全国版2019版高考数学一轮复习第8章平面解析几何第5讲椭圆学案

合集下载

2019届高考数学一轮复习第八章解析几何第5讲椭圆课件文新人教版

2019届高考数学一轮复习第八章解析几何第5讲椭圆课件文新人教版


2a=2×2c,ac=12,又
c2=a2-b2,联立ac422=+ab322-=b12,, ac=12
即 a2=8,b2=6,故椭圆方程为x82+y62=1. [答案] A
方法感悟
求椭圆标准方程的 2 种常用方法
根据椭圆的定义,确定 a2,b2 的值,结合焦点位置 定义法
可写出椭圆方程
若焦点位置明确,则可设出椭圆的标准方程,结合
[知识梳理] 1.椭圆的概念 平面内到两个定点 F1,F2 的距离之和等于常数(大于|F1F2|)的点 的集合叫作 椭圆 .这两个定点 F1,F2 叫作椭圆的 焦点 ,两焦 点 F1,F2 的距离叫作椭圆的 焦距 .
集合 P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中 a>0,c>0, 且 a,c 为常数:
)
A.2
B.3
C.4
D.9
[解析] 由题意知 25-m2=16,解得 m2=9,
又 m>0,所以 m=3.
[答案] B
3.已知椭圆的一个焦点为 F(1,0),离心率为12,则椭圆的标准方 程为________.
[解析] 设椭圆的标准方程为ax22+by22=1(a>b>0). 因为椭圆的一个焦点为 F(1,0),
对称轴: 坐标 轴 对称中心: 原点
顶点
A1(-a,0),A2(a,0) A1(0,-a),A2(0,a)

B1(0,-b),B2(0,b) B1(-b,0),B2(b,0)


长轴 A1A2 的长为 2a ;短轴 B1B2 的长为 2b
焦距
|F1F2|= 2c
离心率
e=ac∈(0,1)
a,b,c 的关系

高考数学一轮复习第8章平面解析几何第5节椭圆第1课时椭圆的定义标准方程及其性质教学案理(解析版)

高考数学一轮复习第8章平面解析几何第5节椭圆第1课时椭圆的定义标准方程及其性质教学案理(解析版)

[考纲传真] 1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单性质(范围、对称性、顶点、离心率).3.理解数形结合思想.4.了解椭圆的简单应用.1.椭圆的定义把平面内到两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的集合叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数: (1)若a >c ,则集合P 为椭圆; (2)若a =c ,则集合P 为线段; (3)若a <c ,则集合P 为空集. 2.椭圆的标准方程和几何性质1.点P (x 0,y 0)和椭圆的位置关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1.(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b2=1.(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.2.焦点三角形椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:(1)当r 1=r 2时,即点P 的位置为短轴端点时,θ最大;(2)S =b 2ta n θ2=c |y 0|,当|y 0|=b 时,即点P 的位置为短轴端点时,S 取最大值,最大值为bc .(3)a -c ≤|PF 1|≤a +c .3.椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边长,a 2=b 2+c 2. 4.已知过焦点F 1的弦AB ,则△ABF 2的周长为4a . 5.椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆x 2a 2+y 2b 2=1(a >b >0)的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =-b 2a 2,即k AB =-b 2x 0a 2y 0. 6.弦长公式:直线与圆锥曲线相交所得的弦长 |AB |=1+k 2|x 1-x 2| =+k2x 1+x 22-4x 1x 2]=1+1k2|y 1-y 2|=⎝ ⎛⎭⎪⎫1+1k 2y 1+y 22-4y 1y 2](k 为直线斜率).[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( )(3)椭圆的离心率e 越大,椭圆就越圆.( )(4)关于x ,y 的方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆. [答案] (1)× (2)√ (3)× (4)√ 2.椭圆x 216+y 225=1的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±9,0)D .(0,±9)B [由题意可知a 2=25,b 2=16,∴c 2=25-16=9,∴c =±3, 又焦点在y 轴上,故焦点坐标为(0,±3).]3.已知动点M 到两个定点A (-2,0),B (2,0)的距离之和为6,则动点M 的轨迹方程为( )A.x 29+y 2=1 B .y 29+x 25=1C.y 29+x 2=1 D .x 29+y 25=1D [由题意有6>2+2=4,故点M 的轨迹为焦点在x 轴上的椭圆,则2a =6,c =2,故a 2=9,所以b 2=a 2-c 2=5,故椭圆的方程为x 29+y 25=1,故选D .]4.若一个椭圆长轴的长、短轴的长和焦距成等比数列,则该椭圆的离心率是( ) A.5-12 B .1+52C.-1+52D .-1±52C [由题意有b 2=ac .又b 2=a 2-c 2,则a 2-c 2=ac ,即1-⎝ ⎛⎭⎪⎫c a 2=c a ,则e 2+e -1=0,解得e =-1±52.因为0<e <1,所以e =-1+52.故选C.]5.(教材改编)椭圆C :x 225+y 216=1的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆C 于A ,B 两点,则△F 1AB 的周长为________.20 [由椭圆的定义可知,△F 1AB 的周长为4a =4×5=20.]第1课时 椭圆的定义、标准方程及其性质椭圆的定义及其应用【例1】 (1)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A.x 264-y 248=1 B .x 248+y 264=1 C.x 248-y 264=1 D .x 264+y 248=1 (2)F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7B .74 C.72D .752(1)D (2)C [(1)设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16,又|C 1C 2|=8<16,∴动圆圆心M 的轨迹是以C 1,C 2为焦点的椭圆,且2a =16,2c =8,则a =8,c =4,∴b 2=48,故所求的轨迹方程为x 264+y 248=1.(2)由题意得a =3,b =7,c =2, ∴|F 1F 2|=22,|AF 1|+|AF 2|=6.∵|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45°=|AF 1|2-4|AF 1|+8, ∴(6-|AF 1|)2=|AF 1|2-4|AF 1|+8.∴|AF 1|=72,∴S △AF 1F 2=12×72×22×22=72.](1)如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆(2)(2019·徐州模拟)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b =________.(1)A (2)3 [(1)由题意可知,CD 是线段MF 的垂直平分线, ∴|MP |=|PF |,∴|PF |+|PO |=|PM |+|PO |=|MO |(定值). 又|MO |>|FO |,∴点P 的轨迹是以F ,O 为焦点的椭圆,故选A. (2)设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2,所以2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2,所以S △PF 1F 2=12r 1r 2=b 2=9,所以b =3.]椭圆的标准方程【例2】 (1)在△ABC 中,A (-4,0),B (4,0),△ABC 的周长是18,则顶点C 的轨迹方程是( ) A.x 225+y 29=1(y ≠0) B .y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D .y 216+x 29=1(y ≠0)(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝ ⎛⎭⎪⎫-32,52,(3,5),则椭圆方程为________.(3)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为________.(1)A (2)y 210+x 26=1 (3)y 220+x 24=1 [(1)由|AC |+|BC |=18-8=10>8知,顶点C 的轨迹是以A ,B为焦点的椭圆(A ,B ,C 不共线).设其方程为x 2a 2+y 2b2=1(a >b >0),则a =5,c =4,从而b =3.由A ,B ,C不共线知y ≠0.故顶点C 的轨迹方程是x 225+y 29=1(y ≠0).(2)设椭圆方程为mx 2+ny 2=1(m ,n >0,m ≠n ). 由⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫-322m +⎝ ⎛⎭⎪⎫522n =1,3m +5n =1,解得m =16,n =110.∴椭圆方程为y 210+x 26=1.(3)法一:椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知, 2a =3-2+-5+2+3-2+-5-2,解得a =2 5.由c 2=a 2-b 2可得b 2=4,∴所求椭圆的标准方程为y 220+x 24=1.法二:∵所求椭圆与椭圆y 225+x 29=1的焦点相同,∴其焦点在y 轴上,且c 2=25-9=16.设它的标准方程为y 2a 2+x 2b2=1(a >b >0).∵c 2=16,且c 2=a 2-b 2, 故a 2-b 2=16.①又点(3,-5)在所求椭圆上, ∴-52a 2+32b 2=1,则5a2+3b2=1.②由①②得b 2=4,a 2=20,∴所求椭圆的标准方程为y 220+x 24=1.]直线l 交C 于A ,B 两点,若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B .x 23+y 2=1C.x 212+y 28=1 D .x 212+y 24=1 (2)椭圆E 的焦点在x 轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E 的标准方程为( )A.x 22+y 22=1 B .x 22+y 2=1C.x 24+y 22=1 D .y 24+x 22=1(3)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.(1)A (2)C (3)x 2+32y 2=1 [(1)△AF 1B 的周长是4a =43,所以a =3,e =c a =33, 所以c =1, 那么b 2=a 2-c 2=2,所以方程是x 23+y 22=1.故选A.(2)由条件可知b =c =2,a =2,所以椭圆方程为x 24+y 22=1,故选C.(3)不妨设点A 在第一象限,如图所示.∵AF 2⊥x 轴,∴A (c ,b 2)(其中c 2=1-b 2,0<b <1,c >0). 又∵|AF 1|=3|F 1B |,∴由AF 1→=3F 1B →得B ⎝ ⎛⎭⎪⎫-5c3,-b 23,代入x 2+y 2b 2=1得25c 29+b49b2=1.又c 2=1-b 2,∴b 2=23.故椭圆E 的方程为x 2+32y 2=1.]椭圆的几何性质►考法1 求离心率或范围【例3】 (1)(2019·深圳模拟)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36B .13 C.12D .33(2)(2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)(1)D (2)A [(1)法一:如图,在R t △PF 2F 1中, ∠PF 1F 2=30°,|F 1F 2|=2c , ∴|PF 1|=2c cos 30°=43c3,|PF 2|=2c ·ta n 30°=23c3.∵|PF 1|+|PF 2|=2a , 即43c 3+23c3=2a ,可得3c =a . ∴e =c a =33. 法二:(特殊值法)在R t △PF 2F 1中 ,令|PF 2|=1, ∵∠PF 1F 2=30°, ∴|PF 1|=2,|F 1F 2|= 3.∴e =2c 2a =|F 1F 2||PF 1|+|PF 2|=33.故选D .(2)由题意知,当M 在短轴顶点时,∠AMB 最大. ①如图1,当焦点在x 轴,即m <3时,a =3,b =m ,ta n α=3m≥ta n 60°=3,∴0<m ≤1.图1 图2 ②如图2,当焦点在y 轴,即m >3时,a =m ,b =3,ta n α=m3≥ta n 60°=3,∴m ≥9.综上,m ∈(0,1]∪[9,+∞),故选A.] ►考法2 与椭圆的几何性质有关的最值问题【例4】 (2019·合肥质检)如图,焦点在x 轴上的椭圆x 24+y 2b2=1的离心率e=12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为________.4 [由题意知a =2,因为e =c a =12,所以c =1,b 2=a 2-c 2=3.故椭圆方程为x 24+y 23=1.设P 点坐标为(x 0,y 0).所以-2≤x 0≤2,-3≤y 0≤ 3. 因为F (-1,0),A (2,0), PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0), 所以PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2.则当x 0=-2时,PF →·PA →取得最大值4.](1)(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32B .2- 3 C.3-12D .3-1(2)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8(1)D (2)C [(1)由题设知∠F 1PF 2=90°,∠PF 2F 1=60°,|F 1F 2|=2c ,所以|PF 2|=c ,|PF 1|=3c .由椭圆的定义得|PF 1|+|PF 2|=2a ,即3c +c =2a ,所以(3+1)c =2a ,故椭圆C 的离心率e =c a=23+1=3-1.故选D .(2)由椭圆x 24+y 23=1可得F (-1,0),点O (0,0),设P (x ,y )(-2≤x ≤2),则OP →·FP →=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x +3=14(x +2)2+2,-2≤x ≤2,当且仅当x =2时,OP →·FP →取得最大值6.]1.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23 B .12 C.13D .14D [由题意可得椭圆的焦点在x 轴上,如图所示,设|F 1F 2|=2c ,∵△PF 1F 2为等腰三角形,且∠F 1F 2P =120°,∴|PF 2|=|F 1F 2|=2c .∵|OF 2|=c ,∴点P 坐标为(c +2c cos 60°,2c sin 60°),即点P (2c ,3c ).∵点P 在过点A ,且斜率为36的直线上,∴3c 2c +a =36,解得c a =14,∴e =14,故选D .] 2.(2016·全国卷Ⅰ)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13 B .12 C.23D .34B [如图,|OB |为椭圆中心到l 的距离,则|OA |·|OF |=|AF |·|OB |,即bc =a ·b 2,所以e =c a =12.]。

高考数学一轮复习 第八章 平面解析几何 第五节 椭圆学案 理(含解析)新人教A版-新人教A版高三全册

高考数学一轮复习 第八章 平面解析几何 第五节 椭圆学案 理(含解析)新人教A版-新人教A版高三全册

第五节 椭 圆2019考纲考题考情1.椭圆的概念平面内与两定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫椭圆。

这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

集合P ={M ||MF 1|+|MF 2|=2a ,|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数}。

(1)若a >c ,则M 点的轨迹为椭圆。

(2)若a =c ,则M 点的轨迹为线段F 1F 2。

(3)若a <c ,则M 点不存在。

2.椭圆的标准方程和几何性质-a ≤x ≤a-b ≤x ≤b1.椭圆方程中的a ,b ,c (1)a ,b ,c 关系:a 2=b 2+c 2。

(2)e 与b a :因为e =c a =a 2-b 2a=1-⎝ ⎛⎭⎪⎫b a2,所以离心率e 越大,则b a越小,椭圆就越扁;离心率e 越小,则ba越大,椭圆就越圆。

