数列基本量的计算
等差数列与等比数列的基本量运算
等差数列与等比数列运算知识点:一.等差数列 1.等差数列基本概念⑴等差数列的概念:如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,常用字母d 表示. 即等差数列有递推公式:1(1)n n a a d n +-=≥. ⑵等差数列的通项公式为:1(1)n a a n d =+-.⑶等差中项:如果三个数,,x A y 组成等差数列,那么A 叫做x 和y 的等差中项,即2x yA +=. ⑷等差数列的前n 项和公式:211()(1)22n n n a a n n S na d An Bn +-==+=+. 1.等差数列通项公式的推导:2132121n n n n a a d a a da a d a a d----=-=-=-=,将这1n -个式子的等号两边分别相加得:1(1)n a a n d -=-,即1(1)n a a n d =+-.由等差数列的通项公式易知:()n m a a n m d -=-. 2.等差数列前n 项和公式的推导:1111()(2)[(1)]n S a a d a d a n d =+++++++-,把项的顺序反过来,可将n S 写成:()(2)[(1)]n n n n n S a a d a d a n d =+-+-++--,将这两式相加得:11112()()()()n n n n n S a a a a a a n a a =++++++=+,从而得到等差数列的前n 项和公式1()2n n n a a S +=,又1(1)n a a n d =+-, 得11()(1)22n n n a a n n S na d +-==+. 二.等比数列1. 等比数列的概念:如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,常用字母(0)q q ≠表示.2. 等比数列的通项公式为:11n n a a q -=.3. 等比中项:如果三个数,,x G y 组成等比数列,那么G 叫做x 和y 的等比中项,即2G xy =.两个正数(或两个负数)的等比中项有两个,它们互为相反数;一个正数与一个负数没有等比中项.1.等比数列通项公式的推导: 由等比数列的定义知:312412321,,,,,n n n n a a aa aq q q q q a a a a a ---===== 将这1n -个式子的等号两边分别相乘得:11n na q a -=,即11n n a a q -=. 由等比数列的通项公式易知:n m nma q a -=.一、等差数列中基本量的运算:a 1,a n ,n ,d ,S n 知三求二 ①基本量运算{}28454565651.,6,6,....n a a a A S S B S S C S S D S S =-=<=<=(一星)是等差数列且则()解:1994500a a S S S +=⇒=⇒=.选B.{}18451845184518452.,0,....n a d A a a a a B a a a a C a a a a D a a a a ≠><+>+=(一星)如果是正项等差数列公差则()答案:B.3,4,3,2550,,.k .a a k S a k =(一星)等差数列前三项为前项和求的值答案:2,50a k ==7.(二星)(2015年全国1)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )(A ) 172 (B )192(C )10 (D )12 答案:B7.(三星)(全国1理科)设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( )A.3B.4C.5D.6 解:有题意知==0,∴=-=-(-)=-2,=-=3,∴公差=-=1,∴3==-,∴=5,故选C.2.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3)n ≥从左向右的第3个数为 .4.(二星)已知是等差数列,公差不为零,前项和是,若,,成等比数列,则( ) A.B.B.C. D.(3)(2016全国1卷理)已知等差数列}{n a 前9项的和为27,810=a ,则=100a(A )100(B )99(C )98 (D )97解:由等差数列性质可知:()1959599292722a a a S a +⨯====,故53a =, 而108a =,因此公差1051105a a d -==- ∴100109098a a d =+=.故选C .4.(2017全国1卷理)记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为( ) A .1B .2C .4D .8解:45113424a a a d a d +=+++=61656482S a d ⨯=+= 联立求得11272461548a d a d +=⎧⎪⎨+=⎪⎩①② 3⨯-①②得()211524-=d624d = 4d =∴.选C3.(2018广州市调研理)在等差数列{}n a 中,已知22a =,前7项和756S =,则公差d =( )BA .2B .3C .2-D .3-4.(2018广州一模文)等差数列{}n a 的各项均不为零,其前n 项和为n S ,若212n n n a a a ++=+,则21=n S +(A )A .42n +B .4nC .21n +D .2n4.