第1章 均匀传输线理论

合集下载

1 均匀传输线理论

1 均匀传输线理论

U ( z ) A1e j z A2e j z 1 I ( z ) ( A1e j z A2e j z ) z0
E ( z ) A1e j z A2e j z H ( z) 1

( A1e j z A2e j z )
其中,特性阻抗 Z0
U 0 A1 A2 Z 0 I 0 A1 A2
1 A1 (U 0 Z 0 I 0 ) 2 1 A2 (U 0 Z 0 I 0 ) 2
1 1 j z j z U ( z ) ( U Z I ) e ( U Z I ) e 0 0 0 0 0 0 2 2 1 1 j z I ( z) (U 0 Z 0 I 0 )e (U 0 Z 0 I 0 )e j z 2Z 0 2Z 0
再考虑终端条件
j l j l U ( l ) A e A e Zl Il 1 2 j l j l Z I ( l ) A e A e 1 2 0
即 A1e
j l
A2e
j l
Zl ( A1e j l A2e j l ) Z0
u ( z , t ) Re U ( z )e jt jt i ( z , t ) Re I ( z ) e
式中,U(z)、I(z)只与z有关,表示在传输线z处的电 压或电流的复值。 i( z, t ) dU u ( z, t ) Ri ( z , t ) L ( R j L) I ZI z t dz dI i ( z , t ) Gu ( z , t ) C u ( z , t ) (G jC )U YU z t dz

1.4传输线的传输功率、效率与损耗

1.4传输线的传输功率、效率与损耗

1.4 传输线的传输功率、效率与损耗传输线传输功率效率与损耗传输功率本节要点传输效率 损耗 功率容量Decibels (dB)作为单位功率值常用分贝来表示,这需要选择一个功率单位作为参考,常用的参考单位有1mW 和1W 。

如果用1mW 作参考,分贝表示为:=)mW (lg 10)dBm (P P 如1mW=0dBm 10mW=10dBm 1W=30dBm 0.1mW=−10dBm如果1W 作参考,分贝表示为:如1W=0dBW10W=10dBW0.1W=−10dBW)W (lg 10)dB (P P =插入损耗1.5 阻抗匹配阻抗匹配具有三种不同的含义,分别是负载阻抗匹配、源阻抗匹配和共轭阻抗匹配。

抗匹配源阻抗匹配和共轭阻抗匹配本节内容三种匹配阻抗匹配的方法与实现1. 三种匹配(impedance matching)入射波射波反射波Z 0Z lZ (1)g负载阻抗匹配:负载阻抗等于传输线的特性阻抗。

此时传输线上只有从信源到负载的入射波,而无反射波。

(2)源阻抗匹配:电源的内阻等于传输线的特性阻抗。

()阻抗内阻等传输线特性阻抗对匹配源来说,它给传输线的入射功率是不随负载变化的,负载有反射时,反射回来的反射波被电源吸收。

E gZ gZ in=Z g* E g负载阻抗匹配Z l =Z 0 Z =Z 信号源阻抗匹配g 0 共轭阻抗匹配Z in =Z g *匹配器1匹配器2*g in ZZ =Z in =Z 02. 阻抗匹配的实现方法隔离器或阻抗匹配衰减器负载匹配的方法:从频率上划分有窄带匹配和宽带匹配;从实现手段上划分有λ/4阻抗变换器法、支节调配法。

(1) λ/4阻抗变换器匹配方法此处接λ/4阻抗变换器lR Z Z 001=Z Z =0in电容性负载Z 0若是l 1λ/401Z Z =电感性负载又如何?Z 0Z 0Z 01ρR x =Z 0/ρZ i n =Z 0(2) 支节调配法(stub tuning)(2)(i)支节调配器是由距离负载的某固定位置上的并联或串联终端短路或开路的传输线(称之为支节)构成的。

第1章均匀传输线理论详解

第1章均匀传输线理论详解
第1章 均匀传输线理论
第1章
1.1 1.2 1.3 1.4
均匀传输线理论
均匀传输线方程及其解 传输线阻抗与状态参量 无耗传输线的状态分析 传输线的传输功率、 效率与损耗
1.5
1.6 1.7
阻抗匹配
史密斯圆图及其应用 同轴线的特性阻抗