2.在求焦点在x 轴上椭圆的相关量的范围时,要注意应用以下不等关系:-a ≤x ≤a ,-b ≤y ≤b,0<e <1。

3.焦点三角形椭圆上的点P 与焦点F 1,F 2若构成三角形,则称△PF 1F 2为焦点三角形,焦点三角形问题注意与椭圆定义、正弦定理、余弦定理的联系。

一、走进教材1.(选修2-1P 40例1改编)若F 1(-3,0),F 2(3,0),点P 到F 1,F 2距离之和为10,则P 点的轨迹方程是( )A .x 225+y 216=1B .x 2100+y 29=1 C .y 225+x 216=1 D .x 225+y 216=1或y 225+x 216=1 解析 设点P 的坐标为(x ,y ),因为|PF 1|+|PF 2|=10>|F 1F 2|=6,所以点P 的轨迹是以F 1,F 2为焦点的椭圆,其中a =5,c =3,b =a 2-c 2=4,故点P 的轨迹方程为x 225+y 216=1。

故选A 。

高考数学一轮复习第8章平面解析几何8.5椭圆课件理

高考数学一轮复习第8章平面解析几何8.5椭圆课件理

典例1 (2018·湖南岳阳模拟)在平面直角坐标系 xOy
中,椭圆 C 的中心为坐标原点,F1、F2 为它的两个焦点,
离心率为 22,过 F1 的直线 l ABF2 的周长为 16,那么椭圆
交椭圆 C 于 A,B 两点,且△ C 的方程为_1x_62+__y8_2=__1_或__x8_2+__1y_62_=_1.
即 有 △ F1PF2
的面积
S

1 2
|PF1|·|PF2|sin

F1PF2

b2·1+sincoθsθ=b2tanθ2=tan2θ.
第二十五页,共69页。
方法技巧 椭圆定义的应用技巧
1.椭圆定义的应用主要有两个方面:一是判定平面内 动点与两定点的轨迹是否为椭圆;二是利用定义求焦点三角 形的周长、面积、椭圆的弦长及最值和离心率等.
第三十页,共69页。
典例2
(2017·江西模拟)椭圆ax22+by22=1(a>b>0),F1,
F2 为椭圆的左、右焦点,且焦距为 2 3,O 为坐标原点,点
P 为椭圆上一点,|OP|= 42a,且|PF1|,|F1F2|,|PF2|成等比
数列,求椭圆的方程.
用待定系数法,根据已知列出方程组.
第三十一页,共69页。
为 2a+2c(其中 a 为椭圆的长半轴长,c 为椭圆的半焦
距).( √ )
(4)
x2 a2

y2 b2

1(a>b>0)

y2 a2

x2 b2

1(a>b>0)




同.( √ )
第十二页,共69页。

2019版高考数学一轮复习第八章平面解析几何第

2019版高考数学一轮复习第八章平面解析几何第

.
[小题体验]
1.若直线 3x+ y+ a= 0过圆 x2+ y2+ 2x- 4y= 0的圆心,则 a 的值为 A.- 1 C. 3 B. 1 D.- 3 ( )
解析:圆的方程可化为(x+1)2+(y-2)2=5, ∵直线经过圆的圆心(-1,2), ∴3×(-1)+2+a=0,得a=1.
答案:B
2. (2018· 浙江五校联考)若点(2a, a+ 1)在圆 x2+ (y- 1)2= 5的 内部,则实数 a的取值范围是 A. (- 1,1)
答案:B
2. (2018· 永康模拟 )设 a∈ R,则 “a>1”是“方程 x2+ 2ax+ y2+ 1 = 0的曲线是圆”的 A.充分不必要条件 C.充要条件 B.必要不充分条件 D.既不充分也不必要条件 ( )
解析:因为方程是圆,所以可转化为(x+a)2+y2=a2-1, 即a2-1>0,解得a>1或a<-1.所以当“a>1”时,有a2-1>0, 得曲线方程是圆的方程;当曲线方程是圆的方程时,有a>1 或a<-1,不一定得到a>1.所以是充分不必要条件.
1 C.- 1, 5
(
)
B. (0,1)
1 D.- , 1 5
解析:因为点在圆内,所以(2a)2+(a+1-1)2<5,解得- 1<a<1.故实数a的取值范围是(-1,1).
答案:A
3.(2018· 湖州调研 )若圆 C与圆 x2+y2+ 2x=0关于直线 x+ y-1 = 0对称,则圆心 C的坐标为 ________;圆 C的一般方程是 ________.
2.点与圆的位置关系 点 M(x0, y0)与圆 (x- a)2+ (y- b)2= r2 的位置关系:

2019版高考数学一轮复习第八章平面解析几何

2019版高考数学一轮复习第八章平面解析几何



双曲线
课前·双基落实
想一想、辨一辨、试一试、全面打牢基础
课堂·考点突破
自主研、合作探、多面观、全扫命题题点

课后·三维演练
基础练、题型练、能力练、全练力保全能
课 前 双 基落实
想一想、辨一辨、试一试、全面打牢基础





1.双曲线的定义 平面内与两个定点F1, F2的 距离的差的绝对值等于非零 常数 (小于 |F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线 ______
2.双曲线的标准方程和几何性质 标准方程 x2 y2 y2 x2 - =1(a>0,b>0) 2- 2=1(a>0,b>0) a2 b2 a b
图形
性 质
范围 对称性
x≤-a 或 x≥a,y∈R y≤-a 或 y≥a,x∈R 对称轴: 坐标轴 对称中心: 原点
标准方程 顶点 渐近线 离心率 性 质 a,b,c 的关系
2 y 即其标准方程为x2- = 1. 2 2 y 答案:x2- =1 2
课 堂 考 点突破
自主研、合作探、多面观、全扫命题题点
考点一 双曲线的标准方程
[题组练透]
x2 y2 1. (2017· 天津高考 )已知双曲线 2- 2 = 1(a>0, b>0)的左焦点 a b 为 F,离心率为 2 .若经过 F和 P(0,4)两点的直线平行于双 ( )
x2 y2 解析:设要求的双曲线方程为 2- 2= 1(a>0, b>0), a b x2 y2 由椭圆 + =1,得椭圆焦点为(± 1,0),顶点为(± 2,0). 4 3 所以双曲线的顶点为(± 1,0),焦点为(± 2,0). 所以a= 1, c= 2,所以b2= c2- a2= 3,

2019届高考数学一轮复习第八章平面解析几何第五节椭圆课时作业201807203226

2019届高考数学一轮复习第八章平面解析几何第五节椭圆课时作业201807203226

第五节 椭圆课时作业 A 组——基础对点练1.已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9 解析:由4=25-m 2(m >0)⇒m =3,故选B. 答案:B2.方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,则实数k 的取值范围是( ) A .k >4 B .k =4 C .k <4D .0<k <4解析:方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,即方程x 24+y 2k=1表示焦点在x 轴上的椭圆,可得0<k <4,故选D. 答案:D3.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( ) A.x 24+y 23=1 B .x 28+y 26=1C.x 22+y 2=1 D .x 24+y 2=1解析:依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1,故选A. 答案:A4.椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,左、右焦点分别为F 1,F 2,若|AF 1|,|F 1F 2|,|F 1B |成等差数列,则此椭圆的离心率为( ) A.12 B .55C.14D .5-2解析:由题意可得2|F 1F 2|=|AF 1|+|F 1B |,即4c =a -c +a +c =2a ,故e =c a =12.答案:A5.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π4,则椭圆和双曲线的离心率乘积的最小值为( ) A.12 B .22C .1D . 2解析:如图,假设F 1,F 2分别是椭圆和双曲线的左、右焦点,P 是第一象限的点,设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义得|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,∴|PF 1|=a 1+a 2,|PF 2|=a 1-a 2.设|F 1F 2|=2c ,又∠F 1PF 2=π4,则在△PF 1F 2中,由余弦定理得,4c 2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cos π4,化简得,(2-2)a 21+(2+2)a 22=4c 2,设椭圆的离心率为e 1,双曲线的离心率为e 2,∴2-2e 21+2+2e22=4,又2-2e 21+2+2e 22≥2 2-2e 21·2+2e 22=22e 1·e 2, ∴22e 1·e 2≤4,即e 1·e 2≥22,即椭圆和双曲线的离心率乘积的最小值为22.故选B. 答案:B6.若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是________.解析:将椭圆的方程化为标准形式得y 22k+x 22=1,因为x 2+ky 2=2表示焦点在y 轴上的椭圆,所以2k>2,解得0<k <1.答案:(0,1)7.若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =________.解析:由题可知c =2.①当焦点在x 轴上时,10-a -(a -2)=22,解得a =4.②当焦点在y 轴上时,a -2-(10-a )=22,解得a =8.故实数a =4或8. 答案:4或88.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率等于13,其焦点分别为A ,B .C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C的值等于________.解析:在△ABC 中,由正弦定理得sin A +sin B sin C =|CB |+|CA ||AB |,因为点C 在椭圆上,所以由椭圆定义知|CA |+|CB |=2a ,而|AB |=2c ,所以sin A +sin B sin C =2a 2c =1e =3.答案:39.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1(-c,0),F 2(c,0),过F 2作垂直于x 轴的直线l 交椭圆C 于A ,B 两点,满足|AF 2|=36c . (1)求椭圆C 的离心率;(2)M ,N 是椭圆C 短轴的两个端点,设点P 是椭圆C 上一点(异于椭圆C 的顶点),直线MP ,NP 分别和x 轴相交于R ,Q 两点,O 为坐标原点.若|OR →|·|OQ →|=4,求椭圆C 的方程.解析:(1)∵点A 的横坐标为c ,代入椭圆,得c 2a 2+y 2b2=1.解得|y |=b 2a =|AF 2|,即b 2a =36c ,∴a 2-c 2=36ac . ∴e 2+36e -1=0,解得e =32. (2)设M (0,b ),N (0,-b ),P (x 0,y 0), 则直线MP 的方程为y =y 0-bx 0x +b . 令y =0,得点R 的横坐标为bx 0b -y 0. 直线NP 的方程为y =y 0+bx 0x -b . 令y =0,得点Q 的横坐标为bx 0b +y 0. ∴|OR →|·|OQ →|=⎪⎪⎪⎪⎪⎪b 2x 20b 2-y 20=⎪⎪⎪⎪⎪⎪a 2b 2-a 2y 20b 2-y 20=a 2=4,∴c 2=3,b 2=1,∴椭圆C 的方程为x 24+y 2=1.10.(2018·沈阳模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0),其中e =12,焦距为2,过点M (4,0)的直线l 与椭圆C 交于点A ,B ,点B 在A ,M 之间.又线段AB 的中点的横坐标为47,且AM →=λMB →.(1)求椭圆C 的标准方程. (2)求实数λ的值.解析:(1)由条件可知,c =1,a =2,故b 2=a 2-c 2=3,椭圆的标准方程为x 24+y 23=1.(2)由题意可知A ,B ,M 三点共线, 设点A (x 1,y 1),点B (x 2,y 2).若直线AB ⊥x 轴,则x 1=x 2=4,不合题意. 则AB 所在直线l 的斜率存在,设为k , 则直线l 的方程为y =k (x -4).由⎩⎪⎨⎪⎧y =k x -4,x 24+y23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0.①由①的判别式Δ=322k 4-4(4k 2+3)·(64k 2-12)=144(1-4k 2)>0,解得k 2<14,且⎩⎪⎨⎪⎧x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3.由x 1+x 22=16k 23+4k 2=47, 可得k 2=18,将k 2=18代入方程①,得7x 2-8x -8=0.则x 1=4-627,x 2=4+627.又因为AM →=(4-x 1,-y 1),MB →=(x 2-4,y 2), AM →=λMB →,所以λ=4-x 1x 2-4,所以λ=-9-427.B 组——能力提升练1.(2018·合肥市质检)已知椭圆M :x 2a2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,设圆C 在点P 处的切线斜率为k 1,椭圆M 在点P 处的切线斜率为k 2,则k 1k 2的取值范围为( ) A .(1,6) B .(1,5) C .(3,6)D .(3,5)解析:由于椭圆M :x 2a 2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,所以⎩⎪⎨⎪⎧a 2>6-a 2,6-a 2>1,解得3<a 2<5.设椭圆M :x 2a2+y 2=1与圆C :x 2+y 2=6-a 2在第一象限的公共点P (x 0,y 0),则椭圆M 在点P 处的切线方程为x 0x a2+y 0y =1,圆C 在P 处的切线方程为x 0x +y 0y =6-a 2,所以k 1=-x 0y 0,k 2=-x 0a 2y 0,k 1k 2=a 2,所以k 1k 2∈(3,5),故选D. 答案:D2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,若椭圆上存在点M 使得sin ∠MF 1F 2a =sin ∠MF 2F 1c,则该椭圆离心率的取值范围为( )A .(0,2-1)B .(22,1) C .(0,22) D .(2-1,1)解析:在△MF 1F 2中,|MF 2|sin ∠MF 1F 2=|MF 1|sin ∠MF 2F 1,而sin ∠MF 1F 2a =sin ∠MF 2F 1c,∴|MF 2||MF 1|=sin ∠MF 1F 2sin ∠MF 2F 1=a c.① 又M 是椭圆x 2a 2+y 2b 2=1上一点,F 1,F 2是该椭圆的焦点,∴|MF 1|+|MF 2|=2a .②由①②得,|MF 1|=2ac a +c ,|MF 2|=2a2a +c .显然,|MF 2|>|MF 1|,∴a -c <|MF 2|<a +c ,即a -c <2a2a +c <a +c ,整理得c 2+2ac -a 2>0, ∴e 2+2e -1>0, 解得e >2-1,又e <1, ∴2-1<e <1,故选D. 答案:D3.已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________.解析:易知此弦所在直线的斜率存在,所以设斜率为k ,弦的端点坐标为(x 1,y 1),(x 2,y 2), 则x 214+y 212=1,① x 224+y 222=1,② ①-②得x 1+x 2x 1-x 24+y 1+y 2y 1-y 22=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0,∴k =y 1-y 2x 1-x 2=-12. ∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0. 答案:x +2y -3=04.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足0<x 202+y 20<1,则|PF 1|+|PF 2|的取值范围是________.解析:由点P (x 0,y 0)满足0<x 202+y 20<1,可知P (x 0,y 0)一定在椭圆内(不包括原点),因为a=2,b =1,所以由椭圆的定义可知|PF 1|+|PF 2|<2a =22,当P (x 0,y 0)与F 1或F 2重合时,|PF 1|+|PF 2|=2,又|PF 1|+|PF 2|≥|F 1F 2|=2,故|PF 1|+|PF 2|的取值范围是[2,22). 答案:[2,22)5.(2018·保定模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,a +b =3.(1)求椭圆C 的方程.(2)如图,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m .证明:2m -k 为定值.解析:(1)因为e =32=c a , 所以a =23c ,b =13c .代入a +b =3得,c =3,a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)证明:因为B (2,0),P 不为椭圆顶点,则直线BP 的方程为y =k (x -2)⎝ ⎛⎭⎪⎫k ≠0,k ≠±12,①把①代入x 24+y 2=1,解得P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为y =12x +1.②①与②联立解得M ⎝⎛⎭⎪⎫4k +22k -1,4k 2k -1.由D (0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N (x,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,得N ⎝⎛⎭⎪⎫4k -22k +1,0.所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k 2k +122k +12-22k -12=2k +14,则2m -k =2k +12-k =12(定值).附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

