2012广东高考数学(理)详解(精编word版,精细作图)
2012年广东高考试题(理数,word解析版)
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设i 为虚数单位,则复数56ii-=( )()A 65i + ()B 65i - ()C i -6+5()D i -6-5【解析】选D 依题意:256(56)65i i ii i i--==--,故选D . 2.设集合{1,2,3,4,5,6},{1,2,4}U M ==;则U C M =( )()A U ()B {1,3,5} ()C {,,}356 ()D {,,}246【解析】选C U C M ={,,}3563. 若向量(2,3),(4,7)BA CA ==;则BC =( )()A (2,4)-- ()B (2,4) ()C (,)610 ()D (,)-6-10【解析】选A (2,4)B C B A C A =-=-- 4. 下列函数中,在区间(0,)+∞上为增函数的是( )()A ln(2)y x =+ ()B y = ()C ()x y 1=2 ()D y x x1=+【解析】选A ln(2)y x =+区间(0,)+∞上为增函数,y =(0,)+∞上为减函数 ()xy 1=2区间(0,)+∞上为减函数,y x x1=+区间(1,)+∞上为增函数5. 已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )()A 12 ()B 11 ()C 3 ()D -1【解析】选B 约束条件对应ABC ∆边际及内的区域:53(2,2),(3,2),(,)22A B C则3[8,11]z x y =+∈6. 某几何体的三视图如图1所示,它的体积为( )()A 12π ()B 45π ()C π57 ()D π81 【解析】选C 几何体是圆柱与圆锥叠加而成它的体积为221353573V πππ=⨯⨯+⨯=7. 从个位数与十位数之和为奇数的两位数中任取一个, 其个位数为0的概率是( )()A 49 ()B 13 ()C 29()D 19【解析】选D①个位数为1,3,5,7,9时,十位数为2,4,6,8,个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个 ②个位数为0时,十位数为1,3,5,7,9,共5个别个位数为0的概率是51459=8. .对任意两个非零的平面向量α和β,定义αβαβββ=;若平面向量,a b 满足0a b ≥>, a 与b 的夹角(0,)4πθ∈,且,a b b a 都在集合}2nn Z ⎧∈⎨⎩中,则a b =( )()A 12 ()B 1 ()C 32()D 52【解析】选C21cos 0,cos 0()()cos (,1)2a ba b b a a b b a baθθθ=>=>⇒⨯=∈,a b b a 都在集合}2nn Z ⎧∈⎨⎩中得:*12123()()(,)42n n a b b a n n N a b ⨯=∈⇒=二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
2012年广东高考理科数学(全解析)逐题详解(纯净WORD)
正视图侧视图俯视图第6题图.2012年普通高等学校招生全国统一考试(广东卷)数学(理科)逐题详解一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.2012年12月26日星期三1.设i 为虚数单位,则复数56i i-=( )A.65i + B .65i - C .65i -+ D .65i --【解析】D ;()5656566511i ii i i i--+===----,故选D .2.设集合{1,23,4,5,6}U =,,{1,2,4}M =,则M U =ð( ) A .U B .{1,3,5} C .{3,5,6} D .{2,4,6}【解析】C ;送分题,直接考察补集的概念,{}M 3,5,6U =ð,故选C .3.若向量(2,3)B A = ,(4,7)C A = ,则BC =( )A .(2,4)--B .(3,4)C .(6,10)D .(6,10)--【解析】A ;考察向量的运算法则,()()()2,34,72,4BC BA AC =+=+--=--,故选A . 4.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+B .y =C .1(2xy =D .1y x x=+【解析】A ;函数ln(2)y x =+的图像可由函数ln y x =的图像向左平移2个单位得到,显然满足题意.5.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( ) A .12 B .11 C .3 D .1- 【解析】B ;画出可行域如图所示,将“三角”区域的角点代入比较可知,当3,2x y ==时,3z x y =+取得最大值为11. 6.某几何体的三视图如图所示,它的体积为( )A .12πB .45πC .57πD .81π 【解析】C ;三视图对应的实物图为“上部分为圆锥,下部分为圆柱”的几何体,易得圆锥的高为4,所以2213435573V πππ=⋅⋅⋅+⋅⋅=.7.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是( ) A .49B .13C .29D .198.对任意两个非零的平面向量,αβ,定义αβαβββ⋅=⋅ .若平面向量,a b 满足0a b ≥> ,a 与b的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b和b a都在集合|2nn Z ⎧⎫∈⎨⎬⎩⎭中,则a b = ( ) A .12B .1C .32D .52【解析】C ;因为||cos cos 1||b a b b a a a a θθ⋅==≤<⋅,且a b和b a 都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,所以12b a = ,||12cos ||b a θ= ,所以2||cos 2cos 2||a ab b θθ==<,且22cos 1a b θ=> ,所以12a b <<,故有32a b = ,选C .【另解】C ;1||cos 2||k a a b b θ==,2||cos 2||k b b a a θ==,两式相乘得212cos 4k k θ=,因为0,4πθ⎛⎫∈ ⎪⎝⎭,12,k k 均为正整数,于是cos 122θ<=<,所以1224k k <<,所以123k k =,而0a b ≥> ,所以123,1k k ==,于是32a b = ,选C .二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分 (一)必做题(9~13题)9.不等式|2|||1x x +-≤的解集为___________. 【解析】1,2⎛⎤-∞-⎥⎝⎦;“|2|||x x +-”的几何意义为“点x 到2-和0的距离之差”,画出数轴,先找出临界“|2|||1x x +-=的解为12x =-”,然后可得解集为1,2⎛⎤-∞- ⎥⎝⎦.10.261()x x+的展开式中3x 的系数为__________.(用数字作答)【解析】20;通项()621231661rrrr rr T C x C xx --+⎛⎫== ⎪⎝⎭,令1233r -=得 3r =,此时对应系数为3620C =.11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =【解析】21n -;设公差为()0d d >,依题意可得()21214d d +=+-, 解得2d =(2-舍去),所以21n a n =-.12.曲线33y x x =-+在点(1,3)处的切线方程为__________. 【解析】21y x =+;求导得231y x '=-,1|2x y ='=,由直线的点斜式 方程得()321y x -=-,整理得21y x =+.13.执行如图所示的程序框图,若输入n 的值为8,则输出s 的值为____.【解析】8;第一次循环得2,4,2s i k ===;第二次循环得4s =,6,3i k ==;第三次循环得第17题图B.第15题图AC PO8,8,4s i k ===,此时不满足8i <,输出8s =.(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分)14. (坐标系与参数方程选做题)在平面直角坐标系中x O y 中,曲线1C 和曲线2C 的参数方程分别为⎩⎨⎧==t y t x (t 为参数)和⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数),则曲线1C 和曲线2C 的交点坐标为 .【解析】()1,1;对应的普通方程分别为y =222x y +=,联立得交点坐标为()1,1.15. (几何证明选做题)如图,圆O 的半径为1,,,A B C 是圆上三点,且满足︒=∠30ABC ,过点A 作圆O 的切线与O C 的延长线交 于点P ,则PA = .,OA AC ,易得60,30AOC CAP ∠=︒∠=︒,在 直角三角形O A P 中,根据题中的数量关系易得PA =.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()2cos()6f x x πω=+(其中R x ∈>,0ω)的最小正周期为π10.(Ⅰ) 求ω的值;(Ⅱ) 设,0,2παβ⎡⎤∈⎢⎥⎣⎦,56(535f πα+=-,516(5)617f πβ-=,求cos()αβ+的值.【解析】(Ⅰ)由210ππω=得15ω=. (Ⅱ)由(Ⅰ)知1()2cos()56f x x π=+,由56516(5,(535617f f ππαβ+=--=得3sin 5α=,8cos 17β=.又,0,2παβ⎡⎤∈⎢⎥⎣⎦,所以4cos 5α=,15sin 17β=,所以324513cos()cos cos sin sin 858585αβαβαβ+=-=-=-17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图所 示,其中成绩分组区间是:[)[)40,50,50,60,[)[)60,70,70,80,[)[]80,90,90,100.(Ⅰ) 求图中x 的值;(Ⅱ) 从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望. 【解析】(Ⅰ) 由()0.00630.010.054101x ⨯+++⨯= 解得0.018x =.(Ⅱ)成绩不低于80分的学生人数有()500.0180.0061012⨯+⨯=人. 成绩在90分以上(含90分)的人数有500.006103⨯⨯=人.P ABCDE第18题图随机变量ξ的可能取值为0,1,2,且 ()292126011C P Cξ===,()11392129122C C P Cξ===,()232121222C P Cξ===,所以ξ的分布列为ξ的数学期望0121122222E ξ=⨯+⨯+⨯=. 18.(本小题满分13分)如图所示,在四棱锥P A B C D -中,底面A B C D 为矩形,P A ⊥平面A B C D ,点E 在线段P C上,P C ⊥平面BD E .(Ⅰ) 证明:B D ⊥平面PAC ;(Ⅱ) 若1PA =,2AD =,求二面角B P C A --的正切值.【解析】(Ⅰ)因为P A ⊥平面A B C D ,BD ⊂平面A B C D , 所以PA BD ⊥,又P C ⊥平面BD E ,BD ⊂平面BD E ,所以PC BD ⊥,因为PA PC P = ,所以B D ⊥平面PAC .(Ⅱ) 由(Ⅰ)可知B D ⊥平面PAC ,所以B D A C ⊥,又底面A B C D 为矩形,从而底面A B C D 为正方形,设AC BD O = ,连结O E ,则,,OE PC BO PC ⊥⊥所以B E O ∠为二面角B P C A --的平面角, 在R t P A C ∆中,由等面积法可得112233PA AC O E PC ⋅=⋅==,又BO =在R t B O E ∆中,tan 3B O B E O O E∠==所以二面角B P C A --的正切值为3.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,*n N ∈,且123,5,a a a +成等差数列.(Ⅰ) 求1a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211132na a a ++⋅⋅⋅+<.【解析】(Ⅰ)因为11221n n n S a ++=-+,当1n =时,1223S a =-,即2123a a -=,当2n =时,2327S a =-,即321227a a a --=,又()21325a a a +=+联立上述三个式子可得11a =. (Ⅱ)由(Ⅰ)可知25a =当2n ≥时,由11221n n n S a ++=-+得1221n n n S a -=-+,两式相减整理得132nn n a a +=-,即11312222n n n n a a ++=⋅+,即11311222n n n n a a ++⎛⎫+=⋅+ ⎪⎝⎭,又2121311222a a ⎛⎫+=⋅+ ⎪⎝⎭, 所以12nn a ⎧⎫+⎨⎬⎩⎭为首项为113122a +=,公比为32的等比数列, 所以133312222n nnn a -⎛⎫⎛⎫+=⋅= ⎪⎪⎝⎭⎝⎭,所以32n n n a =-. (Ⅲ) 当1n =时,11312a =<显然成立,当2n =时,121113152a a +=+<显然成立.当3n ≥时,32(12)2n n n n n a =-=+-12211122222n n n nn n n C C C --=+⋅+⋅++⋅+-122111222n n n n nC C C --=+⋅+⋅++⋅ 2222(1)n C n n >⋅=-又因为2522(21)a =>⨯⨯-,所以2(1),2n a n n n >-≥, 所以11111()2(1)21na n n n n<=---所以12311111111111131(1)1(1)2234122na a a a n nn++++<+-+-++-=+-<- .20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b ab+=>>的离心率e =,且椭圆C 上的点到点()0,2Q 的距离的最大值为3.(Ⅰ) 求椭圆C 的方程(Ⅱ) 在椭圆C 上,是否存在点(,)M m n ,使得直线:1l mx ny +=与圆22:1O x y +=相交于不同的两点,A B ,且O AB ∆的面积最大?若存在,求出点M 的坐标及对应的O AB ∆的面积;若不存在,请说明理由.【解析】(Ⅰ)依题意2223c e c a a==⇒=,所以222213b ac a =-=,设(,)P x y 是椭圆C 上任意一点,则22221x y ab+=,所以222222(1)3y x a a y b=-=-,所以||PQ ===当1y =-时,||PQ3=,可得a =所以1,b c ==故椭圆C 的方程为2213xy +=.(Ⅱ)[韦达定理法]因为(,)M m n 在椭圆C 上,所以2213mn +=,2233m n =-,设11(,)A x y ,22(,)B x y由2211m x ny x y +=⎧⎨+=⎩,得2222()210m n x m x n +-+-=所以22222222244()(1)4(1)8(1)0m m n n n m n n n ∆=-+-=+-=->,可得21n <, 由韦达定理得12222m x x m n+=+,212221nx x m n-=+所以2212121212222111()1mx mx m x x m x x my y n n n m n---++-=⋅==+所以||AB ====设原点O 到直线A B 的距离为h ,则h =所以1||2O AB S AB h ∆=⋅=设221t m n=+,由201n <<,得22232(1,3)m n n +=-∈,所以,1(,1)3t ∈O AB S ∆==1(,1)3t ∈所以,当12t =时,OAB S ∆面积最大,且最大为12,此时,点M 的坐标为22⎛ ⎪⎝⎭或22⎛- ⎪⎝⎭或,22⎛⎫- ⎪ ⎪⎝⎭或22⎛-- ⎪⎝⎭. [垂径定理切入]因为点()n m P ,在椭圆C 上运动,所以2213mn +=,2233m n =-,圆心O 到直线1:=+ny mx l 的距离d =直线l 被圆O 所截的弦长为||AB ==所以1||2O AB S AB d ∆=⋅=,接下来做法同上.21.(本小题满分14分)设1a <,集合2{0},{23(1)60}A x R x B x R x a x a =∈>=∈-++>,D A B = . (Ⅰ) 求集合D (用区间表示);(Ⅱ) 求函数32()23(1)6f x x a x ax =-++在D 内的极值点.【解析】(Ⅰ)由方程223(1)60x a x a -++=得判别式29(1)483(3)(31)a a a a ∆=+-=--因为1a <,所以30a -< 当113a <<时,0∆<,此时B R =,所以()0,D A ==+∞; 当13a =时,0∆=,此时{|1}B x x =≠,所以(0,1)(1,)D =+∞ ;当13a <时,0∆>,设方程223(1)60x a x a -++=的两根为12,x x 且12x x <,则 14x =,24x =,12{|}B x x x x x =<>或当103a <<时,123(1)02x x a +=+>,1230x x a =>,所以120,0x x >>此时,12(,)(,)D x x x =+∞)44=+∞当0a ≤时,1230x x a =≤,所以120,0x x ≤>此时,2(,))4D x =+∞=+∞.综上,1(0,),133(1)3(1)1(0,(),0443),04a a a D a a ⎧+∞<<⎪⎪⎪+-++=+∞<≤⎨⎪⎪+∞≤⎪⎩(Ⅱ) 2()66(1)66(1)()f x x a x a x x a '=-++=--,1a <所以函数()f x 在区间[,1]a 上为减函数,在区间(,]a -∞和[1,)+∞上为增函数 当113a <<时,因为()0,D =+∞,所以()f x 在D 内的极值点为,1a ; 当13a =时,(0,1)(1,)D =+∞ ,所以()f x 在D 内有极大值点13a =;当103a <<时,)44D =+∞由103a <<,很容易得到144a <<<(可以用作差法,也可以用分析法),所以()f x 在D 内有极大值点a ; 当0a ≤时,)4D =+∞由0a ≤,14>,此时()f x 在,内没有极值点.综上,当113a <<时,极值点为,1a ;当103a <≤时,极值点为a ;当0a ≤时,无极值点.。