第1章 均匀传输线理论
传输线
电路:导线
e.g.50Hz交流电电线
无纵向电磁场分量的电磁波称为横电磁波,即TEM
波,TEM波只能够存在于双导体或多导体中。
另外, 传输线本身的不连续性可以构成各种形式的
微波无源元器件 , 这些元器件和均匀传输线、 有源
元器件及天线一起构成微波系统。
第1章 均匀传输线理论
一、传输线的种类
1、双导体传输线(TEM波传输线): 它由两根或两根以上平行导体构成 , 因其传输的电 磁波是横电磁波( TEM 波)或准 TEM 波 , 故又称为 TEM波传输线。
dU ( z ) Z I ( z) dz
dI ( z ) Y U ( z ) dz
移相
dU 2 ( z ) dI ( z ) Z Z Y U ( z ) 2 dz dz
dI 2 ( z ) Z Y I ( z) 0 2 dz
dI 2 ( z ) dU ( z ) Y Y Z I ( z) 2 dz dz
从微分的角度,对很小的Δz, 忽略高阶小量,有: u ( z , t ) u ( z z , t ) u ( z , t ) z z i ( z , t ) i ( z z , t ) i ( z , t ) z z 从电路角度,应用基尔霍夫定律,可得: i ( z , t ) u(z, t)+R﹒Δz﹒i(z, t)+ L z - u(z+Δz, t)=0 t u( z z, t ) i(z, t)+G﹒Δz﹒u(z+Δz, t)+ C﹒Δz﹒ -i(z+Δz, t)=0

微波答案 1均匀传输线理论

微波答案 1均匀传输线理论
对于任一集总电路中的任一节点,在任一时刻, 流出(或流入)该节点的所有支路电流的代数和 为零。 由KCL定律, 对于节点1有:
复习:基尔霍夫定律 KVL定律:
对于任一集总电路中的任一回路,在任一时 刻,沿着该回路的所有支路电压降的代数和为 零。 从a点出发,顺时针 方向绕行一周,由KVL定 律有:
传输线的边界条件有:
已知z 0处的终端电压U I 和终端电流I I 已知z l处的始端电压U i和始端电流I i 已知z l处的信源电动势E 和内阻Z 及其负载阻抗Z g g l
讨论第二种情况,已知 z l 处U (l ) U i、I (l ) I i ,则代入上式 U Z 0 I i l 有: A i e U i A1e l A2 e l 1 2 l l U Z I 0 i i e l I i ( A1e A2 e ) / Z 0 A2
行波在传播过程中其幅度按衰减称为衰减常数而相位随连续滞后ingqilu126com11均匀传输线方程及其解传输线的工作特性参数ingqilu126com传输线的工作特性参数特性阻抗z传输线上导行波导行波的电压与电流之比用z表示其倒数称为特性导纳用y特性阻抗是分布参数中用来描述传输线的固有特性的一个物理量频率很低时这种特性显示不出来随着频率升高这种特性才显示出来
基本方程,是描 述传输线的电压、 电流的变化规律 及其相互关系的 微分方程
i ( z, t ) u ( z , t ) Ri ( z, t ) L z t 均匀传输线方程(电报方程) 1-1-3 i ( z, t ) Gu ( z , t ) C u ( z , t ) z t
2 1 E 2 C 满足二维波动方程 2 H 1 C2 2 E 0 t 2 2 H 0 t 2

第1章 均匀传输线理论(5)

第1章  均匀传输线理论(5)
当负载阻抗为纯电阻Rl且其值与传输线特性阻抗Z0不相等时, 可在两者之间加接一节长度为 λ/4、特性阻抗为Z01的传输线来 实现负载和传输线间的匹配, 如图 1- 13(a)所示。
图 1-13 λ/4阻抗变换器
1.5 阻抗匹配
由无耗传输线输入阻抗公式得
Zin
Z01
Rl jZ01 Z01 jRl
l2
4
2
tan 1
1
(1- 5- 14c)
1.5 阻抗匹配
其中, λ为工作波长。 而AA′距实际负载的位置l1为
l1=l1′+ lmax1
(1- 5- 15)
由式(1- 5- 14)及(1- 5- 15)就可求得串联支节的位置及长度。
1.5 阻抗匹配 隔离器或去耦衰减器以实现信源端匹配, 因此我们着重讨论负载 匹配的方法。 阻抗匹配方法从频率上划分为窄带匹配和宽带匹 配,从实现手段上划分为串联λ/4阻抗变换器法、 支节调配器法。 下面就来分别讨论两种阻抗匹配方法。
图 1-12 传输线阻抗匹配方法示意图
1.5 阻抗匹配
1) λ/4阻抗变换器法
1.5 阻抗匹配
由于 λ/4阻抗变换器的长度取决于波长, 因此严格说它只能 在中心频率点才能匹配, 当频偏时匹配特性变差, 所以说该匹配 法是窄带的。
2) 支节调配器法
支节调配器是由距离负载的某固定位置上的串联或并联终 端短路或开路的传输线(又称支节)构成。可分为单支节、双 支节和多支节调配器
1.5 阻抗匹配
tan( tan(
/ /
4) 4)
Z021 Rl
(1- 5- 8)
因此当传输线的特性阻抗 Z01 Z0Rl 时 , 输 入 端 的 输 入 阻 抗

