Hierarchy 同步数字系列SDU Service Data Unit 业务数据单元SGSN Serving GPRS Support Node 服务GPRS支持节点SID Silence Descriptor 静噪指示SIG Signaling 信令SIM Subscriber Identity Module 用户识别卡SITE Site 站点SLM Signaling Link Management 信令链路管理SLS Signaling Link Selection 信令链路选择码SM Sub-Multiplexer Interface 子复用板SM-SC Short Message - Service Center 短消息中心SMBCB Short Message Service Cell Broadcast 短消息业务小区广播SMC Short Message Center 短消息中心SMI Sub-Multiplexer Interface 子复用板SMS Short Message Service 短消息业务SMS-GMSC Short Message Service - Gateway MSC 短消息关口MSCSMS-IWMSC Short Message Service Interworking MSC 短消息互联MSCSMSCB Short Message Service Cell Broadcast 短消息小区广播SMUX Sub-Multiplexer 子复用器SNDCP SubNetwork Dependent convergence Protocol 子网相关的收敛协议SOR Support Optimization Routing 支持优选路由SP Signaling Point 信令点SRM Signaling Route Management 信令路由管理SS Supplementary Service 补充业务SS7 Signalling System No.7 七号信令SSN SubSystem Number 子系统号STM Signaling Traffic Management 信令业务管理STP Signaling Transfer Point 信令转接点TTA Timing Advance 定时提前量TAI Timing Advance Index 时间提前量索引TBF Temporary Block Flow 临时数据块流TC Transcoder 码变换器TCH Traffic Channel 业务信道TCH/F A full rate TCH 全速率业务信道TCH/F2.4 A full rate data TCH (2.4kbit/s) 全速率数据业务信道(2.4kbit/s)TCH/F4.8 A full rate date TCH (4.8kbit/s) 全速率数据业务信道(4.8kbit/s)TCH/F9.6 A full rate data TCH (9.6kbit/s) 全速率数据业务信道(9.6kbit/s)TCH/FS A full rate Speech TCH 全速率话音业务信道TCI Terminal Interface board 终端接口板TCP Transmission Control Protocol 传输控制协议TCSM TransCoder & Sub-Multiplexer 码变换与子复用单元TDMA Time Division Multiple Access 时分多址TE Terminal Equipment 终端设备TEI Terminal Equipment Identifier 终端设备识别码TES Transmission Extension power Supply unit 传输扩展供电单元TEU Transmission Extension Unit 传输扩展单元TFI Transport Format Indicator 传输格式指示TFO Tandem Free Operation 免汇接运营TLLI Temporary Link Level Identity 临时链路等级标识TMSC Tandem Mobile Switching Centre 汇接移动交换中心TMSI Temporary Mobile Subscriber Identifier 临时移动用户标识符TMU Timing/Transmission and Management Unit 定时/传输管理单元TN Timeslot Number 时隙号TNI Terminal Network Interface 终端网络接口部件TO Temporary Offset 临时偏移TRAU Transcoder & Rate Adaptation Unit 码变换器/速率适配单元TRX Transceiver (board) 收发信机TS Timeslot 时隙TSC Training Sequence Code 训练系列号(编码)TUP Telephone User Part(SS7) 电话用户部分UUA Unnumbered Acknowledge 无编号证实UDP User Datagram Protocol 用户数据报协议UDT Unit Data 单位数据UI Unnumbered Information (frame) 无编号信息帧Um 空中接口USF Uplink State Flag 上行链路状态标识USSD Unstructured Supplementary Service Data 非结构化补充业务数据VVAD Voice Activity Detection 话音激活检测VBS Voice Broadcast Service 话音广播呼叫业务VEA Very Early Allocation 很早分配VGCS Voice Group Call Service 话音组呼业务VLR Visitor Location Register 拜访用户位置寄存器VM Voice Mailbox 语音邮箱VSAT Very Small Aperture Terminal 甚小天线卫星地球站WWDT Watchdog Timer 看门狗WS Workstation 操作台XxDSL x Digital Subscriber Line x数字用户线YZ爱尔兰表:某基站站型为S4/4/4。
图像增强算法综述
图像增强算法综述①靳阳阳, 韩现伟, 周书宁, 张世超(河南大学 物理与电子学院, 开封 475001)通讯作者: 韩现伟摘 要: 图像增强算法主要是对成像设备采集的图像进行一系列的加工处理, 增强图像的整体效果或是局部细节,从而提高整体与部分的对比度, 抑制不必要的细节信息, 改善图像的质量, 使其符合人眼的视觉特性. 首先, 本文从图像增强算法的基本原理出发, 归纳了直方图均衡图像增强、小波变换图像增强、偏微分方程图像增强、分数阶微分的图像增强、基于Retinex 理论的图像增强和基于深度学习的图像增强算法, 并讨论了它们的改进算法. 然后,从视觉效果、对比度、信息熵等方面对几种算法进行了定性和定量的对比, 分析了它们的优势和劣势. 最后, 对图像增强算法的未来发展趋势作了简单的展望.关键词: 图像增强; 直方图均衡; 小波变换; 微分方程; Retinex 理论; 深度学习引用格式: 靳阳阳,韩现伟,周书宁,张世超.图像增强算法综述.计算机系统应用,2021,30(6):18–27. /1003-3254/7956.htmlReview on Image Enhancement AlgorithmsJIN Yang-Yang, HAN Xian-Wei, ZHOU Shu-Ning, ZHANG Shi-Chao(School of Physics and Electronics, Henan University, Kaifeng 475001, China)Abstract : Image enhancement algorithm mainly process the captured images to enhance the overall effect or local details,increasing the overall and partial contrast while suppressing unwanted details. As a result, the quality of the images is improved, conforming to the visual perception of the human eye. Firstly, according to the basic principles of image enhancement algorithms, this study analyzes those based on histogram equalization, wavelet transform, partial differential equations, fractional-order differential equations, the Retinex theory and deep learning, and their improved algorithms.Then, the qualitative and quantitative comparisons between image enhancement algorithms are carried out with regard to visual effect, contrast, and information entropy to indentify the advantages and disadvantages of them. Finally, the future development trend of image enhancement algorithms is briefly predicted.Key words : image enhancement; histogram equalization; wavelet transform; differential equation; Retinex theory; deep learning在全球信息化大幅发展的时代, 对于这个世界的认识越来越依靠于信息的爆炸性传递. 大部分人认识世界的主要途径还是眼睛的可视性, 人眼所看到的一切都可以化作图像的形式. 图像的获取、生成、压缩、存储、变换过程自然会受到各种状况的影响, 例如获取图像时会因为天气原因, 不同光照条件, 图像亮度也有着细微的变化, 同样由于仪器设备的质量, 参数的设置, 人员的操作都会使图像质量在一定程度上的损伤, 影响图像的质量. 图像增强算法的出现, 无疑是对受损的图像做一个“修补”的工作, 以此来满足各样的需求. 图像增强的目的是为了适应人眼的视觉特性,且易于让机器来进行识别. 近些年来, 图像增强的发展计算机系统应用 ISSN 1003-3254, CODEN CSAOBNE-mail: Computer Systems & Applications,2021,30(6):18−27 [doi: 10.15888/ki.csa.007956] ©中国科学院软件研究所版权所有.Tel: +86-10-62661041① 收稿时间: 2020-10-12; 修改时间: 2020-11-05; 采用时间: 2020-11-17; csa 在线出版时间: 2021-06-01涉及了很多领域, 其中包括了遥感卫星成像领域、医学影像领域、影视摄影等各领域[1].要想真正地实现图像增强的效果, 首先对于整个图像来讲, 要提高图像部分和整体的对比度, 细节也不能忽略; 其次应提高图像的信噪比, 抑制噪声的产生,对“降质”的图像处理; 然后是对于增强过的图像来讲,避免出现局部增强不适, 影响人眼的观看模式.下面我们将列出几类典型的且应用范围比较广的图像增强算法以及改进的算法. 直方图均衡(HE)技术原理是对原图像的灰度直方图从比较集中的某个灰度区间转换为全部灰度区域内的均匀分布[2]; 由此算法进行转化的局部直方图均衡化[3], 符合图像局部特性; Kim 等提出的保持亮度的双直方图均衡算法(BBHE)[4],最大亮度双直方图均衡(MMBEBHE)算法有效地保持图像亮度[5]; 迭代阈值的双直方图均衡算法(IBBHE)[6]用迭代的方法达到增强对比度和亮度保持的效果; 彩色图像直方图均衡算法[7], 运算复杂度很低, 合并图像的视觉效果很好. 基于偏微分方程(PDE)的增强方法是把图像作为水平集或高维空间中的曲面, 再根据曲线和曲面演化逐步来增强图像的对比度[8]; 基于全变分模型插值的图像增强方法[9], 保留原图像的细节, 提高了对比度; 基于HE的偏微分方程增强方法, 在梯度域增强对比度基础上[10]提出新梯度变换函数. 小波变换中增强本质是图像信号分解为不同频段图像分量[11]; 小波变换图像多聚集模糊增强方法[12], 增强后的图像较为清晰; 基于离散余弦变换(DCT)和离散小波变换(DWT)的图像增强方法, 提高图像的质量, 同时减少计算复杂度和内存使用量[13]; 基于小波分析和伪彩色处理的图像增强方法[14], 在降噪增强的同时进一步提高图像分辨率. 基于量子力学偏微分方程的缺陷图像增强的研究[15]. 基于PDE的红外图像增强, 很好改进了传统对比度增强方法的不足[16]; 基于PDE平滑技术是一种新兴的图像增强滤波技术, 实质性、开创性的研究在图像增强滤波中引入的尺度空间理论[17]. 基于LBPV (Local Binary Pattern Variance)的分数阶微分图像增强算法[18],在图像纹理和细节方面处理效果比现有分数阶算法效果更好; 自适应分数阶微分理论指纹图像增强算法改进了传统分数阶微分形式, 提高了计算精度[19]. 基于多尺度Retinex的HSV彩色快速图像增强算法, 在HSV 颜色模型中有与Multi-Scale Retinex (MSR)等同的结果, 处理时间短[20]; 基于多尺度Retinex的数字射线照相增强算法, 改善对比度, 抑制噪声[21]; MSR与颜色恢复(MSRCR)算法增强的图像在复杂的情况下进行识别物体[22]; 基于变分Retinex方法的图像增强, 良好结合了MSRCR和变分方法的优点, 保证图像自然度[23].近年来, 基于深度学习的图像处理算法迎来了一个新的时代[24]. Hu等利用超分辨卷积神经网络(SRCNN)方法提高了风云卫星亮温图像的峰值信噪比, 结果较传统方法更精细[25]; Li等利用深度学习来增强低光图像, 提出利用深度的卷积神经网络进行学习, 提高图像质量[26].1 图像增强算法的介绍1.1 直方图均衡算法直方图均衡化算法, 简言之就是对图像直方图的每个灰度级来进行统计[3]. 实现归一化的处理, 再对每一灰度值求累积分布的结果, 可求得它的灰度映射表,由灰度映射表, 可对原始图像中的对应像素来进行修正, 生成一个修正后的图像.1.1.1 传统标准直方图均衡算法f HE传统直方图均衡算法是通过图像灰度级的映射,在变换函数作用下, 呈现出相对均匀分布的输出图像灰度级, 增强了图像的对比度. 该算法是相对于图1中n=1, 均衡函数为的简化模型[27], 即:f HEX k= {X0,X1,···,X L−1}其中, 函数代表直方图均衡过程, 其大致过程为: 已知输入和输出图像为X和Y, 总灰度级为L, 则存在, 均衡后输出和输入图之间有如下变换关系:c(X k)其中, 展现的累积概率分布表示函数输入图像灰度级.图1 全局均衡算法的模型L=∞如果输入图像看作一个连续随机变量, 即,则输出图像自然是一个随机变量, 输出图像灰度级均衡后的概率分布将趋于均匀, 则输出图像的亮度均值为:2021 年 第 30 卷 第 6 期计算机系统应用得到均衡后图像的均值分布与原图像无关, 由此可知其不能有效保持原始图像的亮度, 由于原图像各灰度级概率密度的差异, 简并现象的产生明显变多.1.1.2 保持亮度的双直方图均衡算法BBHE 实质是利用两个独立的子图像的直方图等价性[4]. 两个子图像的直方图等价性是根据输入图像的均值对其进行分解得到, 其约束条件是得到均衡化后的子图像在输入均值附近彼此有界作为基于图像均值进行的分割, 均衡后图像均值偏离原始图像均值的现象不会出现, 达到了亮度保持的目的, 其算法流程如下:G mean 1)计算输入图像均值, 根据均值将原始直方图分为左右两个子直方图.P L (i )P R (i )2)分别计算左右两个子直方图的灰度分布概率直方图和, 即:N L N R 其中, 和分别表示左右两个子直方图的总像素数,L 表示图像总灰度级数.cd f L (i )cd f R (i )3)计算左右两子直方图的累积分布直方图和, 即:tab L (i )tab R (i )4)计算左右两个映射表和, 合并之后得到最终的映射表tab , 其中round 表示四舍五入取整, 即:对于一些低照度和高亮的图像, 均值会处于较低和较高的地方, 若此时基于均值进行分割并分别均衡的话, 很大程度上会导致一个有大量数据的子直方图在小范围内进行均衡的情况出现, 另一个只有少量数据的子直方图却在较宽的范围内均衡.1.2 小波变换图像增强算法19世纪80年代Morlet 提出小波变换的概念, 数学家Merey 在十几年后提出小波基构造思想, 随着Mallat 的加入, 两个人共同建立了小波变换算法. 通过小波逆变换将同态滤波处理的低频分量和经自应阈值噪、改进模糊增强的高频分量得到增强处理后的红外图像[28].1.2.1 标准小波变换图像增强小波理论具有低熵和多分辨率的性质, 处理小波系数对降噪有一定作用, 噪声主要在高通系数中呈现,对高低通子带均需要增强对比度和去噪处理. 标准小波变换图像增强(WT)将图像分解为1个低通子图像和3个具有方向性的高通子图像, 高通子图像包括水平细节图像、垂直细节图像和对角细节图像[29]. 小波变换最大的特点是能较好地用频率表示某些特征的局部特征, 而且小波变换的尺度可以不同[30].1.2.2 改进后的小波变换图像增强算法针对传统方法对图像多聚焦模糊特征进行增强会出现图像不清晰、细节丢失现象, 小波变换图像多聚焦模糊特征增强方法, 利用背景差分法将目标图像的前景区域提取出来, 背景区域亮度会随时间发生变化,进而完成背景区域特征更新; 根据全局像素点熵值和预设阈值校正加强模糊特征, 突出小波变换图像边界局部纹理细节信息, 完成增强变换. 基于小波变换域的医学图像增强方法[31], 是基于Shearlet 变换改进的Gamma 校正, 采用改进的伽玛校正对低频进行处理, 利用模糊对比函数增强图像细节, 增强图像的对比度.二进小波变换简单的对信号尺度参数实现了离散化, 不过仍具备和连续小波变换同样的平移不变特性.利用二进小波变换将指纹图像分解[32], 步骤如下:1)首先将获取的指纹图像进行尺度的分解, 这样得到的频率分量为一低三高;2)对低频分量进行直方图均衡;3)对3个高频分量先进行高斯拉普拉斯掩膜锐化, 得到锐化后的图像;4)直方图均衡后的低频分量和处理后的3个高频分量进行二进小波逆变换重构, 得到增强后的图像.1.3 偏微分方程图像增强算法u (x 1,x 2,···,x n )关于未知函数的偏微分方程是形如式(11)的等式:计算机系统应用2021 年 第 30 卷 第 6 期x =(x 1,x 2,···,x n )Du =u x 1,u x 2,···,u x n 其中, , , F 是关于x 和未知函数u 加上u 的有限多个偏导数的基础函数. 偏微分方程(Partial Differential Equation, PDE)是微分方程的一种, 如果一个微分方程出现多元函数的偏导数, 这种方程就是偏微分方程[33].1.3.1 标准偏微分方程图像增强V l o (p )V l (p )l o V l o (p )V l (p )l o l o l o 假设和分别为两幅图像和l 的对比度场, 若与在每一点上具有相同的梯度方向,但前者大小均大于后者, 则图像应该比l 具有更高的对比度, 可以将看作l 的增强图像. 实际上, 从图像l 到图像的过程就是标准PDE 图像增强实现的过程,可以由以下式子来描述它们的关系:V l o (p )式中, 为增强后图像的对比度场; k 为增强因子,一般情况下k >1, 过大的话会增大噪声. 对于式(12),图像l 是已知的, 其解为:φl o (p )式中, 是一个与坐标无关的常数. 可看到两幅图像之间的动态范围存在k 倍的差距. 对于可在计算机屏幕上显示的数字图像, 其动态范围为0 ~ 255. 我们要做到先要对的对比度场进行约束, 之后开始按照步骤运算, 最后才能得到比较准确的数据.1.3.2 改进的偏微分方程增强方法∇u max ∥∇u ∥min为避免增强图像梯度场同时造成噪声的危害加剧,寻找一种比较适合的增强方法. 定义原图像的数值梯度函数为, 梯度模的最大值为, 最小值为, 增强之后的图像梯度为S [10]:∥∇u ∥[min ∥∇u ∥,max ∥∇u ∥][0,max ∥∇u ∥]式中, 表示梯度场的方向信息. 经过改进的梯度函数梯度场从的区域内映射到内. 原本纹理突显出来的同时保留梯度值较大的边缘.基于量子力学偏微分方程的缺陷图像增强研究方法[15]. 航空材料缺陷的图像增强对缺陷的定性和定量性能起着至关重要的作用, 由于复合材料分布不均匀,将导致缺陷成像对比度不高, 会让识别和量化的难度加大. 算法主要分为两个步骤: 首先是根据量子力学理论, 计算图像边缘的量子概率; 在此基础上, 建立融合各向异性量子概率的偏微分方程来增强航空材料缺陷图像. 此算法可以在有效抑制噪声和减少成像不均匀性的同时, 更好保留缺陷的特征, 增强图像的对比度.1.4 分数阶微分方程增强算法近些年, 分数阶微积分在多领域都有了突破性进展[34]. 分数阶微分不仅可以提升图像中的高频分量, 还可以以一种非线性形式保留图像中低频分量所带有的性能. 常用的分数阶微分定义有G-L 、R-L 、Caputo 三种定义, 其中最常用的是采用非整型分数阶微积分的G-L 定义[35].1.4.1 图像增强的分数阶微分算子构造m ×n 让图像像素邻域中任一像素与对应系数进行乘法运算, 得到的结果再进行和运算, 得到像素点所在位置的回复, 当邻域的大小为, 要求的系数会很多. 这些系数被排列成一个矩阵, 称为滤波器、模板或者掩模[36].f (x ,y )在整数阶微分方程的增强算子中, 有一类是拉普拉斯算子, 对任一二元连续函数来讲, 其拉氏变换可表示为:f (x ,y )f (x ,y )f (x ,y )x ∈[x 1,x 2]y∈[y 1,y 2]n x =[x 2−x 1]n y =[y 2−y 1]由于在图像中, 两个相邻像素点之间灰度产生差异的距离最小, 因此图像在它的x 和y 方向上灰度值的变化只能以像素之间的最小距离为单位来进行数值度量和分析, 所以的最小等分间隔只能设为: h =1, 如果图像中x 和y 方向的持续区间分别为和, 则最大等分份数分别为和.将上式拉普拉斯变换写成离散的表示形式, 对x 方向和y 方向重新定义, 得到它的二阶微分表示:根据以上定义, 可以得到:拉氏算子还要对处理前后的图像完成进一步的叠加, 其方式如下:2021 年 第 30 卷 第 6 期计算机系统应用在雾天图像中应用算子增强图像, 边缘轮廓还有纹理部分的效果会很容易看到, 不过若是图像像素中某一范围灰度变化不明显, 细节可能受到损失. 因此,构建图像增强的分数阶微分算子, 将整数阶微分扩展到分数阶微分上并且应用于图像增强中[37].1.4.2 改进的分数阶微分算子增强图像相比传统的分数阶微分算法的不足, 提出新的改进算法, 在极端条件处理拍摄的交通图像时, 具有良好效果. 上文提到的指纹图像增强算法, 对传统形式加以改造, 在计算精度上有所提升, 进而构造了更加高精度的分数阶微分掩模. 通过对像素周围的纹理对比从而逐点选择微分阶, 明确的选择了具有二阶精度的分数阶微分形式来构造IRH 算子, 并对算子结构进行相应的改进, 之后利用图像的梯度信息和局部统计信息, 结合中心像素对相邻像素的影响, 建立自适应分数阶微分的自适应函数, 此法保留了指纹纹线和图像纹理细节, 对于降噪起到很好的作用.1.5 Retinex 图像增强算法S (x ,y )L (x ,y )R (x ,y )S (x ,y )L (x ,y )Retinex 是retina(视网膜)和cortexv(大脑皮层)组成的, Retinex 算法由美国物理学家提出[38]. Retinex 理论的基础是人类视觉系统的色彩恒常性, 人类视觉感知系统的色知觉存在“先入为主”的特性, 即光源条件发生改变, 视网膜接收到的彩色信息也会被人们的大脑驳回. Retinex 理论的依据就是是原始图像可以分解为照射图像和反射图像, 最重要的就是让摆脱的影响, 以便得到图像的反射属性.1.5.1 经典的Retinex 图像增强对数域进行操作可以把乘法运算变成简单的加法运算, 进而出现了多种Retinex 算法. 经典的有: 单尺度Retinex 算法(SSR)、多尺度Retinex 算法(MSR)和带色彩恢复的多尺度Retinex 算法(MSMCR)等[39].针对运算速度缓慢的问题, 在1986年, Jobson 等[40]将高斯低通滤波与Retinex 结合, 改进了Land 提出的中心环绕Retinex 算法(Center/Surround Retinex), 提出了单尺度Retinex(SSR)算法. 在SSR 算法中, Jobson 等创新的使用高斯函数与图像进行卷积的方式来近似实现了入射分量的表达. 它的数学表达式如式(20)表示:I i (x ,y )i ∈(R ,G ,B )G (x ,y ,c )∗L i (x ,y )其中, 表示原始图像的第i 个通道分量的像素值,颜色通道中的一个, 表示中心环绕函数, 是一种卷积操作表示, 入射分量的表达可以借用Jobson 等的成果, 则可以看做入射图像的第i 个通道分量. SSR 的实现过程如式(21)至式(23)所示:由于SSR 算法处理要对图像细节对比度和色彩的保留做到很好的发展, 而尺度c 又相对难做到极好的运用, MSR 算法的出现, 在很大程度上解决了这一问题, 起到了平衡图像色彩和细节的良好效果.1.5.2 改进的Retinex 图像增强Retinex 算法对于图像增强的效果需要经过精确且复杂的计算, 最后的结果精确度越高, 增强效果将会更好. 文献[20]中基于多尺度Retinex 的HSV 彩色快速图像增强算法. 在HSV 模型中用多尺度Retinex 进行图像增强, 由于颜色转换的非线性, 计算起来非常复杂. 使用亮度校正的MSR 算法基于HSV 颜色模型和修正的V 频道输出图像的RGB 分量的线性形式减少30–75%的平均处理时间, MSR 算法在Haar 小波变换低频区域应用亮度校正的处理速度有很明显优势, 平均加速度接近3倍. 文献[22,23]中介绍了MSRCR 算法. 由于传统均值移位算法有不少的不足, 改进后, 对要增强的图像可以在情况复杂下进行识别物体, 增强对比度的同时, 光晕现象的产生被消灭, 噪声得到抑制,保证图像自然度. 基于Retinex 提出一种自适应的图像增强方法, 其中包括如下4个步骤: (1)用引导滤波器估计其照度分量; (2)提取图像的反射分量; (3)对反射分量进行颜色恢复校正; (4)后处理. 由于雾霾和照度较低, 自然生成的图像质量比较差, 而此法不管是在定量还是定性上都突出了更好的优势. 此算法最终的结果图像具有清晰的对比度和生动自然的颜色[41].1.6 基于深度学习的图像增强算法在当今社会经济科技奋进之时, 深度学习的发展可谓是如日中天, 特别是在图像增强方面.1.6.1 卷积神经网络图像增强算法神经网络(neural networks)最基本的组成结构是计算机系统应用2021 年 第 30 卷 第 6 期神经元(neuron), 神经元概念源于生物神经网络[42]. 卷积神经网络(Convolutional Neural Network, CNN)在传统神经网络基础上, 引入了卷积(convolution)和池化(pooling), CNN 的建筑灵感来自于视觉感知[43]. CNN 是深度学习领域最重要的网络之一, CNN 在计算机视觉和自然语言处理等诸领域都有很大成就. 卷积神经网络的特性比较突出, 除了可以实现权值共享外, 可调的参数相对来说不多, 对二维图像这类的, 它的平移、倾斜、缩放包括其他形变都拥有着极高的不变性.CNN 相比于一般的神经网络, 具有很大优势[44]: (1)局部连接. 每个神经元只与少数神经元相连, 有效地减少了参数, 加快了收敛速度; (2)重量共享. 一组连接可做到同时分享相同的权值, 进一步降低了所需的参数;(3)降采样降维. 池化层利用图像部分相关的依据对图像进行降采样, 降低运算数据量, 留存有效的信息值.卷积神经网络大致包含4部分, 卷积层、池化层、全连接层以及反卷积层, 各自具有不同作用, 承担独自的工作. 深度越深, 网络性能越好; 随着深度增加, 网络性能逐渐饱和.1.6.2 基于深度学习图像增强的改进算法f o=F (g )F (g )Hu 等基于深度学习方法增强MMSI 亮温图像, 设计卷积神经网络重建风云四号卫星MMSI 的亮温图像和风云三号卫星微波成像仪亮温图像[25]. 在根据SRCNN进行实现映射函数, 式中, g 为监测的天线温度的图像, 可用于复原, 使其尽可能接近地面真实高分辨率亮温图像f . 映射函数F 的完成可以依据学习思想, 构建一种卷积神经网络, 为了让观测图像数据重新构建为理想的高分辨数据, 需要对卷积神经网络进行一系列特征变换, 此过程即达成卷积核的卷积操作.相比古老的插值方法而言, SRCNN 方法除了提高图像的峰值信噪比之外, 在提高图像细节较古老的方法也有很大的提高.2 图像增强算法的评价和对比2.1 各种算法增强效果的分析通过对论文文献研究比对, 以及对于其中的经典算法以及改进的算法, 对应用广泛的上述6大类图像增强算法进行较概括的研究分析.图2是几种不同算法得到的增强图像. 从增强图像的效果来看, HE 增强效果是对图像的动态范围进行拉大实现的, 增强效果随动态范围增加而变差. BBHE算法均衡后的图像在增强对比度的同时很好保持原图像的平均亮度. IBBHE 根据各子图像的直方图分别进行独立的均衡化处理, IBBHE 增强效果更好. WT 算法增强图像细节信息, 但是增加了噪声. 小波变换图像多聚集模糊增强方法, 对图像增强后, 图像较为清晰, 细节没有丢失, 效果较好. PDE 和TVPDE 算法放大了图像对比度场, 增强后图像都有较高对比度[45]. 自适应分数阶微分可以很好降噪. SSR 和MSR 算法去除了图像中照度分量影响, 还原景物本身的亮度信息, MSRCR 处理后的图像比原图像细节增加了, 亮度有所提高, 颜色有一定矫正, 对颜色的恢复存在失真现象. 基于深度学习的图像增强算法通过复杂的神经网络, 进行大量的训练, 得到的模型同时减少了训练时间, 取得了更好的精度.2.2 算法增强效果的对比对一幅图像的增强效果来讲, 需要对图像对比度和信息熵来进行评价和比较, 可以对图像有很好认识.图像对比度的计算公式:I i ,j 其中, 为中心像素点的灰度值, N 为图像局部块内像素点的个数. 为了计算一幅完整图像的对比度, 需要对图像中所有部分块对比度总体的平均值来表示.图像的信息熵公式如下:p (k )式中, 为灰度级k 的概率密度, M 为最大的灰度级.表1中为第一幅图通过不同算法得到的图像质量的客观结果评价, 评价指标为对比度和信息熵. 通过对文献中算法的研究以及本文中对增强算法的分析对比, 我们得到表2中对不同算法优缺点的总结.3 增强算法发展趋势及有意义的研究方向根据上文所介绍的不同图像增强算法及实验分析对比结果, 可预见未来的图像增强算法发展将有以下特点: 超分辨率、多维化、智能化和超高速.1)超分辨率, 对获得的低分辨率图像进行增强从而得到超高分辨率的图像, 重点是对采集分辨率以及显示分辨率做进一步的提升, 突破技术壁垒限制, 向时空感知超分辨率迈进.2021 年 第 30 卷 第 6 期计算机系统应用。