2012年高考数学广东卷(理科)附答案
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)【详解人】佛山市南海区石门中学 黄伟亮参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高. 圆锥的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高. 一、选择题01. 设i 为虚数单位,则复数56ii-=( ) A .65i +B .65i -C .65i -+D .65i --解析:D .56i65i i-=--. 02. 设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U C M =( )A .UB .{}1,3,5C .{}3,5,6D .{}2,4,6解析:C .{}3,5,6U C M =.3.(向量)若向量()2,3BA = ,()4,7CA =,则BC = ( )A .()2,4--B .()2,4C .()6,10D .()6,10--解析:A .()2,4BC BA CA =-=--.4.(函数)下列函数中,在区间()0,+∞上为增函数的是( ) A .()ln 2y x =+B.y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+解析:A .()ln 2y x =+在()2,-+∞上是增函数.5.已知变量x 、y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )A .12B .11C .3D .1-解析:B .画出可行域,可知当代表直线过点A 时,取到最大值.联立21y y x =⎧⎨=-⎩,解得32x y =⎧⎨=⎩,所以3z x y =+的最大值为11. 6.(立体几何)某几何体的三视图如图1所示,它的体积为( )A .12πB .45πC .57πD .81π解析:C .该几何体下部分是半径为3,高为5的圆柱,体积为23545V ππ=⨯⨯=,上部分是半径为3,高为4的圆锥,体积为2134123V ππ=⨯⨯⨯=,所以体积为57π.7.(概率)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A .49B .13C .29D .19解析:D .两位数共有90个,其中个位数与十位数之和为奇数的两位数有45个,个位数为0的有5个,所以概率为51459=. 8.对任意两个非零的平面向量α和β,定义⋅=⋅ αβαβββ,若平面向量a 、b 满足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且 a b 和 b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则= a b ( )A .12B .1C .32D .52解析:C .⋅==⋅ a a b a b b b b 1cos 2k θ=,= b b a a 2cos 2k θ=,两式相乘,可得212cos 4k kθ=.因为0,4πθ⎛⎫∈ ⎪⎝⎭,所以1k 、2k 都是正整数,于是2121cos 124k k θ<=<,即1224k k <<,所以123k k =.而0≥>a b ,所以13k =,21k =,于是32= a b . 二、填空题(一)必做题(9—13题)9.(不等式)不等式21x x +-≤的解集为__________________.解析:1,2⎛⎤-∞- ⎥⎝⎦.2x x +-的几何意义是x 到2-的距离与x 到0的距离的差,画出数轴,先找出临界“21x x +-=的解为12x =-”,然后可得解集为1,2⎛⎤-∞- ⎥⎝⎦.10.(二项式定理)621x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为_________.(用数字作答)解析:20.621x x ⎛⎫+ ⎪⎝⎭的展开式通项为()621231661kk k k kk T C x C x x --+⎛⎫== ⎪⎝⎭,令1233k -=,解得3k =,所以621x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为3620C =.11.(数列)已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =______________.解析:21n -.设公差为d (0d >),则有()21214d d +=+-,解得2d =,所以21n a n =-. 12.曲线33y x x =-+在点()1,3处的切线方程为___________________.解析:210x y -+=.21|3112x y ='=⨯-=,所以切线方程为()321y x -=-,即210x y -+=.13.(算法)执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为______.解析:8.第一次循环,()11221s =⨯⨯=,4i =,2k =;第二次循环,()12442s =⨯⨯=,6i =,3k =;第三次循环,()14683s =⨯⨯=,8i =,4k =.此时退出循环,输出s 的值为8.(二)选做题(14—15题)线1C 和14.(坐标系与参数方程)在平面直角坐标系xOy 中,曲2C 的参数方程分别为x ty =⎧⎪⎨⎪⎩t 为参数)和x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 与2C 的交点坐标为________.解析:()1,1.法1:曲线1C 的普通方程是2y x =(0y ≥),曲线2C 的普通方程是222x y +=,联立解得11x y =⎧⎨=⎩,所以交点坐标为()1,1.法2:联立t θθ⎧=⎪22sin θθ=,即22cos 20θθ-=,解得cos θ=cos θ=(舍去),所以11t =⎧⎪,交点坐标为()1,1.15.(几何证明选讲)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足30ABC ∠=︒,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA =__________.连接OA ,则60AOC ∠=︒,90OAP ∠=︒,因为1OA =,所以PA =三、解答题16.(三角函数)(本小题满分12分)已知函数()2cos 6f x x πω⎛⎫=+ ⎪⎝⎭(其中0ω>x ∈R )的最小正周期为10π.(Ⅰ)求ω的值;(Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,56535f απ⎛⎫+=- ⎪⎝⎭,5165617f βπ⎛⎫-= ⎪⎝⎭,求()cos αβ+的值.解析:(Ⅰ)210T ππω==,所以15ω=.(Ⅱ)515652cos 52cos 2sin 353625f ππαπαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以3sin 5α=.5151652cos 52cos 656617f πβπβπβ⎡⎤⎛⎫⎛⎫-=-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以8cos 17β=.因为α、0,2πβ⎡⎤∈⎢⎥⎣⎦,所以4c 1s 5α,15sin 17β=,所以()4831513co s co s c o s s in s i51751785αβαβαβ+=-=⨯-⨯=-.17.(概率统计)(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[)40,50、[)50,60、[)60,70、[)70,80、[)80,90、[]90,100.(Ⅰ)求图中x 的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中数学期望.成绩在90分以上(含90分)的人数记为ξ,求ξ的解析:(Ⅰ)由()0.00630.010.054101x ⨯+++⨯=,解得0.018x =.(Ⅱ)分数在[)80,90、[]90,100的人数分别是500.018109⨯⨯=人、500.006103⨯⨯=人.所以ξ的取值为0、1、2.()023921236606611C C P C ξ====,()113921227916622C C P C ξ====,()20392123126622C C P C ξ====,所以ξ的数学期望是691111012112222222E ξ=⨯+⨯+⨯==.18.(立体几何)(本小题满分13分)如图5所示,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(Ⅰ)证明:BD ⊥平面PAC ;(Ⅱ)若1PA =,2AD =,求二面角B PC A --的正切值.解析:(Ⅰ)因为PC ⊥平面BDE ,BD ⊂平面BDE ,所以PC BD ⊥.又因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥.而PC PA P = ,PC ⊂平面PAC ,PA ⊂平面PAC ,所以BD ⊥平面PAC .(Ⅱ)由(Ⅰ)可知BD ⊥平面PAC ,而AC ⊂平面PAC ,所以BD AC ⊥,而ABCD 为矩形,所以ABCD 为正方形,于是2AB AD ==.z 轴,建立法1:以A 点为原点,AB 、AD 、AP 为x 轴、y 轴、空间直角坐标系A BDP -.则()0,0,1P 、()2,2,0C 、()2,0,0B 、()0,2,0D ,于是()0,2,0BC = ,()2,0,1PB =-.设平面PBC 的一个法向量为=1n (),,x y z ,则0BC PB ⎧⋅=⎪⎨⋅=⎪⎩11n n ,从而2020y x z =⎧⎨-=⎩,令1x =,得()1,0,2=1n .而平面PAC 的一个法向量为=2n ()2,2,0BD =- .所以二面角B PC A--的余弦值为cos ,⋅<>==121212n n n n n n ,于是二面角B P C --的正切值为3.法2:设AC 与BD 交于点O ,连接OE .因为PC ⊥平面BDE ,OE ⊂平面BDE ,BE ⊂平面BDE ,所以PC OE ⊥,PC BE ⊥,于是O E ∠就是二面角B PC A --的平面角.又因为BD ⊥平面PAC ,OE ⊂平面PAC ,所以OEB ∆是直角三角形.由OEC ∆∽PAC ∆可得OE PAOC PC=,而2A B A D ==,所以AC =OC =1PA =,所以3PC =,于是13PA OE OC PC =⨯=而OB =于是二面角B PC A --的正切值为3OB OE=.19.设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,n ∈*N ,且1a 、25a +、3a 成等差数列. (Ⅰ)求1a 的值;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有1211132n a a a +++< . 解析:(Ⅰ)由()()12123213232725a a a a a a a a ⎧=-⎪+=-⎨⎪+=+⎩,解得11a =.(Ⅱ)由11221n n n S a ++=-+可得1221n n n S a -=-+(2n ≥),两式相减,可得122n n n n a a a +=--,即132n n n a a +=+,即()11232n n n n a a +++=+,所以数列{}2n n a +(2n ≥)是一个以24a +为首项,3为公比的等比数列.由1223a a =-可得,25a =,所以2293n n n a -+=⨯,即32n n n a =-(2n ≥),当1n =时,11a =,也满足该式子,所以数列{}n a 的通项公式是32n n n a =-.(Ⅲ)因为1113323222n n n n n ----=⋅≥⋅=,所以1323n n n --≥,所以1113n n a -≤,于是112111111131331113323213nnn n a a a -⎛⎫- ⎪⎡⎤⎛⎫⎝⎭+++≤+++==-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- .点评:上述证法实质上是证明了一个加强命题1211131123nn a a a ⎡⎤⎛⎫+++≤-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ,该加强命题的思考过程如下.考虑构造一个公比为q 的等比数列{}n b ,其前n 项和为()111n n b q T q-=-,希望能得到()1121111312nn b q a a a q -+++≤<- ,考虑到()11111n b q b q q-<--,所以令1312b q =-即可.由n a 的通项公式的形式可大胆尝试令13q =,则11b =,于是113n n b -=,此时只需证明1113n n n b a -≤=就可以了.当然,q 的选取并不唯一,也可令12q =,此时134b =,132n n b +=,与选取13q =不同的地方在于,当1n =时,1n nb a >,当2n ≥时,1n n b a <,所以此时我们不能从第一项就开始放缩,应该保留前几项,之后的再放缩,下面给出其证法.当1n =时,11312a =<;当2n =时,121113152a a +=+<;当3n =时,12311111315192a a a ++=++<. 当4n ≥时,1n nb a <,所以 31231132211111113311151951916212n n a a a -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+++<+++<+++<- . 综上所述,命题获证.下面再给出1211132n a a a +++< 的两个证法. 法1:(数学归纳法) ①当1n =时,左边111a ==,右边32=,命题成立. ②假设当n k =(2k ≥,k ∈N )时成立,即113322ki ii =<-∑成立.为了证明当1n k =+时命题也成立,我们首先证明不等式:1111132332i i i i++<⋅--(1i ≥,i ∈N ). 要证1111132332i i i i++<⋅--,只需证1111132332i i i i +++<--⋅,只需证11132332i i i i +++->-⋅,只需证1232i i +->-⋅,只需证23->-,该式子明显成立,所以1111132332i i i i++<⋅--. 于是当1n k =+时,111211111113311323232332322k k ki ii i i i i i i ++====+<+<+⨯=----∑∑∑,所以命题在1n k =+时也成立.综合①②,由数学归纳法可得,对一切正整数n ,有1211132n a a a +++< . 备注:不少人认为当不等式的一边是常数的时候是不能用数学归纳法的,其实这是一个错误的认识. 法2:(裂项相消法)(南海中学钱耀周提供) 当1n =时,11312a =<显然成立.当2n =时,121113152a a +=+<显然成立. 当3n ≥时,()32122nn n n n a =-=+-12211122222n n n n n n n C C C --=+⋅+⋅++⋅+-()12211221222221n n n n n n C C C C n n --=+⋅+⋅++⋅>⋅=- ,又因为()252221a =>⨯⨯-,所以()21n a n n >-(2n ≥),所以()111112121n a n n n n ⎛⎫<=- ⎪--⎝⎭(2n ≥),所以 123111111111111311112234122n a a a a n n n ⎛⎫⎛⎫++++<+-+-++-=+-< ⎪ ⎪-⎝⎭⎝⎭ . 综上所述,命题获证.20.(解析几何)(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0a b >>)的离心率e =C 上的点到点()0,2Q 的距离的最大值为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(),M m n ,使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点A 、B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由.解析:(Ⅰ)因为e =,所以2223c a =,于是223a b =.设椭圆C 上任一点(),P x y ,则()()2222222222122443y PQ x y a y y y b b ⎛⎫=+-=-+-=--++ ⎪⎝⎭(b y b -≤≤).