(2018全国1理)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a B A .12- B .10- C .10 D .129. (2019全国1卷理)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A. 25n a n =- B.310n a n =-C. 228n S n n =-D. 2122n S n n =- 解:由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .18.(2019全国1卷文)记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解:(1)设{}n a 的公差为d .由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-. (2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a 等价于211100n n -+,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n ∈N .14.(2019全国高考3卷理)记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =________.414.(2019全国3卷文)记S n 为等差数列{a n }的前n 项和,若375,13a a ==,则10S =___________.15. (2018广东一模文)已知数列{}n a 的前n 项和为n S ,且23122n S n n =+,则5a = .146. (2018广东一模文)等差数列()()()333log 2,log 3,log 42,x x x +的第四项等于( A )A .3B .4 C. 3log 18 D .3log 24 ②创新题1.(2016全国2卷文)等差数列{}n a 中,且344a a +=,576a a +=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)记[]n n a b =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]26.2=.解:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得121,5a d ==,所以{}n a 的通项公式为235n n a +=.(Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦,当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=;当n=6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=.17.(2016全国2卷理)n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和. 解: ⑴设的公差为,,∴,∴,∴. ∴,,. ⑵记的前项和为,则. 当时,; 当时,; 当时,; 当时,.∴.(17)(2017届广州市调研文)等差数列}{n a 中,1243=+a a ,749S =. (Ⅰ)求数列}{n a 的通项公式;(Ⅰ)记][x 表示不超过x 的最大整数,如0]9.0[=,2]6.2[= . 令][lg n n a b =,求数列}{n b 的前2000项和.解:(Ⅰ)由1243=+a a ,749S =,得112512,72149.a d a d +=⎧⎨+=⎩{}n a d 74728S a ==44a =4113a a d -==1(1)n a a n d n =+-=[][]11lg lg10b a ===[][]1111lg lg111b a ===[][]101101101lg lg 2b a ==={}n b n n T 1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+0lg 1n a <≤129n =⋅⋅⋅,,,1lg 2n a <≤101199n =⋅⋅⋅,,,2lg 3n a <≤100101999n =⋅⋅⋅,,,lg 3n a =1000n =1000091902900311893T =⨯+⨯+⨯+⨯=解得11=a ,2=d , 所以12-=n a n .(Ⅰ))]12[lg(][lg -==n a b n n , 当51≤≤n 时, 0)]12[lg(=-=n b n ;当506≤≤n 时, 1)]12[lg(=-=n b n ; 当50051≤≤n 时, 2)]12[lg(=-=n b n ; 当5012000n ≤≤时, 3)]12[lg(=-=n b n .所以数列}{n b 的前2000项和为544515003450245150=⨯+⨯+⨯+⨯.③与其他内容结合4546.(){},10,15,___.n n a n S S S a ≥≤四星设等差数列的前项和为若则的最大值为4141115110235:3(23)3(2) 4. 4.1523S a d a a d a d a d S a d ≥+≥⎧⎧⇒⇒=+=-+++≤⎨⎨≤+≤⎩⎩解答案为二、等比数列中基本量的运算 ①基本量运算1.1,,,,9,.3,9.3,9.3,9.3,9a b c Ab ac B b ac C b ac D b ac --===-===-=-=-(一星)若成等比数列则()答案:B3102.,3,384,______a a ==(一星)等比数列中则通项公式为答案:332n n a -=⋅364714.,36,18,,____2n a a a a a n +=+===(一星)等比数列中答案:9n =13、(一星)(2015全国1)数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .答案:67.(一星)(2015全国2理)等比数列{a n }满足a 1=3,135a a a ++=21,则357a a a ++=( )A .21B .42C .63D .84 答案:B12.(一星)(2015全国2文)已知等比数列满足,,则( ) A. 2 B. 1 C. D. 答案:C5.(二星)(全国理)已知{}n a 为等比数列,47562,8a a a a +==-,则110a a +=A .7B .5C .-5D .-7 解:因为{}n a 是等比数列,所以56478a a a a ==-,所以47,a a 是方程2280x x --=的两根,解得4x =或2x =-。