高中数学 高三一轮 第八章 平面解析几何 8.5 椭圆【教案】

高中数学 高三一轮 第八章 平面解析几何 8.5 椭圆【教案】

高三一轮第八章平面解析几何8。

5 椭圆【教学目标】1.掌握椭圆的定义、几何图形、标准方程及简单性质.2。

了解椭圆的简单应用.3.理解数形结合思想.【重点难点】1。

教学重点:掌握椭圆的定义、几何图形、标准方程及简单性质;2.教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)离心率e=错误!,且e∈(0,1)轴长轴A1A2的长为2a短轴B1B2的长为2b焦距|F1F2|=2ca,b,c的关系a2=b2+c21.必会结论;(1)点P(x0,y0)在解题中注意引导学生自主分析和解决问题,教师及时点拨从而提高学生的解题能力和兴趣。

教师引教师引导学生及时总结,以帮助学生形成完整的认知结构。

引导学生对所学的知识不妨设点B在第一象限,由AB⊥x轴,∴B错误!,A错误!.由于AB∥y轴,|F1O|=|OF2|,∴点D为线段BF1的中点,则D错误!,由于AD⊥F1B,知错误!·错误!=0,则错误!·错误!=2c2-3b42a2=0,即2ac=错误!b2,∴2ac=错误!(a2-c2),又e=错误!,且e∈(0,1),∴错误!e2+2e-错误!=0,解得e=错误!(e=-错误!舍去).【答案】错误!跟踪训练:1.设F1,F2分别是椭圆C:错误!+错误!=1(a〉b〉0)的左、右焦点,点P在椭圆C上,若线段PF1的中点在y轴上,∠PF1F2=30°,则椭圆的离心率为()A.错误!B。

错误!C.错误!D 。

错误!【解析】如图,设PF1的中点为M,连接PF2。

因为O为F1F2的中点,所以OM 为△PF1F2的中位线.所以OM∥PF2,所以∠PF2F1=∠MOF1=90°.因为∠PF1F2=30°,所以|PF1|=2|PF2|.由勾股定理得|F1F2|=错误!=(1). (2014·安徽高考)设F1,F2分别是椭圆E:x2+错误!=1(0〈b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为________.(2)(2015·陕西高考)已知椭圆E:错误!+错误!=1(a〉b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为12 c。

2019年高考数学一轮复习学案 训练 课件(北师大版理科) 第8章 平面解析几何 第5节 椭 圆学案 理 北师大版

2019年高考数学一轮复习学案 训练 课件(北师大版理科) 第8章 平面解析几何 第5节 椭 圆学案 理 北师大版

第五节 椭 圆[考纲传真] (教师用书独具).了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.掌握椭圆的定义、几何图形、标准方程及简单性质(范围、对称性、顶点、离心率).理解数形结合思想.了解椭圆的简单应用.(对应学生用书第页)[基础知识填充].椭圆的定义把平面内到两个定点,的距离之和等于常数(大于)的点的集合叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.集合={+=},=,其中>,>,且,为常数:()若>,则集合为椭圆;()若=,则集合为线段;()若<,则集合为空集..椭圆的标准方程和几何性质⇔+=.()(,)在椭圆外⇔+>..对于+=(>>)如图­­.图­­则:()= .()=+,=-.()-≤≤+.()过(,)点的切线方程为+=.[基本能力自测].(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)()平面内与两个定点,的距离之和等于常数的点的轨迹是椭圆.( )()椭圆上一点与两焦点,构成△的周长为+(其中为椭圆的长半轴长,为椭圆的半焦距).( )()椭圆的离心率越大,椭圆就越圆.( )()椭圆既是轴对称图形,又是中心对称图形.( )()方程+=(>,>,≠)表示的曲线是椭圆.( )()+=(>>)与+=(>>)的焦距相同.( )[答案]()×()√()×()√()√()√.(·浙江高考)椭圆+=的离心率是( )....[∵椭圆方程为+=,∴=,===.∴==.故选.].(教材改编)已知中心在原点的椭圆的右焦点为(),离心率等于,则的方程是( ) .+=.+=.+=.+=[椭圆的焦点在轴上,=.又离心率为=,故=,=-=-=,故椭圆的方程为+=.].椭圆:+=的左右焦点分别为,,过的直线交椭圆于、两点,则△的周长为( ) ....[△的周长为++=+++=+=.。