微博技术与天线 第1章 均匀传输线

微博技术与天线 第1章 均匀传输线

Z L jZ0 tan z Zin Z0 100 Z0 jZ L tan z
可见,若终端负载为复数,传输线上任意点处输入阻抗
一般也为复数,但若传输线的长度合适,则其输入阻抗可变 换为实数,这也称为传输线的阻抗变换特性。
1.3.2 定义传输线上任意一点 z 处的反射波电压(或电流)与入射 波电压(或电流)之比为电压(或电流)反射系数, 即
式中Z0为无耗传输线的特性阻抗;β为相移常数。
定义传输线上任意一点 z 处的输入电压和输入电流之比为该 点的输入阻抗,记作 Zin(z),即
U ( z) Z in ( z ) I ( z)
式中, ZL为终端负载阻抗。
U L cos z jI L Z 0 sin z Z L jZ 0 tan z Z in ( z ) Z0 UL Z jZ tan z 0 L I L cos z j sin z Z0
由上式可见,传输线上电压和电流以波的形式传播,在任一
点的电压或电流均由沿-z方向传播的行波(称为入射波)和沿+z 方向传播的行波(称为反射波)叠加而成。
现在来确定待定系数,传输线的边界条件通常有以下三种:
① 已知终端电压UL和终端电流IL;
② 已知始端电压Ui和始端电流Ii;
③ 已知信源电动势Eg和内阻Zg以及负载阻抗ZL。
平行双线的等效电路
传输线始端接信号源、终端接负载 坐标原点在终端处,波沿z 方向传播 将一微分线元 z (z ) 视为集总参数电路 微分线元上有电阻R z ,电感Lz ,电容 C z 和漏电 导 G z
1.2.1 均匀传输线方程
设在时刻t, 位置z处的电压和电流分别为u(z, t)和i(z, t),而在

第1.4节 传输线的传输功率、效率与损耗

第1.4节 传输线的传输功率、效率与损耗
《微波技术与天线》
第一章 均匀传输线理论之•传输功率、效率与损耗
3.功率容量 功率容量(power capacity) 功率容量
功率容量:传输线上容许传输的最大功率。 功率容量:传输线上容许传输的最大功率。 当传输线的结构和介质材料选定后,功率容量由额定电 当传输线的结构和介质材料选定后, 和额定电流I 决定。 压UM和额定电流 M决定。 设传输线的驻波比为 ρ ,则功率容量可表示为
结论
1 − Γl
2 ρ
(1)回波损耗和插入损耗虽然都与反射信号即反射系数 回波损耗和插入损耗虽然都与反射信号即反射系数 有关,但回波损耗取决于反射信号本身的损耗, Γ 越 有关,但回波损耗取决于反射信号本身的损耗,|Γl|越 越小; 大,则|Lr|越小; 越小 (2)插入损耗 i则表示反射信号引起的负载功率的减小, 插入损耗L 则表示反射信号引起的负载功率的减小, 插入损耗 |Γl|越大,则| Li |也越大。 越大, 也越大。 Γ 越大 也越大
《微波技术与天线》
第一章 均匀传输线理论之•传输功率、效率与损耗
Z l − Z 0 (40 − Z 0 ) 2 + 30 2 Γl = = 2 2 Z l + Z 0 (40 + Z 0 ) + 30
将上式对Z0求导, 并令其为零, 经整理可得
1 2
402+302-Z02=0
回波损耗取决于反射信号本身的损耗,|Γl|越大,则|Γr|越小; 插入损耗|Li|则表示反射信号引起的负载功率的减小,|Γl|越大,则|Li|也越大。
图 1- 9 | Lr|、 |Li|随反射系数的变化曲线
《微波技术与天线》
第一章 均匀传输线理论之•传输功率、效率与损耗 [例 1-4]现有同轴型三路功率分配器,如图1-10所示,设该功分器在 2.5GHz-5.5GHz频率范围内其输入端的输入驻波比均小于等于1.5,插入损耗 为,设输入功率被平均地分配到各个输出端口,试计算(1)输入端的回波 损耗(用分贝表示);(2)每个输出端口得到输出功率与输入端总输入功 率的比值(用百分比表示)。 解(1)由于驻波比为1.5,因而反射系数的大小为

第1章 均匀传输线理论(3)

第1章  均匀传输线理论(3)

1.3 无耗传输线的状态分析
图 1- 4 无耗终端开路线的驻波特性
1.3 无耗传输线的状态分析 当均匀无耗传输线端接纯电抗负载Zl=±jX时, 因负载不能 消耗能量, 仍将产生全反射, 入射波和反射波振幅相等, 但此时 终端既不是波腹也不是波节, 沿线电压、电流仍按纯驻波分布。 由前面分析得小于λ/4的短路线相当于一纯电感, 因此当终端负 载为 Zl=jXl 的纯电感时 , 可用长度小于 λ/4的短路线 lsl 来代替。 由式(1- 3- 6)得
Rmax·Rmin=Z02
实际上, 无耗传输线上距离为λ/4的任意两点处阻抗的乘积
均等于传输线特性阻抗的平方, 这种特性称之为λ/4阻抗变换性。
[例 1- 3]设有一无耗传输线, 终端接有负载Zl=40-j30(Ω): ① 要使传输线上驻波比最小, 则该传输线的特性阻抗应取
多少?
② 此时最小的反射系数及驻波比各为多少? ③
ZC Z 0 2Z 0 Z 0 1 C ZC Z 0 2Z 0 Z 0 3
B 0
1.3 无耗传输线的状态分析