2020年高考理科数学《数列》题型归纳与训练及参考答案
2020年高考理科数学《数列》题型归纳与训练【题型归纳】等差数列、等比数列的基本运算题组一 等差数列基本量的计算例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2−S n =36,则n = A .5 B .6 C .7 D .8【答案】D【解析】解法一:由题知()21(1)21n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2−S n =36得,(n +2)2−n 2=4n +4=36,所以n =8.解法二:S n +2−S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2−S n =36,解析为a n +2,发生错误。
题组二 等比数列基本量的计算例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即4220q q --=,解得q 2=2,∴4624a a q ==.【易错点】忘了条件中的正数的等比数列. 【思维点拨】等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路:(1)设基本量a 1和公差d (公比q ).(2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.等差数列、等比数列的判定与证明题组一 等差数列的判定与证明例1设数列{a n }的各项都为正数,其前n 项和为S n ,已知对任意n ∈N *,S n 是a 2n 和a n 的等差中项. (1)证明:数列{a n }为等差数列;(2)若b n =−n +5,求{a n ·b n }的最大项的值并求出取最大值时n 的值. 【答案】(1)见解析;(2) 当n =2或n =3时,{a n ·b n }的最大项的值为6. 【解析】(1)由已知可得2S n =a 2n +a n ,且a n >0, 当n =1时,2a 1=a 21+a 1,解得a 1=1; 当n ≥2时,有2S n −1=a 2n -1+a n −1,所以2a n =2S n −2S n −1=a 2n −a 2n -1+a n −a n −1,所以a 2n −a 2n -1=a n +a n −1,即(a n +a n −1)(a n −a n −1)=a n +a n −1,因为a n +a n −1>0, 所以a n −a n −1=1(n ≥2).故数列{a n }是首项为1,公差为1的等差数列. (2)由(1)可知a n =n ,设c n =a n ·b n ,则c n =n (−n +5)=−n 2+5n =−⎝⎛⎭⎫n -522+254, 因为n ∈N *,所以当n =2或n =3时,{a n ·b n }的最大项的值为6.【易错点】S n 是a 2n 和a n 的等差中项,无法构建一个等式去求解出a n 。
数列基本量运算
等差、等比数列基本量的运算法宝典例解析:题型一 等差、等比数列的基本运算例1 已知等差数列{a n }的前5项和为105,且a 10=2a 5. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中不大于72m 的项的个数记为b m .求数列{b m }的前m 项和S m .题型二 等差、等比数列的性质及应用例2 (1)已知正数组成的等差数列{a n },前20项和为100,则a 7·a 14的最大值是( ) A .25 B .50 C .100 D .不存在(2)在等差数列{a n }中,a 1=-2 013,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 013的值为( )A .-2 011B .-2 012C .-2 010D .-2 013 题型三 等差、等比数列的综合应用例3 已知数列{a n }的前n 项和S n 满足条件2S n =3(a n -1),其中n ∈N *. (1)证明:数列{a n }为等比数列;(2)设数列{b n }满足b n =log 3a n ,若c n =a n b n ,求数列{c n }的前n 项和.跟踪训练1.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( ) A .-110 B .-90C .90 D .1102.(2014·课标全国Ⅱ)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n 等于( )A .n (n +1)B .n (n -1) C.n (n +1)2 D.n (n -1)23.等比数列{a n }的前n 项和为S n ,若2S 4=S 5+S 6,则数列{a n }的公比q 的值为( ) A .-2或1 B .-1或2 C .-2 D .14.