增强分数泊松模型文本视频帧中检测和识别
Fractional poisson enhancement model for text detectionand recognition in video framesSangheeta Roy a,Palaiahnakote Shivakumara a,Hamid A.Jalab a,Rabha W.Ibrahim b,Umapada Pal c,Tong Lu d,na Faculty of Computer Science and Information Technology,University of Malaya,Kuala Lumpur,Malaysiab Institute of Mathematical Sciences,University of Malaya,Kuala Lumpur,Malaysiac Computer Vision and Pattern Recognition Unit,Indian Statistical Institute,Kolkata,Indiad National Key Lab for Novel Software Technology,Nanjing University,Nanjing,Chinaa r t i c l e i n f oArticle history:Received11April2015Received in revised form13October2015Accepted15October2015Available online23October2015Keywords:Text detectionText recognitionLaplacian operationFractional Poission modelText enhancementa b s t r a c tPerforming Laplacian operation on video images is a common technique to improve image contrast toachieve good text detection and recognition accuracies.However,it is a fact that when Laplacianoperation enhances contrast,at the same time it introduces too many noises.To alleviate this,theexisting methods propose different enhancement methods andfilters.In this paper,we propose ageneralized enhancement model based on fractional calculus to increase the quality of images obtainedby Laplacian operation.The proposed method considers edges and their neighbor information to derive amathematical model for enhancing low contrast information in video as well as in scene images.Experimental results of text detection and recognition methods on different databases show that theproposed enhancement model improves their accuracies significantly.The enhancement model iscompared with standard enhancement models to show that the proposed model outperforms theexisting models in terms of quality measures.The usefulness of the proposed model is validated throughtext detection and recognition experiments.&2015Elsevier Ltd.All rights reserved.1.IntroductionDay by day video text detection and recognition is receivinggreater attentions by researchers with the aim of improving theperformances of the existing text detection and recognitionmethods because real time applications like the systems forassisting a blind person to walk freely on roads,safely driving,andtracking license plates of moving vehicles,often require more than90%detection and recognition accuracies[1–5]for security andsurveillance purposes.However,achieving such a high accuracy isan elusive goal for researchers because video images suffer fromdegradations severely,which are caused by motion blur,lighting,non-uniform illumination,text movements and complex back-ground[3,6,7].To overcome these problems,existing methods[8–13]have been proposed in literature for enhancing text informa-tion in video images based on gradient operation with Laplacianmask because Laplacian helps in identifying abrupt changes frombackground to foreground and vice versa providing high positiveand negative peaks.This is useful for both text detection andrecognition as this information is the basis for extracting featuresto detect text and separate foreground(text)from background inbinarization.For example,Shivakumara et al.[10]used highpositive and negative peaks for segmenting the words in each textline in video.Phan et al.[11]used the transition from backgroundto foreground and vice versa for text candidate selection to detecttext in video images.Similarly,the Laplacian operation has been used for binariza-tion and recognition of text in video or images[12,13].It is truethat Laplacian helps in enhancing text information and textseparation;however,it introduces too many noises while per-forming Laplacian operation over the image.To get rid of thisproblem,the existing methods[14–17]usually propose differentcriterion based onfilters to remove noise effect caused by Lapla-cian operation.It is evident from the following methods.Shiva-kumara et al.[14]proposed wavelet and color features for textdetection in video,where an enhanced image obtained by thecombination of R,G and B color spaces is considered as the inputfor Laplacian operation to avoid noise effect in the selection of textcandidates.Shivakumara et al.[16]also proposed a Laplacianapproach for multi-oriented text detection in video,where FourierContents lists available at ScienceDirectjournal homepage:/locate/prPattern Recognition/10.1016/j.patcog.2015.10.0110031-3203/&2015Elsevier Ltd.All rightsreserved.n Corresponding author.E-mail addresses:2sangheetaroy@(S.Roy),shiva@.my(P.Shivakumara),hamidjalab@.my(H.A.Jalab),rabhaibrahim@.my(R.W.Ibrahim),umapada@isical.ac.in(U.Pal),lutong@(T.Lu).Pattern Recognition52(2016)433–447transform is proposed as an ideal low pass filter to remove the noises introduced by Laplacian operation.Fig.1illustrates the problem by testing an existing text detection method [14]that uses wavelet and color features,in which automatic parameter tuning is also applied for binarization [18]before Laplacian and after Laplacian with the help of Optical Character Recognizer (OCR)available publicly [19].It is noticed from Fig.1that for the images shown in (a),the text detection method detects texts but gives more false positives for the input image compared to the enhanced image.On the other hand,the same text detection method misses a few texts and gives more false positives for the Laplacian image compared to the input image due to noise effect.That is,the text detection method detects texts properly and gives fewer false positives for the enhanced image given by the proposed model (it will be discussed later in proposed methodology section)com-pared to both of the input and the Laplacian images.The same conclusion can be drawn from the results shown in Fig.1(b)–(d),where the OCR engine misses a few characters for the texts in the input image and gives garbage values for the texts in the Laplacian image,but correctly recognizes the texts in the enhanced image.This shows that there is a need for a generalized model to remove such operational effects.From the above discussion,we can infer that there is no con-sistent enhancement method for reducing the noise effect of Laplacian operation.To the best of our knowledge,there is no generalized enhancement model for the distortions caused by Laplacian or gradient operations so far.2.Related workSeveral methods have been developed for text detection and recognition in video in the past decade [1,2].We can classify the existing methods broadly into (1)Connected component based,(2)Texture based,and (3)Gradient and edge based methods.Connected component based methods are simple,which explore the properties of character components for text detection.Since these methods use the characteristics of character components,shape analysis of characters is always required.However,due to the distortion effect caused by Laplacian operation as well as low resolution and complex background of video,it is hard to get accurate shapes of character components.Therefore,these meth-ods may not give promising results for video text detection.Forexample,Rong et al.[20]proposed a two level algorithm for text detection in natural scene images based on the characteristics of character components.Chen et al.[21]proposed a method for robust text detection in natural scene images using Maximally Stable Extremal Regions (MSER)and stroke width distance based features.Yin et al.[22]proposed robust text detection in natural scene images based on MSER,clustering and character classi fier.The method studies the characteristics of character components for the output of MSER to classify them as text candidates.Single link clustering and character classi fier are used for detecting true text candidates.Since the above discussed methods assumes that a given image has high contrast,the methods like MSER outputs character components.However,if the same methods deployed on video image,the performance of the method degrades severely due to low contrast and low resolution.Therefore,these methods are sensitive to complex background,distortions and low contrast.To overcome the problem of complex background,many methods have been proposed by using texture features for text detection in video [1,2].These methods consider the appearance pattern of text as a special texture property.However,since de fining the texture property for text components is hard,the methods give a poor accuracy for the texts of different fonts and font sizes.Additionally,most of the methods extract a large number of features and adopts expensive classi fiers for improving text detection accuracy.Therefore,they are computationally expensive for real time applications.For example,Shivakumara et al.[14,16,23]proposed wavelet,color features,Fourier with color spaces and Fourier with Lapalacian for text detection in video.These three methods are good for low contrast images but are computationally expensive since they use expensive transfor-mation.In addition,the performances of the methods degrade when an input image contains distortion caused by operations and motions.To ease the computational burden,methods have been pro-posed for text detection in video using gradient and edge infor-mation.Since edge and gradient information provides signi ficant cues such as high gradient values for text pixels and vital infor-mation of the character components lying in vertical and hor-izontal directions of edges,these methods work well for text detection in video.As a result,they are popular compared to connected component and texture based methods because of simplicity and effectiveness in gradient and edge operations [1,2].Therefore,most of the state-of-the-art methods exploregradient“PICERI” “z· HEBBABI-—TPICEQIE _; I” “EPICERIE”Fig.1.Text detection and recognition results for an input video image,its Laplacian image and enhanced image.(a)Text detection by the text detection method [14]for the input,the Laplacian and the enhanced images.(b)Text line images chosen from respective results in (a).(c)Binarization results of the method [18]for respective text line images in (b).(d)Recognition results of the OCR engine [19]for the respective results in (c).S.Roy et al./Pattern Recognition 52(2016)433–447434and edge information in different ways to improve their perfor-mances.For example,Epshtein et al.[24]proposed canny edge images and stroke width transform(SWT)for text detection in natural scene images.Phan et al.