高考数学一轮复习第8章平面解析几何第5讲椭圆学案

高考数学一轮复习第8章平面解析几何第5讲椭圆学案

【2019最新】精选高考数学一轮复习第8章平面解析几何第5讲椭圆学案板块一知识梳理·自主学习[必备知识]考点1 椭圆的概念在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.考点2 椭圆的标准方程和几何性质[必会结论]椭圆的常用性质(1)设椭圆+=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a为斜边,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)过椭圆的焦点且垂直于长轴的弦之长为.(5)椭圆离心率e=.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.( )(2)椭圆是轴对称图形,也是中心对称图形.( )(3)椭圆上一点P 与两焦点F1,F2构成△PF1F2的周长为2a +2c(其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( )(4)椭圆的离心率e 越大,椭圆就越圆.( )(5)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.( )答案 (1)× (2)√ (3)√ (4)× (5)√2.[2017·浙江高考]椭圆+=1的离心率是( )A. B. C. D.59答案 B解析 ∵椭圆方程为+=1,∴a =3,c ===.∴e ==.故选B.3.[2018·广东模拟]已知椭圆+=1(m>0)的左焦点为F1(-4,0),则m =() A .2 B .3 C .4 D .9答案 B解析 由4=(m>0)⇒m =3,故选B.4.[课本改编]已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于,则椭圆C 的方程是() A.+=1B.+=1C.+=1D.+=1 答案 D解析 依题意,设椭圆方程为+=1(a>b>0),所以⎩⎪⎨⎪⎧ c =1,c a =13,c2=a2-b2,解得a2=9,b2=8.故椭圆C 的方程为+=1.5.椭圆x2+my2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m=________.答案14解析椭圆x2+my2=1可化为x2+=1,因为其焦点在y轴上,所以a2=,b2=1,依题意知=2,解得m=. 6.[2018·上海联考]若椭圆的方程为+=1,且此椭圆的焦距为4,则实数a=________.答案4或8解析①当焦点在x轴上时,10-a-(a-2)=22,解得a=4;②当焦点在y轴上时,a-2-(10-a)=22,解得a=8.板块二典例探究·考向突破考向椭圆的定义及标准方程例1 (1)[2018·杭州模拟]已知椭圆C:+=1(a>b>0)的左、右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点.若△AF1B的周长为4,则C的方程为( )B.+y2=1A.+=1D.+=1C.+=1答案A解析由题意及椭圆的定义知4a=4,则a=,又==,∴c=1,∴b2=2,∴C的方程为+=1,选A.(2)设F1,F2分别是椭圆+=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点的距离为________.答案4解析连接PF2,则OM为△PF1F2的中位线,|OM|=3,∴|PF2|=6.∴|PF1|=2a-|PF2|=10-6=4.触类旁通(1)在利用椭圆定义解题的时候,一方面要注意到常数2a>|F1F2|这个条件;另一方面要熟练掌握由椭圆上任一点与两个焦点所组成的“焦点三角形”中的数量关系.(2)待定系数法求椭圆方程,若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a,b;若焦点位置不明确,则需要分焦点在x轴上和y轴上两种情况讨论,也可设椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B).【变式训练1】(1)[2018·厦门模拟]已知椭圆+y2=1,F1,F2为其两焦点,P为椭圆上任一点.则|PF1|·|PF2|的最大值为( )A.6 B.4 C.2 D.8答案B解析设|PF1|=m,|PF2|=n,则m+n=2a=4,|PF1|·|PF2|=mn≤2=4(当且仅当m=n=2时,等号成立).故选B.(2)已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比是2∶,则椭圆C的方程是________.答案+=1解析设椭圆C的方程为+=1(a>b>0).由题意知解得a2=16,b2=12.所以椭圆C的方程为+=1.(3)[2017·豫北六校联考]设F1,F2分别是椭圆E:+=1(a>b>0)的左,右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|,且|AB|=4,△ABF2的周长为16.则|AF2|=________.答案5解析由|AF1|=3|F1B|,|AB|=4,得|AF1|=3.∵△ABF2的周长为16,∴4a=16,∴a=4.则|AF1|+|AF2|=2a=8,∴|AF2|=8-|AF1|=8-3=5.考向椭圆的几何性质例2 (1)[2017·全国卷Ⅲ]已知椭圆C :+=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A. B. C. D.13答案 A解析 由题意知以A1A2为直径的圆的圆心为(0,0),半径为a.又直线bx -ay +2ab =0与圆相切,∴圆心到直线的距离d ==a ,解得a =b ,∴=,∴e === 1-⎝ ⎛⎭⎪⎫b a 2 ==.故选A.(2)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是________.答案 35解析 由题意知,2a +2c =2(2b),即a +c =2b ,又c2=a2-b2,消去b ,整理得5c2=3a2-2ac ,即5e2+2e -3=0,解得e =或e =-1(舍去).触类旁通椭圆离心率的求解方法求椭圆的离心率,常见的有三种方法:一是通过已知条件列方程组,解出a ,c 的值;二是由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.【变式训练2】 (1)[2016·全国卷Ⅰ]直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的,则该椭圆的离心率为( )A. B. C. D.34答案 B解析 不妨设直线l 过椭圆的上顶点(0,b)和左焦点(-c ,0),b>0,c>0,则直线l的方程为bx-cy+bc=0,由已知得=×2b,解得b2=3c2,又b2=a2-c2,所以=,即e2=,所以e=(e=-舍去),故选B.(2)[2018·锦州模拟]设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为________.答案33解析在Rt△PF2F1中,令|PF2|=1,因为∠PF1F2=30°,所以|PF1|=2,|F1F2|=.所以e===.考向椭圆中的焦点三角形例3 [2018·××县校级月考]椭圆+y2=1上的一点P与两焦点F1,F2所构成的三角形称为焦点三角形.(1)求·的最大值与最小值;(2)设∠F1PF2=θ,求证:S△F1PF2=tan.解(1)设P(x,y),∴F1(-,0),F2(,0),则·=(--x,-y)·(-x,-y)=x2+y2-3=x2-2.∵x2∈[0,4],∴x2-2∈[-2,1].∴·的最大值为1,最小值为-2. (2)证明:由椭圆的定义可知|PF1|+|PF2|=2a,|F1F2|=2c,在△F1PF2中,由余弦定理可得:|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cosθ=(|PF1|+|PF2|)2-2|PF1|·|PF2|(1+cosθ),可得4c2=4a2-2|PF1|·|PF2|(1+cosθ)⇒|PF1|·|PF2|=,即有△F1PF2的面积S=|PF1|·|PF2|sin∠F1PF2=b2=b2tan=tan.触类旁通椭圆的焦点三角形:椭圆上的一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用椭圆的定义和正弦定理、余弦定理.以椭圆+=1(a>b>0)上一点P(x0,y0)(y0≠0)和焦点F1(-c,0),F2(c,0)为顶点的△PF1F2中,若∠F1PF2=θ,则(1)|PF1|+|PF2|=2a;(2)4c2=|PF1|2+|PF2|2-2|PF1||PF2|·cosθ;(3)S△PF1F2=|PF1||PF2|·sinθ,当|y0|=b,即P为短轴端点时,S△PF1F2取最大值,为bc;(4)焦点三角形的周长为2(a+c);(5)当P为短轴端点时,θ最大;(6)若焦点三角形的内切圆圆心为I,延长PI交F1F2于点Q,则==,所以===(e为离心率).【变式训练3】(1)如图所示椭圆中,P为椭圆上一点,F为其一个焦点,PF为直径的圆与长轴为直径的圆的关系为________.答案内切解析设椭圆的方程为+=1(a>b>0),F、F′分别是椭圆的左、右焦点,作出以线段PF为直径的圆和以长轴为直径的圆x2+y2=a2,如图所示.设PF中点为M,连接PF′,∴OM是△PFF′的中位线,可得|OM|=|PF′|,即两圆的圆心距为|PF′|根据椭圆定义,可得|PF|+|PF′|=2a,∴圆心距|OM|=|PF′|=(2a-|PF|)=a-|PF|,即两圆的圆心距等于它们的半径之差,因此,以PF为直径的圆与以长轴为直径的圆x2+y2=a2相内切.(2)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上的一点,且⊥.若△PF1F2的面积为9,则b=________.答案3解析由题意知|PF1|+|PF2|=2a,⊥,所以|PF1|2+|PF2|2=|F1F2|2=4c2,所以(|PF1|+|PF2|)2-2|PF1||PF2|=4c2,所以2|PF1||PF2|=4a2-4c2=4b2,所以|PF1||PF2|=2b2,所以S△PF1F2=|PF1||PF2|=×2b2=b2=9.所以b=3.考向直线与椭圆的综合问题命题角度弦的中点问题1例4 [2018·南昌模拟]已知椭圆:+x2=1,过点P的直线与椭圆相交于A,B两点,且弦AB被点P平分,则直线AB的方程为( ) B.9x+y-5=0A.9x-y-4=0D.x+y-5=0C.2x+y-2=0答案B解析设A(x1,y1),B(x2,y2),因为A,B在椭圆+x2=1上,所以两式相减得+x-x=0,得+(x1-x2)(x1+x2)=0,又弦AB被点P平分,所以x1+x2=1,y1+y2=1,将其代入上式得+x1-x2=0,得=-9,即直线AB的斜率为-9,所以直线AB的方程为y-=-9,即9x+y-5=0.2命题角度弦长问题例5 [2018·陕西咸阳模拟]在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)过点P(2,1),且离心率e=.(1)求椭圆C的方程;(2)直线l的斜率为,直线l与椭圆C交于A,B两点.求△PAB面积的最大值.解(1)∵e2===,∴a2=4b2.又椭圆C:+=1(a>b>0)过点P(2,1),∴+=1,∴a2=8,b2=2.故所求椭圆方程为+=1.(2)设l 的方程为y =x +m ,点A(x1,y1),B(x2,y2),联立⎩⎪⎨⎪⎧ y =12x +m ,x28+y22=1,整理,得x2+2mx +2m2-4=0.∵Δ=4m2-8m2+16>0,解得|m|<2.∴x1+x2=-2m ,x1x2=2m2-4.则|AB|=× 错误!=.点P 到直线l 的距离d ==.∴S △PAB =d|AB|=××=≤=2.当且仅当m2=2,即m =±时取得最大值.触类旁通直线与椭圆综合问题的处理方法解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单. 核心规律1.椭圆中的参数a ,b ,c 三者的关系为a2-b2=c2,这是椭圆中参数关系的核心.2.求离心率常用两种方法:(1)求得a ,c 的值,代入公式e =即可;(2)列出a ,b ,c 的方程或不等式,根据b2=a2-c2将b 消掉,转化为含有a 和c 的关系,最后转化为关于e 的方程或不等式.满分策略1.判断椭圆的两种标准方程的方法为比较标准方程形式中x2和y2的分母大小.2.关于离心率的范围问题,一定不要忘记椭圆离心率的固有范围0<e<1.3.注意椭圆的范围,在设椭圆+=1(a>b>0)上点的坐标为P(x ,y)时,则|x|≤a,这往往在求与点P 有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.板块三 启智培优·破译高考题型技法系列 14——椭圆离心率范围的求解技巧[2018·衡中模拟]F1,F2是椭圆+=1(a>b>0)的左、右焦点,若椭圆上存在点P ,使∠F1PF2=90°,则椭圆的离心率的取值范围是________.解题视点 将垂直问题转化为向量的数量积,再借助于椭圆本身的属性|x|≤a 破解.解析 解法一:设P(x0,y0)为椭圆上一点,则+=1.PF1→=(-c -x0,-y0),=(c -x0,-y0),若∠F1PF2=90°,则·=x +y -c2=0.∴x +b2=c2,∴x =.∵0≤x ≤a2,∴0≤≤1.∴b2≤c2,∴a2≤2c2,∴≤e<1.解法二:如图,由题意,∠F1PF2≥90°,∠OPF2≥45°,sin∠OPF2=≥,∴≤e<1.答案 ≤e<1答题启示 建立关于a ,b ,c 的关系式等式或不等式,并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法. 跟踪训练已知过椭圆+=1(a>b>0)的焦点F1,F2的两条互相垂直的直线的交点在椭圆内部(不包括边界),则此椭圆离心率的取值范围是( )A .(0,1)B.⎝ ⎛⎭⎪⎫0,22C.D.⎝ ⎛⎭⎪⎫12,22答案 B 解析 设椭圆+=1的短轴的一个端点为B ,中心为O ,椭圆上任意一点为M ,过焦点F1,F2的两条互相垂直的直线的交点为P ,则点P 在以O 为圆心,|F1F2|为直径的圆上,且该圆的半径r =|OP|=|F1F2|=c(其中c =),则由椭圆的性质及题意可得r<b ,即c<b ,所以c2<b2=a2-c2,所以2c2<a2,得c<a ,所以e =<=,故所求椭圆的离心率的取值范围是.板块四 模拟演练·提能增分[A 级 基础达标]1.[2016·湖北八校联考]设F1,F2为椭圆+=1的两个焦点,点P 在椭圆上,若线段PF1的中点在y 轴上,则的值为( )A. B. C. D.59答案 B解析 由题意知a =3,b =,c =2.设线段PF1的中点为M ,则有OM∥PF2,∵OM⊥F1F2,∴PF2⊥F1F2,∴|PF2|==.又∵|PF1|+|PF2|=2a =6,∴|PF1|=2a -|PF2|=,∴=×=.故选B.2.已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于,则C 的方程是( )A.+=1B.+=1C.+=1D.+=1 答案 D解析 依题意,所求椭圆的焦点位于x 轴上,且c =1,e ==⇒a=2,b2=a2-c2=3,因此椭圆C 的方程是+=1.3.“-3<m<5”是“方程+=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 答案 B解析 要使方程+=1表示椭圆,只须满足⎩⎪⎨⎪⎧ 5-m>0,m +3>0,5-m≠m+3,解得-3<m<5且m≠1,因此,“-3<m<5”是“方程+=1表示椭圆”的必要不充分条件.故选B.4.已知椭圆+=1(a>b>0)的一个焦点是圆x2+y2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0) 答案 D解析 圆的标准方程为(x -3)2+y2=1,∴圆心坐标是(3,0),∴c=3.又b =4,∴a==5.∵椭圆的焦点在x 轴上,∴椭圆的左顶点为(-5,0).故选D.5.[2018·黑龙江双鸭山模拟]过椭圆+=1(a>b>0)的两个焦点作垂直于x 轴的直线与椭圆有四个交点,且这四个交点恰好为正方形的四个顶点,则椭圆的离心率为( )A. B. C. D.3+14答案 B解析 ∵过椭圆的两个焦点作垂直于x 轴的直线与椭圆有四个交点,且这四个交点恰好为正方形的四个顶点,∴c=,即ac =a2-c2,∴e2+e -1=0,∵0<e<1,∴e=,故选B.6.[2018·惠来月考]以F1(-1,0),F2(1,0)为焦点且与直线x -y +3=0有公共点的椭圆中,离心率最大的椭圆方程是( )A.+=1B.+=1C.+=1D.+=1答案C解析解法一:由题意知,c=1,a2-b2=1,故可设椭圆的方程为+=1,离心率的平方为:①,∵直线x-y+3=0与椭圆有公共点,将直线方程代入椭圆方程得(2b2+1)x2+6(b2+1)x+8b2+9-b4=0,由Δ=36(b4+2b2+1)-4(2b2+1)(8b2+9-b4)≥0,∴b4-3b2-4≥0,∴b2≥4,或b2≤-1(舍去),∴b2的最小值为4,∴①的最大值为,此时,a2=b2+1=5,∴离心率最大的椭圆方程是:+=1.故选C.解法二:令直线x-y+3=0与椭圆的一个交点为P,则2a=|PF1|+|PF2|,∵e==,∴当|PF1|+|PF2|最小时e最大,F1,F2在直线x-y+3=0的同侧,F1关于x-y+3=0的对称点F1′(-3,2),∴|PF1|+|PF2|=|PF1′|+|PF2|≥|F1′F2|=2,即2a≥2,a≥,当a=时e最大,此时b2=a2-c2=4,所求椭圆方程为+=1.故选C. 7.[2018·深圳检测]若x2+ky2=2表示焦点在y轴上的椭圆,则实数k的取值范围是________.答案(0,1)解析将椭圆的方程化为标准形式得+=1,因为x2+ky2=2表示焦点在y轴上的椭圆,所以>2,解得0<k<1. 8.[2018·江西模拟]过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于________.答案22解析设A(x1,y1),B(x2,y2)分别代入椭圆方程相减得+=0,根据题意有x1+x2=2×1=2,y1+y2=2×1=2,且=-,所以+×=0,得a2=2b2,所以a2=2(a2-c2),整理得a2=2c2,得=,所以e=. 9.已知椭圆C:+=1(a>b>0)的离心率为e=,其左、右焦点分别为F1,F2,|F1F2|=2,设点M(x1,y1),N(x2,y2)是椭圆上不同两点,且这两点分别与坐标原点的连线的斜率之积为-.(1)求椭圆C的方程;(2)求证:x+x为定值,并求该定值.解(1)∵c=,e=,∴a=2,b2=a2-c2=1,则椭圆C的方程为+y2=1.(2)证明:由于·=-,则x1x2=-4y1y2,xx=16yy.而+y=1,+y=1,则1-=y,1-=y,∴=yy,则(4-x)(4-x)=16yy,(4-x)(4-x)=xx,展开得x+x=4为一定值.10.[2018·山东模拟]已知椭圆C:+=1(a>b>0)的两个焦点和短轴的两个端点都在圆x2+y2=1上.(1)求椭圆C的方程;(2)若斜率为k的直线过点M(2,0),且与椭圆C相交于A,B两点,试探讨k为何值时,OA⊥OB.解(1)依题意b=1,c=1,所以a2=2.所以椭圆C的方程为+y2=1. (2)设A(x1,y1),B(x2,y2),直线AB的方程为y=k(x-2).由消去y得(1+2k2)x2-8k2x+8k2-2=0.所以x1+x2=,x1x2=.因为OA⊥OB,所以x1x2+y1y2=0.而y1y2=k2(x1-2)(x2-2),所以x1x2+k2(x1-2)(x2-2)=0,即(1+k2)x1x2-2k2(x1+x2)+4k2=0,所以-+4k2=0,解得k2=,此时Δ>0,所以k=±.[B级知能提升]1.[2018·湖南郴州]设e 是椭圆+=1的离心率,且e∈,则实数k 的取值范围是( )A .(0,3)B.⎝ ⎛⎭⎪⎫3,163 C .(0,3)∪D .(0,2)答案 C 解析 当k>4时,c =,由条件知<<1,解得k>;当0<k<4时,c =,由条件知<<1,解得0<k<3,故选C.2.[2018·重庆模拟]已知F1,F2为椭圆C :+=1的左、右焦点,点E 是椭圆C 上的动点,·的最大值、最小值分别为( )A .9,7B .8,7C .9,8D .17,8答案 B解析 由题意可知椭圆的左右焦点坐标为F1(-1,0),F2(1,0),设E(x ,y),则=(-1-x ,-y),=(1-x ,-y),·=x2-1+y2=x2-1+8-x2=x2+7(-3≤x≤3),所以当x =0时,·有最小值7,当x =±3时,·有最大值8,故选B.3.[2018·鼓楼期末]由半椭圆+=1(x≥0)与半椭圆+=1(x≤0)合成的曲线称作“果圆”,如图所示,其中a2=b2+c2,a>b>c>0.由右椭圆+=1(x≥0)的焦点F0和左椭圆+=1(x≤0)的焦点F1,F2确定的△F0F1F2叫做果圆的焦点三角形,若果圆的焦点三角形为锐角三角形,则右椭圆+=1(x≥0)的离心率的取值范围为( )A.B.⎝ ⎛⎭⎪⎫23,1C.D.⎝ ⎛⎭⎪⎫0,33 答案 C解析 连接F0F1、F0F2, 根据“果圆”关于x 轴对称,可得△F1F0F2是以F1F2为底边的等腰三角形,∵△F0F1F2是锐角三角形,∴等腰△F0F1F2的顶角为锐角,即∠F1F0F2∈.由此可得|OF0|>|OF1|,∵|OF0|、|OF1|分别是椭圆+=1、+=1的半焦距,∴c>,平方得c2>b2-c2,又∵b2=a2-c2,∴c2>a2-2c2,解得3c2>a2,两边都除以a2,得3·2>1,解之得>.∵右椭圆+=1(x≥0)的离心率e=∈(0,1),∴所求离心率e的范围为.故选C. 4.[2017·北京高考]已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4∶5.解(1)设椭圆C的方程为+=1(a>b>0),由题意得解得c=,所以b2=a2-c2=1,所以椭圆C的方程为+y2=1.(2)证明:设M(m,n),则D(m,0),N(m,-n),由题设知m≠±2,且n≠0.直线AM的斜率kAM=,故直线DE的斜率kDE=-,所以直线DE的方程为y=-(x-m),直线BN的方程为y=(x-2).联立错误!解得点E的纵坐标yE=-.由点M在椭圆C上,得4-m2=4n2,所以yE=-n.又S△BDE=|BD|·|yE|=|BD|·|n|,S△BDN=|BD|·|n|,所以△B DE与△BDN的面积之比为4∶5. 5.已知过点A(0,2)的直线l与椭圆C:+y2=1交于P,Q两点.(1)若直线l的斜率为k,求k的取值范围;(2)若以PQ为直径的圆经过点E(1,0),求直线l的方程.解(1)依题意,直线l的方程为y=kx+2,由消去y得(3k2+1)x2+12kx+9=0,令Δ=(12k)2-36(3k2+1)>0,解得k>1或k<-1,所以k的取值范围是(-∞,-1)∪(1,+∞).(2)当直线l的斜率不存在时,直线l的方程为x=0,则P(0,1),Q(0,-1)或P(0,-1),Q(0,1),此时以PQ为直径的圆过点E(1,0),满足题意.当直线l的斜率存在时,设直线l的方程为y=kx+2,P(x1,y1),Q(x2,y2),又E(1,0),所以=(x1-1,y1),=(x2-1,y2).由(1)知x1+x2=-,x1x2=,所以·=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+(kx1+2)(kx2+2)=(k2+1)x1x2+(2k-1)(x1+x2)+5=+(2k-1)+5=.因为以PQ为直径的圆过点E(1,0),所以·=0,即=0,解得k=-,满足Δ>0,故直线l的方程为y=-x+2,综上,所求直线l的方程为x=0或y=-x+2.。