(2014·大纲全国)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .35.(2014·大纲全国)设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6等于( ) A .31 B .32 C .63 D .646.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n 为整数的正整数n 的个数是( ) A .2 B .3 C .4 D .57.(2013·课标全国Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.8.(2014·江苏)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.9.(2014·安徽)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.10.在数列{a n }中,如果对任意n ∈N *都有a n +2-a n +1a n +1-a n=k (k 为常数),则称数列{a n }为等差比数列,k 称为公差比.现给出下列问题: ①等差比数列的公差比一定不为零; ②等差数列一定是等差比数列;③若a n =-3n +2,则数列{a n }是等差比数列; ④若等比数列是等差比数列,则其公比等于公差比. 其中正确命题的序号为________.11.(2014·课标全国Ⅰ)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式; (2)求数列{a n2n }的前n 项和.12.(2014·北京)已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.。
等差、等比数列及前n项和
第01讲 等差数列及其前n 项和考纲考情本讲为高考命题热点,分值10-12分,题型多变,选择题,填空题,解答题都会出现选择填空题常考等差等比数列的性质,大题题型多变,但对于文科来讲常考察基本量的计算与数列求和,对于理科考点相对难度较大,比如新定义,奇偶列等,考察逻推理能力与运算求解能力。
考点梳理考点一 等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
数学语言表达式 : ()为常数d N n d a a n n ,1*+∈=-()为常数d N n d a a n n ,1*+∈=-。
(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且2ba A +=考点二 等差数列的通项公式与前n 项和公式(1)若等差数列{}n a 的首项是1a ,公差是d ,则其通项公式为()d n a a n 11-+=。
(2)前n 项和公式: ()()n d a n d a a n d n n na S n n ⎪⎭⎫⎝⎛-+=+=-+=222211211。
考点三 等差数列的性质(1)通项公式的推广:()()*∈-+=N m n d m n a a m n ,。
(2)若{}n a 为等差数列,且()*∈+=+N q p m n q p n m ,,,,则q p n m a a a a +=+。
(3)若{}n a 是等差数列,公差为d,则()*++∈N m k a a a m k m k k ,......,,2是公差为md 的等差数列。
(4)若n S 为等差数列{}n a 小的前n 项和,则数列,......,,232m m m m m S S S S S --也是等差数列。
(5)若n S 为等差数列{}n a 的前n 项和,则数列⎭⎬⎫⎩⎨⎧n S n 也为等差数列。
考点四 常用结论1.已知数列{}n a 的通项公式是()为常数其中q p q pn a n ,+=,则数列{}n a 一定是等差数列,且公差为p 。
等比数列及其前n项和
09—等比数列及其前n 项和突破点(一) 等比数列基本量的计算1.等比数列的有关概念;(1)定义: (2)等比中项.2.等比数列的有关公式:(1)通项公式: (2)前n 项和公式.3.运用方程的思想求解等比数列的基本量[例1] (1)(2017·太原模拟)已知等比数列{a n }单调递减,若a 3=1,a 2+a 4=52,则a 1=( ) A .2 B .4 C. 2 D .2 2(2)在等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为( )A .1B .-12C .1或-12D .-1或12[解析] (1)设等比数列{a n }的公比为q ,q >0,则a 23=a 2a 4=1,又a 2+a 4=52,且{a n }单调递减,所以a 2=2,a 4=12,则q 2=14,q =12,所以a 1=a 2q =4,故选B.(2)根据已知条件得⎩⎪⎨⎪⎧a 1q 2=7,a 1+a 1q +a 1q 2=21,消去a 1得1+q +q 2q 2=3,整理得2q 2-q -1=0,解得q =1或q =-12.[答案] (1)B (2)C[例2] (1)n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.(2)在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________.[解析] (1)设等比数列{a n }的公比为q ,q >0,则a 8=a 6+2a 4即为a 4q 4=a 4q 2+2a 4,解得q 2=2(负值舍去),又a 2=1,所以a 6=a 2q 4=4.