[11]proposed a Laplacian method for text detection in video,where the combination of Laplacian and k-means clustering is used for text detection.Shivakumara et al.[15]proposed multi-oriented video scene text detection using a Bayesian classifier and boundary growing.However,this method produces many false positives for complex background images and hence gets a low precision.Huang et al.[17]proposed a new video text extraction method based on stroke information. The method extracts a gradient image of text rows and gets its edge map.Then the method uses the Laplacian image and the edge map to retrieve a character stroke image of text rows.The main weakness of the method is the use of geometrical properties of character components because when complex background and low contrast exist,it is often hard to obtain character components without disconnections.In addition,the performance of the method degrades for distorted images.It is noticed from the discussions on gradient and edge based methods that although they are computationally inexpensive in giving good results,these methods are said to be sensitive to the distortions brought by gradient operations and the noises created by other causes such as non-uniform illumination and motion blur. In addition,different methods use different criteria for removing the noises created by gradient operations and distortions.This results in inconsistency for the methods.Therefore,there is a scope for developing a generalized enhancement model for reducing the effect of distortions created by gradient operations especially the Laplacian operation.In the same way,there are lots of methods proposed for text recognition in literature[1].The existing methods described in the literature solve this problem in two ways:(1)recognizing text by proposing their own features and classifiers,which generally do not use binarization and available OCRs.In other words,they develop a separate OCR for recognizing video text.(2)Recognizing text by developing a robust binarization method such that the available OCR can be used for recognition in video.The former is too expensive and has its own limitations,such as the use of a classifier and the training of samples,which restrict the ability of being adapted from different scripts,data and applications.On the other hand,the latter is inexpensive compared to the former as it makes use of available OCRs.Therefore,the current research focusses on the latter to solve the video text recognition problem rather than developing a separate OCR which is not advisable.For example,Roy et al.[25]proposed a method for recognizing texts through binarization,which works based on the concept of fusion.Though this method works well for video texts,it does not deal with arbitrary orientations.Moghaddam and Cheriet pro-posed[26]a multi-scale framework for adaptive binarization of degraded document images using Otsu thresholding.However, Otsu thresholding is good only when we have different intensity values compared to the background.This constraint may not be true for video.Chattopadhyay et al.[27]proposed a robust OCR for recognizing texts in different document images by selecting appropriate binarization methods.However,it is hard to make a choice of such binarization methods by studying the content of an image.Howe[18]proposed a document binarization method with automatic parameter tuning.This method proposes an automatic procedure to choose parameter values based on samples and training.Wolf et al.[28]proposed text localization,enhancement and binarization in multimedia documents.Howe[13]also pro-posed Laplacian energy for document binarization.The method explores Laplacian properties like the transition from background to foreground and vice-versa for binarization.Ayyalasomayajula and Brun[12]proposed document binarization using topological clustering guided Laplacian energy segmentation.In summary,we can observe from the above discussions that most of the binarization methods directly or indirectly use the transition information from background to foreground and vice versa for separating text and non-text pixels.At the same time,we can also observe that to reduce the noise effect created by Laplacian operation, these methods propose differentfiltering techniques.This shows that there is no generalized model for reducing the effect of Laplacian operation.Therefore,this paper focuses on developing a generalized enhancement model for reducing noise effect.3.Proposed modelAs noticed from the literature review discussed in the previous section,most of the text detection and recognition methods use Laplacian properties for improving their performances.Therefore, we consider the noises created by Laplacian as case study in this work for developing an enhancement model.The main advantage of this model is that it is developed for enhancing the output of Laplacian operation rather than considering manually added noises as in literature[29,30].As a result,we can conclude that the proposed model can be used as an enhancement technique for distortions created by other causes.The proposed method is structured into two sub-sections. Section 3.1describes the overview of the proposed fractional Poisson enhancement model,and Section3.2presents derivations of the fractional Poisson model along with illustrations.3.1.Overview of the Fractional Poission modelFractional calculus and its applications are widely used in physical and engineering sciences.Moreover,fractional differ-entiation is considered as an excellent approach to describe the general properties of various materials and processes[29,30].Over the past50years,various operators of fractional calculus have been developed,such as Grünwald–Letnikov,Erdélyi–Kober, Caputo,Weyl–Riesz,and Riemann–Liouville operators[29,30].In thefield of image processing,fractional calculus has received a significant attention in image texture enhancement,and in image denoising.All the results that are based on fractional calculus operators showed that these models are effective and reliable,thus they result in high levels of permanent immunity against different types of noises[29,30].The logic behind image enhancement base on fractional Pois-son is that the images obtained by Laplacian operation will be simultaneously introduced with insignificantly changes in gray level.However,the nonlinearly of fractional Poisson maintains high-frequency marginal features in areas wherein the changes in gray level are considerable,and the enhancement of low-frequency details in areas wherein the changes in gray level are insignificant.Motivated by this observation,we utilize fractional calculus to increase the quality of the images obtained by Lapla-cian operation.Image enhancement techniques are used to process an original image such that the result is more appropriate for a specific appli-cation than the original one.In this paper,we propose a generalized enhancement model based on fractional Poisson to increase the quality of the images obtained by Laplacian operation.Here image enhancement refers to change the original values of digital pixels to obtain better contrasts between targets and their backgrounds.S.Roy et al./Pattern Recognition52(2016)433–4474353.2.Construction of fractional meanOur investigation is based on the Riemann –Liouville fractional differential operator of the order 0o αo 1[31]D αf t ðÞ¼d Zt a ðt ÀτÞÀαΓ1ÀαðÞf τðÞd τ:ð1ÞThe following equation corresponds to the fractional integral operator for a continuous function f (t )of the order α40:I αa f t ðÞ¼Z ta ðt ÀτÞαÀ1ΓαðÞf τðÞd τ:ð2ÞBy using Riemann –Liouville fractional differential operator,afractional non-Markov Poisson stochastic process has been developed based on fractional generalization of the Kolmogorov –Feller equation [32].The fractional Kolmogorov –Feller equation for probability distribution function P (x ,s )is de fined by ∂P x ;s ðÞ∂s¼Z 1À1dy ωy ðÞP x Ày ;s ðÞÀP x ;s ðÞ½ ;P x ;0ðÞ¼δx ðÞ;where ωis the probability density of length y .Furthermore,the randomness of step length is distributed in accordance with ωwhile s is the time steps of order αΨs ðÞ¼sin παπZ 10e Àρs d ρπαραþρÀα;0o αr 1;which is called a fractional Poissonian distribution.Let P (n,r )be the probability of n items in position r .The prob-ability P satis fies the normalizing condition when P1n ¼0P n ;r ðÞ¼1:In general,the probability P α(x,s )is expressed by the following special form of the fractional Kolmogorov –Feller equation [32]P αn ;r ðÞ¼r αn ðÞn X 1k ¼0k þn ðÞ!Àr αn ðÞkΓαk þn ðÞþ1ðÞ;0o αr 1:ð3ÞTherefore,the mean n of the fractional Poisson process can be calculated straight forwardly as follows:n ¼X1n ¼0nP αðn ;r Þ¼nr αΓα;ð4Þwhere n is the mean value of the image,which represents theaverage of all the pixels of an image,αis the fractional power,while r is a tune parameter used for enhancing image contrast to afurther level.We modify the mean n αin (4)to be the fractional mean m αof Laplacian image (the images obtained by Laplacian operation)to use it as intensity transform to increase the dynamic range of the gray level,which is as given by:m ¼X1n ¼0nP αðn ;r Þ%ðn αr ÞαΓαþ1ðÞ:ð5ÞIn the context of image processing,an enhanced image isobtained as per the following formula:Ie ¼ðm αr ÞαΓαþ1ðÞI ð6Þwhere Ie is the generated enhanced image,I is the Laplacian image.Here,m is a real number,thus I is simply multiplied by a real number.The contrast enhancement of the Laplacian image is made dependent on the fractional mean m αof the Laplacian image.In this,m αis made adaptive,i.e.,m αis of a lower value for dark pixels and at the same time m αis of a higher value for bright pixels.The fractional mean depends on image content as well as the value of α.It is introduced here to enhancing the dynamic range of gray level adaptively.In general,image contrast de fines the difference between the visual properties of objects and their background in the image.The steps for the proposed fractional image enhancement algorithm are as follows:i.De fine the values of fractional parameters.Here αis with the range of 0o αr 1,while r is also with the range of 0o r r 1.These two values are chosen to achieve the requirements of image enhancement.ii.Find the mean value of the Laplacian image obtained by Laplacian operation,and use it as intensity transform to increase the dynamic range of the gray level to enhance the image.iii.Calculate the fractional mean using Eq.(5).Hence,the contrastenhancement of the Laplacian image is made dependent on the fractional mean m αof the Laplacian image.iv.Enhance the Laplacian image using Eq.(6)to enhance the dynamic range of gray level adaptively.Both the parameters (α,r )are much bene ficial for enhancing the contrast of an image to a further level.From (5),we can see that the fractional mean m αand the tuning parameter r have been raised by the power of α.As a result,different values of αand r will affect different intensity regions in a given Laplacian image.Fig.2Fig.2.The behavior of PSNR for the values of α,and r .(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)S.Roy et al./Pattern Recognition 52(2016)433–447436illustrates the PSNR behavior of the generated enhanced image for different values ofαand r.The lower values ofαwill extend dark pixels dynamic range,which corresponds to a small PSNR.On the other hand,higher values ofαwill extend bright pixels dynamic range,which corresponds to a dramatic decrease in PSNR.In its simplest form,we choose the optimal values ofαand r manually.From Fig.2,we chooseα¼0.6with the tune parameter r¼0.04 (dash-dot line blue color).The effect of the proposed model can be seen in Fig.3,where (a)shows different input images,(b)denotes Laplacian images corrupted by the Laplacian operation,and(c)gives enhanced images given by the proposed model.It is observed from Fig.3thatInput imagesEnhanced images by the proposed modelNoise images produced by Laplacian operationFig.3.Sample qualitative results of the proposed model.(a)Input images.(b)Noise images produced by Laplacian operation.