当01b <<时,2PQ 在y b =-时取到最大值,且最大值为244b b ++,由2449b b ++=解得1b =,与假设01b <<不符合,舍去.当1b ≥时,2PQ 在1y =-时取到最大值,且最大值为236b +,由2369b +=解得21b =.于是23a =,椭圆C 的方程是2213x y +=. (Ⅱ)圆心到直线l 的距离为d =,弦长AB =,所以O A B ∆的面积为12S A B d =⋅=,于是()2222211124S d d d ⎛⎫=-=--+ ⎪⎝⎭.而(),M m n 是椭圆上的点,所以2213m n +=,即2233m n =-,于是22221132d m n n==+-,而11n -≤≤,所以201n ≤≤,21323n ≤-≤,所以2113d ≤≤,于是当212d =时,2S 取到最大值14,此时S 取到最大值12,此时212n =,232m =.综上所述,椭圆上存在四个点⎝⎭、⎛ ⎝⎭、⎝⎭、⎛ ⎝⎭,使得直线与圆相交于不同的两点A 、B ,且OAB ∆的面积最大,且最大值为12. 点评:此题与2012年南海区高三8月摸底考试的试题相似度极高.(2012年南海区高三8月摸底考试)已知椭圆C 的两焦点为()11,0F -、()21,0F ,并且经过点31,2M ⎛⎫⎪⎝⎭. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知圆O :221x y +=,直线l :1mx ny +=,证明:当点(),P m n 在椭圆C 上运动时,直线l 与圆O 恒相交;并求直线l 被圆O 所截得的弦长的取值范围.21.(不等式、导数)(本小题满分14分)设1a <,集合{}0A x R x =∈>,(){}223160B x R x a x a =∈-++>,D A B = . (Ⅰ)求集合D (用区间表示);(Ⅱ)求函数()()322316f x x a x ax =-++在D 内的极值点. 解析:(Ⅰ)考虑不等式()223160x a x a -++>的解.因为()()()2314263331a a a a ∆=⎡-+⎤-⨯⨯=--⎣⎦,且1a <,所以可分以下三种情况: ①当113a <<时,0∆<,此时B =R ,()0,D A ==+∞.②当13a =时,0∆=,此时{}1B x x =≠,()()0,11,D =+∞ . ③当13a <时,0∆>,此时()223160x a x a -++=有两根,设为1x 、2x ,且12x x <,则1x =2x ={}12B x x x x x =<>或.当103a <<时,()123102x x a +=+>,1230x x a =>,所以210x x >>,此时()()120,,D x x =+∞ ;当0a ≤时,1230x x a =≤,所以10x ≤,20x >,此时()2,D x =+∞.综上所述,当113a <<时,()0,D A ==+∞;当13a =时,()()0,11,D =+∞ ;当103a <<时,()()120,,D x x =+∞ ;当0a ≤时,()2,D x =+∞.其中11x -,2x =(Ⅱ)()()26616f x x a x a '=-++,令()0f x '=可得()()10x a x --=.因为1a <,所以()0f x '=有两根1m a =和21m =,且12m m <.①当11a <<时,()0,D A ==+∞,此时()0f x '=在D 内有两根1m a =和21m =,列表可得所以()f x 在D 内有极大值点1,极小值点a . ②当1a =时,()()0,11,D =+∞ ,此时()0f x '=在D 内只有一根11m a ==,列表可得所以()f x 在D 内只有极小值点a ,没有极大值点. ③当103a <<时,()()120,,D x x =+∞ ,此时1201a x x <<<<(可用分析法证明),于是()0f x '=在D 内只有一根1m a =,列表可得所以()f x 在D 内只有极小值点a ,没有极大值点.④当0a ≤时,()2,D x =+∞,此时21x >,于是()f x '在D 内恒大于0,()f x 在D 内没有极值点. 综上所述,当113a <<时,()f x 在D 内有极大值点1,极小值点a ;当103a <≤时,()f x 在D 内只有极小值点a ,没有极大值点.当0a ≤时,()f x 在D 内没有极值点.。
2012年广东省高考数学试卷(理科)及详解
2012年广东省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•广东)设i是虚数单位,则复数=()A.6+5i B.6﹣5i C.﹣6+5i D.﹣6﹣5i2.(5分)(2012•广东)设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M=()A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}3.(5分)(2012•广东)若向量,向量,则=()A.(﹣2,﹣4)B.(3,4)C.(6,10)D.(﹣6,﹣10)4.(5分)(2012•广东)下列函数,在区间(0,+∞)上为增函数的是()A.y=ln(x+2)B.C.D.5.(5分)(2012•广东)已知变量x,y满足约束条件,则z=3x+y的最大值为()A.12 B.11 C.3D.﹣16.(5分)(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π7.(5分)(2012•广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A.B.C.D.8.(5分)(2012•广东)对任意两个非零的平面向量和,定义•=.若平面向量,满足||≥||>0,与的夹角θ∈(0,),且•和•都在集合{|n∈Z}中,则•=()A.B.1C.D.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)(二)选做题(14~15题,考生只能从中选做一题)9.(5分)(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.10.(5分)(2012•广东)中x3的系数为_________.(用数字作答)11.(5分)(2012•广东)已知递增的等差数列{a n}满足a1=1,a3=a22﹣4,则a n=_________.12.(5分)(2012•广东)曲线y=x3﹣x+3在点(1,3)处的切线方程为_________.13.(5分)(2012•广东)执行如图所示的程序框图,若输入n的值为8,则输出的s的值为_________.14.(5分)(2012•广东)(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1与C2的参数方程分别为(t为参数)和(θ为参数),则曲线C1与C2的交点坐标为_________.15.(2012•广东)(几何证明选讲选做题)如图,圆O中的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与O C 的延长线交于点P,则图PA=_________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)(2012•广东)已知函数(其中ω>0,x∈R)的最小正周期为10π.(1)求ω的值;(2)设,,,求cos(α+β)的值.17.(13分)(2012•广东)某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(13分)(2012•广东)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E 在线段PC 上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.19.(14分)(2012•广东)设数列{a n}的前n项和为S n,满足,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有.20.(14分)(2012•广东)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.21.(14分)(2012•广东)设a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.(1)求集合D(用区间表示);(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.2012年广东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•广东)设i是虚数单位,则复数=()A.6+5i B.6﹣5i C.﹣6+5i D.﹣6﹣5i考点:复数代数形式的乘除运算.专题:计算题.分析:把的分子分母同时乘以i,得到,利用虚数单位的性质,得,由此能求出结果.解答:解:===﹣6﹣5i.故选D.点评:本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.2.(5分)(2012•广东)设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M=()A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}考点:补集及其运算.专题:计算题.分析:直接利用补集的定义求出C U M.解答:解:∵集合U={1,2,3,4,5,6},M={1,2,4},则∁U M={3,5,6},故选C.点评:本题主要考查集合的表示方法、求集合的补集,属于基础题.3.(5分)(2012•广东)若向量,向量,则=()A.(﹣2,﹣4)B.(3,4)C.(6,10)D.(﹣6,﹣10)考点:平面向量的坐标运算.专题:计算题.分析:由向量,向量,知,再由,能求出结果.解答:解:∵向量,向量,∴,∴=(﹣4,﹣7)﹣(﹣2,﹣3)=(﹣2,﹣4).故选A.点评:本题考查平面向量的坐标运算,是基础题.解题时要认真解答,仔细运算.4.(5分)(2012•广东)下列函数,在区间(0,+∞)上为增函数的是()A.y=ln(x+2)B.C.D.考点:对数函数的单调性与特殊点;函数单调性的判断与证明.专题:计算题.分析:利用对数函数的图象和性质可判断A正确;利用幂函数的图象和性质可判断B错误;利用指数函数的图象和性质可判断C正确;利用“对勾”函数的图象和性质可判断D的单调性解答:解:A,y=ln(x+2)在(﹣2,+∞)上为增函数,故在(0,+∞)上为增函数,A正确;B,在[﹣1,+∞)上为减函数;排除BC,在R上为减函数;排除CD,在(0,1)上为减函数,在(1,+∞)上为增函数,排除D故选A点评:本题主要考查了常见函数的图象和性质,特别是它们的单调性的判断,简单复合函数的单调性,属基础题5.(5分)(2012•广东)已知变量x,y满足约束条件,则z=3x+y的最大值为()A.12 B.11 C.3D.﹣1考点:简单线性规划.专题:计算题.分析:先画出线性约束条件表示的可行域,在将目标函数赋予几何意义,数形结合即可得目标函数的最值解答:解:画出可行域如图阴影部分,由得C(3,2)目标函数z=3x+y可看做斜率为﹣3的动直线,其纵截距越大,z越大,由图数形结合可得当动直线过点C时,z最大=3×3+2=11故选B点评:本题主要考查了线性规划的思想、方法、技巧,二元一次不等式组表示平面区域的知识,数形结合的思想方法,属基础题6.(5分)(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π考点:由三视图求面积、体积.专题:计算题.分析:由题设知,组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱,分别根据两几何体的体积公式计算出它们的体积再相加即可得到正确选项解答:解:由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C点评:本题考查三视图还原几何体及求组合体的体积,解题的关键是熟练记忆相关公式及由三视图得出几何体的长宽高等数据,且能根据几何体的几何特征选择恰当的公式进行求体积的运算,7.(5分)(2012•广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A.B.C.D.考点:古典概型及其概率计算公式.专题:计算题;压轴题.分析:先求个位数与十位数之和为奇数的两位数的个数n,然后再求个位数与十位数之和为奇数的两位数的个数,由古典概率的求解公式可求解答:解:个位数与十位数之和为奇数的两位数中,其个位数与十位数有一个为奇数,一个为偶数,共有=45记:“个位数与十位数之和为奇数的两位数中,其个位数为0”为事件A,则A包含的结果:10,30,50,70,90共5个由古典概率的求解公式可得,P(A)=故选D点评:本题主要考查了古典概率的求解公式的应用,解题的关键是灵活利用简单的排列、组合的知识求解基本事件的个数8.(5分)(2012•广东)对任意两个非零的平面向量和,定义•=.若平面向量,满足||≥||>0,与的夹角θ∈(0,),且•和•都在集合{|n∈Z}中,则•=()A.B.1C.D.考点:平面向量数量积的运算.专题:计算题;压轴题;新定义.分析:由题意可得•==,同理可得•==,故有n≥m且m、n∈z.再由cos2θ=,与的夹角θ∈(0,),可得cos2θ∈(,1),即∈(,1),由此求得n=3,m=1,从而得到•==的值.解答:解:由题意可得•====.同理可得•====.由于||≥||>0,∴n≥m 且m、n∈z.∴cos2θ=.再由与的夹角θ∈(0,),可得cos2θ∈(,1),即∈(,1).故有n=3,m=1,∴•==,故选C.点评:本题主要考查两个向量的数量积的定义,得到n≥m 且m、n∈z,且∈(,1),是解题的关键,属于中档题.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)(二)选做题(14~15题,考生只能从中选做一题)9.(5分)(2012•广东)不等式|x+2|﹣|x|≤1的解集为.考点:绝对值不等式的解法.不等式左边变形为分段函数的形式,然后再分三段解不等式,将每一段的不等式的解集并起来即可得到所求不等式的解集解答:解:∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为点评:本题考查绝对值不等式的解法,其常用解题策略即将其变为分段函数,分段求解不等式.10.(5分)(2012•广东)中x3的系数为20.(用数字作答)考点:二项式定理.出二项式的通项,再由通项确定出x3是展开式中的第几项,从而得出其系数解答:解:由题意,的展开式的通项公式是Tr+1==x12﹣3r令12﹣3r=3得r=3所以中x3的系数为=20故答案为20点评:本题考查二项式定理的通项,属于二项式考查中的常考题型,解答的关键是熟练掌握二项式的通项公式11.(5分)(2012•广东)已知递增的等差数列{a n}满足a1=1,a3=a22﹣4,则a n=2n﹣1.考点:等差数列的通项公式.专题:计算题.分析:由题意,设公差为d,代入,直接解出公式d,再由等差数列的通项公式求出通项即可得到答案解答:解:由于等差数列{a n}满足a1=1,,令公差为d所以1+2d=(1+d)2﹣4,解得d=±2又递增的等差数列{a n},可得d=2所以a n=1+2(n﹣1)=2n﹣1故答案为2n﹣1点评:本题考查等差数列的通项公式,解题的关键是利用公式建立方程求出参数,需要熟练记忆公式.12.(5分)(2012•广东)曲线y=x3﹣x+3在点(1,3)处的切线方程为2x﹣y+1=0.考点:利用导数研究曲线上某点切线方程.专题:计算题.分析:先求出导函数,然后将x=1代入求出切线的斜率,利用点斜式求出直线的方程,最后化成一般式即可.解答:解:y′=3x2﹣1令x=1得切线斜率2所以切线方程为y﹣3=2(x﹣1)即2x﹣y+1=0故答案为:2x﹣y+1=0点评:本题主要考查导数的几何意义:在切点处的导数值为切线的斜率、考查直线的点斜式,属于基础题.13.(5分)(2012•广东)执行如图所示的程序框图,若输入n的值为8,则输出的s的值为8.考点:循环结构.专题:阅读型.分析:由已知中的程序框图及已知中输入8,可得:进入循环的条件为i<8,即i=2,4,6模拟程序的运行结果,即可得到输出的s值.解答:解:当i=2,k=1时,s=2,;当i=4,k=2时,s=(2×4)=4;当i=6,k=3时,s=(4×6)=8;当i=8,k=4时,不满足条件“i<8”,退出循环,则输出的s=8故答案为:8点评:本题主要考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,同时考查了运算求解能力,属于基础题.14.(5分)(2012•广东)(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1与C2的参数方程分别为(t为参数)和(θ为参数),则曲线C1与C2的交点坐标为(1,1).考点:抛物线的参数方程;圆的参数方程.专题:压轴题.分析:把曲线C1与C2的参数方程分别化为普通方程,解出对应的方程组的解,即得曲线C1与C2的交点坐标.解答:解:在平面直角坐标系xOy中,曲线C1与C2的普通方程分别为y2=x,x2+y2=2.解方程组可得,故曲线C1与C2的交点坐标为(1,1),故答案为(1,1).点评:本题主要考查把参数方程化为普通方程的方法,求两条曲线的交点坐标,属于中档题.15.(2012•广东)(几何证明选讲选做题)如图,圆O中的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与O C 的延长线交于点P,则图PA=.