(1- 3- 8)
1.3 无耗传输线的状态分析 图 1- 5 给出了终端接电抗时驻波分布及短路线的等效。 总之, 处于纯驻波工作状态的无耗传输线, 沿线各点电压、
电流在时间和空间上相差均为π/2, 故它们不能用于微波功率的
传输, 但因其输入阻抗的纯电抗特性, 在微波技术中却有着非常 广泛的应用。
将上式对Z0求导, 并令其为零, 经整理可得
402+302-Z02=0
即Z0=50Ω。 这就是说, 当特性阻抗Z0=50Ω时终端反射系数最小, 从而驻波比也为最小。
1.3 无耗传输线的状态分析

第1章 传输线理论

第1章  传输线理论
第1章 34
Zc
L C

120
r
ln
D r
(
276
r
lg
D r
)
对于内、外导体半径分别为a、b的 无耗同轴线,其特性阻抗为
Zc L C
60
r
ln
b a
(
138
r
lg
b a
)
式中, r 为内、外导体间填充介质的相对 介电常数。常用的同轴线传输线的特性 阻抗有50Ω和75 Ω二种。
第1章 35
2)相速与波长 传输线上的相速定义为电压、电流 入射波(或反射波)等相位面沿传输方向 的传播速度,用 v p 表示。由等相位面的 运动方程 t z const . 两边对t微分,有
vp dz dt
第1章


36
对于均匀无耗传输线来说,由于β 与ω成线性关系,故导行波的相速与频率 无关,称为无色散波。当传输线有损耗 时, β不再与ω成线性关系,相速与频率 有关,这称为色散特性。 相速除以频率得波长: vp 2 f 改写上式,得
1 U L I L Z c j U L I L Z c j I (z) [ e e ] Zc 2 2
U ( z ) U L cos z jI L Z c sin z I ( z ) I L cos z j UL Z
c
sin z
有了沿线的电压电流分布,我们就 可以分析传输线的传输特性。
e
j
1 U L I L Z c j U L I L Z c j I (z) [ e e ] Zc 2 2
IL
UL ZL
,U L I L Z L

均匀传输线传输线理论

均匀传输线传输线理论
2
平行双导线和同轴线的分布参数
D d
b a
3
均匀传输线的等效电路
4
§2.2 均匀传输线方程及其解
z
Zg ZL
Eg
z+z i(z+z,t)
z Rz Lz
z=0 i(z,t)
Cz u(z+z,t)
Gz
u(z,t)
5
2.2.1 均匀传输线方程
u ( z
z,
t
)
Ri( z, t )
L
i(z,
t
t
)
我们着重研究时谐(正弦或余弦)的变化情况
u(z,t) Re U (z)e jt
i(z,t) Re
I(z)e jt
dU (z) dz
(R
j L)I (z)
ZI
(z)
dI
(z)
dz
(G
jC)U
(z)
YU (z)
dU (z) dz
j L I (z)
dI
(
z)
dz
jC U (z)
A1e
z
+A2e z
I (z)
1 Z0
( A1e z
A2e z )
注意:U (z) I (z)
Z0
Z0
Z Y
R jL G jC
是传输线的特征阻抗
8
方程的物理意义
电压的瞬时表达式,(电流的类似)
u(z, t) A1ez cos(t z) A2ez cos(t z)
沿-z方向的入射波
Z(z) Z(z l)
2
是tan()的重复性
⑵ l/4阻抗变换(倒置)性:传输线上相距l/4的 任意两点的阻抗性质发生转换:

第1.1节 均匀传输线理论

第1.1节 均匀传输线理论
U ( z ) = A1e γ z + A2 e −γ z 沿线电压电流表达式 1 I ( z) = A1e γ z − A2 e −γ z Z0
(
)