(c)Enhanced images by the proposed model.Table1Average PSNR and SSIM for enhanced images with noisy and input images.Dataset Number of images PSNR SSIMEnhanced-Laplacian Original-LaplacianEnhanced-Original(proposed)Enhanced-LaplacianOriginal-LaplacianEnhanced-Original(proposed)ICDAR2013Video548711.9513.1524.260.740.760.95ICDAR2013Scene22912.1013.3922.820.740.760.91SVT35012.9015.1524.560.740.790.96MSRA30011.7412.726.990.740.760.98Average Total¼636612.013.124.20.740.760.95S.Roy et al./Pattern Recognition52(2016)433–447437the enhanced images look more brighter than the input and the Laplacian images.In addition,the enhanced image does not con-tain any noise as in the Laplacian image.This helps text detection and recognition methods to achieve better accuracies.This is the advantage of the proposed model.4.Experimental resultsTo evaluate the proposed model,we use standard datasets,namely:(i)the ICDAR 2013video dataset [33]which includes texts with low resolution,complex background,different fonts or fontEnhanced Result of the Histogram Equalization (HE)Enhanced Result of the Contrast-Limited Adaptive Histogram Equalization (CLAHE)Enhanced Result of the Adjust Intensity Values to Specified Range (AIV)Enhanced Results of the Proposed ModelFig.4.Sample qualitative results of the proposed model and existing techniques.(a)Enhanced result of the Histogram Equalization (HE).(b)Enhanced result of the Contrast-Limited Adaptive Histogram Equalization (CLAHE).(c)Enhanced Result of the Adjust Intensity Values to Speci fied Range (AIV).(d)Enhanced results of the proposed model.S.Roy et al./Pattern Recognition 52(2016)433–447438S.Roy et al./Pattern Recognition52(2016)433–447439Table2Quality measures of the proposed and existing models(we calculate PSNR and SSIM for Enhanced images with Original(input)images).Dataset HE CLAHE AIV Proposed modelPSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM ICDAR201318.10.7318.10.7817.70.7824.30.95Video14.80.6314.80.6314.80.6322.80.91 ICDAR2013SceneSVT15.80.7215.80.7215.80.7224.50.96 MSRA16.60.7516.60.7516.60.7526.90.98 Average17.70.7717.70.7717.70.7724.40.95Input standard images for denosing experimentsNoisy images by adding Gaussian operation with standard deviation, 15Proposed enhancement model on Gaussian noisy imagesFig.5.Sample qualitative results of the proposed model on standard noisy images for denoising.(a)Input standard images for denosing experiments.(b)Noisy images by adding Gaussian operation with standard deviation,15.(c)Proposed enhancement model on Gaussian noisy images.Enhanced Result of the Histogram Equalization (HE)Enhanced Result of the Contrast-Limited Adaptive Histogram Equalization (CLAHE)Enhanced Result of the Adjust Intensity Values to Specified Range (AIV)Enhanced Results of the Proposed ModelFig.6.Sample qualitative results of the proposed model and existing techniques on standard noisy images.(a).Enhanced result of the Histogram Equalization (HE).(b)Enhanced result of the Contrast-Limited Adaptive Histogram Equalization (CLAHE).(c)Enhanced result of the Adjust Intensity Values to Speci fied Range (AIV).(d)Enhanced results of the Proposed Mode.S.Roy et al./Pattern Recognition 52(2016)433–447440sizes and different orientations,(ii)the ICDAR2013scene dataset [33]which includes high resolution,complex background and mostly horizontal texts,(iii)the Street View Data(SVT)[34]which includes high resolution,complex background,small fonts,and distorted texts and(iv)the MSRA data[35]which includes high resolution,complex background and arbitrary oriented text lines. In total,we use6366text images for experimentation in this work. The main advantage of these datasets is that all of them provide ground truth for calculating measures without involving human intervention.For the purpose of measuring the quality of the enhanced images given by the proposed model,we use standard measures,namely,Peak Signal to Noise Ratio(PSNR)and Struc-tural Similarity(SSIM)as these measures are popular for mea-suring the quality of images[29,30].To show the effectiveness of the proposed model in terms of quality measures,we further compare the results of the proposed model with the benchmark enhancement techniques,such as Histogram Equalization(HE) which is used to enhance contrast by adjusting image intensities, Contrast-Limited Adaptive Histogram Equalization(CLAHE)which is used to enhance the contrast of grayscale images,and Adjust Intensity Values to Specified Range(AIV)which is used to increase the contrast of an output image by mapping the intensity values of the input grayscale image to new values.The reason to choose these three techniques is that most of the enhancement methods proposed in literature directly or indirectly used these techniques as a basis to develop methods[29,30].Therefore,we compare the proposed model with these bases to show that the proposed model is effective and accurate.Since the noises produced by Laplacian operation look similar to denoising,we test the proposed enhancement model's ability on standard noisy images,namely,Lena,Cameraman and Boat by adding Gaussian noises with the standard deviation of15[29](the results and discussions of this test will be provided in Section4.1).Since our datasets do not have ground truth for noise images (Laplacian images),we propose to conduct experiments on text detection and recognition on the above mentioned data to show the usefulness of the proposed enhancement model.We expect that text detection and recognition results should give better results for the enhanced images compared to the input and Laplacian images.Therefore,we implement the existing text detection methods,namely,Epshtein et al.method[24]which uses stroke width transform for text detection in natural scene images,Shivakumara et al.method[14]which proposes wavelet and color features for text detection in video,Shivakumara et al. method[23]which uses Fourier transform and RGB color space for text detection in video images,Shivakumara et al.method[15] which proposes Bayesian classifier for text detection in video images,and Rong et al.method[20]which uses connected com-ponent analysis and a classifier for text detection in natural scene images.Chen et al.'s method[21]proposes maximally stable extremal regions(MSER)for text candidate detection and then proposes geometrical properties to remove false text candidates in natural scene images.Yin et al.'s method[22]extends Chen et al's method[21]for improving text detection results for natural scene images by proposing modifications to MSER and single link clus-tering to construct text candidates.Distance metric learning and a character classifier have been proposed for deciding weights and text candidate classification.Similarly,for recognition experi-ments,we implement binarization methods,namely,Roy et al. method[25]which uses wavelet and gradient fusion for binarizing video text lines,Chattopadhyay et al.method[27]which proposes automatic selection of binarization methods for different portions of a document,Wolf et al.method[28]which uses edge and gradient information for binarization,Moghaddm and Cheriet's method[26]which proposes adaptive binarization for document images,and Howe's method[18]which proposes to binarize images by tuning parameters,automatically.We use recall,preci-sion and f-measure for evaluating the performances of the text detection methods as these are the standard measures for text detection.The recognition rate at character level given by the OCR engine in[19]is used for evaluating the binarization methods. 4.1.Evaluation of the proposed enhancement modelThe quality measures which we use for measuring the perfor-mance of the proposed enhancement model can be defined as in Eqs.(7)and(9).PSNR is calculated by the mean squared error between the corresponding pixel values of the Laplacian image(C) and the original image(O)[29,30]:PSNR¼10logmax C;OðÞ2MSEð7ÞMSE¼1MNX Mi¼1X Nj¼1Cði;jÞÀOði;jÞðÞ2ð8Þwhere max is the maximum possible pixel value of the image.In a grayscale image,this value is equal to255.PSNR is evaluated in decibels and is inversely proportional to MSE.With PSNR,a larger value indicates the images are more similar.Similarly,SSIM can be defined as in Eq.(9).The SSIM is introduced in order tofind about all the ways to compare the structures of the original and the Laplacian images.This metric is defined as follows: SSIM x;yðÞ¼l x;yðÞÂÃα:c x;yðÞ½ β:s x;yðÞ½ γð9Þwhere l is the luminance comparison function,c is the contrast comparison function,and s is the structure comparison function.The parametersα,β,andγare used to adjust the relative importance of the three components.We calculate the values according to the instructions in[36],where the values of the three parameters are considered greater than zero.We calculate the two quality measures for different combina-tions,such as the enhanced image with Laplacian image,the ori-ginal image with Laplacian image,and the enhanced image with the original image because ground truth is not available for the input Laplacian images.Ideally,PSNR and SSIM should give high scores for an enhanced image with its original image,while for an enhanced image with its Laplacian image,the measures should give lower scores compared to those of the original image with the Laplacian image.The quantitative results of the proposed method are reported in Table1,where it is noticed that both the measures score higher values for the enhanced image with the original image(input image),and lower score for the enhanced image with the Laplacian image.This conclusion can be verified with the scores of the original image(input image)with the Laplacian image because for this combination,the scores are neither higher than those of Enhanced-Original(input),nor lower than those of Enhanced-Laplacian.Therefore,we can conclude that the pro-posed enhancement model is promising.Table3Performance of the proposed and existing techniques on standard noisy magescorrupted by Gaussian noise with standard deviation,15.Images HE CLAHE AIV Proposed modelPSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIMLena17.740.62 4.880.4921.330.709.160.59Cameraman17.690.3614.300.2718.750.459.980.57Boat15.870.5614.150.5120.970.778.890.62Average17.100.5211.110.4220.350.649.340.59S.Roy et al./Pattern Recognition52(2016)433–447441。
一种增强细节的红外图像处理算法
第16卷 第1期 太赫兹科学与电子信息学报Vo1.16,No.1 2018年2月 Journal of Terahertz Science and Electronic Information Technology Feb.,2018文章编号:2095-4980(2018)01-0139-04一种增强细节的红外图像处理算法王合龙a,b,边栓成a(中国航空工业集团公司 a.洛阳电光设备研究所;b.光电控制技术重点实验室,河南洛阳 471009)摘 要:针对常规的红外图像变换算法容易造成图像细节模糊的问题,提出了采用频域滤波与自动增益控制(AGC)算法、直方图均衡结合的改进算法。
通过对14 bit原始红外图像数据的整体部分与细节部分分别处理,并进行加权组合,实现了对红外图像细节的增强。
最后通过数学仿真进行了验证和评价。
关键词:红外图像;自动增益控制;频域滤波;直方图均衡;细节增强中图分类号:TN391 文献标志码:A doi:10.11805/TKYDA201801.0139Detail enhancement algorithm based on infrared image transformWANG Helong a,b,BIAN Shuancheng a(a.Luoyang Institute of Electro-Optical Equipment;b.Science and Technology on Electron-Optic Control Laboratory,Aviation Industry Corporation of China,Luoyang Henan 471009,China)Abstract:Considering losing detail characteristics of infrared image transform,an algorithm combining frequency domain filtering,Automatic Gain Control(AGC) and histogram equalization isanalyzed. Based on calculating the main parts and detail parts of original 14bit infrared image,the detailsof image are enhanced through combining different data. The simulation results prove that the proposedalgorithm is effective.Keywords:infrared image;Automatic Gain Control;frequency domain filtering;histogram equalization;detail enhancement由于红外图像动态范围较大,在将其转换为适合人眼观察的模拟图像过程中,容易造成图像细节的缺失,影响人眼的观察效果。
电子商务中的安全交易手段
电子商务中的安全交易手段Posted by kreny at July 29, 2004 03:26 AMTrackback URL: /cgi-bin/mt-tb.cgi/106在近年来发表的多个安全电子交易协议或标准中,均采纳了一些常用的安全电子交易的方法和手段。
典型的方法和手段有以下几种:1.密码技术采用密码技术对信息加密,是最常用的安全交易手段。
在电子商务中获得广泛应用的加密技术有以下两种:(1)公共密钥和私用密钥(public key and private key)这一加密方法亦称为RSA 编码法,是由Rivest、Shamir 和Adlernan 三人所研究发明的。
它利用两个很大的质数相乘所产生的乘积来加密。
这两个质数无论哪一个先与原文件编码相乘,对文件加密,均可由另一个质数再相乘来解密。
但要用一个质数来求出另一个质数,则是十分困难的。
因此将这一对质数称为密钥对(Key Pair)。
在加密应用时,某个用户总是将一个密钥公开,让需发信的人员将信息用其公共密钥加密后发给该用户,而一旦信息加密后,只有用该用户一个人知道的私用密钥才能解密。
具有数字凭证身份的人员的公共密钥可在网上查到,亦可在请对方发信息时主动将公共密钥传给对方,这样保证在Internet 上传输信息的保密和安全。