考点:与圆有关的比例线段.专题:计算题;证明题;压轴题.分析:连接OA,根据同弧所对的圆周角等于圆心角的一半,得到∠AOC=60°.因为直线PA与圆O相切于点A,且OA是半径,得到△PAO是直角三角形,最后利用三角函数在直角三角形中的定义,结合题中数据可得PA=OAtan60°=.解答:解:连接OA,∵圆O的圆周角∠ABC对弧AC,且∠ABC=30°,∴圆心角∠AOC=60°.又∵直线PA与圆O相切于点A,且OA是半径,∴OA⊥PA,∴Rt△PAO中,OA=1,∠AOC=60°,∴PA=OAtan60°=故答案为:点评:本题给出圆周角的度数和圆的半径,求圆的切线长,着重考查了圆周角定理和圆的切线的性质,属于基础题.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)(2012•广东)已知函数(其中ω>0,x∈R)的最小正周期为10π.(1)求ω的值;(2)设,,,求cos(α+β)的值.考点:两角和与差的余弦函数;由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:(1)由题意,由于已经知道函数的周期,可直接利用公式ω==解出参数ω的值;(2)由题设条件,可先对,与进行化简,求出α与β两角的函数值,再由作弦的和角公式求出cos(α+β)的值.解答:解:(1)由题意,函数(其中ω>0,x∈R)的最小正周期为10π所以ω==,即所以(2)因为,,分别代入得及∵∴∴点评:本题考查了三角函数的周期公式及两角和与差的余弦函数,同角三角函数的基本关系,属于三角函数中有一定综合性的题,属于成熟题型,计算题.17.(13分)(2012•广东)某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.考点:离散型随机变量的期望与方差;频率分布直方图;古典概型及其概率计算公式.专题:计算题.分析:(1)根据所以概率的和为1,即所求矩形的面积和为1,建立等式关系,可求出所求;(2)不低于8(0分)的学生有12人,9(0分)以上的学生有3人,则随机变量ξ的可能取值有0,1,2,然后根据古典概型的概率公式求出相应的概率,从而可求出数学期望.解答:解:(1)由30×0.006+10×0.01+10×0.054+10x=1,得x=0.018(2)由题意知道:不低于8(0分)的学生有12人,9(0分)以上的学生有3人随机变量ξ的可能取值有0,1,2∴点评:本题主要考查了频率分布直方图,以及古典概型的概率公式和离散型随机变量的数学期望,同时考查了计算能力和运算求解的能力,属于基础题.18.(13分)(2012•广东)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E 在线段PC 上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:计算题;证明题;数形结合.分析:(1)由题设条件及图知,可先由线面垂直的性质证出PA⊥BD与PC⊥BD,再由线面垂直的判定定理证明线面垂直即可;(2)由图可令AC与BD的交点为O,连接OE,证明出∠BEO为二面角B﹣PC﹣A的平面角,然后在其所在的三角形中解三角形即可求出二面角的正切值.解答:解:(1)∵PA⊥平面ABCD∴PA⊥BD∵PC⊥平面BDE∴PC⊥BD,又PA∩PC=P∴BD⊥平面PAC(2)设AC与BD交点为O,连OE∵PC⊥平面BDE∴PC⊥OE又∵BO⊥平面PAC∴PC⊥BO∴PC⊥平面BOE∴PC⊥BE∴∠BEO为二面角B﹣PC﹣A的平面角∵BD⊥平面PAC∴BD⊥AC∴四边形ABCD为正方形,又PA=1,AD=2,可得BD=AC=2,PC=3∴OC=在△PAC∽△OEC中,∴∴二面角B﹣PC﹣A的平面角的正切值为3点评:本题考查二面角的平面角的求法及线面垂直的判定定理与性质定理,属于立体几何中的基本题型,二面角的平面角的求法过程,作,证,求三步是求二面角的通用步骤,要熟练掌握19.(14分)(2012•广东)设数列{a n}的前n项和为S n,满足,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有.考点:数列与不等式的综合;等差数列的性质;数列递推式.专题:计算题;证明题;综合题.分析:(1)在2S n=a n+1﹣2n+1+1中,令分别令n=1,2,可求得a2=2a1+3,a3=6a1+13,又a1,a2+5,a3成等差数列,从而可求得a1;(2)由2S n=a n+1﹣2n+1+1,得a n+2=3a n+1+2n+1①,a n+1=3a n+2n②,由①②可知{a n+2n}为首项是3,3为公比的等比数列,从而可求a n;(3)(法一),由a n=3n﹣2n=(3﹣2)(3n﹣1+3n﹣2×2+3n﹣3×22+…+2n﹣1)≥3n﹣1可得≤,累加后利用等比数列的求和公式可证得结论;(法二)由a n+1=3n+1﹣2n+1>2×3n﹣2n+1=2a n可得,<•,于是当n≥2时,<•,<•,,…,<•,累乘得:<•,从而可证得+++…+<.解答:解:(1)在2S n=a n+1﹣2n+1+1中,令n=1得:2S1=a2﹣22+1,令n=2得:2S2=a3﹣23+1,解得:a2=2a1+3,a3=6a1+13又2(a2+5)=a1+a3解得a1=1(2)由2S n=a n+1﹣2n+1+1,得a n+2=3a n+1+2n+1,又a1=1,a2=5也满足a2=3a1+21,所以a n+1=3a n+2n对n∈N*成立∴a n+1+2n+1=3(a n+2n),又a1=1,a1+21=3,∴a n+2n=3n,∴a n=3n﹣2n;(3)(法一)∵a n=3n﹣2n=(3﹣2)(3n﹣1+3n﹣2×2+3n﹣3×22+…+2n﹣1)≥3n﹣1∴≤,∴+++…+≤1++ +…+=<;(法二)∵a n+1=3n+1﹣2n+1>2×3n﹣2n+1=2a n,∴<•,,当n≥2时,<•,<•,,…<•,累乘得:<•,∴+++…+≤1++×+…+×<<.点评:本题考查数列与不等式的综合,考查数列递推式,着重考查等比数列的求和,着重考查放缩法的应用,综合性强,运算量大,属于难题.20.(14分)(2012•广东)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.考点:圆与圆锥曲线的综合;直线与圆相交的性质;椭圆的标准方程.专题:综合题;压轴题.分析:(1)由得a2=3b2,椭圆方程为x2+3y2=3b2,求出椭圆上的点到点Q的距离,利用配方法,确定函数的最大值,即可求得椭圆方程;(2)假设M(m,n)存在,则有m2+n2>1,求出|AB|,点O到直线l距离,表示出面积,利用基本不等式,即可确定三角形面积的最大值,从而可求点M的坐标.解答:解:(1)由得a2=3b2,椭圆方程为x2+3y2=3b2椭圆上的点到点Q的距离=①当﹣b≤﹣1时,即b≥1,得b=1②当﹣b>﹣1时,即b<1,得b=1(舍)∴b=1∴椭圆方程为(2)假设M(m,n)存在,则有m2+n2>1∵|AB|=,点O到直线l 距离∴=∵m2+n2>1∴0<<1,∴当且仅当,即m2+n2=2>1时,S△AOB取最大值,又∵解得:所以点M的坐标为或或或,△AOB的面积为.点评:本题考查椭圆的标准方程,考查三角形面积的求解,考查基本不等式的运用,正确表示三角形的面积是关键.21.(14分)(2012•广东)设a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.(1)求集合D(用区间表示);(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.考点:利用导数研究函数的极值;交集及其运算;一元二次不等式的解法.专题:计算题;压轴题.分析:(1)根据方程2x2﹣3(1+a)x+6a=0的判别式讨论a的范围,求出相应D即可;(2)由f'(x)=6x2﹣6(1+a)x+6a=0得x=1,a,然后根据(1)中讨论的a的取值范围分别求出函数极值即可.解答:解:(1)记h(x)=2x2﹣3(1+a)x+6a(a<1)△=9(1+a)2﹣48a=(3a﹣1)(3a﹣9)当△<0,即,D=(0,+∞)当,当a≤0,(2)由f'(x)=6x2﹣6(1+a)x+6a=0得x=1,a①当,f(x)在D内有一个极大值点a,有一个极小值点②当,∵h(1)=2﹣3(1+a)+6a=3a﹣1≤0h(a)=2a2﹣3(1+a)a+6a=3a﹣a2>0∴1∉D,a∈D∴f(x)在D内有一个极大值点a③当a≤0,则a∉D又∵h(1)=2﹣3(1+a)+6a=3a﹣1<0∴f(x)在D内有无极值点点评:本题主要考查了一元二次不等式的解法,以及利用导数研究函数的极值,同时考查了计算能力和分类讨论的数学思想,属于中档题.。
2012年普通高等学校招生全国统一考试高考数学教师精校版含详解广东理
2012年广东理一、选择题(共8小题;共40分)1. 设i为虚数单位,则复数5−6ii= A. 6+5iB. 6−5iC. −6+5iD. −6−5i2. 设集合U=1,2,3,4,5,6,M=1,2,4,则∁U M= A. UB. 1,3,5C. 3,5,6D. 2,4,63. 若向量BA=2,3,CA=4,7,则BC= A. −2,−4B. 3,4C. 6,10D. −6,−104. 下列函数中,在区间0,+∞上为增函数的是 A. y=ln x+2B. y=−x+1C. y=12xD. y=x+1x5. 已知变量x,y满足约束条件y≤2,x+y≥1,x−y≤1,则z=3x+y的最大值为 A. 12B. 11C. 3D. −16. 某几何体的三视图如图所示,则它的体积为 A. 12πB. 45πC. 57πD. 81π7. 从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是 A. 49B. 13C. 29D. 198. 对任意两个非零的平面向量α和β,定义α∘β=α ⋅ββ⋅β.若平面向量a,b满足a≥b>0,a与b的夹角θ∈0,π4,且a∘b和b∘a都在集合n2n∈Z 中,则a∘b= A. 12B. 1 C. 32D. 52二、填空题(共7小题;共35分)9. 不等式x+2− x ≤1的解集为.10. x2+1x 6的展开式中x3的系数为.(用数字作答)11. 已知递增的等差数列a n满足a1=1,a3=a22−4,则a n=.12. 曲线y=x3−x+3在点1,3处的切线方程为.13. 执行如图所示的程序框图,若输入n的值为8,则输出s的值为.14. 在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为x=t,y=t t为参数和x=2cosθ,y=2sinθθ为参数,则曲线C1和C2的交点坐标为.15. 如图,圆O的半径为1,A,B,C是圆周上的三点,满足∠ABC=30∘,过点A作圆O的切线与OC的延长线交于点P,则PA=.三、解答题(共6小题;共78分)16. 已知函数f x=2cos ωx+π6(其中ω>0,x∈R)的最小正周期为10π.(1)求ω的值;(2)设α,β∈0,π2,f5α+53π =−65,f5β−56π =1617,求cosα+β的值.17. 某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:40,50,50,60,60,70,70,80,80,90,90,100.(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18. 如图所示,在四棱锥P−ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B−PC−A的正切值.19. 设数列a n的前n项和为S n,满足2S n=a n+1−2n+1+1,n∈N∗,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列a n的通项公式.(3)证明:对一切正整数n,有1a1+1a2+1a3+⋯+1a n<32.20. 在平面直角坐标系xOy中,已知椭圆C:x2a +y2b=1a>b>0的离心率e=23,且椭圆C上的点到点Q0,2的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M m,n,使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A,B,且△OAB的面积最大?若存在,求出点M的坐标及相对应的△OAB的面积;若不存在,请说明理由.21. 设a<1,集合A=x∈R x>0,B=x∈R2x2−31+a x+6a>0,D=A∩B.(1)求集合D(用区间表示);(2)求函数f x=2x3−31+a x2+6ax在D内的极值点.答案第一部分1. D2. C3. A 【解析】BC=BA−CA=−2,−4.4. A5. B6. C7. D 【解析】若个位数与十位数之和为奇数,则个位数与十位数中必一个为奇数一个为偶数,可分两类:①当个位数为奇数时,则有5×4=20个符合条件的两位数;②当个位数为偶数时,则有5×5=25个符合条件的两位数.其中个位数为0的两位数有5个,故所求概率为P=520+25=19.8. C 【解析】因为a∘b=a ⋅bb⋅b =abcosθ,b∘a=b⋅aa ⋅a=bacosθ,所以 a∘b b∘a=cos2θ.又因为θ∈0,π4,所以cosθ∈22,1, a∘b b∘a=cos2θ∈12,1.又a∘b和b∘a都在集合n2n∈Z 中,所以有 a∘b b∘a=34.而a≥b>0,所以a∘b≥b∘a,从而a∘b=32,b∘a=12.第二部分9. x x≤−1210. 2011. a n=2n−112. y=2x+113. 814. 1,115. 3第三部分16. (1)由2πω=10π,得ω=15.(2)因为f5α+53π =2cos155α+53π +π6=2cos α+π2=−2sinα=−65,f5β−5π =2cos15β−5π +π=2cosβ=1617,所以sinα=35,cosβ=817.∵α,β∈0,π2,所以cosα=1−sin2α=1−32=4,sinβ=2=1−8172=1517.所以cosα+β=cosαcosβ−sinαsinβ=4×8−3×15=−13.17. (1)由频率分布直方图知0.006×3+0.01+x+0.054×10=1,解得x=0.018.(2)由频率分布直方图知成绩不低于80分的学生人数为0.018+0.006×10×50=12,成绩在90分以上(含90分)的人数为0.006×10×50=3.因此ξ可能取0,1,2三个值.Pξ=0=C92C122=611,Pξ=1=C91⋅C31C122=922,Pξ=2=C32C122=122.ξ的分布列为ξ012P 611922122故Eξ=0×6+1×9+2×1=1.18. (1)∵PC⊥平面BDE,BD⊂平面BDE ∴PC⊥BD.∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD.∵PA∩PC=P,PA⊂平面PAC,PC⊂平面PAC,∴BD⊥平面PAC.(2)解法一:如图所示,记BD与AC的交点为F,连接EF.由PC⊥平面BDE,BE⊂平面BDE,EF⊂平面BDE,可得PC⊥BE,PC⊥EF.即∠BEF为二面角B−PC−A的平面角.由(1)可得BD⊥AC,所以矩形ABCD为正方形,AB=AD=2,AC=BD=22,FC=BF=2.在Rt△PAC中,PA=1,PC= PA2+AC2=3,sin∠PCA=PAPC =13.在Rt△CEF中,EF=FC sin∠PCA=⋅13=23.由(1)可知BF⊥EF,△BEF为直角三角形,所以tan∠BEF=BFEF=223=3.即二面角B−PC−A的正切值为3.解法二:以A为原点,AB,AD,AP的方向分别作为x,y,z轴的正方向建立空间直角坐标系,如图所示,设AB=b,则A0,0,0,B b,0,0,C b,2,0,D0,2,0,P0,0,1.于是PC=b,2,−1,DB=b,−2,0.因为PC⊥DB,所以PC⋅DB=b2−4=0,从而b=2.结合(1)可得DB=2,−2,0是平面APC的法向量.现设n=x,y,z是平面BPC的法向量,则n⊥BC,n⊥PC,即n⋅BC=0,n⋅PC=0.因为BC=0,2,0,PC=2,2,−1,所以2y=0,2x−z=0.取x=1,则z=2,n=1,0,2.令θ= n,DB,则cosθ=n⋅DBn DB=25⋅22=110 sinθ=310 tanθ=3.由图可得二面角B−PC−A的正切值为3.19. (1)因为a1,a2+5,a3成等差数列,所以2a2+5=a1+a3,又2S n=a n+1−2n+1+1,所以2S1=a2−22+1,2S2=a3−23+1,所以2a1=a2−3,由2a2+5=a1+a3,2a1=a2−3,2a1+a2=a3−7,得a1=1,a2=5,a3=19,所以a1=1.(2)因为2S n=a n+1−2n+1+1, ⋯⋯①所以当n≥2时,2S n−1=a n−2n+1, ⋯⋯②①−②得2a n=a n+1−a n−2n+1+2n,所以a n+1=3a n+2n.两边同除以2n+1得a n+1 2n+1=32⋅a n2n+12,所以a n+1 n+1+1=3a nn+1.又由(1)知a2 22+1=32a121+1,所以数列a n2n +1是以32为首项,32为公比的等比数列,所以a nn+1=3⋅3n−1=3n,所以a n=3n−2n,即数列a n的通项公式为a n=3n−2n.(3)当n≥3时,a n=3n−2n=1+2n−2n=1+C n1⋅2+C n2⋅22+⋯+C n n−1⋅2n−1+2n−2n=1+C n1⋅2+C n2⋅22+⋯+C n n−1⋅2n−1>C n2⋅22=2n n−1又因为a2=5>2×2×2−1,所以a n>2n n−1,n≥2;所以1a n <12n n−1=121n−1−1n;所以,当n≥2时,1 1+12+13+⋯+1n<1+121−12+12−13+13−14+⋯+1n−1−1n=1+11−1<3 2 .当n=1时,上式也成立.20. (1)由e=c=2⇒c2=2a2,所以b2=a2−c2=13a2.椭圆方程为x2+3y2=3b2.椭圆上的点P x,y到点Q的距离d= x2+y−22= −2y+12+6+3b2−b≤y≤b.(i)−b≤−1,即b≥1时,d max=6+3b2=3,得b=1;(ii)−b>−1,即b<1时,d max= b2+4b+4=3,得b=1(舍).所以b=1,故椭圆C的方程为x 23+y2=1.(2)△AOB中,OA=OB=1,则可得S△AOB=1×OA×OB×sin∠AOB=1sin∠AOB≤1,当且仅当∠AOB=90∘时,S△AOB有最大值为12.当∠AOB=90∘时,点O到直线AB的距离为d=1m2+n2=22,即m2+n2=2, ⋯⋯①又M m,n在椭圆上,知m2+3n2=3, ⋯⋯②联立①②可求出m2=32,n2=12,所以M±62,±22.21. (1)对于方程2x2−31+a x+6a=0,判别式Δ=91+a2−48a=3a−33a−1,因为a<1,所以a−3<0,①当13<a<1时,Δ<0,此时B=R,所以D=A;②当a=13时,Δ=0,此时B=x x≠1,所以D=0,1∪1,+∞;③当a<13时,Δ>0,设方程2x2−31+a x+6a=0的两根为x1,x2且x1<x2,则x1=31+a−4,x2=31+a+3a−33a−14,B= x x<x1或x>x2,1)当0<a<13时,x1+x2=321+a>0,x1x2=3a>0,所以x1>0,x2>0,此时,D=0,x1∪x2,+∞=0,31+a−3a−33a−14∪31+a+3a−33a−14,+∞ ;2)当a≤0时,x1x2=3a≤0,所以x1≤0,x2>0,此时,D=x2,+∞=31+a+3a−33a−14,+∞ .(2)首先fʹx=6x2−61+a x+6a=6x−1x−a,a<1,所以函数f x在区间a,1上为减函数,在区间−∞,a和1,+∞上为增函数.①x=1是极值点⇔1∈B⇔13<a<1,②x=a是极值点⇔a∈A,a∈B⇔0<a<1.综上:a≤0时,f x在D内没有极值点;当0<a≤13时,f x在D内有极值点a;当13<a<1时,f x在D内有极值点a和1.。