将终端条件U (0)=Ul, I (0)=Il代入上式可得
U l = A1 + A2 Il =
解得
,。 1
1 ( A1 − A2 ) Z0
《微波技术与天线》
第一章 均匀传输线理论之•均匀传输线方程及其解
研究传输线上所传输电磁波的特性的方法有两种: 研究传输线上所传输电磁波的特性的方法有两种
一种是“场 ” 的分析方法 “ 的分析方法,即从麦氏方程出发,解特定边界条 件下的电磁场波动方程 电磁场波动方程,求得场量( E和H)随时间和空间的变 电磁场波动方程 化规律,由此来分析电磁波的传输特性; 另一种方法是“ 路 ” 的分析方法 “ 的分析方法,它将传输线作为分布参数 来处理,得到传输线的等效电路 等效电路,然后由等效电路根据克希霍 等效电路 夫定律导出传输线方程,再解传输线方程 传输线方程,求得线上电压和电 传输线方程 流随时间和空间的变化规律,最后由此规律来分析电压和电 流的传输特性。
U ( z ) = A1e γz + A2 e − γz
I (z ) = A1e γz − A2 e −γz Z 0
(
)
Z 0 = ( R + jωL ) /(G + jωC )称为传输线的特性阻抗 。
A , A 为积分常数,由边界条件决定。 1 2 为积分常数,由边界条件决定。
《微波技术与天线》
第一章 均匀传输线理论之•均匀传输线方程及其解
《微波技术与天线》
第一章 均匀传输线理论之•均匀传输线方程及其解

均匀传输线理论

均匀传输线理论

Z0
60
r
ln b a
(1-1-17)
式中, εr为同轴线内、外导体间填充介质的相对介电常数。 常 用的同轴线的特性阻抗有50 Ω 和75Ω两种。
2) 传播常数 γ 传播常数 γ 是描述传输线上导行波沿导波系统传播过程中 衰减和相移的参数, 通常为复数,
(R jw)G L (jw)C aj
的Δz, 忽略高阶小量, 有
u(z+Δz, t)-u(z, t)= u(z,t) z z
i(z+Δz, t)-i(z, t)= i(z,t) z z
对图 1- 2(b),
(1-1-1)
u(z, t)+RΔzi(z, t)+ Lz i(z,t)- u(z+Δz, t)=0 t
i(z, t)+GΔzu(z+Δz, t)+ CΔz u(z z,t-)i(z+Δz, t)=0 t
u(z, t)=Re[U(z)e jωt] i(z, t)=Re[I(z)e jωt]
(1-1-4)
将上式代入(1- 1- 3)式, 即可得时谐传输线方程
dU(z) ZI(z) dz
dI(z) YU(z) dz
(1-1-5)
式中, Z=R+jωL, Y=G+jωC, 分别称为传输线单位长串联阻抗和 单位长并联导纳。
1.1
1.
由均匀传输线组成的导波系统都可等效为如图 1- 2(a) 所示的均匀平行双导线系统。 其中传输线的始端接微波信号 源(简称信源), 终端接负载, 选取传输线的纵向坐标为z, 坐标 原点选在终端处, 波沿负z方向传播。 在均匀传输线上任意一点 z处, 取一微分线元Δz(Δz<<λ), 该线元可视为集总参数电路, 其上有电阻RΔz、电感LΔz 、电容CΔz和漏电导GΔz(其中R, L, C, G分别为单位长电阻、 单位长电感、 单位长电容和单位长漏 电导),得到的等效电路如图 1-2(b)所示, 则整个传输线可看 作由无限多个上述等效电路的级联而成。有耗和无耗传输线的 等效电路分别如图 1- 2(c)、 (d)所示。

精选第一章均匀传输线传输线理论资料

精选第一章均匀传输线传输线理论资料
王培章(副教授)
卫星系微波教研室
理工大学通信工程学院
1
第一章 均匀传输线理论
微波传输线 均匀传输线方程及其解 均匀传输线的传输特征及特征参数 传输线的传输功率、效率和损耗 无耗传输线的三种工作状态 史密斯圆图 无耗传输线的阻抗匹配
2
传输线的分布参数
高频磁场 → 分布电感 高频电场 → 分布电容 高频电流的趋肤效应 → 分布电阻 介质的漏电流 → 分布电导
z)
Ii
U (z
i (z )[1
)[1 G(
G(z)] z)]
Zin
(z)

U (z) I (z)

Z0
1 1
G(z) G(z)
G(z) Zin (z) Z0 Zin (z) Z0
终端负载与终端反射系数的关系
ZL

Z0
1 GL 1 GL
GL

ZL ZL

Z0 Z0
z
I (z)

1 Z0
( A1e z

A2e z )
注意:U (z) I (z)

Z0
Z0
Z Y
R jL G jC
是传输线的特征阻抗
9
方程的物理意义
电压的瞬时表达式,(电流的类似)
u(z, t) A1ez cos(t z) A2ez cos(t z)
I (z)

A1 Z0
[e( j )z
GLe( j )z ]
| GL | 0 行波状态 | GL | 1 驻波状态 | GL | 1 行驻波状态
UI ((zz))ZAA101eejjzz
[1 GLe j2 z ] [1 GLe j2 z ]

第1章 均匀传输线理论(2)

第1章  均匀传输线理论(2)