全国版2019版高考数学一轮复习第8章平面解析几何第5讲椭圆增分练201805092276

全国版2019版高考数学一轮复习第8章平面解析几何第5讲椭圆增分练201805092276

第5讲 椭圆板块四 模拟演练·提能增分[A 级 基础达标]1.[2016·湖北八校联考]设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59 答案 B解析 由题意知a =3,b =5,c =2.设线段PF 1的中点为M ,则有OM ∥PF 2,∵OM ⊥F 1F 2,∴PF 2⊥F 1F 2,∴|PF 2|=b 2a =53.又∵|PF 1|+|PF 2|=2a =6,∴|PF 1|=2a -|PF 2|=133,∴|PF 2||PF 1|=53×313=513.故选B.2.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 答案 D解析 依题意,所求椭圆的焦点位于x 轴上,且c =1,e =c a =12⇒a =2,b 2=a 2-c 2=3,因此椭圆C 的方程是x 24+y 23=1.3.“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 B解析 要使方程x 25-m +y 2m +3=1表示椭圆,只须满足⎩⎪⎨⎪⎧5-m >0,m +3>0,5-m ≠m +3,解得-3<m <5且m ≠1,因此,“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的必要不充分条件.故选B.4.已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)答案 D解析 圆的标准方程为(x -3)2+y 2=1,∴圆心坐标是(3,0),∴c =3.又b =4,∴a =b 2+c 2=5.∵椭圆的焦点在x 轴上,∴椭圆的左顶点为(-5,0).故选D.5.[2018·黑龙江双鸭山模拟]过椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点作垂直于x 轴的直线与椭圆有四个交点,且这四个交点恰好为正方形的四个顶点,则椭圆的离心率为( )A.5+14 B.5-12 C.3-12 D.3+14答案 B解析 ∵过椭圆的两个焦点作垂直于x 轴的直线与椭圆有四个交点,且这四个交点恰好为正方形的四个顶点,∴c =b 2a ,即ac =a 2-c 2,∴e 2+e -1=0,∵0<e <1,∴e =5-12,故选B.6.[2018·惠来月考]以F 1(-1,0),F 2(1,0)为焦点且与直线x -y +3=0有公共点的椭圆中,离心率最大的椭圆方程是( )A.x 220+y 219=1B.x 29+y 28=1C.x 25+y 24=1 D.x 23+y 22=1 答案 C解析 解法一:由题意知,c =1,a 2-b 2=1,故可设椭圆的方程为x 2b 2+1+y 2b2=1,离心率的平方为:1b 2+1①, ∵直线x -y +3=0与椭圆有公共点,将直线方程代入椭圆方程得(2b 2+1)x 2+6(b 2+1)x +8b 2+9-b 4=0,由Δ=36(b 4+2b 2+1)-4(2b 2+1)(8b 2+9-b 4)≥0, ∴b 4-3b 2-4≥0,∴b 2≥4,或b 2≤-1(舍去), ∴b 2的最小值为4,∴①的最大值为15,此时,a 2=b 2+1=5,∴离心率最大的椭圆方程是:x 25+y 24=1.故选C.解法二:令直线x -y +3=0与椭圆的一个交点为P ,则2a =|PF 1|+|PF 2|,∵e =2c 2a =22a ,∴当|PF 1|+|PF 2|最小时e 最大,F 1,F 2在直线x -y +3=0的同侧,F 1关于x -y +3=0的对称点F 1′(-3,2),∴|PF 1|+|PF 2|=|PF 1′|+|PF 2|≥|F 1′F 2|=25,即2a ≥25,a ≥5,当a =5时e 最大,此时b 2=a 2-c 2=4,所求椭圆方程为x 25+y 24=1.故选C.7.[2018·深圳检测]若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是________.答案 (0,1)解析 将椭圆的方程化为标准形式得y 22k+x 22=1,因为x 2+ky 2=2表示焦点在y 轴上的椭圆,所以2k>2,解得0<k <1.8.[2018·江西模拟]过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.答案22解析 设A (x 1,y 1),B (x 2,y 2)分别代入椭圆方程相减得x 1-x 2x 1+x 2a 2+y 1-y 2y 1+y 2b2=0,根据题意有x 1+x 2=2×1=2,y 1+y 2=2×1=2,且y 1-y 2x 1-x 2=-12,所以2a 2+2b 2×⎝ ⎛⎭⎪⎫-12=0,得a 2=2b 2,所以a 2=2(a 2-c 2),整理得a 2=2c 2,得c a =22,所以e=22. 9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =32,其左、右焦点分别为F 1,F 2,|F 1F 2|=23,设点M (x 1,y 1),N (x 2,y 2)是椭圆上不同两点,且这两点分别与坐标原点的连线的斜率之积为-14.(1)求椭圆C 的方程;(2)求证:x 21+x 22为定值,并求该定值. 解 (1)∵c =3,e =32,∴a =2,b 2=a 2-c 2=1, 则椭圆C 的方程为x 24+y 2=1.(2)证明:由于y 1x 1·y 2x 2=-14,则x 1x 2=-4y 1y 2,x 21x 22=16y 21y 22.而x 214+y 21=1,x 224+y 22=1,则1-x 214=y 21,1-x 224=y 22,∴⎝ ⎛⎭⎪⎫1-x 214⎝ ⎛⎭⎪⎫1-x 224=y 21y 22,则(4-x 21)(4-x 22)=16y 21y 22,(4-x 21)(4-x 22)=x 21x 22,展开得x 21+x 22=4为一定值.10.[2018·山东模拟]已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点和短轴的两个端点都在圆x 2+y 2=1上.(1)求椭圆C 的方程;(2)若斜率为k 的直线过点M (2,0),且与椭圆C 相交于A ,B 两点,试探讨k 为何值时,OA ⊥OB .解 (1)依题意b =1,c =1,所以a 2=2. 所以椭圆C 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =k (x -2).由⎩⎪⎨⎪⎧y =k x -2,x 22+y 2=1消去y 得(1+2k 2)x 2-8k 2x +8k 2-2=0.所以x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2.因为OA ⊥OB ,所以x 1x 2+y 1y 2=0. 而y 1y 2=k 2(x 1-2)(x 2-2), 所以x 1x 2+k 2(x 1-2)(x 2-2)=0, 即(1+k 2)x 1x 2-2k 2(x 1+x 2)+4k 2=0, 所以1+k28k 2-21+2k2-16k 41+2k2+4k 2=0, 解得k 2=15,此时Δ>0,所以k =±55.[B 级 知能提升]1.[2018·湖南郴州]设e 是椭圆x 24+y 2k =1的离心率,且e ∈⎝ ⎛⎭⎪⎫12,1,则实数k 的取值范围是( )A .(0,3) B.⎝⎛⎭⎪⎫3,163C .(0,3)∪⎝ ⎛⎭⎪⎫163,+∞D .(0,2)答案 C解析 当k >4时,c =k -4,由条件知14<k -4k <1,解得k >163;当0<k <4时,c =4-k ,由条件知14<4-k4<1,解得0<k <3,故选C.2.[2018·重庆模拟]已知F 1,F 2为椭圆C :x 29+y 28=1的左、右焦点,点E 是椭圆C 上的动点,EF 1→·EF 2→的最大值、最小值分别为( )A .9,7B .8,7C .9,8D .17,8 答案 B解析 由题意可知椭圆的左右焦点坐标为F 1(-1,0),F 2(1,0),设E (x ,y ),则EF 1→=(-1-x ,-y ),EF 2→=(1-x ,-y ),EF 1→·EF 2→=x 2-1+y 2=x 2-1+8-89x 2=19x 2+7(-3≤x ≤3),所以当x =0时,EF 1→·EF 2→有最小值7,当x =±3时,EF 1→·EF 2→有最大值8,故选B.3.[2018·鼓楼期末]由半椭圆x 2a 2+y 2b 2=1(x ≥0)与半椭圆x 2c 2+y 2b 2=1(x ≤0)合成的曲线称作“果圆”,如图所示,其中a 2=b 2+c 2,a >b >c >0.由右椭圆x 2a 2+y 2b2=1(x ≥0)的焦点F 0和左椭圆x 2c 2+y 2b 2=1(x ≤0)的焦点F 1,F 2确定的△F 0F 1F 2叫做果圆的焦点三角形,若果圆的焦点三角形为锐角三角形,则右椭圆x 2a 2+y 2b2=1(x ≥0)的离心率的取值范围为( )A.⎝ ⎛⎭⎪⎫13,1 B.⎝⎛⎭⎪⎫23,1 C.⎝⎛⎭⎪⎫33,1 D.⎝⎛⎭⎪⎫0,33 答案 C解析 连接F 0F 1、F 0F 2,根据“果圆”关于x 轴对称,可得△F 1F 0F 2是以F 1F 2为底边的等腰三角形, ∵△F 0F 1F 2是锐角三角形,∴等腰△F 0F 1F 2的顶角为锐角,即∠F 1F 0F 2∈⎝⎛⎭⎪⎫0,π2.由此可得|OF 0|>|OF 1|,∵|OF 0|、|OF 1|分别是椭圆x 2a 2+y 2b 2=1、x 2c 2+y 2b2=1的半焦距,∴c >b 2-c 2,平方得c 2>b 2-c 2,又∵b 2=a 2-c 2,∴c 2>a 2-2c 2,解得3c 2>a 2, 两边都除以a 2,得3·⎝ ⎛⎭⎪⎫c a 2>1,解之得c a >33. ∵右椭圆x 2a 2+y 2b 2=1(x ≥0)的离心率e =ca∈(0,1),∴所求离心率e 的范围为⎝⎛⎭⎪⎫33,1.故选C. 4.[2017·北京高考]已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5.解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,解得c =3,所以b 2=a 2-c 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)证明:设M (m ,n ),则D (m,0),N (m ,-n ), 由题设知m ≠±2,且n ≠0.直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n, 所以直线DE 的方程为y =-m +2n(x -m ), 直线BN 的方程为y =n2-m(x -2).联立⎩⎪⎨⎪⎧y =-m +2n x -m ,y =n2-m x -2,解得点E 的纵坐标y E =-n 4-m 24-m 2+n2.由点M 在椭圆C 上,得4-m 2=4n 2,所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5.5.已知过点A (0,2)的直线l 与椭圆C :x 23+y 2=1交于P ,Q 两点.(1)若直线l 的斜率为k ,求k 的取值范围;(2)若以PQ 为直径的圆经过点E (1,0),求直线l 的方程. 解 (1)依题意,直线l 的方程为y =kx +2,由⎩⎪⎨⎪⎧x 23+y 2=1,y =kx +2消去y 得(3k 2+1)x 2+12kx +9=0,令Δ=(12k )2-36(3k 2+1)>0, 解得k >1或k <-1,所以k 的取值范围是(-∞,-1)∪(1,+∞). (2)当直线l 的斜率不存在时,直线l 的方程为x =0, 则P (0,1),Q (0,-1)或P (0,-1),Q (0,1), 此时以PQ 为直径的圆过点E (1,0),满足题意. 当直线l 的斜率存在时,设直线l 的方程为y =kx +2,P (x 1,y 1),Q (x 2,y 2),又E (1,0),所以EP →=(x 1-1,y 1),EQ →=(x 2-1,y 2). 由(1)知x 1+x 2=-12k 3k 2+1,x 1x 2=93k 2+1,所以EP →·EQ →=(x 1-1)(x 2-1)+y 1y 2 =x 1x 2-(x 1+x 2)+1+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+(2k -1)(x 1+x 2)+5=9k 2+13k 2+1+(2k -1)⎝ ⎛⎭⎪⎫-12k 3k 2+1+5 =12k +143k 2+1. 因为以PQ 为直径的圆过点E (1,0), 所以EP →·EQ →=0,即12k +143k 2+1=0,解得k =-76,满足Δ>0,故直线l 的方程为y =-76x +2,综上,所求直线l 的方程为x =0或y =-76x +2.。

近年届高考数学一轮复习第八章平面解析几何第5讲椭圆演练直击高考文(2021年整理)

近年届高考数学一轮复习第八章平面解析几何第5讲椭圆演练直击高考文(2021年整理)

(江苏专版)2019届高考数学一轮复习第八章平面解析几何第5讲椭圆分层演练直击高考文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专版)2019届高考数学一轮复习第八章平面解析几何第5讲椭圆分层演练直击高考文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专版)2019届高考数学一轮复习第八章平面解析几何第5讲椭圆分层演练直击高考文的全部内容。