(2)数字摘要(digital digest)这一加密方法亦称安全Hash 编码法(SHA:Secure Hash Algorithm)或MD5(MD Standards for Message Digest),由Ron Rivest 所设计。
该编码法采用单向Hash函数将需加密的明文转换成一串128bit 的密文,这一串密文亦称为数字指纹(Finger Print),它有固定的长度,且不同的明文摘要成密文,其结果总是不同的,而同样的明文其摘要必定一致。
这样这摘要便可成为验证明文是否是原文的证据了。
上述两种方法可结合起来使用,数字签名就是上述两法结合使用的实例。
灰色系统模型的优化岭回归算法
第13卷 第3期运 筹 与 管 理Vol.13,No.32004年6月OPERAT IO NS RESEARCH AN D M ANA GEM EN T SCI EN CE Jun.2004收稿日期:2003-06-02基金项目:教育部人文社科重大项目(01JAZJD630008)作者简介:郑照宁(1974-),男,博士研究生,云南玉溪人,主要从事能源技术经济和能源系统工程研究,研究方向为国家能源政策,全球气候变化国家对策,清洁发展机制(CDM );刘德顺(1942-),男,教授,博士生导师,浙江宁波人,清华大学全球气候变化研究所副所长,清华大学现代管理研究中心副主任,能源系统工程专业委员会副主任,研究方向为能源系统工程,城市能源-环境发展规划模型,综合资源规划(IRP)与需求侧管理(DS M ),国家能源政策,全球气候变化国家对策,清洁发展机制(CDM )。
灰色系统模型的优化岭回归算法郑照宁, 刘德顺(清华大学现代管理研究中心,能源-环境-经济研究院,北京100084)摘 要:文献[1]指出了目前用普通最小二乘法估计灰微分方程参数的方法由于方程组的病态问题很难求解得合理的参数;文献[2]指出了根据初值求解灰色系统模型的时间响应式的方法由于初值的误差使所求得时间响应式产生系统误差。
为了克服灰色模型的上述两个缺点,本文设计了一种求解灰色系统模型的优化岭回归算法,计算一个广泛引用的算例演示了这种算法的优越性。
关键词:灰色系统模型;岭回归;时间响应式中图分类号:N 94115 文章标识码:A 文章编号:1007-3221(2004)03-0020-04The Optimized Ridge Regression Algorithm for Grey System ModelsZHENG Zhao -ning,LIU De -shun(Research Center of Contemporary Management and E nergy -Env ironment -EconomyResear ch I nstitute,Tsinghua University ,Beij ing 100084,China)Abstract:Literature [1]show s that,by means of the parameter identification of grey differential equation by ordinary least square approach reasonable parameters are hard to obtain due to il -l posed problem of the equa -tion;literature[2]points out that systematic error occurs due to the error of the initial value w hile solving g rey time response formula.A kind of new optim ized ridge regression algorithm is designed to obtain optimal g rey time response form ula w hile overcoming the two above shortcomings.A w idely cited example is comput -ed again to demonstrate the advantage of the algorithm.Key words:grey system models;ridge reg ression;time response formula0 引言自80年代初邓聚龙教授提出灰色系统模型(GM)以来,由于能用较少的数据系列建立模型去反映系统的主要动态特性[3],且对于许多问题具有较高的拟合精度,二十年得到了广泛的研究和应用。
基于Radon变换改进的运动模糊图像PSF参数估计算法
2020年软 件2020, V ol. 41, No. 6基金项目: 国家国际科技合作专项项目(2014DFA00670),贵州省研究生教育教学改革重点课题(黔教研合JG 字[2016]15)作者简介: 陈健(1996–),男,研究生,主要研究方向:数字图像处理;张欣(1976–),男,副教授,主要研究方向:信号与信息处理、下一代无线通信及应用;陈忠仁(1992–),男,研究生,主要研究方向:数字图像处理。
基于Radon 变换改进的运动模糊图像PSF 参数估计算法陈 健,张 欣,陈忠仁(贵州大学 大数据与信息工程学院,贵州 贵阳 550025)摘 要: 为了提高运动模糊图像的点扩展函数中模糊尺度,模糊角度估记的精准性,本文提出了一种改进的模糊图像PSF 的参数估计算法。
首先将运动模糊图像进行3*3分块,找出最能代表原始模糊图像模糊特征的子图像块,这样可以很好的估计运动参数。
然后将特征图像块的频谱图二值化后,进行形态学闭运算消除十字型亮线,有效的提高参数估计的精度。
其次,对频谱图进行腐蚀运算,用Radon 变换计算出模糊角度。
最后根据求出的角度将图像旋转到水平方向后,使用微分法求出模糊尺度。
并将本文算法与传统Radon 变换算法进行对比,表明该算法对提高模糊图像PSF 参数估计是有效的。
关键词: Radon 变换;运动模糊;图像分块;参数估计中图分类号: TP391.41 文献标识码: A DOI :10.3969/j.issn.1003-6970.2020.06.001本文著录格式:陈健,张欣,陈忠仁. 基于Radon 变换改进的运动模糊图像PSF 参数估计算法[J]. 软件,2020,41(06):01 06Improved PSF Parameter Estimation Algorithm of Motion BlurredImage Based on Radon TransformCHEN Jian, ZHANG Xin, CHEN Zhong-ren(College of big data and information engineering,Guizhou University, Guiyang 550025, China )【Abstract 】: In order to improve the accuracy of blurred scale and blurred angle estimation in the point spread function of motion blurred image, an improved PSF parameter estimation algorithm is proposed. Firstly, the motion blurred image is divided into 3 * 3 blocks, and the sub image block which can best represent the blurred features of the original blurred image is found, so that the motion parameters can be estimated well. Then, after binarization of the spectrum of the feature image block, morphological close operation is carried out to eliminate the cross bright lines, effectively improving the accuracy of parameter estimation. Secondly, the spectrum was corroded and the am-biguity angle was calculated by Radon transform. Finally, according to the angle, the image is rotated to the hori-zontal direction, and the blurred scale is obtained by differential method. Compared with the traditional Radon transform algorithm, this algorithm is effective to improve the PSF parameter estimation of blurred image. 【Key words 】: Radon transform; Motion blurred; Image blocking; Parameter estimation0 引言人类从自然界接收的各种信息,超过80%是通过视觉获得的,图像作为一种关键的信息源,是人们感知世界、捕获信息、传递信息的重要手段。
二次改进加权导向滤波的内窥镜图像增强算法
82
生命科学仪器 2020 第18卷 / 12月刊
技术与应用
是何凯明提出了一种滤波算法,还可以用立体匹 配、图像增强、图像融合、去雾等 , [7-10] 其复杂 度为O(N),它是最快的一种边缘保持算法, 但是其能量函数中固定了正则化系数,在去噪的 同时锐化突出边缘的效果不佳[11]。因此,一些研 究人员提出了加权导向滤波算法(Weighted Guided Image Filtering,WGIF) [12],该算法引入了一个边 权重因子,能有效的突出边缘。
的发生,因此对内窥镜图像进行增强以达到对凸 行像素点拉伸,使得GB通道的信息增强,R通
显血管细节信息。目前使用较多的算法有非锐化 道信息降低;最后,将各个通道融合生成增强图
掩膜算法、自适应直方图均衡法、多尺度滤波算 法等[1,3],但是这些算法的复杂度较高,只适用于
像,其前景-背景方差均值指标和韦伯对比度指标 上优于Spectra B,但是其对噪声比较敏感。
静态血管图像的增强,无法满足医用内窥镜实时
导向滤波算法[6](Guided Image Filtering,GIF)
基金项目:重庆市基础科学与前言技术研究专项(项目立项编号:cstc2017jcyjAX0328),重庆市教委科学技术研究项目(KJQN201800614) 通讯作者:庞宇pangyu@ 作者简介:林金朝(1966-),男,四川遂宁人,博士后,重庆邮电大学教授,博士生导师,主要研究方向为移动通信网络、信息与通信工程和 生物医学工程交叉领域研究。E-mail:linjz@
基于对抗神经网络的数据加密技术研究
中文摘要中文摘要随着现代网络的不断普及和通信技术的高速发展,数字技术广泛应用于各行各业。
但是由于数字信息便于复制和传播,会存有很多安全问题,所以关于数字信息的安全与保护技术的研究有着巨大的理论意义和应用价值。
密码是保护信息安全的基本手段。
研究者们提出了很多具体的加密算法,其中分组密码AES是比较广泛使用的加密算法。
在大多数情况下,为了使加密算法切实可行,设计阶段只考虑计算有界的攻击对手,在此大的假设下,提出了语义安全、抵御明文攻击、抵御选择密文攻击等多种安全算法。
最近几年人工智能的发展取得了很多重大的进步。
在某些情况下,人工智能可以独自学习,比人类更加出色地完成部分任务。
本文研究了一种对抗神经密码的加密算法安全性,通过剖析对抗神经网络的思想,引入密码学的对抗攻击博弈理论,提出了一种基于选择密文攻击的对抗神经网络加密方法。
选择密文攻击是密码学中攻击效果较好的方法,本文通过引入选择密文攻击方式的攻击者,为对抗神经网络现有的加密算法进行改进提升。
分析算法仿真结果,发现该算法可以在不需要人工知识的情况下学习到安全的密码生成算法,并且与DES,3DES,AES等算法比较其速率也具有明显优势。
关键词:人工智能;神经网络;加密;生成对抗网络黑龙江大学硕士学位论文AbstractWith the continuous popularization of modern networks and the rapid development of communication technologies, digital technologies are widely used in various industries. However, because digital information is easy to copy and spread, there are many security problems. Therefore, the research on the security and protection technology of digital information has great theoretical significance and application value.Passwords are the basic means of protecting information security. Researchers have proposed a number of specific encryption algorithms, of which block cipher AES is a widely used encryption algorithm. In most cases, in order to make the encryption algorithm feasible, the design phase only considers the calculation of bounded attacking opponents. Under this big assumption, various security algorithms such as semantic security, defense against plaintext attacks, and defense against selective ciphertext attacks are proposed.The development of artificial intelligence has made many significant advances in recent years. In some cases, artificial intelligence can learn on its own and perform some tasks better than humans. This paper studies the security of an encryption algorithm against neural ciphers. By analyzing the idea of anti-neural network and introducing cryptographic anti-attack game theory, an anti-neural network encryption method based on ciphertext attack is proposed. Choosing ciphertext attack is a better attack method in cryptography. This paper introduces an attacker who chooses ciphertext attack mode to improve and improve the existing encryption algorithm against neural network. The simulation results of the algorithm are analyzed. It is found that the algorithm can learn the safe password generation algorithm without the need of artificial knowledge, and it has obvious advantages compared with DES, 3DES, AES and other algorithms.Keywords: Artificial intelligence; Neural network; Encryption; GANs目录目 录中文摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题研究背景与意义 (1)1.1.1 课题研究背景 (1)1.1.2 研究目的与意义 (2)1.2 国内外发展现状与技术应用 (3)1.2.1 神经网络在密码学的发展历史及现状 (3)1.2.2 神经网络在密码学上的关键技术 (6)1.2.3 神经网络在密码学上的应用 (6)1.3 论文结构 (9)第2章神经网络与密码学 (11)2.1 神经密码学 (11)2.1.1 神经密码学概念 (11)2.1.2 神经密码学特性 (11)2.2 神经网络 (12)2.2.1 神经网络的研究内容 (12)2.2.2 反向传播算法 (14)2.2.3 激活函数 (21)2.2.4 学习率 (23)2.2.5 停止准则 (23)2.3 密码学理论 (24)2.3.1 密码学基础理论 (24)2.3.2 密码学分类 (25)2.3.3 对称密码基础 (26)黑龙江大学硕士学位论文2.3.4 混沌算法与密钥 (27)2.4 本章小结 (29)第3章对抗神经网络加密算法 (30)3.1 生成对抗网络 (30)3.1.1 GANs原理 (30)3.1.2 GANs模型结构 (31)3.1.3 GANs特点 (32)3.2 GANs加密系统结构与原理 (33)3.2.1 对称加密系统结构 (33)3.2.2 ANC损失函数设计 (34)3.2.3 对抗加密网络结构设计 (35)3.3 加密算法仿真与分析 (36)3.3.1 仿真参数设置 (36)3.3.2 算法安全性分析 (37)3.4 本章小结 (42)第4章基于CCA的改进对抗神经网络加密算法 (43)4.1 密码攻击方式 (43)4.2 密码安全性检测方法 (44)4.3 CCA-ANC算法模型设计 (46)4.3.1 算法原理 (46)4.3.2 损失函数设计 (47)4.3.3 模型结构设计 (49)4.4 CCA-ANC算法实验仿真 (50)4.4.1 仿真参数设置 (50)4.4.2 解密分析算法 (52)4.5 算法性能对比分析 (52)4.5.1 无攻击者算法安全性分析 (52)目录4.5.2 ANC算法安全性分析 (53)4.5.3 CCA-ANC算法安全性及效率分析 (54)4.6 本章小结 (59)结论 (60)参考文献 (62)致谢 (70)攻读学位期间发表的学术论文 (71)攻读硕士学位期间取得的科研成果 (72)独创性声明 (73)第1章绪论第1章 绪论1.1 课题研究背景与意义1.1.1 课题研究背景随着电子信息和互联网的不断发展,信息传播方式也获得了很大的发展,但是由于其易于复制和传播,会给商业等方面带来了诸多的安全威胁。
数字图像处理论文
安徽工程大学论文题目:数字图像处理图像增强算法的研究学院:计算机与信息学院班级:软件141姓名:程健学号: 3140704135指导老师:卢桂馥2017年6月9日摘要在我们的实际生活、生产中,人们直接获得的原始图像并不能够直接运用到生活、生产中,因为原始图像在生成、传输和转换过程中可能会受到多种因素的影响,如各种各样的噪声、通道带宽等,往往会出现清晰度下降、对比度偏低等降质现象,为了使得处理后的图像对某种特定的应用比原始图像更合适,往往需要提高图像质量。
图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要信息的处理方法,其目的是使得处理后的图像对某种特定的应用比原始图像更合适。
本文研究了图像增强的一些常用方法,包括空域图像增强、频率域图像增强,并用MATLAB 编程设计了相应的实验,对图像增强效果进行了验证。
关键字:图像增强;图像;算法;空域增强;频率增强AbstractIn our daily life and production, people often can't used the raw image directly, because of the generation and transformation of the original image, it may be affected by many factors, such as a variety of kinds of noise and channel bandwidth. The sharpness and contrast is decreasing and have low qualities. in order to make the image more suitable for some particular application after processing than the original, we often need to improve image quality. Images enhance is in a particular need to highlight a picture in the information, and weaken or remove certain need of information in the process, its purpose is to make the image of a specific application is better than the original image.This paper studies the image of some common method, including airspace images enhance and increase the frequency domain, and images matlab programming, design corresponding to picture to enhance the effect of the verification.Key words:Image enhancement; the airspace strengthened; the frequency domain enhancement目录引言 (1)第一章绪论 (2)1.1 研究背景及意义 (2)1.2 图像增强技术国内发展状况 (3)第二章图像增强的基本理论 (4)2.1 数字图像的表示 (4)2.2 数字图像处理概述 (4)2.3 图像增强概述 (4)2.3.1 图像增强的定义 (4)2.3.2 图像增强的现状与应用 (5)第三章空域增强 (6)3.1 基本原理 (6)3.2 空域增强实现 (6)3.2.1 灰度调整实现 (6)3.2.2 直方图均衡化 (7)3.2.3 直方图规定化 (7)3.3 空域滤波增强 (8)3.3.1 基本原理 (8)3.3.2 线性平滑滤波器 (8)3.3.3 非线性平滑滤波器 (8)3.3.4 线性锐化滤波器 (9)第四章频域增强 (10)4.1 基本原理 (10)4.2 低通滤波 (10)4.3 高通滤波 (11)第五章结论 (12)第六章参考文献 (13)附录:源程序代码 (14)第一章绪论人们对外界信息的百分之七十五都来自图像,也就是说人类的大部分信息都是从图像中获取的。
一种路径敏感的静态缺陷检测方法