Γ1

1 1
(1-2-15)
由此可知, 当|Γl|=0 即传输线上无反射时, 驻波比ρ=1; 而 当|Γl|=1即传输线上全反射时, 驻波比ρ→∞, 因此驻波比ρ的取 值范围为1≤ρ<∞。可见,驻波比和反射系数一样可用来描述 传输线的工作状态。
1.2 传输线阻抗与状态参量
[例1-2]一根75Ω均匀无耗传输线, 终端接有负载Zl=Rl+jXl, 欲使线上电压驻波比为3, 则负载的实部Rl和虚部Xl应满足什么 关系?
U
max

U
U

U min U U
(1- 2- 13)
将式(1-2-13)代入式(1- 2- 11), 并利用式(1- 2- 4),得
1 U / U 1 l
1 U / U 1 l
(1- 2- 14)
1.2 传输线阻抗与状态参量
于是, |Γl|可用ρ表示为
4. 驻波比
对于无耗传输线, 沿线各点的电压和电流的振幅不同, 以 2
周期变化。为了描述传输线上驻波的大小, 我们引入一个新的参 量——电压驻波比。
1.2 传输线阻抗与状态参量
定义传输线上波腹点电压振幅与波节点电压振幅之比为电 压驻波比, 用ρ表示:
U
max
U m in
(1- 2- 11)
Zin

Z0
Zl Z0
jZ0 jZl
tan tan
l l
100
可见, 若终端负载为复数, 传输线上任意点处输入阻抗一 般也为复数, 但若传输线的长度合适, 则其输入阻抗可变换为 实数, 这也称为传输线的阻抗变换特性。
1.2 传输线阻抗与状态参量
2. 反射系数

阻抗匹配

阻抗匹配

λ λ φl ± 4π 4此处为第一 波节点微波工程基础
11
第一章 均匀传输线理论之•阻抗匹配
(c)多支节调配 多支节调配(multiple-stub tuning) 多支节调配
单支节匹配的主要缺点是它仅能实现在点频上匹配, 单支节匹配的主要缺点是它仅能实现在点频上匹配, 要展宽频带,可采用多支节结构来实现。 要展宽频带,可采用多支节结构来实现。
l1′ =
λ φL 4π
此处为第一 波腹点
10
第一章 均匀传输线理论之•阻抗匹配
(b) 并联单支节调配器 并联单支节调配器
A
Y0 Y0
l '1
Y0
B
lmin1
B′
l min 1 =
l1′ =
A′
此处输入导纳应 等于特性导纳
l2
1 λ arctan 2π ρ 1− ρ λ λ l2 = − arctan 4 2π ρ
所需阻抗: 所需阻抗:最大增益匹配 最小噪声系数匹配 最大输出功率匹配 等等
微波工程基础
2
第一章 均匀传输线理论之•阻抗匹配
1. 三种匹配 三种匹配(impedance matching)
入射波 反射波 Zg Z0 Zl
(1) 负载阻抗匹配:负载阻抗等于传输线的特性阻抗。 负载阻抗匹配:负载阻抗等于传输线的特性阻抗。 此时传输线上只有从信源到负载的入射波,而无反射波。 此时传输线上只有从信源到负载的入射波,而无反射波。 (2) 源阻抗匹配:电源的内阻等于传输线的特性阻抗。 源阻抗匹配:电源的内阻等于传输线的特性阻抗。 对匹配源来说,它给传输线的入射功率是不随负载变化的, 对匹配源来说,它给传输线的入射功率是不随负载变化的, 负载有反射时,反射回来的反射波被电源吸收。 负载有反射时,反射回来的反射波被电源吸收。

第一章(均匀传输线理论)

第一章(均匀传输线理论)
• 电阻 • 电感
• 电容
U(t)=Ri(t),i(t)=GU(t)
U(t)=dψ/dt=Ldi/dt i(t)=dq/dt=CdU/dt
一 、 传微输波传线输的线基及本其种概类念
微波传输线:用来传输微波信息和能量的各种 形式传输系统的总称,也称导波系统。 导行波:向一定方向传播的电磁波称为导行波
4.驻波比(行波系数)
U
I

max
max
U U 1 U
U
1
I
I
U U 1 U U 1
min
min
1 1
K

U
min
1


1
U 1
max
0 1
1时: 全反射 0时: 无反射,即匹配状态 1 其它时:1
jZ0 jZ1
tan tan
l l
Yin
(l)

1 Zin (l)

Y0
Y1 Y0

jY0 jY1
tan tan
l l
当 l n(n=整数)时,tanβL=0 2
Zin
(l
)

Zin
(
n
2
)

Z1
当 l (2n 1)( n=整数)时, tanβL=∞ 4
Zin (l)

(2n Zin (
U (z) U (z) U (z) A1e j z[1 (z)]
I (z)

I (z)

I (z)

A1 Z0
e j z[1
( z )]
Zin
(z)