第5讲椭圆1.已知方程错误!+错误!=1表示焦点在y轴上的椭圆,则实数k的取值范围是________.[解析] 因为方程错误!+错误!=1表示焦点在y轴上的椭圆,则由错误!得错误!故k的取值范围为(1,2).[答案] (1,2)2.中心在坐标原点的椭圆,焦点在x轴上,焦距为4,离心率为错误!,则该椭圆的方程为________.[解析] 依题意,2c=4,c=2,又e=错误!=错误!,则a=2错误!,b=2,所以椭圆的标准方程为错误!+错误!=1。

[答案]错误!+错误!=13.已知点M(错误!,0),椭圆错误!+y2=1与直线y=k(x+错误!)交于点A,B,则△ABM 的周长为________.[解析]M(3,0)与F(-错误!,0)是椭圆的焦点,则直线AB过椭圆左焦点F(-错误!,0),且AB=AF+BF,△ABM的周长等于AB+AM+BM=(AF+AM)+(BF+BM)=4a=8。

[答案] 84.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的________条件.[解析] 把椭圆方程化成错误!+错误!=1.若m>n>0,则错误!>错误!>0.所以椭圆的焦点在y轴上.反之,若椭圆的焦点在y轴上,则错误!>错误!>0即有m>n>0.故为充要条件.[答案]充要5.如图,椭圆x2a2+错误!=1的左、右焦点分别为F1,F2,P点在椭圆上,若PF1=4,∠F1PF2=120°,则a的值为________.[解析] b2=2,c=错误!,故F1F2=2错误!,又PF1=4,PF1+PF2=2a,PF2=2a-4,由余弦定理得cos 120°=错误!=-错误!,化简得8a=24,即a=3.[答案] 36.若一个椭圆长轴的长度、短轴的长度和焦距依次成等差数列,则该椭圆的离心率为________.[解析] 由题意知2a +2c =2(2b ),即a +c =2b ,又c 2=a 2-b 2,消去b 整理得5c 2=3a 2-2ac ,即5e 2+2e -3=0,所以e =错误!或e =-1(舍去).[答案] 错误!7.已知P 是以F 1,F 2为焦点的椭圆错误!+错误!=1(a >b 〉0)上的一点,若错误!·错误!=0,tan ∠PF 1F 2=错误!,则此椭圆的离心率为________.[解析] 因为错误!·错误!=0,所以错误!⊥错误!,所以PF 1+PF 2=错误!c =2a ,所以e =错误!=错误!.[答案] 错误!8.已知圆C 1:x 2+2cx +y 2=0,圆C 2:x 2-2cx +y 2=0,椭圆C :x 2a2+错误!=1(a >b >0),若圆C 1,C 2都在椭圆内,则椭圆离心率的取值范围是________.[解析] 圆C 1,C 2都在椭圆内等价于圆C 2的右顶点(2c ,0),上顶点(c ,c )在椭圆内部, 所以只需错误!⇒0<错误!<错误!. 即椭圆离心率的取值范围是错误!. [答案] 错误!9.(2018·无锡调研)过椭圆错误!+错误!=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.[解析] 由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立错误!解得交点A (0,-2),B 错误!,所以S △OAB =错误!·OF ·|y A -y B |=错误!×1×错误!=错误!。

近年年高考数学一轮复习第8章平面解析几何第5节椭圆学案理北师大版(2021学年)

近年年高考数学一轮复习第8章平面解析几何第5节椭圆学案理北师大版(2021学年)

2019年高考数学一轮复习第8章平面解析几何第5节椭圆学案理北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学一轮复习第8章平面解析几何第5节椭圆学案理北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学一轮复习第8章平面解析几何第5节椭圆学案理北师大版的全部内容。

第五节椭圆[考纲传真](教师用书独具)1。

了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单性质(范围、对称性、顶点、离心率).3。

理解数形结合思想。

4。

了解椭圆的简单应用.(对应学生用书第138页)[基础知识填充]1.椭圆的定义把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程错误!+错误!=1(a>b〉0)\f(y2,a2)+错误!=1(a〉b〉0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)离心率e=\f(c,a),且e∈(0,1)a,b,c的关系c2=a2-b20000错误!错误!<1。

近年年高考数学一轮复习第8章平面解析几何第5节椭圆学案文北师大版(2021学年)

近年年高考数学一轮复习第8章平面解析几何第5节椭圆学案文北师大版(2021学年)

2019年高考数学一轮复习第8章平面解析几何第5节椭圆学案文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学一轮复习第8章平面解析几何第5节椭圆学案文北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学一轮复习第8章平面解析几何第5节椭圆学案文北师大版的全部内容。

第五节椭圆[考纲传真] 1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2。

掌握椭圆的定义、几何图形、标准方程及简单性质(范围、对称性、顶点、离心率)。

3.理解数形结合思想.4.了解椭圆的简单应用.(对应学生用书第120页)[基础知识填充]1.椭圆的定义(1)平面内与两个定点F1,F2的距离的和等于常数(大于|F 1F2|)的点的集合叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0。

①若a>c,则集合P为椭圆;②若a=c,则集合P为线段;③若a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程错误!+错误!=1(a〉b〉0)错误!+错误!=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b1.点P(x0,y0)和椭圆的关系ﻩ(1)点P(x0,y0)在椭圆内⇔错误!+错误!<1。