2012高考数学理(广东卷)解析
功,对于平时只重难、偏、怪题的学生来说,并不是好事,虽然题难度不大,但要把分数拿到也非易事,对于数学复习来说,无疑释放了一个重要信息——就是基本功扎实是非常重要的。
也就是不管高考题千变万变,我们的复习要以不变应万变,“考点和知识考查是不变的”。
5. 中间层面高兴,尖优生欲哭无泪。
整卷由于只顾考生的得分率和平均分,迎合社会的好评,因而少了区分度较高的题,中间学生来说是该大欢喜,但对于高层学生来说就毫无优势。
2012年广东省理科数学详细答案一 、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的1 设i 为虚数单位,则复数56i i-=A 6+5iB 6-5iC -6+5iD -6-5i 解:22565665i i i i ii--=-=-+,故选C2 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则C M = A .U B {1,3,5} C {3,5,6} D {2,4,6} 选C3 若向量BA=(2,3),C A =(4,7),则BC = A (-2,-4) B (3,4) C (6,10 D (-6,-10)解:(2,3)(4,7)(2,4)BC BA AC =+=-=--,故选 A4.下列函数中,在区间(0,+∞)上为增函数的是 A.y=ln (x+2)C.y=(12)x D.y=x+1x解:A5.已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z=3x+y的最大值为 A.12 B.11 C.3 D.-1解:画约束区域如右,令z=0得3y x =-,化目标函数为斜截式方程:3y x z =-+得,当3,2x y ==时m ax 11z =,故选B【评】1-5题是送分题,确是宽和仁厚的题。
6,某几何体的三视图如图1所示,它的体积为xBA .12π B.45π C.57π D.81π解:几何体直观图如右,几何体由一个圆柱和一个同底的圆锥构成。
2012年高考理科数学广东卷(含详细答案)
数学试卷 第1页(共42页)数学试卷 第2页(共42页)数学试卷 第3页(共42页)绝密★启用前2012年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设i 为虚数单位,则复数56ii-= ( )A .65i +B .65i -C .65i -+D .65i -- 2. 设集合{1,2,3,4,5,6}U =,{1,2,4}M =,则U M =ð( )A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3. 若向量(2,3)BA =,(4,7)CA =,则BC = ( ) A .(2,4)-- B .(2,4) C .(6,10)D .(6,10)--4. 下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =C .1()2x y =D .1y x x=+5. 已知变量x ,y 满足约束条件211 y x y x y ⎧⎪+⎨⎪-⎩≤≥≤,则3z x y =+的最大值为( )A .12B .11C .3D .1- 6. 某几何体的三视图如图1所示,它的体积为( )A .12πB .45πC .57πD .81π7. 从个位数与十位数之和为奇数的两位数中任取一个,其个 位数为0的概率是( )A .49 B .13C .29D .198. 对任意两个非零的平面向量α和β,定义=αβαβββ.若平面向量a ,b 满足||||0a b ≥>,a 与b 的夹角π(0,)4θ∈,且a b 和b a 都在集合{|}2nn ∈Z 中,则=a b ( )A .12B .1C .32D .52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式|2||1|x x +-≤的解集为_______.10.261()x x+的展开式中3x 的系数为_______.(用数字作答)11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =_______.12.曲线33y x x =-+在点(1,3)处的切线方程为________.13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为________.(二)选做题(14—15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x ty =⎧⎪⎨=⎪⎩(t为参数)和x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 与2C 的交点坐标为________.15.(几何证明选讲选做题)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足30ABC ∠=,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA =_______.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数π()2cos()6f x xω=+(其中0ω>,x∈R)的最小正周期为10π.(Ⅰ)求ω的值;(Ⅱ)设π[0,]2αβ,∈,56(5π)35fα+=-,516(5π)617fβ-=,求cos()αβ+的值.17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)求图中x的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(本小题满分13分)如图5所示,在四棱锥P ABCD-中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若1PA=,2AD=,求二面角B PC A--的正切值.19.(本小题满分14分)设数列{}na的前n项和为nS,满足11221nn nS a++=-+,*n∈N,且1a,25a+,3a成等差数列.(Ⅰ)求1a的值;(Ⅱ)求数列{}n a的通项公式;(Ⅲ)证明:对一切正整数n,有1211132na a a+++<.20.(本小题满分14分)在平面直角坐标系xOy中,已知椭圆C:22221x ya b+=(a b>>)的离心率e=且椭圆C上的点到点(0,2)Q的距离的最大值为3.(Ⅰ)求椭圆C的方程;(Ⅱ)在椭圆C上,是否存在点(,)M m n,使得直线l:1mx ny+=与圆O:221x y+=相交于不同的两点A、B,且OAB△的面积最大?若存在,求出点M的坐标及对应的OAB△的面积;若不存在,请说明理由.21.(本小题满分14分)设1a<,集合{|0}A x x=∈>R,2{|23(1)60}B x x a x a=∈-++>R,D A B=.(Ⅰ)求集合D(用区间表示);(Ⅱ)求函数32()23(1)6f x x a xax=-++在D内的极值点.数学试卷第4页(共42页)数学试卷第5页(共42页)数学试卷第6页(共42页)3 / 142012年普通高等学校招生全国统一考试(广东卷)数学(理科)答案解析【答案】A【解析】(2,BC BA AC BA CA =+=-=-【提示】由向量(2,3)BA =,向量(4,7)CA =,知(2,AB =-,(4,7)AC =--,再由BC AC AB =-能求数学试卷 第10页(共42页) 数学试卷 第11页(共42页)数学试卷 第12页(共42页)||cos ||a b θ,||cos ||y b a θ,x ,,所以24cos ,所以cos θ5 / 143||||a b ,3||||b a ∈Z , ||||0a b ≥>,所以||1||a b ≥,所以只能取||3||a b =,||1||3a b =, 则||cos 333||a ab b θ==⨯=.【提示】定义两向量间的新运算,根据数量积运算与新运算间的关系进行化简,再运用集合的知识求解即数学试卷 第16页(共42页) 数学试卷 第17页(共42页)数学试卷 第18页(共42页)60,所以60,因为直线是直角三角形,最后利用三角函数在直角三角形中的定义,结合题tan603=7 / 14(Ⅰ)10T =π=65f ⎛-= ⎝3sin 5α∴=16517f ⎛= ⎝cos β∴=110(0.054x f =-0.018x ∴=(Ⅱ)成绩不低于数学试卷 第22页(共42页) 数学试卷 第23页(共42页)数学试卷 第24页(共42页)PAPC P =,PAC ; ACBD O =,连结,OE ,BE ⊥BE ,所以(2,DB=-的一个法向量,(0,2,0)BC=,(2,0,1)BP=-设平面PBC的法向量为(,,)n x y z=202n BC yn BP x⎧==⎪⎨=-⎪⎩2,取(1,0,2)n=,的平面角为θ,2||||8510DB nDB n==所以二面角B PC A--的正切值为3.9 / 14数学试卷 第28页(共42页) 数学试卷 第29页(共42页)数学试卷 第30页(共42页)(Ⅰ)2n n S a +=17a a =⎧⎪-⇒⎨133n -,所以时,111a =1221122222n n n n n n n C C --++⋯++-122-1-1222222n n n n n n C C C +++>1)-数学试卷 第34页(共42页) 数学1||||sin 2OA OB AOB ∠的距离2d =,即12)(,)x +∞,2x <,所以2(,Ax B +∞=2)(,)x +∞,30a =>,所以2212339309339309(0,)(,)0,,44a a AB a a a a x x ⎛⎫⎛+--+++-++∞=+∞ ⎪⎪ ⎝⎝⎭=1<时,0∆<,则()0g x >恒成立,A B =(0,+∞综上所述,当0a ≤时,33a ⎫⎛++⎪⎪ ⎭⎝2)(,)x +∞的变化情况如下表:a极值即可.【考点】导数的运算,利用导数求函数的极值,解含参的一元二次不等式,集合的基本运算数学试卷第40页(共42页)数学。
2012年广东高考理科数学真题及详解(排版)
2012年广东高考数学(理科)试题及详解一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(复数)设i 为虚数单位,则复数56ii-=( ) A.65i +B.65i -C.65i -+D.65i --2.(集合)设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U C M =( ) A.UB.{}1,3,5C.{}3,5,6D.{}2,4,63.(向量)若向量()2,3BA =,()4,7CA =,则BC =( ) A.()2,4--B.()2,4C.()6,10D.()6,10--4.(函数)下列函数中,在区间()0,+∞上为增函数的是( ) A.()ln 2y x =+B.y =C.12xy ⎛⎫= ⎪⎝⎭D.1y x x=+5.已知变量x 、y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )6.某几何体的三视图如图1所示,它的体积为( ) A.12π B.45π C.57π D.81πA.4 B.1C.2 D.18.对任意两个非零的平面向量α和β,定义=⋅αβββ,若平面向量a 、b 满足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则=a b ( )A.1B.1C.3 D.5 ==⋅b b =b a π⎫12=. 小题,每小题(一)必做题(9~13题)9.(不等式)不等式21x x +-≤的解集为__________________.10.(二项式定理)621x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为_________.(用数字作答)11.(数列)已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =______________.12.曲线33y x x =-+在点()1,3处的切线方程为___________________.则输出s 的值为______.只计前一题的得分)14.(坐标系与参数方程)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x ty =⎧⎪⎨⎪⎩t 为参数)和x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 与2C 的交点坐标为________.15.(几何证明选讲)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足30ABC ∠=︒,过点A 作圆O 的切线与OC 的延长线交于点,则__________.算步骤 .16.(三角函数)(本小题满分12分)已知函数()2cos 6f x x πω⎛⎫=+ ⎪⎝⎭(其中0ω>x ∈R )的最小正周期为10π.(Ⅰ)求ω的值;(Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,56535f απ⎛⎫+=- ⎪⎝⎭,5165617f βπ⎛⎫-= ⎪⎝⎭,求()cos αβ+的值.17.(概率统计)(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[)40,50、[)50,60、[)60,70、[)70,80、[)80,90、[]90,100.(Ⅰ)求图中x 的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(立体几何)(本小题满分13分)如图5所示,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE . (Ⅰ)证明:BD ⊥平面PAC ;(Ⅱ)若1PA =,2AD =,求二面角B PC A --的正切值.PA P =,BD ⊥平面PAC (Ⅱ)由(Ⅰ)可知所以BD AC ⊥设平面PBC 的一个法向量为n 0BC PB ⋅=⋅=,从而2020y x z =⎧⎨-=⎩,10BDE ,B PC A --的平面角.19. (数列) (本小题满分14分)设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,n ∈*N ,且1a 、25a +、3a 成等差数列.(Ⅰ)求1a 的值;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有1211132n a a a +++<. 1133n a -⎝+≤+++=2a +≤+≤a的通项公式的形式可大胆尝试令+<a+<a2(数学归纳法)2a +<不少人认为当不等式的一边是常数的时候是不能用数学归纳法的,()21⨯-,所以223412a n n +<+-+-++-+ ⎪ -⎝⎭⎝综上所述,命题获证.20.(解析几何)(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0a b >>)的离心率e =椭圆C 上的点到点()0,2Q 的距离的最大值为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(),M m n ,使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点A 、B ,且O A B ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由.21.(不等式、导数)(本小题满分14分)设1a <,集合{}0A x R x =∈>,(){}223160B x R x a x a =∈-++>,D A B =.(Ⅰ)求集合D (用区间表示);(Ⅱ)求函数()()322316f x x a x ax =-++在D 内的极值点. ()1,+∞.有两根,设为()2,x +∞)+∞. 113a <<时,()1,+∞;)()120,,x x +∞)()1,+∞,此时10,3⎛⎫ ⎪⎝⎭()2,x +∞a =,列表可得。