第1章++均匀传输线理论

第1章++均匀传输线理论

l
l
当线上传输高频电磁波时,传输线上的导体上的损耗 电阻、电感、导体之间的电导和电容会对传输信号产 生影响,这些影响不能忽略。
①分布电阻: 电流流过导线将使导线发热表明导线具有 分布电阻; R0为传输线上单位长度的分布电阻。 ②分布电导 :导线间绝缘不完善而存在漏电流,表明沿 线各处有分布电导;G0为传输线上单位长度的分布电导。 ③分布电感:导线中有电流,周围有高频磁场,即导线 存在分布电感;L0为传输线上单位长度的分布电感。 ④分布电容:导线间有电压,导线间有高频电场,导线 间存在分布电容;C0为传输线上单位长度的分布电容。
=Y
dz dU ( z ) dz
定义电压传播常数:
ZY
R0 j L0 G0 jC0
d 2U z 2 U z 0 2 dz 则方程变为: 2 d I z 2 I z 0 2 dz
电压的解为:
z z U ( z) Ae A e 1 2
第一章 均匀传输线理论
§1.1 均匀传输线方程及其解
§1.2 传输线阻抗与状态参量
§1.3 无耗传输线的状态分析 §1.4 传输线的传输功率、效率和损耗 §1.5 阻抗匹配 §1.6 史密斯圆图及其应用 §1.7 同轴线及其特性阻抗
§1.1 均匀传输线方程及其解 一.微波传输线定义及分类
约束或引导微波沿一定方向传输的系统(导波系统)
U + = A1e g z I+ = 1 A1e g z Z0
e g z 表示向-z方向传播的波, 即自源到负载方向的入射 波,用U+或I +表示;
e
- gz
表示向+z方向传播的波,即 自负载到源方向的反射波, 用U-或I -表示。 电压电流解为

第1章 均匀传输线

第1章 均匀传输线
上式表明: 均匀无耗传输线上任意一点的输入阻抗与观察点
的位置、传输线的特性阻抗、终端负载阻抗及工作频率有关,且 一般为复数,故不宜直接测量。另外,无耗传输线上任意相距 λ /2处的阻抗相同,一般称之为λ /2重复性。
第1章 均匀传输线理论
例1、一根特性阻抗为50Ω、长度为0.1875m的无耗均匀传输线, 其工作频率为200MHz,终端接有负载ZL=40+j30 (Ω),试求其 输入阻抗。 解 : 由工作频率 f=200MHz 得相移常数 β=2πf/c=4π/3 。将 ZL=40+j30 (Ω),Z0=50,z=l=0.1875及β值代入下式,有
TEM波指电矢量与磁矢量都与传播方向垂直。
第1章 均匀传输线理论
金属波导
均匀填充介质的金属波导管;
有矩形波导、圆形波导、脊性波导、椭圆波导等。
第1章 均匀传输线理论
介质传输线
电磁波沿传输线表面传播,又称为表面波波导;
包括镜像线、单根表面波传输线、介质波导等。
第1章 均匀传输线理论
1.2 均匀传输线方程的建立与求解
u ( z, t ) u ( z, t ) u ( z, t )
z z A1e cos(t z ) A2 e cos(t z ) i ( z , t ) i ( z , t ) i ( z , t ) 1 [ A1e z cos(t z ) A2 e z cos(t z )] Z0
由上式可见,传输线上电压和电流以波的形式传播,在任一
点的电压或电流均由沿-z方向传播的行波(称为入射波)和沿+z 方向传播的行波(称为反射波)叠加而成。
第1章 均匀传输线理论
现在来确定待定系数,传输线的边界条件通常有以下三种:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 均匀传输线理论
1.1 均匀传输线方程及其解
1.2 传输线的阻抗与状态参量 1.3 无耗传输线的状态分析 1.4 阻抗匹配
1.6
返回主目录
第 1章 均匀传输线理论
微波传输线是用以传输微波信息和能量的各种形式的传输
系统的总称, 它的作用是引导电磁波沿一定方向传输, 因此又称 为导波系统, 其所导引的电磁波被称为导行波。 一般将截面尺
微波传输线大致可以分为三种类型。第一类是双导体传输 线, 它由两根或两根以上平行导体构成, 因其传输的电磁波是横
电磁波(TEM波)或准TEM波, 故又称为TEM波传输线, 主要包
括平行双线、同轴线、带状线和微带线等, 如图 1 - 1(a)所示。 第二类是均匀填充介质的金属波导管, 因电磁波在管内传播, 故 称为波导, 主要包括矩形波导、圆波导、脊形波导和椭圆波导等, 如图 1- 1(b)所示。第三类是介质传输线, 因电磁波沿传输线表面 传播, 故称为表面波波导, 主要包括介质波导、 镜像线和单根表 面波传输线等, 如图 1 - 1(c)所示。
1.1
1.
由均匀传输线组成的导波系统都可等效为如图 1- 2(a) 所示的均匀平行双导线系统。 其中传输线的始端接微波信号 源(简称信源), 终端接负载, 选取传输线的纵向坐标为z, 坐标 原点选在终端处, 波沿负z方向传播。 在均匀传输线上任意一 点z处, 取一微分线元Δz(Δzλ), 该线元可视为集总参数电路, 其上有电阻RΔz、电感LΔz、电容CΔz和漏电导GΔz(其中R, L, C, G分别为单位长电阻、 单位长电感、 单位长电容和单位长漏 电导),得到的等效电路如图 1- 2(b)所示, 则整个传输线可看 作由无限多个上述等效电路的级联而成。有耗和无耗传输线的 等效电路分别如图 1- 2(c)、d)所示。
的Δz, 忽略高阶小量, 有
u( z, t) z u(z+Δz, t)-u(z, t)=u(z, t)zΔz z i ( z, t ) i(z+Δz, t)-i(z, t)=i(z, t)zΔz z z 对图 1- 2(b),
u(z, t)+RΔzi(z, t)+LΔzi(z, t)t-u(z+Δz, t)=0 i(z, t)+GΔzu(z+Δz, t)+CΔzu(z+Δz, t)t-i(z+Δz, t)=0
将式(1- 1- 1)代入式(1- 1- 2), 并忽略高阶小量, 可得 u(z, t)z=Ri(z, t)+Li(z, t)t L i( z, t ) t i(z, t)z=Gu(z, t)+Cu(z, t)t c i( z, t) t
这就是均匀传输线方程, 也称电报方程。
对于时谐电压和电流, 可用复振幅表示为 u(z, t)=Re[U(z)e jωt] i(z, t)=Re[I(z)e jωt]
z Zg Eg
i(z+ z,t)
Rz
L z +
i(z,t)