(2)由题意知a 1+4a 1+16a 1=21,解得a 1=1,所以等比数列{a n }的通项公式为a n =a 1q n -1=4n -1.[答案] (1)4 (2)4n -1 [方法技巧]求等比数列通项公式的方法与策略求等比数列的通项公式,一般先求出首项与公比,再利用a n =a 1q n -1求解.但在某些情况下,利用等比数列通项公式的变形a n =a m q n -m 可以简化解题过程.求解时通常会涉及等比数列设项问题,常用的设项方法为:(1)通项法—设数列的通项公式a n =a 1q n -1(n ∈N *)来求解.(2)对称设元法—与有穷等差数列设项方法类似,有穷等比数列设项也要注意对称设元.一般地,连续奇数个项成等比数列,可设为…,x q ,x ,xq ,…;连续偶数个项成等比数列,可设为…,x q 3,x q,xq ,xq 3,…(注意:此时公比q 2>0,并不适合所有情况).这样既可以减少未知量的个数,也使得解方程较为方便.[例3] 设数列{a n }n n n(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1a n,求数列{b n }的前n 项和T n . [解] (1)当n =1时,由6a 1+1=9a 1,得a 1=13.当n ≥2时,由6S n +1=9a n ,得6S n -1+1=9a n -1, 两式相减得6(S n -S n -1)=9(a n -a n -1),即6a n =9(a n -a n -1),所以a n =3a n -1.所以数列{a n }是首项为13,公比为3的等比数列,其通项公式为a n =13×3n -1=3n -2.(2)因为b n =1a n =⎝⎛⎭⎫13n -2,所以{b n }是首项为3,公比为13的等比数列,所以T n =b 1+b 2+…+b n =3⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=921-⎝⎛⎭⎫13n . 突破点(二) 等比数列的性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列. (4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .(5)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .[例1] (1)(2017·n 46,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100 D .200(2)(2017·石家庄模拟)在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10=________.[解析] (1)a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100.(2)因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9, 所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝⎛⎭⎫-98=-53.[答案] (1)C (2)-53[例2] (1)n n 367a 8+a 9等于( ) A.18 B .-18 C.578 D.558(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________. [解析] (1)因为a 7+a 8+a 9=S 9-S 6,在等比数列中S 3,S 6-S 3,S 9-S 6成等比数列,即8,-1,S 9-S 6成等比数列,所以有8(S 9-S 6)=1,则S 9-S 6=18,即a 7+a 8+a 9=18. (2)由S 10S 5=3132,a 1=-1知公比q ≠-1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.[答案] (1)A (2)-12突破点(三) 等比数列的判定与证明等比数列的四种常用判定方法[典例] 设数列{}a n 的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列. [解] (1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝⎛⎭⎫1+32+54+a 4+5⎝⎛⎭⎫1+32=8⎝⎛⎭⎫1+32+54+1,解得a 4=78. (2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2),得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2),即4a n +2+a n =4a n +1(n ≥2).∵4a 3+a 1=4×54+1=6=4a 2,∴4a n +2+a n =4a n +1, ∴a n +2-12a n +1a n +1-12a n =4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12, ∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列. [全国卷5年真题集中演练]1.(2015·新课标全国卷Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84解析:选B ∵a 1=3,a 1+a 3+a 5=21,∴3+3q 2+3q 4=21.∴1+q 2+q 4=7,解得q 2=2或q 2=-3(舍去).