高考数学一轮复习 第八章 平面解析几何 第五节 椭圆学案 文-人教版高三全册数学学案

高考数学一轮复习 第八章 平面解析几何 第五节 椭圆学案 文-人教版高三全册数学学案

第五节椭圆1.掌握椭圆的定义、几何图形、标准方程及简单性质. 2.了解圆锥曲线的简单应用. 3.理解数形结合的思想.知识点一 椭圆的定义平面内与两个定点F 1,F 2的距离的和等于______________的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.答案常数(大于|F 1F 2|)1.判断正误(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( )(2)动点P 到两定点A (0,-2),B (0,2)的距离之和为4,则点P 的轨迹是椭圆.( ) 答案:(1)× (2)×2.已知椭圆x 225+y 216=1上一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离为________.解析:⎩⎪⎨⎪⎧|PF 1|=3,|PF 1|+|PF 2|=10⇒|PF 2|=7.答案:7知识点二 椭圆的标准方程和几何性质 标准方程x 2a 2+y 2b 2=1 y 2a 2+x 2b 2=1(a >b >0) (a >b >0)图形性质范围-a ≤x ≤a-b ≤y ≤b-b ≤x ≤b-a ≤y ≤a对称性 对称轴:坐标轴;对称中心:原点顶点A 1(-a,0),A 2(a,0)B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b,0),B 2(b,0)轴 长轴A 1A 2的长为____;短轴B 1B 2的长为____焦距 |F 1F 2|=____离心率e =ca ∈______ a ,b ,c的关系c 2=______答案2a 2b 2c (0,1) a 2-b 23.(选修1-1P42第2(1)题改编)已知椭圆x 2m -2+y 210-m=1的焦点在x 轴上,焦距为4,则m 等于( )A .8B .7C .6D .5解析:因为椭圆x 2m -2+y210-m=1的焦点在x 轴上.所以⎩⎪⎨⎪⎧10-m >0,m -2>0,m -2>10-m ,解得6<m <10.因为焦距为4,所以c 2=m -2-10+m =4,解得m =8.答案:A4.(选修1-1P42第5(3)题改编)已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________.解析:设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).因为椭圆的一个焦点为F (1,0),离心率e=12,所以⎩⎪⎨⎪⎧c =1,c a =12,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2c =2,b 2=3,故椭圆的标准方程为x 24+y 23=1.答案:x 24+y 23=15.(2016·江苏卷)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析:由题意可得B (-32a ,b 2),C (32a ,b2),F (c,0),则由∠BFC =90°得BF →·CF →=(c+32a ,-b 2)·(c -32a ,-b 2)=c 2-34a 2+14b 2=0,化简得3c =2a ,则离心率e =c a =23=63. 答案:63热点一 椭圆的定义及标准方程【例1】 (1)过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B和椭圆的另一个焦点F 2构成的△ABF 2的周长为( )A .2B .4C .8D .2 2(2)一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( )A.x 28+y 26=1 B .x 216+y 26=1 C.x 24+y 22=1 D .x 28+y 24=1【解析】 (1)因为椭圆方程为4x 2+y 2=1,所以a =1.根据椭圆的定义,知△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =4.(2)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12得a 2=8,b 2=6,故椭圆方程为x 28+y 26=1.【答案】 (1)B (2)A 【总结反思】(1)椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF 1|·|PF 2|;通过整体代入可求其面积等. (2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式.(1)已知动圆M 过定点A (-3,0)并且与定圆B :(x -3)2+y 2=64相切,则动圆圆心M 的轨迹方程为( )A.x 216+y 27=1 B.x 27+y 216=1 C.x 216-y 27=1 D.x 27-y 216=1 (2)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.解析:(1)因为点A 在圆B 内,所以过点A 的圆与圆B 只能内切,因为B (3,0),所以|AB |=6.所以|BM |=8-|MA |,即|MB |+|MA |=8>|AB |,所以动点M 的轨迹是以A ,B 为焦点的椭圆,设其方程为x 2a 2+y 2b 2=1,又a =4,c =3,b 2=7,所以方程为x 216+y 27=1.故选A.(2)由题意知|PF 1|+|PF 2|=2a ,PF 1→⊥PF 2→,所以|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,所以(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,所以2|PF 1||PF 2|=4a 2-4c 2=4b 2.所以|PF 1||PF 2|=2b 2,所以S △PF 1F 2=12|PF 1||PF 2|=12×2b 2=b 2=9.所以b =3.答案:(1)A (2)3 热点二 椭圆的几何性质考向1 求椭圆的离心率(或取值范围)【例2】 (2016·新课标全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34【解析】 设E (0,m ),则直线AE 的方程为-x a +y m =1,由题意可知M (-c ,m -mc a),(0,m 2)和B (a,0)三点共线,则m -mc a -m 2-c =m 2-a ,化简得a =3c ,则C 的离心率e =c a =13. 【答案】 A考向2 根据椭圆的性质求值或范围【例3】 (1)(2017·安庆模拟)P 为椭圆x 216+y 215=1上任意一点,EF 为圆N :(x -1)2+y 2=4的任意一条直径,则PE →·PF →的取值范围是( )A .[0,15]B .[5,15]C .[5,21]D .(5,21)(2)已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上的点A 满足AF 2⊥F 1F 2,若点P 是椭圆C 上的动点,则F 1P →·F 2A →的最大值为( )A.32B.332C.94D.154【解析】 (1)PE →·PF →=(PN →+NE →)·(PN →+NF →)=(PN →+NE →)·(PN →-NE →)=PN →2-NE →2=|PN →|2-4,因为a -c ≤|PN →|≤a +c ,即3≤|PN →|≤5,所以PE →·PF →的范围是[5,21].(2)由椭圆方程知c =4-3=1, 所以F 1(-1,0),F 2(1,0).因为椭圆C 上点A 满足AF 2⊥F 1F 2,则可设A (1,y 0),代入椭圆方程可得y 20=94,所以y 0=±32. 设P (x 1,y 1),则F 1P →=(x 1+1,y 1),F 2A →=(0,y 0),所以F 1P →·F 2A →=y 1y 0.因为点P 是椭圆C 上的动点,所以-3≤y 1≤3,F 1P →·F 2A →的最大值为332.【答案】 (1)C (2)Bb ≤y ≤b,0<e <1等,在求与椭圆有关的一些量的范围,或者求这些量的最大值或最小值时,经常用到这些不等关系. (2)求椭圆离心率的方法①直接求出a ,c 的值,利用离心率公式直接求解.②列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.(1)已知椭圆E :x 2a2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B.⎝ ⎛⎦⎥⎤0,34 C.⎣⎢⎡⎭⎪⎫32,1 D.⎣⎢⎡⎭⎪⎫34,1 (2)(2017·安徽淮南一模)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在椭圆C上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,34B.⎣⎢⎡⎦⎥⎤12,1C.⎣⎢⎡⎦⎥⎤38,34 D.⎣⎢⎡⎦⎥⎤34,1 解析:(1)不妨设左焦点为F 2,连接AF 2,BF 2,由椭圆的对称性可知四边形AFBF 2的对角线互相平分,所以四边形AFBF 2为平行四边形,所以|AF |+|BF |=|BF 2|+|BF |=2a =4,所以a =2,设M (0,b ),所以d =45b ≥45⇒b ≥1,所以e =1-b 2a2=1-b 24≤1-14=32,又e ∈(0,1),所以e ∈⎝ ⎛⎦⎥⎤0,32. (2)由题意,得A 1(-2,0),A 2(2,0),设P (x 0,y 0)(x 0≠±2),则有x 204+y 203=1,整理,得y 20x 20-4=-34.因为k PA 1 =y 0x 0+2,k PA 2 =y 0x 0-2,所以k PA 1 ·k PA 2 =y 20x 20-4=-34,又k PA 2∈[-2,-1],所以kPA 1 ∈⎣⎢⎡⎦⎥⎤38,34,故选C. 答案:(1)A (2)C热点三 直线与椭圆的位置关系【例4】 (2016·四川卷)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P (3,12)在椭圆E 上.(Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |·|MB |=|MC |·|MD |.【解】 (Ⅰ)由已知,a =2b .又椭圆x 2a 2+y 2b 2=1(a >b >0)过点P (3,12),故34b 2+14b2=1,解得b 2=1,所以椭圆E 的方程是x 24+y 2=1.(Ⅱ)证明:设直线l 的方程为y =12x +m (m ≠0),A (x 1,y 1),B (x 2,y 2),由方程组⎩⎪⎨⎪⎧x 24+y 2=1,y =12x +m ,得x 2+2mx +2m 2-2=0,①方程①的判别式为Δ=4(2-m 2),由Δ>0,即2-m 2>0,解得-2<m < 2. 由①得x 1+x 2=-2m ,x 1x 2=2m 2-2,所以M 点的坐标为(-m ,m 2),直线OM 的方程为y =-12x ,由方程组⎩⎪⎨⎪⎧x 24+y 2=1,y =-12x ,得C (-2,22),D (2,-22)或C (2,-22),D (-2,22). 所以|MC |·|MD |=52(-m +2)·52(2+m )=54(2-m 2).又|MA |·|MB |=14|AB |2=14[(x 1-x 2)2+(y 1-y 2)2]=516[(x 1+x 2)2-4x 1x 2]=516[4m 2-4(2m2-2)]=54(2-m 2),所以|MA |·|MB |=|MC |·|MD |.【总结反思】(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则|AB |=1+k2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2[y 1+y22-4y 1y 2](k 为直线斜率).设F 1,F 2分别是椭圆C :x 2a2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求椭圆C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据a 2-b 2=c 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,b 2a 2c =34,得2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,c a=-2(舍去).故椭圆C 的离心率为12.(2)设直线MN 与y 轴的交点为D ,由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及a 2-b 2=c 2代入②得9a 2-4a 4a 2+14a=1. 解得a =7,b 2=4a =28, 故a =7,b =27.1.涉及椭圆定义的题目,要抓住“椭圆上任一点到两焦点距离之和等于2a ”这个特征.充分利用定义.“回到定义中去”是一个很重要的思想方法.2.求椭圆方程的方法(1)直接法:根据所给条件判断焦点位置,并确定a ,b 的值,按标准方程写出方程,其中难点为确定a ,b 的值.(2)待定系数法:先设出字母系数的方程,根据条件建立字母系数的方程并求解,然后代入所设方程而得方程,其中难点是建立字母系数的方程.3.离心率是椭圆的重要几何性质,是高考重点考查的一个知识点.这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围.无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表达,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.4.直线与圆锥曲线的关系问题,一般可以直接联立方程,把方程组转化成关于x 或y 的一元二次方程,利用根与系数的关系及弦长公式求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲椭圆板块一知识梳理·自主学习[必备知识]考点1 椭圆的概念在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.考点2 椭圆的标准方程和几何性质[必会结论]椭圆的常用性质(1)设椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,P点在短轴端点处;当x =±a 时,|OP |有最大值a ,P 点在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 为斜边,a 2=b 2+c 2.(3)已知过焦点F 1的弦AB ,则△ABF 2的周长为4a . (4)过椭圆的焦点且垂直于长轴的弦之长为2b2a.(5)椭圆离心率e =1-b 2a2. [考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆是轴对称图形,也是中心对称图形.( )(3)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( )(4)椭圆的离心率e 越大,椭圆就越圆.( )(5)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( ) 答案 (1)× (2)√ (3)√ (4)× (5)√2.[2017·浙江高考]椭圆x 29+y 24=1的离心率是( )A.133 B.53 C.23 D.59答案 B解析 ∵椭圆方程为x 29+y 24=1,∴a =3,c =a 2-b 2=9-4= 5. ∴e =c a =53.故选B. 3.[2018·广东模拟]已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9 答案 B解析 由4=25-m 2(m >0)⇒m =3,故选B.4.[课本改编]已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于13,则椭圆C的方程是( )A.x 24+y 23=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 29+y 28=1 答案 D解析 依题意,设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),所以⎩⎪⎨⎪⎧c =1,c a =13,c 2=a 2-b 2,解得a 2=9,b 2=8.故椭圆C 的方程为x 29+y 28=1.5.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m =________.答案14解析 椭圆x 2+my 2=1可化为x 2+y 21m=1,因为其焦点在y 轴上,所以a 2=1m,b 2=1,依题意知1m =2,解得m =14. 6.[2018·上海联考]若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =________.答案 4或8解析 ①当焦点在x 轴上时,10-a -(a -2)=22,解得a =4;②当焦点在y 轴上时,a -2-(10-a )=22,解得a =8.板块二 典例探究·考向突破考向 椭圆的定义及标准方程例1 (1)[2018·杭州模拟]已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 答案 A解析 由题意及椭圆的定义知4a =43,则a =3,又c a=c3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1,选A.(2)设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为________.答案 4解析 连接PF 2,则OM 为△PF 1F 2的中位线, |OM |=3,∴|PF 2|=6.∴|PF 1|=2a -|PF 2|=10-6=4. 触类旁通(1)在利用椭圆定义解题的时候,一方面要注意到常数2a >|F 1F 2|这个条件;另一方面要熟练掌握由椭圆上任一点与两个焦点所组成的“焦点三角形”中的数量关系.(2)待定系数法求椭圆方程,若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a ,b ;若焦点位置不明确,则需要分焦点在x 轴上和y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(A >0,B >0,A ≠B ).【变式训练1】 (1)[2018·厦门模拟]已知椭圆x 24+y 2=1,F 1,F 2为其两焦点,P 为椭圆上任一点.则|PF 1|·|PF 2|的最大值为( )A .6B .4C .2D .8 答案 B解析 设|PF 1|=m ,|PF 2|=n ,则m +n =2a =4,|PF 1|·|PF 2|=mn ≤⎝ ⎛⎭⎪⎫m +n 22=4(当且仅当m =n =2时,等号成立).故选B.(2)已知椭圆C 的中心在原点,一个焦点F (-2,0),且长轴长与短轴长的比是2∶3,则椭圆C 的方程是________.答案x 216+y 212=1 解析 设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).由题意知⎩⎨⎧a 2=b 2+c 2,a ∶b =2∶3,c =2,解得a 2=16,b 2=12.所以椭圆C 的方程为x 216+y 212=1.(3)[2017·豫北六校联考]设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16.则|AF 2|=________.答案 5解析 由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3. ∵△ABF 2的周长为16,∴4a =16,∴a =4. 则|AF 1|+|AF 2|=2a =8, ∴|AF 2|=8-|AF 1|=8-3=5.考向 椭圆的几何性质例2 (1)[2017·全国卷Ⅲ]已知椭圆C :x 2a +y 2b=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63 B.33 C.23 D.13答案 A解析 由题意知以A 1A 2为直径的圆的圆心为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2aba 2+b2=a ,解得a =3b ,∴b a =13,∴e =c a =a 2-b 2a = 1-⎝ ⎛⎭⎪⎫b a 2=1-⎝⎛⎭⎪⎫132=63.故选A. (2)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是________.答案35解析 由题意知,2a +2c =2(2b ),即a +c =2b ,又c 2=a 2-b 2,消去b ,整理得5c 2=3a 2-2ac ,即5e 2+2e -3=0,解得e =35或e =-1(舍去).触类旁通椭圆离心率的求解方法求椭圆的离心率,常见的有三种方法:一是通过已知条件列方程组,解出a ,c 的值;二是由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.【变式训练2】 (1)[2016·全国卷Ⅰ]直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34 答案 B解析 不妨设直线l 过椭圆的上顶点(0,b )和左焦点(-c ,0),b >0,c >0,则直线l的方程为bx -cy +bc =0,由已知得bc b 2+c 2=14×2b ,解得b 2=3c 2,又b 2=a 2-c 2,所以c 2a 2=14,即e 2=14,所以e =12(e =-12舍去),故选B. (2)[2018·锦州模拟]设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.答案33解析 在Rt △PF 2F 1中,令|PF 2|=1,因为∠PF 1F 2=30°,所以|PF 1|=2,|F 1F 2|= 3.所以e =2c 2a =|F 1F 2||PF 1|+|PF 2|=33. 