2012年广东高考理科数学试题及答案(详解) 2
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)题目及答案参考公式:主体的体积公式V=Sh ,其中S 为柱体的底面积,h 为柱体的高。
锥体的体积公式为,其中S 为锥体的底面积,h 为锥体的高。
一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 . 设i 为虚数单位,则复数56i i-=A 6+5iB 6-5iC -6+5iD -6-5i 2 . 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则CuM= A .U B {1,3,5} C {3,5,6} D {2,4,6} 3 若向量B A =(2,3),C A =(4,7),则B C =A (-2,-4)B (3,4)C (6,10D (-6,-10)4.下列函数中,在区间(0,+∞)上为增函数的是A.y=ln (x+2)(12)x D.y=x+1x5.已知变量x ,y 满足约束条件,则z=3x+y 的最大值为A.12B.11C.3D.-1 6,某几何体的三视图如图1所示,它的体积为A .12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是A. 49 B. 13C. 29D. 198.对任意两个非零的平面向量α和β,定义。
若平面向量a,b满足|a|≥|b|>0,a 与b的夹角,且a b和b a都在集合中,则A.12 B.1 C. 32D. 5216.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9-13题)9.不等式|x+2|-|x|≤1的解集为_____。
10. 的展开式中x³的系数为______。
(用数字作答)11.已知递增的等差数列{an }满足a1=1,a3=22a-4,则a n=____。
12.曲线y=x3-x+3在点(1,3)处的切线方程为。
13.执行如图2所示的程序框图,若输入n的值为8,则输出s的值为。
2012年广东高考试题(理数,word解析版)
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”.2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求做大的答案无效。
4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。
漏涂、错涂、多涂的,答案无效。
5、 考生必须保持答题卡得整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设i 为虚数单位,则复数56ii-=( )()A 65i + ()B 65i - ()C i -6+5()D i -6-5【解析】选D 依题意:256(56)65i i ii i i --==--,故选D . 2.设集合{1,2,3,4,5,6},{1,2,4}U M ==;则U C M =( )()A U ()B {1,3,5} ()C {,,}356 ()D {,,}246【解析】选C U C M ={,,}3563. 若向量(2,3),(4,7)BA CA ==;则BC =( )()A (2,4)-- ()B (2,4) ()C (,)610 ()D (,)-6-10【解析】选A (2,4)BC BA CA =-=--4. 下列函数中,在区间(0,)+∞上为增函数的是( )()A ln(2)y x =+ ()B y =()C ()x y 1=2 ()D y x x1=+【解析】选A ln(2)y x =+区间(0,)+∞上为增函数,y =(0,)+∞上为减函数 ()xy 1=2区间(0,)+∞上为减函数,y x x1=+区间(1,)+∞上为增函数5. 已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )()A 12 ()B 11 ()C 3 ()D -1【解析】选B 约束条件对应ABC ∆边际及内的区域:53(2,2),(3,2),(,)22A B C则3[8,11]z x y =+∈6. 某几何体的三视图如图1所示,它的体积为( ) ()A 12π ()B 45π ()C π57 ()D π81 【解析】选C 几何体是圆柱与圆锥叠加而成它的体积为221353573V πππ=⨯⨯+⨯=7. 从个位数与十位数之和为奇数的两位数中任取一个, 其个位数为0的概率是( )()A 49 ()B 13 ()C 29()D 19【解析】选D①个位数为1,3,5,7,9时,十位数为2,4,6,8,个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个 ②个位数为0时,十位数为1,3,5,7,9,共5个别个位数为0的概率是51459=8. .对任意两个非零的平面向量α和β,定义αβαβββ=;若平面向量,a b 满足0a b ≥>, a 与b 的夹角(0,)4πθ∈,且,a b b a 都在集合}2nn Z ⎧∈⎨⎩中,则a b =( )()A 12 ()B 1 ()C 32()D 52【解析】选C21cos 0,cos 0()()cos (,1)2a ba b b a a b b a baθθθ=>=>⇒⨯=∈,a b b a 都在集合}2nn Z ⎧∈⎨⎩中得:*12123()()(,)42n n a b b a n n N a b ⨯=∈⇒=(一)必做题(9-13题)9. 不等式21x x +-≤的解集为_____【解析】解集为_____1(,]2-∞-原不等式⇔2(2)1x x x ≤-⎧⎨-++≤⎩或2021x x x -<≤⎧⎨++≤⎩或021x x x >⎧⎨+-≤⎩,解得12x ≤-,10. 261()x x+的展开式中3x 的系数为______。
2012年广东省高考数学试卷(理科)附送答案
2012年广东省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设i是虚数单位,则复数=()A.6+5i B.6﹣5i C.﹣6+5i D.﹣6﹣5i2.(5分)设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M=()A.U B.{1,3,5}C.{3,5,6}D.{2,4,6}3.(5分)若向量,向量,则=()A.(﹣2,﹣4)B.(3,4) C.(6,10)D.(﹣6,﹣10)4.(5分)下列函数,在区间(0,+∞)上为增函数的是()A.y=ln(x+2) B.C.D.5.(5分)已知变量x,y满足约束条件,则z=3x+y的最大值为()A.12 B.11 C.3 D.﹣16.(5分)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π7.(5分)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A.B.C.D.8.(5分)对任意两个非零的平面向量和,定义○=,若平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,则○=()A.B.1 C.D.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)(二)选做题(14~15题,考生只能从中选做一题)9.(5分)不等式|x+2|﹣|x|≤1的解集为.10.(5分)中x3的系数为.(用数字作答)11.(5分)已知递增的等差数列{a n}满足a1=1,a3=a22﹣4,则a n=.12.(5分)曲线y=x3﹣x+3在点(1,3)处的切线方程为.13.(5分)执行如图所示的程序框图,若输入n的值为8,则输出的s的值为.14.(5分)(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1与C2的参数方程分别为(t为参数)和(θ为参数),则曲线C1与C2的交点坐标为.15.(几何证明选讲选做题)如图,圆O中的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与OC的延长线交于点P,则图PA=.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)已知函数f(x)=2cos(ωx+)(其中ω>0,x∈R)的最小正周期为10π.(1)求ω的值;(2)设α,β∈[0,],f(5α+)=﹣,f(5β﹣)=,求cos(α+β)的值.17.(13分)某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(13分)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.19.(14分)设数列{a n}的前n项和为S n,满足2S n=a n+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有.20.(14分)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.21.(14分)设a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.(1)求集合D(用区间表示);(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.2012年广东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•广东)设i是虚数单位,则复数=()A.6+5i B.6﹣5i C.﹣6+5i D.﹣6﹣5i【分析】把的分子分母同时乘以i,得到,利用虚数单位的性质,得,由此能求出结果.【解答】解:===﹣6﹣5i.故选D.2.(5分)(2012•广东)设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M=()A.U B.{1,3,5}C.{3,5,6}D.{2,4,6}【分析】直接利用补集的定义求出C U M.【解答】解:∵集合U={1,2,3,4,5,6},M={1,2,4},则∁U M={3,5,6},故选C.3.(5分)(2012•广东)若向量,向量,则=()A.(﹣2,﹣4)B.(3,4) C.(6,10)D.(﹣6,﹣10)【分析】由向量,向量,知,再由,能求出结果.【解答】解:∵向量,向量,∴,∴=(﹣4,﹣7)﹣(﹣2,﹣3)=(﹣2,﹣4).故选A.4.(5分)(2012•广东)下列函数,在区间(0,+∞)上为增函数的是()A.y=ln(x+2) B.C.D.【分析】利用对数函数的图象和性质可判断A正确;利用幂函数的图象和性质可判断B错误;利用指数函数的图象和性质可判断C正确;利用“对勾”函数的图象和性质可判断D的单调性【解答】解:A,y=ln(x+2)在(﹣2,+∞)上为增函数,故在(0,+∞)上为增函数,A正确;B,在[﹣1,+∞)上为减函数;排除BC,在R上为减函数;排除CD,在(0,1)上为减函数,在(1,+∞)上为增函数,排除D故选A5.(5分)(2012•广东)已知变量x,y满足约束条件,则z=3x+y的最大值为()A.12 B.11 C.3 D.﹣1【分析】先画出线性约束条件表示的可行域,在将目标函数赋予几何意义,数形结合即可得目标函数的最值【解答】解:画出可行域如图阴影部分,由得C(3,2)目标函数z=3x+y可看做斜率为﹣3的动直线,其纵截距越大,z越大,由图数形结合可得当动直线过点C时,z最大=3×3+2=11故选B6.(5分)(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π【分析】由题设知,组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱,分别根据两几何体的体积公式计算出它们的体积再相加即可得到正确选项【解答】解:由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C7.(5分)(2012•广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A.B.C.D.【分析】先求个位数与十位数之和为奇数的两位数的个数n,然后再求个位数与十位数之和为奇数的两位数的个数,由古典概率的求解公式可求【解答】解:个位数与十位数之和为奇数的两位数中,其个位数与十位数有一个为奇数,一个为偶数,共有=45记:“个位数与十位数之和为奇数的两位数中,其个位数为0”为事件A,则A包含的结果:10,30,50,70,90共5个由古典概率的求解公式可得,P(A)=故选D8.(5分)(2012•广东)对任意两个非零的平面向量和,定义○=,若平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,则○=()A.B.1 C.D.【分析】由题意可得○==,同理可得○==,故有n≥m 且m、n∈z.再由cos2θ=,与的夹角θ∈(0,),可得cos2θ∈(,1),即∈(,1),由此求得n、m的值,从而得到○==的值.【解答】解:由题意可得○====,n ∈Z.同理可得○====,m∈Z.由于||≥||>0,∴n≥m 且m、n∈z.∴cos2θ=.再由与的夹角θ∈(0,),可得cos2θ∈(,1),即∈(,1).故有n=3,m=1,∴○==,故选:C.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)(二)选做题(14~15题,考生只能从中选做一题)9.(5分)(2012•广东)不等式|x+2|﹣|x|≤1的解集为.【分析】由题意,可先将不等式左边变形为分段函数的形式,然后再分三段解不等式,将每一段的不等式的解集并起来即可得到所求不等式的解集【解答】解:∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为10.(5分)(2012•广东)中x3的系数为20.(用数字作答)【分析】由题意,可先给出二项式的通项,再由通项确定出x3是展开式中的第几项,从而得出其系数【解答】解:由题意,的展开式的通项公式是Tr+1==x12﹣3r令12﹣3r=3得r=3所以中x3的系数为=20故答案为2011.(5分)(2012•广东)已知递增的等差数列{a n}满足a1=1,a3=a22﹣4,则a n= 2n﹣1.【分析】由题意,设公差为d,代入,直接解出公式d,再由等差数列的通项公式求出通项即可得到答案【解答】解:由于等差数列{a n}满足a1=1,,令公差为d所以1+2d=(1+d)2﹣4,解得d=±2又递增的等差数列{a n},可得d=2所以a n=1+2(n﹣1)=2n﹣1故答案为:2n﹣1.12.(5分)(2012•广东)曲线y=x3﹣x+3在点(1,3)处的切线方程为2x﹣y+1=0.【分析】先求出导函数,然后将x=1代入求出切线的斜率,利用点斜式求出直线的方程,最后化成一般式即可.【解答】解:y′=3x2﹣1,令x=1,得切线斜率2,所以切线方程为y﹣3=2(x﹣1),即2x﹣y+1=0.故答案为:2x﹣y+1=0.13.(5分)(2012•广东)执行如图所示的程序框图,若输入n的值为8,则输出的s的值为8.【分析】由已知中的程序框图及已知中输入8,可得:进入循环的条件为i<8,即i=2,4,6模拟程序的运行结果,即可得到输出的s值.【解答】解:当i=2,k=1时,s=2,;当i=4,k=2时,s=(2×4)=4;当i=6,k=3时,s=(4×6)=8;当i=8,k=4时,不满足条件“i<8”,退出循环,则输出的s=8故答案为:814.(5分)(2012•广东)(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1与C2的参数方程分别为(t为参数)和(θ为参数),则曲线C1与C2的交点坐标为(1,1).【分析】把曲线C1与C2的参数方程分别化为普通方程,解出对应的方程组的解,即得曲线C1与C2的交点坐标.【解答】解:在平面直角坐标系xOy中,曲线C1与C2的普通方程分别为y2=x,x2+y2=2.解方程组可得,故曲线C1与C2的交点坐标为(1,1),故答案为(1,1).15.(2012•广东)(几何证明选讲选做题)如图,圆O中的半径为1,A、B、C 是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与OC的延长线交于点P,则图PA=.【分析】连接OA,根据同弧所对的圆周角等于圆心角的一半,得到∠AOC=60°.因为直线PA与圆O相切于点A,且OA是半径,得到△PAO是直角三角形,最后利用三角函数在直角三角形中的定义,结合题中数据可得PA=OAtan60°=.【解答】解:连接OA,∵圆O的圆周角∠ABC对弧AC,且∠ABC=30°,∴圆心角∠AOC=60°.又∵直线PA与圆O相切于点A,且OA是半径,∴OA⊥PA,∴Rt△PAO中,OA=1,∠AOC=60°,∴PA=OAtan60°=故答案为:三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)(2012•广东)已知函数f(x)=2cos(ωx+)(其中ω>0,x∈R)的最小正周期为10π.