∴a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42.2.(2013·新课标全国卷Ⅱ)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13 C.19 D .-19解析:选C 由题知q ≠1,则S 3=a 1(1-q 3)1-q=a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19,故C. 3.(2016·全国乙卷)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,所以a 1=8.故a 1a 2…a n =a n 1q 1+2+…+(n -1)=23n ·⎝⎛⎭⎫12(n -1)n 2=23n -n 22+n 2=2-n 22+72n . 记t =-n 22+7n 2=-12(n 2-7n )=-12⎝⎛⎭⎫n -722+498,结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64.答案:644.(2016·全国丙卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0.(1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=3132,求λ. 解:(1)证明:由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n .由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1. [检验高考能力]一、选择题1.(2017·河南名校联考)在各项均为正数的等比数列{a n }中,a 1=3,a 9=a 2a 3a 4,则公比q 的值为( ) A. 2 B. 3 C .2 D .3解析:选D 由a 9=a 2a 3a 4得a 1q 8=a 31q 6,所以q 2=a 21,因为等比数列{a n }的各项都为正数,所以q =a 1=3.2.(2016·杭州质检)在等比数列{a n }中,a 5a 11=3,a 3+a 13=4,则a 15a 5=( ) A .3 B .-13 C .3或13 D .-3或-13解析:选C 根据等比数列的性质得⎩⎪⎨⎪⎧(a 3q 5)2=3,a 3(1+q 10)=4,化简得3q 20-10q 10+3=0,解得q 10=3或13,所以a 15a 5=a 5q 10a 5=q 10=3或13.3.(2017·长沙模拟)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-7解析:选D 设等比数列{a n }的公比为q ,由⎩⎪⎨⎪⎧ a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧ a 4=-2,a 7=4或⎩⎪⎨⎪⎧ a 4=4,a 7=-2,所以⎩⎪⎨⎪⎧ q 3=-2,a 1=1或⎩⎪⎨⎪⎧ q 3=-12,a 1=-8,所以a 1+a 10=a 1(1+q 9)=-7. 4.(2016·衡阳三模)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( ) A .2n +1-2 B .3n C .2n D .3n -1解析:选C 因为数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2q n -1,因为数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1),即a 2n +1+2a n +1=a n a n +2+a n +a n +2,则a n +a n +2=2a n +1,即a n (1+q 2-2q )=0,所以q =1,即a n =2,所以S n =2n ,故选C.5.(2017·福州质检)已知等比数列{a n }的前n 项积记为Ⅱn ,若a 3a 4a 8=8,则Ⅱ9=( )A .512B .256C .81D .16解析:选A 由题意知,a 3a 4a 7q =a 3a 7(a 4q )=a 3a 7a 5=a 35=8,Ⅱ9=a 1a 2a 3…a 9=(a 1a 9)(a 2a 8)(a 3a 7)(a 4a 6)a 5=a 95,所以Ⅱ9=83=512.6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( ) A .192 里 B .96 里 C .48 里 D .24 里解析:选B 设等比数列{a n }的首项为a 1,公比为q =12,依题意有a 1⎝⎛⎭⎫1-1261-12=378,解得a 1=192,则a 2=192×12=96,即第二天走了96 里,故选B. 二、填空题7.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则b 2a 1+a 2的值为________. 解析:因为1,a 1,a 2,9是等差数列,所以a 1+a 2=1+9=10.又1,b 1,b 2,b 3,9是等比数列,所以b 22=1×9=9,易知b 2>0,所以b 2=3,所以b 2a 1+a 2=310.答案:310 8.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.解析:因为3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简,得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.