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@Journal of Software, Vol.21, No.2, February 2010, pp.209−217 doi: 10.3724/SP.J.1001.2010.03782 Tel/Fax: +86-10-62562563© by Institute of Software, the Chinese Academy of Sciences. All rights reserved.∗一种路径敏感的静态缺陷检测方法肖庆1+, 宫云战1, 杨朝红1,2, 金大海1, 王雅文11(北京邮电大学网络与交换技术国家重点实验室,北京 100876)2(装甲兵工程学院信息工程系,北京 100072)Path Sensitive Static Defect Detecting MethodXIAO Qing1+, GONG Yun-Zhan1, YANG Zhao-Hong1,2, JIN Da-Hai1, WANG Ya-Wen11(State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876,China)2(Department of Information Engineering, Academy of Armored Force Engineering, Beijing 100072, China)+ Corresponding author: E-mail: 2722976@Xiao Q, Gong YZ, Yang ZH, Jin DH, Wang YW. Path sensitive static defect detecting method. Journal ofSoftware, 2010,21(2):209−217. /1000-9825/3782.htmAbstract: This paper presents a new path sensitive algorithm for static defect detecting running in polynomialtime. In this method, property state conditions are represented by abstract domain of variables, and infeasible pathscan be identified when some variables’ abstract value range is empty. This method avoids the combination explosionof full path analysis by merging the conditions of identical property state at join points in the CFG (control flowgraph). This algorithm has been implemented as part of a defect testing tool called DTS (defect testing system).Practical test results show that this method can reduce false positive.Key words: defect detecting; static analysis; path sensitive; dataflow analysis; program analysis摘要: 提出一种多项式复杂度的路径敏感静态缺陷检测算法.该方法采用变量的抽象取值范围来表示属性状态条件,通过属性状态条件中的变量抽象取值范围为空来判断不可达路径.在控制流图(control flow graph,简称CFG)中的汇合节点上合并相同属性状态的状态条件,从而避免完整路径上下文分析的组合爆炸问题.该算法已应用于缺陷检测系统DTS(defect testing system).实际测试结果表明,该方法能够减少误报.关键词: 缺陷检测;静态分析;路径敏感;数据流分析;程序分析中图法分类号: TP311文献标识码: A软件代码中的缺陷是导致软件故障和漏洞问题的重要原因.基于缺陷的软件测试技术可以分为动态检测技术和静态检测技术.静态检测技术不运行被测程序,主要通过各种静态分析方法来发现程序中的缺陷.从可计算性理论的角度来看,静态分析是一个不可判定问题.Rice定理[1]表明,静态分析不能完美地确定一般程序的任何非平凡属性.静态分析的不可判定性实际上意味着任何自动化的静态分析系统,针对一个程序的非平凡属性∗Supported by the National High-Tech Research and Development Plan of China under Grant Nos.2007AA010302, 2009AA012404(国家高技术研究发展计划(863))Received 2009-06-11; Revised 2009-09-11; Accepted 2009-12-07210 Journal of Software软件学报 V ol.21, No.2, February 2010(例如是否存在运行时错误),不可能做到既是可靠的又是完备的.可靠的(sound)静态分析意味着,如果分析结果没有报告某类运行时错误,则程序中肯定不存在某类运行时错误,也就是说没有漏报(false negative).完备的(complete)静态分析意味着,如果分析结果报告了某类运行时错误,则程序中肯定存在某类运行时错误,也就是说没有误报(false positive).大量的误报会使人对分析工具失去信心.静态分析的方法有很多,从路径抽象和近似的角度可以划分为路径敏感(path-sensitive)方法和路径不敏感方法(path-insensitive).路径敏感方法考虑分支间的组合关系,能够区分控制流图上的不同路径信息.与路径敏感方法相比,路径不敏感方法由于分析更加粗糙将会引入更多的误报.最直接和详细的路径敏感分析方法是完整路径分析.完整路径分析准确记录每条不同路径上的“程序执行状态”,将导致指数复杂度甚至无限的状态空间.本文提出了一种多项式复杂度的路径敏感算法,并将其应用于缺陷检测系统DTS(defect testing system).实际测试结果表明,该方法能够减少误报的产生.本文首先给出一个简单的例子说明路径不敏感分析将导致误报.然后,详细讨论数据流分析的3种典型解:IDEAL,MOP(meet over all paths)和MFP(maximal fixed point),指出不可达路径判断不准确和数据流信息“过早”聚合是导致路径分析精确性损失的原因.本文采用变量的抽象取值范围来表示属性状态条件,通过属性状态条件中的变量抽象取值范围为空来判断不可达路径,并基于相同属性状态的属性状态条件合并提出了一种多项式复杂度的路径敏感算法.最后,给出了10个大型开源程序的测试数据和结论.1 一个误报的例子程序的“时序安全属性(temporal safety properties)”是描述“某些坏的事情不会发生”的一类属性.通常,时序安全属性规定了一系列有序的事件,要求在程序中不能发生这些事件.如果静态分析工具在程序中发现了违反该安全属性的情况,则报告一个反例(counter example)[2].例如,资源申请后必须释放,否则将造成一个资源泄漏缺陷.该属性可用有限状态机来描述,如图1所示.对于路径不敏感分析,由于无法获取精确的路径上下文信息,静态分析工具在实际检测过程可能会产生误报.图2为一个可能会产生误报的例子.Other Anyvoid foo(boolean dump){FileOutputStream f=null;If (dump)f=new FileOutputStream(“test.txt”); /* open */ if (p)x=0;elsex=1;L1:if (dump)f.close(); /* close */L2:}Fig.1 Finite state machine of resource leak property 图1 资源泄漏属性有限状态机Fig.2 An example of false positive 图2 一个产生误报的例子上例中,路径不敏感分析不考虑不同的路径信息,属性状态机在L1位置上可能的状态集合为{start,opened},最终在L2位置处的可能状态集合为{start,opened,error},报告一个“反例”,这是一个误报.从函数入口到达程序L1位置共有4条可达路径,路径敏感分析将分别跟踪这4条路径的路径信息.路径信息可由变量取值表示,则在L1位置,属性状态机沿不同路径的可能到达的状态集合为{{start:dump=false,p=true,x=0,f=null},{start:dump=false,p=false,x=1,f=null},{opened:dump=true,p=true,x=0,f=notnull},{opened:dump=true,p=false,x=1,f=notnull}}.从L1到L2的条件判断为dump,由于状态集合中到达start状态的两条路径都要求dump=false,因此start 状态将无法传递到L1处判断条件的真分支中.同理,opened状态将无法传递到假分支中.变量取值矛盾表明,该状态在一条不可达路径上传递,该状态应该从可能状态集合中删除.则在L2位置,属性状态机可能到达的状态肖庆 等:一种路径敏感的静态缺陷检测方法211集合为{{start:dump =false,p =true,x =0, f =null},{start:dump =false,p =false,x =1, f =null},{closed:dump =true,p =true,x =0, f =notnull},{closed:dump =true,p =false,x =1, f =notnull}}.上例表明,路径敏感方法由于可以消除不可达路径,从而减少了误报的产生. 2 路径不敏感分析传统的基于迭代求解的数据流分析方法是路径不敏感的.数据流问题是一个元组〈L ,∧,F ,G ,FM 〉[3]:1. L 为需要传播和计算的值集合.2. ∧为L 上定义的聚合操作,〈L ,∧〉形成一个半格,包含⊥和F ,∧操作用于控制流汇合节点上将不同分支的值进行聚合.3. F 为L 到L 上的单调转换函数集合,代表程序语句对值的影响.4. G =(V ,E ,entry ,exit )为控制流图,V 为节点集合,E 为边的集合,entry 和exit 分别为控制流图中的唯一入口和唯一出口.5. FM :E →F 将E 中的边映射到F 中的转换函数.映射FM 也能被扩展到路径上,对于G 中路径p =[e 0,e 1,…,e n ],则f p :L →L : f p =FM (p )=FM (e n )°FM (e n −1)°…°FM (e 0),FM (e 0),FM (e 1),…,FM (e n )∈F ,因此,f p 仍为单调函数.数据流问题存在不同的解,其中典型的解包括:1. IDEAL:理想解,也称真实解.对程序入口到某程序点的所有实际可执行路径的尾端值取聚合(meet)操作,则得到理想解.求理想解是一个不可判定问题.2. MOP(meet over all paths):称为全路径聚合解.对程序入口到某程序点的所有路径的尾端值取聚合操作,则得到MOP 解.3. MFP(maximal fixed point):最大不动点解.所谓的最大不动点解是对控制流图上节点的数据流方程进行不断迭代最终收敛而得到的解.例如,前向(forward)可能(may)数据流计算方程有如下形式:()()(),()()(()()).s pred s In s Out s Out s Gen s In s Kill s ′∈′==∪−∪传统的基于迭代方法求得的即为MFP 解.求MFP 解有较低的复杂度,通常在实际中先对控制流节点排序再进行计算,可以认为其复杂度在O ((N +E )H )~O ((N +E )NH )之间[3].其中,N 为节点数,E 为边数,H 为〈L ,∧〉的高度.数据流分析的MFP 解可以认为是完整路径分析的一个不精确的保守近似,虽然避免了路径组合爆炸问题,但却牺牲了路径敏感性.MFP,MOP,IDEAL 三者之间的关系为MFP ≤MOP ≤IDEAL,其中,≤关系代表后者更加精确(前者更加保守).当F 中的转换函数满足分配性时,MFP=MOP.对上述3个解之间关系的直观理解如图3所示.Fig.3 Comparison of three kinds of solution of data flow problem图3 数据流问题的3个解的对比MFP 和MOP 的差异在于,MFP 在控制流汇合节点将不同分支的数据流信息“过早”地进行聚合;而MOP 将不同路径进行分别考虑,在最后才将不同路径的数据流信息进行聚合.因为L 为半格,有(x ∧y )≤x ,(x ∧y )≤y ;又f 为单212 Journal of Software 软件学报 V ol.21, No.2, February 2010调函数,则f (x ∧y )=f (x ∧y )∧f (x ∧y )≤f (x )∧f (y ),即MFP ≤MOP.当f 满足分配率时,f (x ∧y )=f (x )∧f (y ),即MFP=MOP.MOP 和IDEAL 的差异在于,MOP 考虑了控制流图上的所有路径;而IDEAL 只针对那些实际执行路径,将不可达路径排除在外.如图3所示,MOP 解为f (x )∧f (y ),IDEAL 解为f (y ).因为L 为半格,所以有f (x )∧f (y )≤f (y ),即MOP ≤IDEAL.3 DTS 采用的路径敏感分析方法下面讨论的属性都属于时序安全属性,并采用有限状态机描述.DTS 缺陷检测将属性状态机应用于程序分析过程中,计算每个程序位置上状态机的可能属性状态集合,如果可能属性状态集合中包含error 状态,则报告一个可能缺陷.如果把可能属性状态集合看作数据流要分析的值,可能属性状态集合上的并运算为数据流的聚合运算,则图1所示的属性检查问题即为一个数据流问题,其目标为得到该问题的IDEAL 解.而经过前述数据流问题的讨论可知,精确求IDEAL 解不现实,只能考虑近似保守解.基于迭代的数据流分析得到的MFP 解与IDEAL 解相比,其精确性的损失有两个来源:1) 不可达路径判断不准确;2) 对于不满足分配率的转换函数来说,在控制流汇合节点将不同分支的数据流信息“过早”地进行聚合.因此,提高数据流分析的精确性,可以从这两个角度进行考虑.为了既能减少误报又避免路径组合指数爆炸问题,本文提出一种基于数据流分析的路径敏感分析算法.我们先介绍一些概念:定义1. 在程序P 的执行过程中,程序的执行状态可由二元组〈 ,ρ〉表示,其中, 代表当前的程序执行位置,ρ代表该状态下的环境,程序环境记录了程序中当前每一个变量X 的值.在环境ρ下,变量X 的取值记作ρ(X ).我们采用变量的抽象取值区间来表示变量的可能取值范围[4].定义2. 程序通过路径S 执行到位置 ,则S 上的谓词和赋值操作对 处环境ρ中各变量的可能取值范围进行了限定.我们将S 在 处限定的变量取值范围集合称作S 在 处的路径条件,记作R (S , ).例如,在图4(a)中,对于dump 和flag ==1均取真值的路径S 1,在L 1处的路径条件为{dump [true], flag [1,1], f [notnull]}.Fig.4 Three examples [5]图4 3个例子[5]定义3. 程序通过路径S 执行到位置 ,属性状态机的状态沿S 进行传递和变化.在 处到达状态σ,将R (S , )记录在σ上,称为属性状态条件,包含条件的属性状态表示为{σ:R (S , )}.下面讨论的属性状态都是包含条件的,例如,在图4(a)中,对于dump 和flag ==1均取真值的路径S 1,在L 1处资源泄漏状态机的属性状态为{opened:dump [true],flag [1,1],f [notnull]}.属性状态条件是到达该属性状态的相关变量可能取值集合.它标记了能够到达当前属性状态的程序环境信息.属性状态条件可用于不可达路径判断.对属性状态条件的不同处理方式对应不同的复杂度:1) 如果所有属性状态条件都取空集,该方法就退化为针对可能属性状态集合的传统数据流分析,虽然具有较低的复杂度,但会有较高的误报.f =null; if (dump ) flag =1; else flag =0; L 1: if (dump ) f =open (...); L 2: if (flag ==1) close (f );L 3: f =null; if (dump ) f =open (...);if (dump ) flag =1; else flag =0; if (flag ==1) close (f ); f =null;if (dump ){f =open (...);flag =1;}elseflag =0;L 1: if (flag ==1)close (f ); (a) (c) (b)肖庆等:一种路径敏感的静态缺陷检测方法2132) 如果记录属性状态条件,并在所有控制流汇合节点上都不允许属性状态条件合并,该方法就成为变相的完整路径分析.3) 记录属性状态条件,在所有控制流汇合节点上,将相同属性状态的属性状态条件进行合并是前两种方法的折衷.实际上,程序员在编程时经常通过谓词条件来标记状态信息,选择以属性状态为单位合并路径信息符合程序员的编程习惯[5].因此,该方法具有较低的复杂度,也能降低误报.DTS即采用该方法.下面用该算法来分析图4所示的3个例子的资源泄漏缺陷检测.考虑图4(a),能够到达程序L1位置的可能属性状态集合为{{opened:dump[true],flag[1,1],f [notnull]},{start:dump[false],flag[0,0],f [null]}}.L1位置判断条件的真分支对变量flag限定取值范围为[1,1],假分支对变量flag限定取值范围为[−∞,0]∪[2,+∞].将真假分支对flag变量的限定范围分别与到达L1位置前各状态的状态条件中的flag取值范围进行交运算:=[1,1] (1) [1,1]∩[1,1][1,1]∩[0,0]=∅ (2) ([−∞,0]∪[2,+∞])∩[1,1]=∅ (3) =[0,0] (4)([−∞,0]∪[2,+∞])∩[0,0]其中,公式(2)和公式(3)得到∅,表明对应的属性状态条件与当前判断谓词取值限定相矛盾,即意味着该属性状态已经历的路径和当前分支组合后为不可达路径.图4(b)中的情形与图4(a)类似.属性状态条件信息可以用于排除不可达路径,从而降低误报.但是考虑图4(c)情况,程序L1位置可能属性状态集合为{{start:dump[true,false],flag[0,1],f [null]}}.程序L2位置可能属性状态集合为{{start:dump[false],flag[0,1],f [null]},{opened:dump[true],flag[0,1],f [notnull]}}.L2位置的判断条件为flag==1,将其真假分支对flag的限定范围与上述状态的状态条件中的flag取值范围进行交运算,然后考虑状态转换.最终,在L3处可能属性状态集合为{{start:dump[false],flag[0,1],f [null]},{error:dump[true],flag[0,0],f [notnull]},{closed:dump[true],flag[1,1],f [notnull]}}.这会造成一个误报,其原因是,属性状态条件记录的是所有可能到达该属性状态的相关变量取值范围集合,而程序中可能存在不同的路径到达当前属性状态,属性状态条件合并了这些路径上的路径条件信息.如前所述,在控制流汇合节点将不同分支的数据流信息“过早”地进行聚合会导致不精确.图4(c)中到达L1位置前,真假分支传递来的都为start状态,属性状态条件合并不同分支上的路径条件信息(dump[true,false],flag[0,1],f [null]),该属性状态条件丢失了dump和flag间的组合约束关系,造成后续不可达路径判断不准确形成误报.避免该误报的方法即设法阻止控制流汇合节点上不同分支的数据流信息“过早”地进行聚合,但这需要以提高分析复杂度为前提.在所有控制流汇合节点上允许相同状态的条件进行合并的数据流迭代算法如下:算法1. DTS路径敏感分析算法.in[n]:节点n执行之前的可能属性状态集合.out[n]:节点n执行之后的可能属性状态集合.kill[n]:节点n删除或转换了的可能属性状态集合.gen[n]:节点n由于转换而得到的新可能属性状态集合.entry:控制流入口节点.pred(n):节点n的前驱集合.merge:汇合节点集合.输入:控制流图和采用状态机描述的待测属性.输出:每个控制流节点的可能属性状态集合.∈=∅do []:;for each Nn in n214Journal of Software 软件学报 V ol.21, No.2, February 2010():true;while do begin:false;for each N do beginif then[]{start};else[]:[];if then[]:|,[];:[];[][](i p pred n i i change change change n n entry in n in n out p n merge in n R in n oldout out n out n gen n σσσσσ∈===∈===∈⎧⎫⎪⎪=∈⎨⎬⎪⎪⎩⎭==∪∪∪[][]);if []then :trueendendin n kill n out n oldout change −≠=允许相同状态的条件进行合并的方法的复杂度可进行如下估计:假设控制流图中节点个数为N ,边数为E ,属性状态机状态数为D ,程序中相关变量个数为V ,用于表示变量取值的偏序抽象语义域上基本操作(交、并、补、判相等,判是否矛盾等操作)的最大复杂度为Q .内层for 循环计算复杂度由下述因素共同决定:节点数和边数、每个节点可能出现的最多状态数D 、状态条件中包含的变量数V 、表示变量取值的偏序抽象语义域上基本操作最大复杂度Q .因此,内层for 循环的最大复杂度为O ((N +E )DVQ ).外层while 循环的终止条件为所有节点的out [n ]集合不发生变化,而while 循环的每次迭代只能使in [n ]和out [n ]集合变大或者其状态条件发生变化,假设用于表示状态条件的各抽象语义域的最多增大次数为H ,则while 循环的迭代次数上限为NDVH .综上所述,算法在最坏情况下复杂度为O ((N +E )ND 2VQH ).在实际中采用对节点先进行排序的方法进行计算,实际中的属性状态机状态个数D 为常量且通常不超过10个,因此,在实际中该算法的复杂度可以认为在O ((N +E )VQH )~ O ((N +E )NVQH )之间.4 实验结果为了分析路径敏感算法消除误报的效果,我们针对路径不敏感(传统数据流分析)和本文提出的路径敏感方法进行缺陷检测对比实验1.分析扫描的对象为10个大型Java 开源软件(选取标准为sourceforge 排名靠前且能编译通过),扫描的目标为资源泄漏和空句柄引用这两类缺陷.我们对扫描结果进行了人工确认,实验结果见表1.Table 1 Results of comparison experiment 1表1 对比实验1结果 Path-Insensitive method DTS’ path-sensitive method Program Number of files Number of lines Number of confirmed defects Time (s)Number of reported defects Number of false positives Time (s)Number of reported defects Number of false positivesNumber of reduced false positives areca-7.1.1 426 68 090 43 10667 24 11264 21 3 aTunes-1.8.2 306 52 603 20 5522 2 5222 2 0 Azureus_3.0.5.2 2 720 575 220 129 802363 234 880340 211 23cobra-0.98.1 449 70 062 3 9712 9 9911 8 1 freecol-0.7.3 343 110 822 109 92121 12 99121 12 0freemind-0.8.1 509 102 112 47 35176 29 36969 22 7 jstock-1.0.4 165 38 139 26 16835 9 18033 7 2 megamek-0.32.2 535 212 453 137 256249 112 309227 90 22 robocode-1.6 233 53 408 12 5853 41 6230 18 23 SweetHome3D-1.8 154 59 943 17 11431 14 12229 12 2Total 5 840 1 342 852 543 2 099 1 029 486 2 284946 403 83肖庆等:一种路径敏感的静态缺陷检测方法215采用路径不敏感方法总体分析时间为2 099s,路径敏感方法总体分析时间为2 284s,总体分析时间增加了8.81%.采用路径不敏感方法的误报数为486,采用路径敏感方法的误报数为403.与路径不敏感方法相比,本文描述的路径敏感方法排除了总体误报数的(486−403)/486×100%=17.08%.从上述结果可以看出,与路径不敏感分析算法相比,本文提出的路径敏感分析算法只增加了较少的分析时间,但能够有效地减少误报.Das等人提出了一种在属性状态上增加程序执行符号状态信息,并利用这些执行符号状态信息来排除不可达路径的多项式复杂度路径敏感方法.在他们实现的工具ESP中,采用常量传播格来表示执行符号状态信息[5].常量传播格是一种表示变量取值信息的简单而粗略的方法.而DTS采用抽象取值范围来表示变量取值信息[4],可以认为是常量传播格的精化.我们针对常量传播格表示和抽象取值范围表示进行了缺陷检测对比实验2,分析扫描对象及目标与实验1相同,实验结果见表2.Table 2Results of comparison Experiment 2表2对比实验2结果Constant propagation lattice Abstract value rangeProgram Numberof filesNumberof linesNumber ofconfirmeddefectsTime(s)Number ofreporteddefectsNumber offalsepositivesTime(s)Number ofreporteddefectsNumber offalsepositivesNumber ofreduced falsepositivesareca-7.1.1 426 68090 43 11064 21 11264 21 0 aTunes-1.8.2 306 52603 20 5522 2 5222 2 0 Azureus_3.0.5.2 2 720 575 220 129 862344 215 880340 211 4cobra-0.98.1 449 70062 3 10011 8 9911 8 0 freecol-0.7.3 343 110 822 109 102121 12 99121 12 0freemind-0.8.1 509 102112 47 35971 24 36969 22 2 jstock-1.0.4 165 38139 26 17434 8 18033 7 1 megamek-0.32.2 535 212453 137 278227 90 309227 90 0 robocode-1.6 233 53408 12 6030 18 6230 18 0 SweetHome3D-1.8 154 59943 17 11429 12 12229 12 0 Total 5 840 1 342 852 543 2 214953 410 2 284946 403 7采用常量传播格表示比采用抽象取值范围表示多了7个误报.我们分析了这7个误报以后发现,其主要发生在条件谓词中包含数值型变量情况下.例如下例:文件:Azureus_3.0.5.2_source\org\gudy\azureus2\ui\swt\views\configsections\ConfigSectionFile.java缺陷类型:空句柄引用…194: BooleanParameter zeroNew=null;…198: if ( userMode>0) {199: //zero new files200: zeroNew=new BooleanParameter(gFile, sCurConfigID,201: “bel.zeronewfiles”);…205: }…222: if (userMode>0) {…232: zeroNew.setAdditionalActionPerformer(new ExclusiveSelectionActionPerformer(btnIncremental));…采用常量传播格表示变量取值信息,在第232行将会报告一个空句柄引用缺陷,这是一个误报.userMode>0 对变量取值的限定是一个区间范围,而用常量传播格表示其取值信息为F,丢失了精度.216 Journal of Software软件学报 V ol.21, No.2, February 20105 相关工作静态缺陷检测过程中引起误报的原因有很多,从数据流分析上考虑,其主要原因有两个:1) 不可达路径判断不准确,导致不精确;2) 在控制流汇合节点将不同分支的数据流信息“过早”地进行聚合,导致不精确.其中,前者代表IDEAL和MOP的差距,后者代表MFP和MOP的差距.不同学者提出了许多尝试提高数据流分析精度的方法,其中尝试改进MFP和MOP的差距的包括:Bodik和Anik提出一种值重命名方案,通过在数据流分析过程中综合值名称空间来提高数据流分析的精度,这实际上是针对那些转换函数不满足分配率的数据流分析,试图通过MFP分析得到MOP信息[6];Ammons和Larus提出一种从控制流图中分离出一个有限路径集合进行数据流分析的方法,通过该方法来提高数据流分析的精度,其本质上是通过减少分析路径数求MOP解,以提高精度[7];Thakur和Govindarajan首先分析哪些控制流汇合节点会降低数据流分析精度,然后通过重构这些节点处的控制流图,最后在重构的控制流图上进行分析以提高精度,其本质上也是试图通过MFP分析得到MOP 信息[8].尝试改进IDEAL和MOP差距的包括:Holley和Rosen提出一种通过增加一个有限的谓词集合来提高数据流分析精度的方法,将控制流上的每条边与该谓词集合上的一个关系相关联,如果某条路径的关系合成得到空集,则被认为是不可达的[9];Bodik等人提出一种低代价的基于检测静态边关联的查找不可达路径方法,用于提高定义使用分析的精度[10];Tu和Padua通过在SSA汇合节点上增加控制谓词,提出一种广泛性的SSA方法来提高数据流分析精度[11];Das等人在模型检查的属性状态上增加程序执行符号状态信息,通过跟踪属性状态和程序执行符号状态间的关联关系,并将其用于排除不可达路径来提高数据流分析的精度[5];Fischer等人通过在数据流分析半格中元素上增加谓词信息来提高数据流分析精度.实际上,这些谓词将程序路径集合进行了划分,从另一个角度也可以认为是记录了不同的路径信息,该信息可用于不可达路径判断.谓词的选取基于一种反例导向的抽象精化技术(counterexample guided abstract refinement)[12].在上述方法中,Das[5]方法与我们的方法相似.但是,我们引入了抽象解释思想,采用变量的抽象取值来表示属性状态条件,不可达路径就体现为属性状态条件中某个变量抽象取值范围为空,属性状态条件相关计算更加精确、灵活.6 小结本文分析了路径不敏感造成静态分析不精确的原因,并提出了一种多项式复杂度的路径敏感分析方法.