~
z l z+ z (a) z 0
Z1
u(z+z,t) -
C z
G z
u(z,t) - z
(b)
(c)
(d )
图 1- 2 均匀传输线及其等效电路
设在时刻t, 位置z处的电压和电流分别为u(z, t)和i(z, t), 而在 位置z+Δz处的电压和电流分别为u(z+Δz, t)和i(z+Δz, t)。 对很小
寸、形状、媒质分布、材料及边界条件均不变的导波系统称为
规则导波系统, 又称为均匀传输线。 把导行波传播的方向称为 纵向, 垂直于导波传播的方向称为横向。无纵向电磁场分量的
电磁波称为横电磁波,即TEM波。另外, 传输线本身的不连续
性可以构成各种形式的微波无源元器件, 这些元器件和均匀传 输线、 有源元器件及天线一起构成微波系统。
将上式代入(1- 1- 3)式, 即可得时谐传输线方程
2 d U (z ) ZYU (z )0 2 dz d2I(z) ZYI (z) 0 2 dz 式中, Z=R+jωL, Y=G+jωC, 分别称为传输线单位长串联阻抗和 单位长并联导纳。
2. 将式(1- 1- 5)第1式两边微分并将第 2 式代入, 得 2 d U (z ) ZYU (z )0 2 dz d2I(z) 同理可得 ZYI (z) 0 2 dz
令γ2=ZY=(R+jωL)(G+jωC), 则上两式可写为
d2 U (z ) 2 r U (z )0 2 dz d2I(z) 2 r I(z) 0 2 dz 显然电压和电流均满足一维波动方程。 电压的通解为
U(z)=U+(z)+U-(z)=A1e +γz+A2e -γz (1- 1- 7a)
图 1- 1 各种微波传输线
对均匀传输线的分析方法通常有两种: 一种是场分析法, 即 从麦克斯韦尔方程出发, 求出满足边界条件的波动解, 得出传输 线上电场和磁场的表达式, 进而分析传输特性; 第二种是等效电 路法, 即从传输线方程出发, 求出满足边界条件的电压、 电流 波动方程的解, 得出沿线等效电压、电流的表达式, 进而分析传 输特性。前一种方法较为严格, 但数学上比较繁琐, 后一种方法 实质是在一定的条件下“化场为路”, 有足够的精度, 数学上较 为简便, 因此被广泛采用。 本章从“化场为路”的观点出发, 首先建立传输线方程, 导 出传输线方程的解, 引入传输线的重要参量——阻抗、反射系 数及驻波比; 然后分析无耗传输线的特性, 给出传输线的匹配、 效率及功率容量的概念; 最后介绍最常用的TEM传输线——同 轴线。
式中, A1, A2为待定系数, 由边界条件确定。
利用式(1- 1- 5), 可得电流的通解为
I(z)=I+(z)+I-(z)= 1 ( A1e +γz-A2e -γz )
Z
0
式中, Z0=
( R jwL ) /( G jwc )
令γ=α+jβ, 则可得传输线上的电压和电流的瞬时值表达式为 u(z, t)=u+(z, t)+u-(z, t) =A1e+αzcos(ωt+βz)+A2e-αz cos(ωt-βz) u(z, t)=i+(z, t)+i-(z, t)
相关文档
最新文档