(1)求ω的值;(2)设α,β∈[0,],f(5α+)=﹣,f(5β﹣)=,求cos(α+β)的值.【分析】(1)由题意,由于已经知道函数的周期,可直接利用公式ω==解出参数ω的值;(2)由题设条件,可先对,与进行化简,求出α与β两角的函数值,再由作弦的和角公式求出cos(α+β)的值.【解答】解:(1)由题意,函数(其中ω>0,x∈R)的最小正周期为10π所以ω==,即所以(2)因为,,分别代入得及∵∴∴17.(13分)(2012•广东)某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.【分析】(1)根据所以概率的和为1,即所求矩形的面积和为1,建立等式关系,可求出所求;(2)不低于80分的学生有12人,90分以上的学生有3人,则随机变量ξ的可能取值有0,1,2,然后根据古典概型的概率公式求出相应的概率,从而可求出数学期望.【解答】解:(1)由30×0.006+10×0.01+10×0.054+10x=1,得x=0.018(2)由题意知道:不低于80分的学生有12人,90分以上的学生有3人随机变量ξ的可能取值有0,1,2∴18.(13分)(2012•广东)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.【分析】(1)由题设条件及图知,可先由线面垂直的性质证出PA⊥BD与PC⊥BD,再由线面垂直的判定定理证明线面垂直即可;(2)由图可令AC与BD的交点为O,连接OE,证明出∠BEO为二面角B﹣PC﹣A的平面角,然后在其所在的三角形中解三角形即可求出二面角的正切值.【解答】解:(1)∵PA⊥平面ABCD∴PA⊥BD∵PC⊥平面BDE∴PC⊥BD,又PA∩PC=P∴BD⊥平面PAC(2)设AC与BD交点为O,连OE∵PC⊥平面BDE∴PC⊥平面BOE∴PC⊥BE∴∠BEO为二面角B﹣PC﹣A的平面角∵BD⊥平面PAC∴BD⊥AC∴四边形ABCD为正方形,又PA=1,AD=2,可得BD=AC=2,PC=3∴OC=在△PAC∽△OEC中,又BD⊥OE,∴∴二面角B﹣PC﹣A的平面角的正切值为319.(14分)(2012•广东)设数列{a n}的前n项和为S n,满足2S n=a n+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有.【分析】(1)在2S n=a n+1﹣2n+1+1中,令分别令n=1,2,可求得a2=2a1+3,a3=6a1+13,又a1,a2+5,a3成等差数列,从而可求得a1;(2)由2S n=a n+1﹣2n+1+1,得a n+2=3a n+1+2n+1①,a n+1=3a n+2n ②,由①②可知{a n+2n}为首项是3,3为公比的等比数列,从而可求a n;(3)由a n=3n﹣2n=(3﹣2)(3n﹣1+3n﹣2×2+3n﹣3×22+…+2n﹣1)≥3n﹣1可得≤,累加后利用等比数列的求和公式可证得结论;【解答】解:(1)在2S n=a n+1﹣2n+1+1中,令n=1得:2S1=a2﹣22+1,令n=2得:2S2=a3﹣23+1,解得:a2=2a1+3,a3=6a1+13又2(a2+5)=a1+a3解得a1=1(2)由2S n=a n+1﹣2n+1+1,①2S n﹣1=a n﹣2n+1(n≥2),②=3a n+2n,①﹣②得:a n+1又a1=1,a2=5也满足a2=3a1+21,所以a n=3a n+2n对n∈N*成立+1+2n+1=3(a n+2n),又a1=1,a1+21=3,∴a n+1∴a n+2n=3n,∴a n=3n﹣2n;(3)∵a n=3n﹣2n=(3﹣2)(3n﹣1+3n﹣2×2+3n﹣3×22+…+2n﹣1)≥3n﹣1∴≤,∴+++…+≤1+++…+=<.20.(14分)(2012•广东)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.【分析】(1)由得a2=3b2,椭圆方程为x2+3y2=3b2,求出椭圆上的点到点Q 的距离,利用配方法,确定函数的最大值,即可求得椭圆方程;(2)假设M(m,n)存在,则有m2+n2>1,求出|AB|,点O到直线l距离,表示出面积,利用基本不等式,即可确定三角形面积的最大值,从而可求点M 的坐标.【解答】解:(1)由得a2=3b2,椭圆方程为x2+3y2=3b2椭圆上的点到点Q的距离=①当﹣b≤﹣1时,即b≥1,得b=1②当﹣b>﹣1时,即b<1,得b=1(舍)∴b=1∴椭圆方程为(2)假设M(m,n)存在,则有m2+n2>1∵|AB|=,点O到直线l距离∴=∵m2+n2>1∴0<<1,∴当且仅当,即m2+n2=2>1时,S△AOB取最大值,又∵解得:所以点M的坐标为或或或,△AOB的面积为.21.(14分)(2012•广东)设a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.(1)求集合D(用区间表示);(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.【分析】(1)根据方程2x2﹣3(1+a)x+6a=0的判别式讨论a的范围,求出相应D即可;(2)由f′(x)=6x2﹣6(1+a)x+6a=0得x=1,a,然后根据(1)中讨论的a的取值范围分别求出函数极值即可.【解答】解:(1)记h(x)=2x2﹣3(1+a)x+6a(a<1)△=9(1+a)2﹣48a=(3a﹣1)(3a﹣9),当△<0,即,D=(0,+∞),当,当a≤0,.(2)由f′(x)=6x2﹣6(1+a)x+6a=0得x=1,a,①当,f(x)在D内有一个极大值点a,有一个极小值点;②当,∵h(1)=2﹣3(1+a)+6a=3a﹣1≤0,h(a)=2a2﹣3(1+a)a+6a=3a﹣a2>0,∴1∉D,a∈D,∴f(x)在D内有一个极大值点a.③当a≤0,则a∉D,又∵h(1)=2﹣3(1+a)+6a=3a﹣1<0.∴f(x)在D内有无极值点.。
2012广东高考数学理科试题及答案
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:(本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设i 为虚数单位,则复数56i i-= A .65i +B .65i -C .65i -+D .65i --2. 设集合{}{}1,2,3,4,5,6,1,2,4U M ==,则C M =,则BC =4)-B .(2,4)C .(6,10)(6,10)--6. 7. 个位C .29D .198. 对任意两个非零向量α,β,定义⋅⋅αβαβ=ββ,若向量a,b 满足||||0≥>a b ,a,b 的夹角(0,4πθ∈,且a b 和b a 都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b = A .12B .1C .32D .52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9~13题)9. 不等式|2|||1x x +-≤的解集为。
10.261(x x+的展开式中3x 的系数为。
(用数字作答) 11.已知递增的等差数列{}n a 满足21321,4a a a ==-,则n a =。
12.曲线33y x x =-+在点(1,3)处的切线方程为。
13.执行如图2所示的程序框图,若输入n 则输出s (二)选做题(14~1514.)x t t y =⎧⎪⎨=⎪⎩为参数和()x y θθθ⎧=⎪⎨=⎪⎩为参数2C 的交点坐标为。
15.为OC12分)0,x R ω>∈)的最小正周期为10π ω的值;516(5)617f πβ-=,求cos()αβ+的值。
13分)4所示,其中成绩分组区间是: [)))))40,50,50,60,60,70,70,80,80,90,90,100。
1)求图中x 的值;2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望。
2012年高考理科数学广东卷-答案
所以椭圆 的方程为: ,设椭圆 上的一动点 , ,
则 .
①若 ,当 时, ,解得 ;
②若 , ;
综合①②, ,所以椭圆 的方程为 ;
(Ⅱ)假设在椭圆 上,存在点 满足题意,则 ,在 中, , ,所以当 时, 有最大值 ,此时,点 到直线 的距离 ,即 , , ,
所以在椭圆 上存在点 ,使得直线 与圆 相交于不同的两点 、 ,且 的面积最大,最大值为 .
体积 .
【提示】由题设知,组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱,分别根据两几何体的体积公式计算出它们的体积再相加即可得到正确选项.
【考点】由三视图求几何体的体积
7.【答案】D
【解析】设个位数与十位数分别为 , 则 , , , , , , , , , 所以 , 分别为一奇一偶;
【考点】排列与组合及其应用
8.【答案】C
【解析】设 , , , .
因为 ,所以 ,所以 或 或 或 ,
因为 ,所以 ,即 ,则 , ,
因为 ,所以 ,所以只能取 , ,
则 .
【提示】定义两向量间的新运算,根据数量积运算与新运算间的关系进行化简,再运用集合的知识求解即可.
【考点】集合的含义,平面向量的数量积的运算
所以为 的数学期望为 .
【提示】(Ⅰ)根据所以概率的和为1,即所求矩形的面积和为1,建立等式关系,可求出所求;
(Ⅱ)不低于8(0分)的学生有12人,9(0分)以上的学生有3人,则随机变量 的可能取值有0,1,2,然后根据古典概型的概率公式求出相应的概率,从而可求出数学期望.
【考点】分布列与期望
18.【答案】(Ⅰ)因为 平面 , 平面 ,
【考点】函数单调性的判断
2012年高考理科数学广东卷-答案
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)答案解析的元素即得{3,5,6UM =【提示】给出全集和子集,根据集合的基本运算求解子集的补集【答案】A【解析】(2,BC BA AC BA CA =+=-=-由向量(2,3)BA =向量(4,7)CA =知(2,AB =-,(4,7)AC =--再由BC AC AB =-能求出【考点】向量的线性运算,向量的坐标运算||cos ||a b θ,||cos ||y b a θ,x ,,所以4cos Z ,所以cos3||||a b ,3||||b a ∈Z , ||||0a b ≥>,所以||1||a b ≥,所以只能取||3||a b =,||1||3a b =,则||cos 33322||a ab b θ==⨯=.【提示】定义两向量间的新运算,根据数量积运算与新运算间的关系进行化简,再运用集合的知识求解即可.1x 解得x 无解;1x 解得2x ≤1,解得2x ≤-12x ⎫≤-⎬⎭.可先将不等式左边变形为分段函数的形式,60,所以根据同弧所对的圆周角等于圆心角的一半,60,因为直线是直角三角形,最后利用三角函数在直角三角形中的定义,结合题中=tan603【解析】(Ⅰ)10T =π=(Ⅱ)由(Ⅰ)得()f x =65f ⎛-= ⎝3sin 5α∴=16517f ⎛= ⎝cos β∴=110(0.054x f =-0.018x ∴=(Ⅱ)成绩不低于PA PC P=,PAC;=,连结AC BD O BDE,OE,BE⊥BE,--B PC A所以(0,0,1)P ,(0,2,0),所以(2,DB =-的一个法向量,(0,2,0)BC =,(2,0,1)BP =-的法向量为(,,)n x y z =22n BC y n BP x z ⎧==⎪⎨=-+⎪⎩,取(1,0,2)n =, PC A -的平面角为21||||8510DB n DB n ==,sin 所以二面角B PC A --的正切值为3.【答案】(Ⅰ)2n n S a +=12337a a a a =⎧⎪⇒=⎨⎪=⎩133n -,所以1a 1221122222n n n n n n n C C --++⋯++-122-1-1222222n n n n n n C C C +++>522(21)=>⨯⨯-,1||||sin 2OA OB AOB ∠的距离22d =,即21m 2)(,)x +∞,2x <,所以2(,A x B +∞=2)(,)x +∞,30a =>,所以2212339309339309(0,)(,)0,,44a a A B a a a a x x ⎛⎫⎛+--+++-++∞=+∞ ⎪⎪ ⎝⎝⎭=A B =(0,+∞综上所述,当0a ≤时,33a ⎛⎫⎛++⎪ ⎪ ⎭⎝1),令(f '2)(,)x +∞的变化情况如下表:a。
2012年新课标高考试题(理科数学,word解析版)
绝密*启用前2012年普通高等学校招生全国统一考试(新课标)科数学理【整理】佛山市三水区华侨中学 骆方祥(lbylfx @ )注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30o 的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30o 的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,23)A -(4,23)B --得:222(4)(23)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
12年高考真题——理科数学(广东卷)
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)参考公式:台体的体积公式(123h V S S =+,其中12,S S 分别表示台体的上、下底面积,h 表示台体的高。
一.选择题:本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 为虚数单位,则复数56i i-=( ) (A )65i + (B )65i - (C )65i -+ (D )65i -- 2.设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U M =ð( )(A )U (B ){}1,3,5 (C ){}3,5,6 (D ){}2,4,63.若向量()2,3BA =,()4,7CA =,则BC =( )(A )()2,4-- (B )()3,4 (C )()6,10 (D )()6,10--4.下列函数中,在区间()0,+∞上为增函数的是( )(A )()ln 2y x =+ (B)y = (C )()12x y = (D )1y x x=+ 5.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )(A )12 (B )11 (C )3 (D )1-6.某几何体的三视图如图1所示,它的体积为( )(A )12π (B )45π (C )57π (D )81π7.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )(A )49 (B )13 (C )29 (D )198.对任意两个非零的平面向量α和β,定义αβαβββ⋅=⋅。
若平面向量,a b 满足||||0a b ≥>,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b =( ) (A )12 (B )1 (C )32(D )52二.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
2012年高考理科数学广东卷及答案