答案:3n -19.在等比数列{}a n 中,公比q =2,前99项的和S 99=30,则a 3+a 6+a 9+…+a 99=________. 解析:∵S 99=30,∴a 1(299-1)=30.又∵数列a 3,a 6,a 9,…,a 99也成等比数列且公比为8,∴a 3+a 6+a 9+…a 99=4a 1(1-833)1-8=4a 1(299-1)7=47×30=1207.答案:1207 10.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积数列”.若各项均为正数的等比数列{a n }是一个“2 016积数列”,且a 1>1,则当其前n 项的乘积取最大值时n 的值为________.解析:由题可知a 1a 2a 3·…·a 2 016=a 2 016,故a 1a 2a 3·…·a 2 015=1,由于{a n }是各项均为正数的等比数列且a 1>1,所以a 1 008=1,公比0<q <1,所以a 1 007>1且0<a 1 009<1,故当数列{a n }的前n 项的乘积取最大值时n 的值为1 007或1 008.答案:1 007或1 008三、解答题11.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列.(1)求数列{a n }的通项公式;(2)求a 1+a 3+…+a 2n +1.解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列,∴S n =2n -1.又当n ≥2时,a n =S n -S n -1=2n -1-2n -2=2n -2.当n =1时a 1=1,不适合上式.∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2. (2)a 3,a 5,…,a 2n +1是以2为首项,4为公比的等比数列,∴a 3+a 5+…+a 2n +1=2(1-4n )1-4=2(4n -1)3.∴a 1+a 3+…+a 2n +1=1+2(4n -1)3=22n +1+13. 12.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列;(2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2),∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2).∵a 1=5,a 2=5,∴a 2+2a 1=15,∴a n +2a n -1≠0(n ≥2),∴a n +1+2a n a n +2a n -1=3(n ≥2), ∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列.(2)由(1)得a n +1+2a n =15×3n -1=5×3n ,则a n +1=-2a n +5×3n ,∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列.∴a n -3n =2×(-2)n -1,即a n =2×(-2)n -1+3n .。
(完整版)数列中的数学思想和方法
(完整版)数列中的数学思想和方法数列中的数学思想和方法数学思想方法是数学知识的精髓,是知识转化为能力桥梁.能否有意识地正确运用数学思想方法解答数学问题,是衡量数学素质和数学能力的重要标志.数列中蕴涵了许多重要的数学思想,下面我们一起来看一看吧!一、方程思想 方程思想就是通过设元建立方程,研究方程解决问题的方法。
在解数列问题时,利用等差、等比数列的通项公式、求和公式及性质构造方程(组),是解数列问题基本方法。
例1 已知等差数列{}n a 的公差d 是正数,且3712,a a =-464a a +=-,求其前n 项和n S .解:由等差数列{}n a 知:3746a a a a +=+,从而373712,4a a a a =-+=-,故37,a a 是方程24120x x +-=的两根,又0d >,解之,得:376,2a a =-=。
再解方程组:112662a d a d +=-⎧⎨+=⎩1102a d =-⎧⇒⎨=⎩, 所以10(1)n S n n n =-+-。
〈法一〉法二、基本量法,建立首项和公差的二元方程 知三求二点评:本题利用了3746a a a a +=+这一性质构造了二次方程巧妙的解出了376,2a a =-=,再利用方程求得了首项与公差的值,从而使问题得到解决,由此可知在数列解题时往往可借助方程的思想与n m p q a a a a +=+(或n m p q a a a a ⋅=⋅)找出解题的捷径。
关注未知数的个数,关注独立方程的个数。
点评基本量法:性质法 技巧备用:设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n .解 (1)由已知得错误!解得a 2=2。
设数列{a n }的公比为q ,由a 2=2,可得a 1=错误!,a 3=2q ,又S 3=7,可知错误!+2+2q =7,即2q 2-5q +2=0。
数列的基本运算及性质
n 1 * 3 通项公式: a a q ( n N ). n 1
4 前n项和公式:当q 1时,Sn na1;
a1 an q a1 1 q n 当q 1时,S n 或S n (n N* ). 1 q 1 q
【思维启迪】首项a1与公差d (或公比q)是支 撑等差数列(或等比数列)的两大支柱,因此, 将所求问题转化为这两个量的方程(组)是最 基本的方法,也是常规法,须熟练掌握.
变式题:设等比数列an 的前n项和为S n,若a1 1,S6 4S3,则a4 _____ .