考向 椭圆中的焦点三角形例3 [2018·漳浦县校级月考]椭圆x 24+y 2=1上的一点P 与两焦点F 1,F 2所构成的三角形称为焦点三角形.(1)求PF 1→·PF 2→的最大值与最小值; (2)设∠F 1PF 2=θ,求证:S △F 1PF 2=tanθ2. 解 (1)设P (x ,y ),∴F 1(-3,0),F 2(3,0),则PF 1→·PF 2→=(-3-x ,-y )·(3-x ,-y )=x 2+y 2-3=34x 2-2.∵x 2∈[0,4],∴34x 2-2∈[-2,1].∴PF 1→·PF 2→的最大值为1,最小值为-2.(2)证明:由椭圆的定义可知|PF 1|+|PF 2|=2a ,|F 1F 2|=2c , 在△F 1PF 2中,由余弦定理可得:|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos θ=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|(1+cos θ),可得4c 2=4a 2-2|PF 1|·|PF 2|(1+cos θ)⇒|PF 1|·|PF 2|=2b21+cos θ,即有△F 1PF 2的面积S =12|PF 1|·|PF 2|sin ∠F 1PF 2=b 2sin θ1+cos θ=b 2tan θ2=tan θ2.触类旁通椭圆的焦点三角形:椭圆上的一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用椭圆的定义和正弦定理、余弦定理.以椭圆x 2a +y 2b=1(a >b >0)上一点P (x 0,y 0)(y 0≠0)和焦点F 1(-c,0),F 2(c,0)为顶点的△PF 1F 2中,若∠F 1PF 2=θ,则(1)|PF 1|+|PF 2|=2a ;(2)4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ;(3)S △PF 1F 2=12|PF 1||PF 2|·sin θ,当|y 0|=b ,即P 为短轴端点时,S △PF 1F 2取最大值,为bc ;(4)焦点三角形的周长为2(a +c ); (5)当P 为短轴端点时,θ最大;(6)若焦点三角形的内切圆圆心为I ,延长PI 交F 1F 2于点Q ,则|PI ||IQ |=|PF 1||F 1Q |=|PF 2||F 2Q |,所以|PI ||IQ |=|PF 1|+|PF 2||F 1Q |+|F 2Q |=2a 2c =1e(e 为离心率).【变式训练3】 (1)如图所示椭圆中,P 为椭圆上一点,F 为其一个焦点,PF 为直径的圆与长轴为直径的圆的关系为________.答案 内切解析 设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),F 、F ′分别是椭圆的左、右焦点,作出以线段PF 为直径的圆和以长轴为直径的圆x 2+y 2=a 2,如图所示.设PF 中点为M ,连接PF ′,∴OM 是△PFF ′的中位线,可得|OM |=12|PF ′|,即两圆的圆心距为12|PF ′|根据椭圆定义,可得|PF |+|PF ′|=2a ,∴圆心距|OM |=12|PF ′|=12(2a -|PF |)=a -12|PF |,即两圆的圆心距等于它们的半径之差,因此,以PF 为直径的圆与以长轴为直径的圆x 2+y 2=a 2相内切.(2)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.答案 3解析 由题意知|PF 1|+|PF 2|=2a ,PF 1→⊥PF 2→,所以|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,所以(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2, 所以2|PF 1||PF 2|=4a 2-4c 2=4b 2, 所以|PF 1||PF 2|=2b 2,所以S △PF 1F 2=12|PF 1||PF 2|=12×2b 2=b 2=9.所以b =3.考向 直线与椭圆的综合问题命题角度1 弦的中点问题例4 [2018·南昌模拟]已知椭圆:y 29+x 2=1,过点P ⎝ ⎛⎭⎪⎫12,12的直线与椭圆相交于A ,B两点,且弦AB 被点P 平分,则直线AB 的方程为( )A .9x -y -4=0B .9x +y -5=0C .2x +y -2=0D .x +y -5=0答案 B解析 设A (x 1,y 1),B (x 2,y 2),因为A ,B 在椭圆y29+x 2=1上,所以⎩⎪⎨⎪⎧y 219+x 21=1,y229+x 22=1,两式相减得y 21-y 229+x 21-x 22=0,得(y 1-y 2)(y 1+y 2)9+(x 1-x 2)(x 1+x 2)=0,又弦AB 被点P ⎝ ⎛⎭⎪⎫12,12平分,所以x 1+x 2=1,y 1+y 2=1,将其代入上式得y 1-y 29+x 1-x 2=0,得y 1-y 2x 1-x 2=-9,即直线AB 的斜率为-9,所以直线AB 的方程为y -12=-9⎝ ⎛⎭⎪⎫x -12,即9x +y -5=0. 命题角度2 弦长问题例5 [2018·陕西咸阳模拟]在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点P (2,1),且离心率e =32. (1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求△PAB 面积的最大值.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2.又椭圆C :x 2a 2+y 2b2=1(a >b >0)过点P (2,1),∴4a 2+1b2=1,∴a 2=8,b 2=2.故所求椭圆方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y 22=1,整理,得x 2+2mx +2m 2-4=0.∵Δ=4m 2-8m 2+16>0,解得|m |<2. ∴x 1+x 2=-2m ,x 1x 2=2m 2-4. 则|AB |=1+14× (x 1+x 2)2-4x 1x 2=5(4-m 2).点P 到直线l 的距离d =|m |1+14=2|m |5.∴S △PAB =12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+4-m 22=2.当且仅当m 2=2,即m =±2时取得最大值. 触类旁通直线与椭圆综合问题的处理方法解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.核心规律1.椭圆中的参数a ,b ,c 三者的关系为a 2-b 2=c 2,这是椭圆中参数关系的核心. 2.求离心率常用两种方法:(1)求得a ,c 的值,代入公式e =ca即可;(2)列出a ,b ,c 的方程或不等式,根据b 2=a 2-c 2将b 消掉,转化为含有a 和c 的关系,最后转化为关于e 的方程或不等式.满分策略1.判断椭圆的两种标准方程的方法为比较标准方程形式中x 2和y 2的分母大小. 2.关于离心率的范围问题,一定不要忘记椭圆离心率的固有范围0<e <1.3.注意椭圆的范围,在设椭圆x 2a 2+y 2b2=1(a >b >0)上点的坐标为P (x ,y )时,则|x |≤a ,这往往在求与点P 有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.板块三 启智培优·破译高考题型技法系列 14——椭圆离心率范围的求解技巧[2018·衡中模拟]F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,则椭圆的离心率的取值范围是________.解题视点 将垂直问题转化为向量的数量积,再借助于椭圆本身的属性|x |≤a 破解.解析 解法一:设P (x 0,y 0)为椭圆上一点,则x 20a 2+y 20b2=1.PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0),若∠F 1PF 2=90°,则PF 1→·PF 2→=x 20+y 20-c 2=0.∴x 2+b 2⎝ ⎛⎭⎪⎫1-x 20a 2=c 2,∴x 20=a 2(c 2-b 2)c 2.∵0≤x 20≤a 2,∴0≤c 2-b 2c2≤1.∴b 2≤c 2,∴a 2≤2c 2,∴22≤e <1. 解法二:如图,由题意,∠F 1PF 2≥90°,∠OPF 2≥45°,sin ∠OPF 2=c a ≥22, ∴22≤e <1. 答案22≤e <1 答题启示 建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.跟踪训练已知过椭圆x 2a 2+y 2b2=1(a >b >0)的焦点F 1,F 2的两条互相垂直的直线的交点在椭圆内部(不包括边界),则此椭圆离心率的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫0,22 C.⎝⎛⎭⎪⎫22,1 D.⎝ ⎛⎭⎪⎫12,22 答案 B解析 设椭圆x 2a 2+y 2b2=1的短轴的一个端点为B ,中心为O ,椭圆上任意一点为M ,过焦点F 1,F 2的两条互相垂直的直线的交点为P ,则点P 在以O 为圆心,|F 1F 2|为直径的圆上,且该圆的半径r =|OP |=12|F 1F 2|=c (其中c =a 2-b 2),则由椭圆的性质及题意可得r <b ,即c <b ,所以c 2<b 2=a 2-c 2,所以2c 2<a 2,得2c <a ,所以e =c a <12=22,故所求椭圆的离心率的取值范围是⎝ ⎛⎭⎪⎫0,22. 板块四 模拟演练·提能增分[A 级 基础达标]1.[2016·湖北八校联考]设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514 B.513 C.49 D.59答案 B解析 由题意知a =3,b =5,c =2.设线段PF 1的中点为M ,则有OM ∥PF 2,∵OM ⊥F 1F 2,∴PF 2⊥F 1F 2,∴|PF 2|=b 2a =53.又∵|PF 1|+|PF 2|=2a =6,∴|PF 1|=2a -|PF 2|=133,∴|PF 2||PF 1|=53×313=513.故选B. 2.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 答案 D解析 依题意,所求椭圆的焦点位于x 轴上,且c =1,e =c a =12⇒a =2,b 2=a 2-c 2=3,因此椭圆C 的方程是x 24+y 23=1.3.“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 B解析 要使方程x 25-m +y 2m +3=1表示椭圆,只须满足⎩⎪⎨⎪⎧5-m >0,m +3>0,5-m ≠m +3,解得-3<m <5且m ≠1,因此,“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的必要不充分条件.故选B.4.已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)答案 D解析 圆的标准方程为(x -3)2+y 2=1,∴圆心坐标是(3,0),∴c =3.又b =4,∴a =b 2+c 2=5.∵椭圆的焦点在x 轴上,∴椭圆的左顶点为(-5,0).故选D.5.[2018·黑龙江双鸭山模拟]过椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点作垂直于x 轴的直线与椭圆有四个交点,且这四个交点恰好为正方形的四个顶点,则椭圆的离心率为( )A.5+14 B.5-12 C.3-12 D.3+14答案 B解析 ∵过椭圆的两个焦点作垂直于x 轴的直线与椭圆有四个交点,且这四个交点恰好为正方形的四个顶点,∴c =b 2a ,即ac =a 2-c 2,∴e 2+e -1=0,∵0<e <1,∴e =5-12,故选B.6.[2018·惠来月考]以F 1(-1,0),F 2(1,0)为焦点且与直线x -y +3=0有公共点的椭圆中,离心率最大的椭圆方程是( )A.x 220+y 219=1B.x 29+y 28=1C.x 25+y 24=1 D.x 23+y 22=1 答案 C解析 解法一:由题意知,c =1,a 2-b 2=1,故可设椭圆的方程为x 2b 2+1+y 2b 2=1,离心率的平方为:1b 2+1①, ∵直线x -y +3=0与椭圆有公共点,将直线方程代入椭圆方程得(2b 2+1)x 2+6(b 2+1)x +8b 2+9-b 4=0,由Δ=36(b 4+2b 2+1)-4(2b 2+1)(8b 2+9-b 4)≥0, ∴b 4-3b 2-4≥0,∴b 2≥4,或b 2≤-1(舍去), ∴b 2的最小值为4,∴①的最大值为15,此时,a 2=b 2+1=5,∴离心率最大的椭圆方程是:x 25+y 24=1.故选C.解法二:令直线x -y +3=0与椭圆的一个交点为P ,则2a =|PF 1|+|PF 2|, ∵e =2c 2a =22a ,∴当|PF 1|+|PF 2|最小时e 最大,F 1,F 2在直线x -y +3=0的同侧,F 1关于x -y +3=0的对称点F 1′(-3,2),∴|PF 1|+|PF 2|=|PF 1′|+|PF 2|≥|F 1′F 2|=25,即2a ≥25,a ≥5,当a =5时e 最大,此时b 2=a 2-c 2=4,所求椭圆方程为x 25+y 24=1.故选C.7.[2018·深圳检测]若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是________.答案 (0,1)解析 将椭圆的方程化为标准形式得y 22k+x 22=1,因为x 2+ky 2=2表示焦点在y 轴上的椭圆,所以2k>2,解得0<k <1.8.[2018·江西模拟]过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.答案22解析 设A (x 1,y 1),B (x 2,y 2)分别代入椭圆方程相减得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b2=0,根据题意有x 1+x 2=2×1=2,y 1+y 2=2×1=2,且y 1-y 2x 1-x 2=-12,所以2a 2+2b 2×⎝ ⎛⎭⎪⎫-12=0,得a 2=2b 2,所以a 2=2(a 2-c 2),整理得a 2=2c 2,得c a=22,所以e =22. 9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =32,其左、右焦点分别为F 1,F 2,|F 1F 2|=23,设点M (x 1,y 1),N (x 2,y 2)是椭圆上不同两点,且这两点分别与坐标原点的连线的斜率之积为-14.(1)求椭圆C 的方程;(2)求证:x 21+x 22为定值,并求该定值. 解 (1)∵c =3,e =32,∴a =2,b 2=a 2-c 2=1, 则椭圆C 的方程为x 24+y 2=1.(2)证明:由于y 1x 1·y 2x 2=-14,则x 1x 2=-4y 1y 2,x 21x 22=16y 21y 22.而x 214+y 21=1,x 224+y 22=1,则1-x 214=y 21,1-x 224=y 22,∴⎝ ⎛⎭⎪⎫1-x 214⎝ ⎛⎭⎪⎫1-x 224=y 21y 22,则(4-x 21)(4-x 22)=16y 21y 22, (4-x 21)(4-x 22)=x 21x 22,展开得x 21+x 22=4为一定值.10.[2018·山东模拟]已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点和短轴的两个端点都在圆x 2+y 2=1上.(1)求椭圆C 的方程;(2)若斜率为k 的直线过点M (2,0),且与椭圆C 相交于A ,B 两点,试探讨k 为何值时,OA ⊥OB .解 (1)依题意b =1,c =1,所以a 2=2. 所以椭圆C 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =k (x -2).由⎩⎪⎨⎪⎧y =k (x -2),x 22+y 2=1消去y 得(1+2k 2)x 2-8k 2x +8k 2-2=0.所以x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2.因为OA ⊥OB ,所以x 1x 2+y 1y 2=0. 而y 1y 2=k 2(x 1-2)(x 2-2), 所以x 1x 2+k 2(x 1-2)(x 2-2)=0, 即(1+k 2)x 1x 2-2k 2(x 1+x 2)+4k 2=0, 所以(1+k 2)(8k 2-2)1+2k 2-16k 41+2k 2+4k 2=0,解得k 2=15,此时Δ>0,所以k =±55.[B 级 知能提升]1.[2018·湖南郴州]设e 是椭圆x 24+y 2k =1的离心率,且e ∈⎝ ⎛⎭⎪⎫12,1,则实数k 的取值范围是( )A .(0,3)B.⎝⎛⎭⎪⎫3,163 C .(0,3)∪⎝ ⎛⎭⎪⎫163,+∞D .(0,2)答案 C解析 当k >4时,c =k -4,由条件知14<k -4k <1,解得k >163; 当0<k <4时,c =4-k ,由条件知14<4-k4<1,解得0<k <3,故选C.2.[2018·重庆模拟]已知F 1,F 2为椭圆C :x 29+y 28=1的左、右焦点,点E 是椭圆C 上的动点,EF 1→·EF 2→的最大值、最小值分别为( )A .9,7B .8,7C .9,8D .17,8 答案 B解析 由题意可知椭圆的左右焦点坐标为F 1(-1,0),F 2(1,0),设E (x ,y ),则EF 1→=(-1-x ,-y ),EF 2→=(1-x ,-y ),EF 1→·EF 2→=x 2-1+y 2=x 2-1+8-89x 2=19x 2+7(-3≤x ≤3),所以当x =0时,EF 1→·EF 2→有最小值7,当x =±3时,EF 1→·EF 2→有最大值8,故选B.3.[2018·鼓楼期末]由半椭圆x 2a 2+y 2b 2=1(x ≥0)与半椭圆x 2c 2+y 2b 2=1(x ≤0)合成的曲线称作“果圆”,如图所示,其中a 2=b 2+c 2,a >b >c >0.由右椭圆x 2a 2+y 2b2=1(x ≥0)的焦点F 0和左椭圆x 2c 2+y 2b 2=1(x ≤0)的焦点F 1,F 2确定的△F 0F 1F 2叫做果圆的焦点三角形,若果圆的焦点三角形为锐角三角形,则右椭圆x 2a 2+y 2b2=1(x ≥0)的离心率的取值范围为( )A.⎝ ⎛⎭⎪⎫13,1 B.⎝⎛⎭⎪⎫23,1 C.⎝⎛⎭⎪⎫33,1 D.⎝⎛⎭⎪⎫0,33 答案 C解析 连接F 0F 1、F 0F 2,根据“果圆”关于x 轴对称,可得△F 1F 0F 2是以F 1F 2为底边的等腰三角形, ∵△F 0F 1F 2是锐角三角形,∴等腰△F 0F 1F 2的顶角为锐角,即∠F 1F 0F 2∈⎝⎛⎭⎪⎫0,π2. 由此可得|OF 0|>|OF 1|,∵|OF 0|、|OF 1|分别是椭圆x 2a 2+y 2b 2=1、x 2c 2+y 2b2=1的半焦距,∴c >b 2-c 2,平方得c 2>b 2-c 2,又∵b 2=a 2-c 2,∴c 2>a 2-2c 2,解得3c 2>a 2, 两边都除以a 2,得3·⎝ ⎛⎭⎪⎫c a2>1,解之得c a >33. ∵右椭圆x 2a 2+y 2b 2=1(x ≥0)的离心率e =ca∈(0,1),∴所求离心率e 的范围为⎝⎛⎭⎪⎫33,1.故选C. 4.[2017·北京高考]已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5.解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,解得c =3,所以b 2=a 2-c 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)证明:设M (m ,n ),则D (m,0),N (m ,-n ), 由题设知m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n, 所以直线DE 的方程为y =-m +2n(x -m ), 直线BN 的方程为y =n2-m(x -2).联立⎩⎪⎨⎪⎧y =-m +2n (x -m ),y =n2-m (x -2),解得点E 的纵坐标y E =-n (4-m 2)4-m 2+n2.由点M 在椭圆C 上,得4-m 2=4n 2,所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5.5.已知过点A (0,2)的直线l 与椭圆C :x 23+y 2=1交于P ,Q 两点.(1)若直线l 的斜率为k ,求k 的取值范围;(2)若以PQ 为直径的圆经过点E (1,0),求直线l 的方程. 解 (1)依题意,直线l 的方程为y =kx +2,由⎩⎪⎨⎪⎧x 23+y 2=1,y =kx +2消去y 得(3k 2+1)x 2+12kx +9=0,令Δ=(12k )2-36(3k 2+1)>0, 解得k >1或k <-1,所以k 的取值范围是(-∞,-1)∪(1,+∞). (2)当直线l 的斜率不存在时,直线l 的方程为x =0, 则P (0,1),Q (0,-1)或P (0,-1),Q (0,1), 此时以PQ 为直径的圆过点E (1,0),满足题意. 当直线l 的斜率存在时,设直线l 的方程为y =kx +2,P (x 1,y 1),Q (x 2,y 2),又E (1,0),所以EP →=(x 1-1,y 1),EQ →=(x 2-1,y 2). 由(1)知x 1+x 2=-12k 3k 2+1,x 1x 2=93k 2+1, 所以EP →·EQ →=(x 1-1)(x 2-1)+y 1y 2 =x 1x 2-(x 1+x 2)+1+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+(2k -1)(x 1+x 2)+5=9(k 2+1)3k 2+1+(2k -1)⎝ ⎛⎭⎪⎫-12k 3k 2+1+5 =12k +143k 2+1. 因为以PQ 为直径的圆过点E (1,0), 所以EP →·EQ →=0,即12k +143k 2+1=0,解得k =-76,满足Δ>0,故直线l 的方程为y =-76x +2,综上,所求直线l 的方程为x =0或y =-76x +2.。

相关文档
最新文档