数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2012年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设i 为虚数单位,则复数56ii-=( )A .65i +B .65i -C .65i -+D .65i -- 2. 设集合{1,2,3,4,5,6}U =,{1,2,4}M =,则U M =ð( )A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3. 若向量(2,3)BA =,(4,7)CA =,则BC =( )A .(2,4)--B .(2,4)C .(6,10)D .(6,10)--4. 下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =C .1()2x y =D .1y x x=+5. 已知变量x ,y 满足约束条件211 y x y x y ⎧⎪+⎨⎪-⎩≤≥≤,则3z x y =+的最大值为( )A .12B .11C .3D .1- 6. 某几何体的三视图如图1所示,它的体积为( )A .12πB .45πC .57πD .81π7. 从个位数与十位数之和为奇数的两位数中任取一个,其个 位数为0的概率是( )A .49 B .13C .29D .198. 对任意两个非零的平面向量α和β,定义=αβαβββ. 若平面向量a ,b 满足||||0a b ≥>,a 与b 的夹角π(0,)4θ∈,且a b 和b a 都在集合{|}2nn ∈Z 中,则=a b ( )A .12B .1C .32D .52二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式|2||1|x x +-≤的解集为_______. 10.261()x x+的展开式中3x 的系数为_______.(用数字作答)11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =_______.12.曲线33y x x =-+在点(1,3)处的切线方程为________.13.执行如图2所示的程序框图,若输入n 的值为8, 则输出s 的值为________.(二)选做题(14—15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x ty =⎧⎪⎨=⎪⎩t为参数)和x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 与2C 的交点坐标为________.15.(几何证明选讲选做题)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足30ABC ∠=,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA =_______.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________16.(本小题满分12分)已知函数π()2cos()6f x xω=+(其中0ω>,x∈R)的最小正周期为10π.(Ⅰ)求ω的值;(Ⅱ)设π[0,]2αβ,∈,56(5π)35fα+=-,516(5π)617fβ-=,求cos()αβ+的值.17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)求图中x的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(本小题满分13分)如图5所示,在四棱锥P ABCD-中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若1PA=,2AD=,求二面角B PC A--的正切值.19.(本小题满分14分)设数列{}na的前n项和为nS,满足11221nn nS a++=-+,*n∈N,且1a,25a+,3a成等差数列.(Ⅰ)求1a的值;(Ⅱ)求数列{}n a的通项公式;(Ⅲ)证明:对一切正整数n,有1211132na a a+++<.数学试卷第4页(共21页)数学试卷第5页(共21页)数学试卷第6页(共21页)数学试卷 第7页(共21页)数学试卷 第8页(共21页)数学试卷 第9页(共21页)2012年普通高等学校招生全国统一考试(广东卷)数学(理科)答案解析【答案】A【解析】()2,4BC BA AC BA CA =+=-=--.【提示】由向量(2,3)BA =,向量(4,7)CA =,知(2,AB =-,(4,7)AC =--BC AC AB =-能求出结果.4.【答案】A借助于图像可知:当3x =,2y =时,max 11z =.||cos ||a b θ,||cos ||y b a θ,x ,,所以4cos Z ,所以cos θ2223||||a b ,3||||b a ∈Z , ||||0a b ≥>,所以||1||a b ≥,所以只能取||3||a b =,||1||3a b =, 则||cos 33322||a ab b θ==⨯=.【提示】定义两向量间的新运算,根据数量积运算与新运算间的关系进行化简,再运用集。
2mxt-2012年广东高考理科数学试题与答案(解析版)
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”.2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求做大的答案无效。
4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。
漏涂、错涂、多涂的,答案无效。
5、 考生必须保持答题卡得整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设i 为虚数单位,则复数56ii-=( )()A 65i + ()B 65i - ()C i -6+5()D i -6-5【解析】选D 依题意:256(56)65i i ii i i --==--,故选D . 2.设集合{1,2,3,4,5,6},{1,2,4}U M ==;则U C M =( )()A U ()B {1,3,5} ()C {,,}356 ()D {,,}246【解析】选C U C M ={,,}3563. 若向量(2,3),(4,7)BA CA ==u u u r u u u r;则BC =u u u r ( )()A (2,4)-- ()B (2,4) ()C (,)610()D (,)-6-10【解析】选A(2,4)BC BA CA =-=--u u u r u u u r u u u r 4. 下列函数中,在区间(0,)+∞上为增函数的是( )()A ln(2)y x =+ ()B y = ()C ()x y 1=2 ()D y x x1=+【解析】选A ln(2)y x =+区间(0,)+∞上为增函数,y =(0,)+∞上为减函数 ()xy 1=2区间(0,)+∞上为减函数,y x x1=+区间(1,)+∞上为增函数5. 已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )()A 12 ()B 11 ()C 3 ()D -1【解析】选B 约束条件对应ABC ∆边际及内的区域:53(2,2),(3,2),(,)22A B C则3[8,11]z x y =+∈6. 某几何体的三视图如图1所示,它的体积为( ) ()A 12π ()B 45π ()C π57 ()D π81 【解析】选C 几何体是圆柱与圆锥叠加而成它的体积为2222135353573V πππ=⨯⨯+⨯⨯-=7. 从个位数与十位数之和为奇数的两位数中任取一个, 其个位数为0的概率是( )()A 49 ()B 13 ()C 29()D 19【解析】选D①个位数为1,3,5,7,9时,十位数为2,4,6,8,个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个 ②个位数为0时,十位数为1,3,5,7,9,共5个别个位数为0的概率是51459=8. .对任意两个非零的平面向量α和β,定义αβαβββ=g o g ;若平面向量,a b r r 满足0a b ≥>r r ,a r 与b r 的夹角(0,)4πθ∈,且,a b b a r r r r o o 都在集合}2nn Z ⎧∈⎨⎩中,则a b =r r o ( )()A 12()B 1 ()C 32()D 52【解析】选C21cos 0,cos 0()()cos (,1)2a b a b b a a b b a baθθθ=>=>⇒⨯=∈r r r r r r r r r r o o o o r r,a b b a r r r r o o 都在集合}2n n Z ⎧∈⎨⎩中得:*12123()()(,)42n n a b b a n n N a b ⨯=∈⇒=r r r r r r o o o(一)必做题(9-13题)9. 不等式21x x +-≤的解集为_____【解析】解集为_____1(,]2-∞-原不等式⇔2(2)1x x x ≤-⎧⎨-++≤⎩或2021x x x -<≤⎧⎨++≤⎩或021x x x >⎧⎨+-≤⎩,解得12x ≤-,10. 261()x x+的展开式中3x 的系数为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”.2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求做大的答案无效。
4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。
漏涂、错涂、多涂的,答案无效。
5、 考生必须保持答题卡得整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设i 为虚数单位,则复数56i i-=( )()A 65i + ()B 65i -()C i -6+5()D i -6-5【解析】选D 依题意:256(56)65i i i i ii--==--,故选D .2.设集合{1,2,3,4,5,6},{1,2,4}U M ==;则U C M =( )()A U ()B {1,3,5} ()C {,,}356()D {,,}246【解析】选C U C M ={,,}3563. 若向量(2,3),(4,7)BA C A ==;则BC = ( )()A (2,4)-- ()B (2,4) ()C (,)610 ()D (,)-6-10【解析】选A (2,4)B C B A C A =-=--4. 下列函数中,在区间(0,)+∞上为增函数的是( )()A ln(2)y x =+ ()B y = ()C ()x y 1=2 ()D y x x1=+【解析】选A ln(2)y x =+区间(0,)+∞上为增函数,y =(0,)+∞上为减函数 ()xy 1=2区间(0,)+∞上为减函数,y x x1=+区间(1,)+∞上为增函数5. 已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )()A 12 ()B 11 ()C 3 ()D -1 【解析】选B 约束条件对应A B C ∆边际及内的区域:53(2,2),(3,2),(,)22A B C则3[8,11]z x y =+∈6. 某几何体的三视图如图1所示,它的体积为( ) ()A 12π ()B 45π ()C π57 ()D π81 【解析】选C 几何体是圆柱与圆锥叠加而成它的体积为221353573V πππ=⨯⨯+⨯⨯=7. 从个位数与十位数之和为奇数的两位数中任取一个, 其个位数为0的概率是( )()A 49()B 13()C 29()D 19【解析】选D①个位数为1,3,5,7,9时,十位数为2,4,6,8,个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个②个位数为0时,十位数为1,3,5,7,9,共5个别个位数为0的概率是51459=8. .对任意两个非零的平面向量α和β,定义αβαβββ=;若平面向量,a b满足0a b ≥> ,a 与b 的夹角(0,)4πθ∈,且,a b b a 都在集合}2nn Z ⎧∈⎨⎩中,则a b = ( )()A 12()B 1 ()C 32()D 52【解析】选C21cos 0,cos 0()()cos (,1)2a b a b b a a b b a b aθθθ=>=>⇒⨯=∈,a b b a 都在集合}2n n Z ⎧∈⎨⎩中得:*12123()()(,)42n n a b b a n n N a b ⨯=∈⇒=二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9-13题)9. 不等式21x x +-≤的解集为_____【解析】解集为_____1(,]2-∞-原不等式⇔2(2)1x x x ≤-⎧⎨-++≤⎩或2021x x x -<≤⎧⎨++≤⎩或021x x x >⎧⎨+-≤⎩,解得12x ≤-,10. 261()x x+的展开式中3x 的系数为______。
(用数字作答) 【解析】系数为______20 261()x x+的展开式中第1k +项为2(6)123166(0,1,2,,6)kkk k kk T C xxC xk ---+===令12333k k -=⇔=得:3x 的系数为3620C =11. 已知递增的等差数列{}n a 满足21321,4a a a ==-,则_____n a =【解析】_____n a =21n -221321,412(1)4221n a a a d d d a n ==-⇔+=+-⇔=⇔=-12. 曲线33y x x =-+在点(1,3)处的切线方程为 【解析】切线方程为 210x y -+=3213312x y x x y x k y =''=-+⇒=-⇒==⇒切线方程为32(1)y x -=-即210x y -+=13. 执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为(二)选做题(14 - 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题) 在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为1:x t C t y =⎧⎪⎨=⎪⎩是参数) 和2:(x C y θθθ⎧=⎪⎨=⎪⎩是参数),它们的交点坐标为_______.【解析】它们的交点坐标为_______(1,1)22212:(0),:2C y x y C x y =>+= 解得:交点坐标为(1,1)15.(几何证明选讲选做题)如图3,圆O 的半径为1,,,A B C 是圆周上的三点,满足,30ABCο∠=,过点A 做圆O 的切线与O C 的延长线交于点P ,则_____PA = 【解析】_____PA = 连接O A ,得2601,AO C ABC AC ο∠=∠=⇒= 30301PAC ABC APC PC ︒︒∠=∠=⇒∠=⇒=2223PA PO O A PA =-=⇔=三、解答题:本大题共6小题,满分80分。
解答需写出文字说明、证明过程和演算步骤。
16. (本小题满分12分)已知函数()2cos()(0,)6f x x x R πωω=+>∈的最小正周期为10π(1)求ω的值; (2)设,[0,]2παβ∈,56516(5),(5)35617f f ππαβ+=--=;求cos()αβ+的值【解析】(1)21105T ππωω==⇔=(2)56334(5)cos()sin ,cos 352555f ππαααα+=-⇔+=-⇔==516815(5)cos ,sin 6171717f πβββ-=⇔==4831513c o s ()c o sc o ss i n s i n 51751785αβαβαβ+=-=⨯-⨯=-17. (本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图 如图4所示,其中成绩分组区间是: [40,50][50,60][60,70][70,80][80,90][90,100]。
(1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人, 该2人中成绩在90分以上(含90分)的人数记为ξ, 求ξ的数学期望。
【解析】(1)0.0061030.01100.054101010.018x x ⨯⨯+⨯+⨯+⨯=⇔=(2)成绩不低于80分的学生有(0.0180.006)105012+⨯⨯=人,其中成绩在90分以上(含90分)的人数为0.0610503⨯⨯=随机变量ξ可取0,1,2 21129933222121212691(0),(1),(0)112222C C C C P P P CCCξξξ=========69110121122222E ξ=⨯+⨯+⨯=答:(1)0.018x = (2)ξ的数学期望为1218.(本小题满分13分)如图所示,在四棱锥P A B C D -中,底面A B C D 为矩形,P A ⊥平面A B C D ,点E 在线段P C 上,P C ⊥平面BD E 。
(1) 证明:B D ⊥平面PAC ;(2) 若1,2PA AD ==,求二面角B P C A --的正切值;【解析】(1)P C ⊥平面BD E ,BD ⊂面BD E B D P C ⇒⊥ P A ⊥平面A B C D ,BD ⊂面A B C D B D P A ⇒⊥ 又PA PC P BD =⇒⊥ 面PAC(2)AC BD O = 由(1)得:B D A C A B A D ⊥⇒=,1,22PA AD AB ==⇒=, P C ⊥平面,BDE BF PC OF PC ⇒⊥⊥B F O ⇒∠是二面角B P C A --的平面角, 在P B C ∆中,2,3903BP BC PB BC PC PBC BE PC ο⨯===⇒∠=⇒==在R t B O F ∆中,tan 33BO BO O E BFO O F===⇒∠==得:二面角B P C A --的正切值为319.(本小题满分14分)设数列{}n a 的前n 项和为n S ,满足1*1221()n n n S a n N ++=-+∈,且123,5,a a a +成等差数列. (1)求1a 的值;(2)求数列{}n a 的通项公式。
(3)证明:对一切正整数n ,有1211132na a a +++<【解析】(1)12112221,221n n n n n n S a S a +++++=-+=-+ 相减得:12132n n n a a +++=+ 12213212323,34613S a a a a a a =-⇔=+=+=+ 123,5,a a a +成等差数列13212(5)1a a a a ⇔+=+⇔=(2)121,5a a ==得132nn n a a +=+对*n N ∀∈均成立 1113223(2)n n nn n n n a a a a +++=+⇔+=+得:122112123(2)3(2)3(2)32n n n n n nn n n n a a a a a -----+=+=+==+⇔=-(3)当1n =时,11312a =<当2n ≥时,23311()()23222222n n n nn nn a a ≥>⇔>⨯⇔>⇔<231211111111311222222nn na a a +++<++++=+-<由上式得:对一切正整数n ,有1211132na a a +++<20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b ab+=>>的离心率e =,且椭圆C上的点到(0,2)Q 的距离的最大值为3; (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n 使得直线:1l mx ny +=与圆22:1O x y +=相交于不同的两点,A B ,且A O B ∆的面积最大?若存在,求出点M 的坐标及相对应的A O B ∆的面积;若不存在,请说明理由。