该方法采用变量的抽象取值范围来表示属性状态条件;通过属性状态条件中变量取值为空来判断不可达路径;通过在控制流汇合节点上进行相同属性状态的属性状态条件合并来降低计算复杂度.通过对10个大型Java开源项目的分析,表明该方法能够减少误报.下一步工作包括:研究选择哪些控制流汇合节点和哪些属性状态进行属性状态条件合并,以更好地求得复杂度和精度的平衡;当前属性状态条件中记录了相关变量的取值范围,实际上并不是所有变量都会影响后续的不可达路径判断;研究如何减少属性状态条件中变量数可以使算法的时间和空间开销更小.References:[1] Rice HG. Classes of recursively enumerable sets and their decision problems. Trans. of the American Mathematical Society, 1953,74(2):358−366.[2] Ball T, Rajamani SK. Automatically validating temporal safety properties of interfaces. In: Dwyer M, ed. Proc. of the 8th Int’lSPIN Workshop on Model Checking of Software. Berlin, Heidelberg: Springer-Verlag, 2001. 103−122.[3] Aho AV, Lam MS, Sethi R, Ullman JD. Compilers Principles, Techniques, and Tools. 2nd ed., New York: Addison-Wesley, 2006.626−632.[4] Yang ZH, Gong YZ, Xiao Q, Wang YW. The application of interval computation in software testing based on defect pattern.Journal of Computer-aided Design & Computer Graphic, 2008,20(12):1630−1635 (in Chinese with English abstract).肖庆等:一种路径敏感的静态缺陷检测方法217[5] Das M, Lerner S, Seigle M. ESP: Path-Sensitive program verification in polynomial time. In: Knoop J, Hendren LJ, eds. Proc. ofthe ACM SIGPLAN Conf. on Programming Language Design and Implementation. New York: ACM Press, 2002. 57−68.[6] Bodik R, Anik S. Path-Sensitive value-flow analysis. In: MacQueen DB, Cardelli L, eds. Proc. of the 25th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages. San Diego: ACM Press, 1998. 237−251.[7] Ammons G, Larus JR. Improving data-flow analysis with path profiles. In: Berman AM, ed. Proc. of the ACM SIGPLAN ’98Conf. on Programming Language Design and Implementation. New York: ACM Press, 1998. 72−84.[8] Thakur A, Govindarajan R. Comprehensive path-sensitive data-flow analysis. In: Soffa ML, Duesterwald E, eds. Proc. of the 6thAnnual IEEE/ACM Int’l Symp. on Code Generation and Optimization. New York: ACM Press, 2008. 55−63.[9] Holley LH, Rosen BK. Qualified data flow problems. In: Abrahams P, Lipton R, Bourne S, eds. Proc. of the 7th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages. New York: ACM Press, 1980. 68−82.[10] Bodik R, Gupta R, Soffa PL. Refining data flow information using infeasible paths. In: Jazayeri P, Schauer H, eds. Proc. of theSoftware Engineering Notes ESEC/FSE’97. New York: ACM Press, 1997. 361−377.[11] Tu P, Padua D. Gated SSA-based demand-driven symbolic analysis for parallelizing compilers. In: Valero M, ed. Proc. of the 1995ACM Int’l Conf. on Supercomputing. New York: ACM Press, 1995. 414−423.[12] Fischer J, Jhala R, Mujumdar R. Joining data flow with predicates. In: Wermelinger M, Gall HC, eds. Proc. of the 13th ACMSIGSOFT Int’l Symp. on Foundations of Software Engineering. Lisbon: ACM Press, 2005. 227−236.附中文参考文献:[4] 杨朝红,宫云战,肖庆,王雅文.基于缺陷模式的软件测试中的区间运算应用.计算机辅助设计与图形学学报,2008,20(12):1630−1635.肖庆(1979-),男,湖南祁东人,博士生,讲师,主要研究领域为软件测试,程序分析.金大海(1974-),男,博士,主要研究领域为软件测试.宫云战(1962-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为软件测试,软件工程.王雅文(1983-),女,博士生,CCF学生会员,主要研究领域为软件测试,程序分析.杨朝红(1976-),男,博士,副教授,CCF高级会员,主要研究领域为软件测试,软件工程.。
SupplementalDigitalContent:补充的数字内容
Supplemental Digital Content1. Methods to evaluate hepatic steatosisMRI is known to be the most accurate noninvasive method available to assess hepatic steatosis. Since only a portion of the patients in our study cohort underwent liver MRI, assessment of hepatic steatosis using MRI was only possible in these patients. Although it is less straightforward than the use of MRI or unenhanced CT, several studies1-3 have shown that hepatic steatosis can be evaluated using contrast-enhanced liver CT with moderate accuracy. The contrast-enhanced CT method had an advantage that it could be consistently applied to all patients of our study. One major limitation with contrast-enhanced CT, however, is the lack of truly generalized criteria to diagnose hepatic steatosis on contrast-enhanced CT, largely related to the variability caused by differences in contrast-enhancement methods. Therefore, we evaluated hepatic steatosis using contrast-enhanced CT for the entire study cohort and, in addition, using both MRI and contrast-enhanced CT in the patients who had undergone liver MRI. Given the limited accuracy of the contrast-enhanced CT method, we then estimated the prevalence of hepatic steatosis for the entire study cohort by referring to the comparative results of MRI and CT obtained in the subset of patients who had undergone MRI.The contrast-enhanced CT assessment of hepatic steatosis was according to quantitative attenuation measurement (in Hounsfield unit [HU]) of the liver and spleen using a standard region of interest (ROI) technique at a commercial picture archiving and communication system workstation (PetaVision; Asan Medical Center, Seoul, Korea). Mean liver and spleen attenuation was obtained by averaging three 1-cm2 square ROIs placed in each organ. The ROIs were placed in the central portion of the right hepatic lobe approximately at the level of hepatic hilum and in the central portion of the spleen at a similar level. Special care was taken to measure representative areas of hepatic and splenic parenchyma and to avoid any focal lesions or visible vessels. The ROI measurement was performed for all but two patients (861 patients). Two patients could not be evaluated due to the presence of numerous hepatic cysts and/or hamartomas and history of splenectomy. Hepatic steatosis was diagnosed on contrast-enhanced CT if the mean hepatic attenuation was lower than the mean splenic attenuation by greater than 20 HU.1, 2The MRI assessment of hepatic steatosis used a well-established dual-echo T1-weighted imaging method which compares hepatic signal intensity between in-phase and opposed-phase T1-weighted MR images. Hepatic signal intensity was measured using a standard ROI technique at a commercial picture archiving and communication system workstation (PetaVision; Asan Medical Center, Seoul, Korea). Three 1-cm2 square ROIs were placed in the central portion of the right hepatic lobe approximately at the level of hepatic hilum, with a particular care to measure representative areas and to avoid any focal lesions or visible vessels. The ROIs on the in-phase images were copied on to the opposed-phase images so that the corresponding ROIs were placed in the same location. Hepatic fat fraction was derived from the ROI measurements using the following equation: fat fraction = (S in- S ou t) ÷2S in⨯ 100 (%), where S in is the signal intensity on the in-phase image and S out is the signalintensity on the opposed-phage image. Hepatic steatosis was then diagnosed on MRI when the average hepatic fat fraction value of the three ROI locations was greater than 1.5%.4 2. Scan parameters for diffusion-weighted imaging of the liverDiffusion-weighted images were acquired using a respiratory-triggered, single-shot echo planar sequence with diffusion-weighted gradients (i.e., b-factors) of 0, 50, and 900 s/mm2 applied in three orthogonal directions. The other scan parameters for diffusion-weighted imaging were as follows: TR of approximately 3000-5000 ms; TE of 81 ms; slice section thickness of 6 mm; interslice gap of 1.2 mm; matrix of 192×162; number of signal averages of 5; use of parallel imaging technique with an acceleration factor of 2; fat saturation using the chemical shift-selective fat suppression technique; and rectangular field of view to fit.3. Patients whose benign focal hepatic lesions were determined by lesion resolutionCasenumber Age GenderPost-resolutionfollow-up length Additional imaging features1 F 55 29 months Size: <1 cmMRI: typical findings of a benign lesion*18F-FDG PET/CT: negative2 M 61 18 months Size: <1 cmMRI: typical findings of a benign lesion*18F-FDG PET/CT: negative3 F 67 12 months Size: <1 cmMRI: typical findings of a benign lesion*18F-FDG PET/CT: negative4 F 44 23 months Size: approximately 1.5 cmMRI: ill-define patchy abnormal parenchymal signalto suggest an inflammatory lesion5 M 65 23 months Size: approximately 1.3 cmMRI: ill-define patchy abnormal parenchymal signalto suggest an inflammatory lesion18F-FDG PET/CT: negative.6 M 56 29 months Size: approximately 1.2 cmMRI: ill-define patchy abnormal parenchymal signalto suggest an inflammatory lesion*Bright high signal on T2-weighted imaging, lack of enhancement on contrast-enhanced T1-weighted imaging, and lack of diffusion restriction.4. TSTC-liver-on-CT and negative-liver-on-CT patients who did not have adequate follow-upTSTC-liver-on-CT (n=31)‡Negative-liver-on-CT (n=24)‡Mean age (SD) 65.8 years (11.0) 67.5 years (12.6)GenderFemale 12 (39) 9 (38)Male 19 (61) 15 (63) Tumor locationColon20 (65) 7 (29) Rectum 11 (35) 17 (71) AJCC stage at presentation*Stage 0 3 (10) 3 (13) Stage 1 5 (16) 5 (21) Stage 2 5 (16) 4 (17) Stage 3 14 (45) 12 (50) Stage 4 4 (13) 0 (0)Serum CEA (ng/mL), median (range)†(n=28)2.4 (0.51-398)(n=19) 2.3 (0.48-148)Data are shown as the number of patients with percentages in parentheses (sum of which may not be 100% due to rounding), unless otherwise specified. When synchronous cancers were present, data are presented according to the most-advanced lesion.*According to AJCC 7th edition and excluding hepatic metastasis. Staging was classified according to pathologic TNM whenever applicable. In those patients treated nonsurgically, clinical staging information was used when pathologic staging data were lacking. The T and N stages of the rectal cancers that were treated using preoperative chemoradiation were determined at the pretreatment rectal MRI.†Number of patients with serum CEA data is provided in the parentheses.‡Reasons for the lack of adequate follow-up included transfer to another hospital or loss on follow-up (n=25), lack of imaging follow-up in patients who underwent curative endoscopic resection of early cancer (n=3), non-cancer-related death (n=2), or unspecified reasons (n=1) in TSTC-liver-on-CT group and were transfer to another hospital or loss on follow-up (n=17), curative endoscopic resection of early cancer (n=6), or unspecified reasons (n=1) in negative-liver-on-CT group.5. Patients with hepatic metastases that manifested as TSTC lesionsCase numberAge(years) Gender Tumor locationAJCC stage at presentation*Serum CEA(ng/mL)T N M Overall1 56 M Rectum 3 1 0 3B 1.22 54 M Rectum3 1 0 3B 1.73 61 F Rectum4 2 1 4B 534 79 F Ascending colon 3 1 0 3B 1.15 68 M Rectum 3 1 0 3B 3.0*According to AJCC 7th edition and excluding hepatic metastasis. Staging was classified according to pathologic TNM whenever applicable. In those patients treated nonsurgically, clinical staging information was used when pathologic staging data were lacking. The T and N stages of the rectal cancers that were treated using preoperative chemoradiation were determined at the pretreatment rectal MRI.6. References for Supplemental Digital Content1) Kim DY, Park SH, Lee SS, et al. Contrast-enhanced computed tomography for thediagnosis of fatty liver: prospective study with same-day biopsy used as the referencestandard. Eur Radiol. 2010;20:359-366.2) Jacobs JE, Birnbaum BA, Shapiro MA, et al. Diagnostic criteria for fatty infiltrationof the liver on contrast-enhanced helical CT. AJR Am J Roentgenol. 1998;171:659-664.3) Lawrence DA, Oliva IB, Israel GM. Detection of hepatic steatosis on contrast-enhanced CT images: diagnostic accuracy of identification of areas of presumed focal fatty sparing. AJR Am J Roentgenol. 2012;199:44-47.4) van Werven JR, Marsman HA, Nederveen AJ, et al. Assessment of hepatic steatosis inpatients undergoing liver resection: comparison of US, CT, T1-weighted dual-echoMR imaging, and point-resolved 1H MR spectroscopy. Radiology. 2010;256:159-168.。
两个潜变量的模糊PLS_结构方程模型算法求解
E(f(ξ))=
乙 Cr{f(ξ)≥r}dr- 乙 Cr{f(ξ)≤r}dr
0 -∞
其中 :L=Cr{f(ξ)≥r} 为 模 型 事 件 f(ξ) 发 生 的 可 信 性 , 可 以 由 下式估计得到 :
方程估计出测量模型与结构模型系数
xhn=p1hLX +μ1hn
n
L= 1 ( max {vk|f(ξk)≤0}+ min {1-vk|f(ξ(θk))>0}) ,vk=Pos{θk} 1≤k≤N 2 1≤k≤N 2.2
决 策 参 考
两个潜变量的模糊 PLS- 结构方程模型算法求解
任红梅 ,王 緌
( 四川大学 工商管理学院 , 成都 610064 )
摘
要 : 文 章 对 传 统 的 结 构 方 程 引 入 模 糊 变 量 , 给 出 了 两 个 潜 变 量 的 模 糊 PLS- 结 构 方 程 的 迭
代模型 ; 通过引入模糊期望 、 模糊事件可信性的概念 , 运用模糊模拟的方法开发了实现程序 , 根据 该 算法的特性 , 可以优化传统的结构方程模型 , 以获得更好的模型解释与预测能力 。 文章还通过 算 例 验证了该算法的有效性 。 关键词 :PLS- 结构方程模型 ; 模糊变量 ; 模糊期望 中图分类号 :O212.4 文献标识码 :A 文章编号 :1002-6487(2010)07-0047-03
3
模型应用
选取学生能力与成绩的一组小样本数据, 对以上模糊
程 序 , 循 环 2000 次 , 同 时 为 了 区 别 本 文 模 型 与 传 统 确 定 的
PLS- 结果方程模型 , 将对比结果列入表 2 、 表 3 。
从 表 3 可 知 , 当 用 确 定 PLS- 结 构 求 解 时 , 由 于 忽 略 了 大 量模糊因素的存在 , 其结果与经过模糊化的 PLS- 结构方程有 一定差别 。 当模 糊 数 的 置 信 水 平 取 为 1 时 , 所 有 的 模 糊 数 都 变成确定数 — 模糊数的主值 , 相当于应用确定 PLS- 结构方程 模型 。 把 IQ 表现变量定义为三角模糊数时 , 与实际相吻合 , 得 出 IQ 表现与学习能力的关系系数变小 。 对 回 归 方 程 进 行 显 著 性 检 验 , 确 定 PLS- 结 构 方 程 模 型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Enhanced Parameter Identification for Complex Biomedical Modelson the Basis of Fuzzy ArithmeticMichael Hanss,Oliver NehlsInstitute A of Mechanics,University of StuttgartStuttgart,GermanyM.Hanss,O.Nehls@mecha.uni-stuttgart.deAbstractWith the objective of future improvement of medical therapy,a method for the improvement of parameter identification for complex biomedical models on the ba-sis of fuzzy arithmetic is presented.The model param-eters to be identified are considered as uncertain,and are represented by fuzzy numbers with their member-ship functions quantifying an initial guess for the ac-tual value of the model ing the transfor-mation method as a special implementation of fuzzy arithmetic,the model can be analyzed with the inten-tion of determining the influence of each parameter on the variation of the overall model output.Finally,the parameter identification can be improved by reducing the high-dimensional identification procedure to a num-ber of lower-dimensional optimization problems with measurement data taken from those time intervals only where the parameters show significant influence.The enhanced performance of the model with the newly identified parameters is proved by a higher conformity of its predictions with reality.1.IntroductionIn order to improve medical therapy and to develop op-timal medication for human deseases which are caused by some physical deficiency,mathematical modeling of the biomedical systems has proved to be a very success-ful tool.By carrying out simulations of the mathemati-cal model,the human reactions on a special medication can be studied under various conditions.As an exam-ple which has been of great interest in recent years,di-abetes,or strictly speaking diabetes mellitus type I,is considered in the present paper.The effects of this dis-ease to the patients’everyday life are usually quite seri-ous,ranging from regular medication with injections up to being imperiled by bad risk of heart attacks. However,modeling of biomedical systems turns out to be a non-trivial problem since the models are usually rather complex,nonlinear and characterized by a huge amount of parameters which have to be identified from scratch for each single patient.The proper solution of this high-dimensional nonlinear optimization problem of identifying the model parameters can be considered as the crucial part of the entire modeling procedure.It does not only require plenty of computational effort,it very often leads to results which are reasonable only from a numerical point of view,but have no relation to the actual physical realities.The major reason for this failure of the global optimization problem can be seen in its high dimension and in the fact that the whole set of measured input-output data is utilized in an undiffer-entiated way to identify all model parameter at once. To avoid this effect,the model of the biomedical system has to be analyzedfirst with respect to a quantification of the influence of each model parameter on the mea-sured model output.By this,the time range for the sim-ulation of the model can be split into different phases where in each phase only a subset of the model param-eters shows major influence on the model output,and the significance of others can be considered as negligi-ble.The advantages of this way of proceeding are that on the one hand the overall high-dimensional identifi-cation procedure can be reduced to a number of lower-dimensional and much faster to solve optimization prob-lems.On the other hand,realistic values for the model parameters can be achieved since in the reduced opti-mization problem only measurement data from those specific time intervals are used for the identification of the model parameters where the parameters show sig-nificant influence.For the purpose of analyzing the physiological model, which is introduced in Section2of the paper,the param-eters to be identified are considered as uncertain,repre-sented by fuzzy numbers with their peak value given by some initial guesses.A special implementation of fuzzy arithmetic,namely the transformation method[5,6], is then applied to analyze the uncertain model.This method is outlined in Section3of the paper.It can be seen as an advanced and extended version of the so called vertex method[2,3]with the major advantage of not showing any overestimation effect[4]which usually occurs in conventional implementations of fuzzy arith-metic[9].As a part of this method,the evaluation of a measure of influence for each model parameter is pro-vided which allows practical analysis of the model even in the presence of a large number of model parameters. The results of the analysis of the model are presented Section4,followed by Section5where the results for the original,high-dimensional identification procedure on the one hand,and the enhanced model identification after fuzzy arithmetical analysis on the other hand,are compared for the model of human glucose metabolism.2.Physiological ModelBasically,the overall model of the human glucose metabolism for patients with diabetes mellitus type Ican be split into three parts:First,the model for the in-flow of insulin into the blood in consequence of the subcutaneous injected external insulin.Second,themodel for the inflow of glucose into the blood in consequence of the ingested food,which can again be subdivided into two parts representing the metabolisms in the stomach on the one side,and in the intestine on the other(Figure1).Finally,the outputs of the models are combined in a third model to predict the amount of in-blood glucose.For reasons of clearness,only the basic equations of the models are stated in the en-suing.Detailed listings of the actual parameter settings can be found in[7]or[8].Model for the inflow of insulin into the blood [10]After injection,insulin appears in two modifications in the subcutaneous depot which can be described by a hemisphere with the radial coordinate:as dimere in-sulin with the concentration and as hexamere insulin with the concentration.The uptake of insulin into the blood is only affected by dimere insulin. The injected external insulin,however,is a solution of pure hexamere insulin.(2)(3) with the operator(6)and(8)and the parameters,,,,and.The input parameters,and denote the amount of carbohydrates,proteins and fat in the ingestedmeal.(11)(12)with the initial and boundary conditions(16)where reflects the degree of refinement of the dis-cretization(see Figure2).Thus,the fuzzy numbers canbe represented by a set of intervals,,of the formwith(17)(18)(19)Instead of applying standard interval arithmetic directlyto the intervals,,for each level ofmembership,,the intervals are nowtransformed into arrays of the form(20)with(21)Assuming the problem to be given by the arithmeticalexpression in the form(22)its evaluation is then carried out by evaluating the ex-pression separately at each of the positions of thearrays using the conventional arithmetic for crisp num-bers.Thus,if the result of the problem can be ex-pressed in its decomposed and transformed form by thearrays,,the-th element of the array is then given by(23) where denotes the-th element of the array. Finally,if simulation of the uncertain problem is the im-mediate object,the fuzzy-valued result of the problem can be achieved in its decomposed form(24)by retransforming the arrays–including a certain correction procedure–according to the recursive for-mulae(25) and(26) Some explanatory examples as well as a geometrical in-terpretation of the presented method can be found in[4] and[5].For the purpose of analysis,the coefficients,,,have to be calculated according to(29) satisfying the condition(30) Thus,the values quantify the influence of the-th varying parameter on the overall variation of the problem output,assuming every parameter to be var-ied relatively to the same percental extent.4.Model analysisIn order to analyze the model with respect to the influ-ence of the uncertain model parameters,the parameters are represented by fuzzy numbers which ex-press an initial guess for the actual values of the model parameters.The membership functions of the fuzzy numbers are defined to be symmetric and of(quasi-) Gaussian shape given bydimensionUsing the transformation method for the simulation andthe analysis of the fuzzy-parameterized model,the rela-tive degrees of influence can be determined.Exemplarily,the parameters and will be consid-ered in the ensuing.The resulting curves for the degreesare presented in Figure3.of influence andOne can see that the prediction of the in-blood glucose can be distinctly improved by applying the identification procedure in its enhanced version.Moreover,consider-ing the fact that biomedical systems are extremely hard to be modeled and to be identified,the presented results can be rated as very satisfactory.6.ConclusionsThe presented approach to improve the parameter iden-tification of complex biomedical models has turned out to be very promising and successful.Although the pro-cedure of model analysis,which has to be carried out beforehand,is rather time-consuming and requires quite high computational efforts,the advantages of the pre-sented method do clearly outweigh at the end.This is mainly due to the fact that the analysis has to be carried out only once for a particular biomedical model.The subsequent identification procedure,however,has to be performed anew for each single patient and every newly acquired set of data.Thus,the reduced dimension and the enhanced performance of the optimization compo-nentfinally entails a clear improvement of the overall method.References[1] C.Cobelli,G.Federspil,G.Pacini,A.Salvan,andC.Scandellari.An integrated mathematical model ofblood glucose and its hormonal control.Mathematical Biosciences,58:27–60,1982.[2]W.Dong and H.C.Shah.Vertex method for computingfunctions of fuzzy variables.Fuzzy Sets and Systems, 24:65–78,1987.[3]W.M.Dong and F.S.Wong.Fuzzy weighted averagesand implementation of the extension principle.Fuzzy Sets and Systems,21:183–199,1987.[4]M.Hanss.A nearly strict fuzzy arithmetic for solvingproblems with uncertainties.In Proc.of the19th Inter-national Conference of the North American Fuzzy Infor-mation Processing Society-NAFIPS2000,pages439–443,Atlanta,GA,USA,2000.[5]M.Hanss.The transformation method for the simula-tion and analysis of systems with uncertain parameters.Fuzzy Sets and Systems,(to appear)2001.[6]M.Hanss and L.Gaul.Simulation and analysis of afriction model with uncertain parameters using fuzzy arithmetic.In Proc.of the21st Iberian Latin American Congress on Computational Methods in Engineering-CILAMCE2000,Rio de Janeiro,Brazil,2000.[7]M.Hanss and O.Nehls.Simulation of the human glu-cose metabolism using fuzzy arithmetic.In Proc.of the 19th International Conference of the North American Fuzzy Information Processing Society-NAFIPS2000, pages201–205,Atlanta,GA,USA,2000.[8] B.H¨ofig.Physiologische Modellierung des mensch-lichen Glukose-Metabolismus f¨u r die simulations-gest¨u tzte Therapie des insulinabh¨a ngigen Diabetes mel-litus.Dissertation,Universit¨a t Stuttgart,1998.[9] A.Kaufmann and M.M.Gupta.Introduction to FuzzyArithmetic.Van Nostrand Reinhold,New York,1991.[10] E.Mosekilde,K.Jensen,C.Binder,S.Pramming,andB.Thorsteinsson.Modeling absorption kinetics of sub-cutaneous injected soluble insulin.Journal of Pharma-cokinetics and Pharmaceutics,17:67–87,1989. [11]K.Schittkowski.The nonlinear programming method ofwilson,han and powell with an augmented Lagrangian type line search function.Numerische Mathematik, 38:83–127,1981.。