解析:由a1 a3 a5 105,a2 a4 a6 99, a1 (a1 2d ) (a1 4d ) 105 得 , (a1 d ) (a1 3d ) (a1 5d ) 99 解得a1 39,d 2, 所以an a4 n 4 2 41 2n. an 41 2n 0 39 41 由 ,得 <n , 2 2 an1 41 2 n 1 0 所以n 20,故选B.
4.等差数列与等比数列的性质
1 若m n p q(m,n,p,q N* ),则 ①当an 为等差数列时am an a p aq; ②当an 为等比数列时am an a p aq .此性质可称为
“下标和相等性质”.
2 若Sn为数列an 的前n项和,则①在等差数列an
备选例题:已知an 为等差数列,a1 a3 a5 105,a2 a4 a6 99,S n 表示 an 的前n项和, 则使得Sn达到最大值的n是( ) A. 21 C. 19 B. 20 D. 18
用基本量灵活解高考数列题
上上d 。_
4 4 = 一 凡 。 +
n=
一
凡一
2
。
.
时 取 到 最 大 值 ’
.
.
/2, =
2
S
,
。
4 .
感 悟 等 差 ( 比 ) 数 列 是 数 歹lj 中 最 基 本 最 主 要 的 数 列 ,
解决这类题
的关键是 抓 住基 本量
通
,
过建立
方程
(组
)
求 ,
出首项和公差 ( 比 ),而 后求出通 项公 式进行具 体解题 . 这
一 项 得 到 的数 列 (按原来 的顺 序 )是 等 比 数 列 :
(I )① 当 n =
4
时 求 /7, I
,
._
的 数 值 ;(多求 n
的所 有 可 能 值 ;
n
( Ⅱ ) 求 证 :对 于 一 个 给 定 的 正 整 数 n ( n
个各项
及
公
差都
不
为零
的等差数 列
bb … 。, :,
三
项
(
按
= 6;
(0 l +
若 删 去 则 哟 ,
0 l as = o ,2 a 4 ,
@ ) ( ) ) 即 0 l
4 a 4"
-
I
=
al+ d
(口l + 3 d .
化 简 得 能 删 ,
3d2 :
0 d ‘ ’ ,.
≠
0 √. 也不
去 0 ,3 ;
若 删 则 有 去 0 4. ,
0 l as = 04 Ⅱ3 ,
(Ⅱl + 3d ) , 故得
等比数列
等比数列一、等比数列中基本量的运算1.已知{a n}是等比数列,a2=2,a5=,则公比q等于()A.-B.-2C.2D.2.已知等比数列{a n}中,a1=32,公比q=-,则a6等于()A.1B.-1C.2D.3.已知等比数列{a n}中,=2,a4=8,则a6=()A.31B.32C.63D.644.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2等于()A.-4B.-6C.-8D.-105.已知等比数列{a n}的公比q=-,则等于()A.-3B.-C.3D.二、等比中项及应用6.2+和2-的等比中项是.7.已知等比数列{a n}的各项均为正数,它的前三项依次为1,a+1,2a+5,则数列{a n}的通项公式a n=.三、等比数列的判定8.给出下列数列:①2,2,4,8,16,32,…;②在数列{a n}中,=2,=2;③常数列c,c,c,c,….其中等比数列的个数为.9.设{a n}是公比为q的等比数列,设q≠1,证明数列{a n+1}不是等比数列.习题1.已知在等比数列{a n}中,a1+a3=10,a4+a6=,则该等比数列的公比为()A. B. C.2 D.82.若等比数列的首项为,末项为,公比为,则这个数列的项数为()A.3B.4C.5D.63.已知等比数列{a n}中,a1=3,8=a n+1·a n+2,则a3=()A.48B.12C.6D.24.如果-1,a,b,c,-9成等比数列,那么()A.b=3,ac=9B.b=-3,ac=9C.b=3,ac=-9D.b=-3,ac=-95.已知1既是a2与b2的等比中项,又是的等差中项,则的值是()A.1或B.1或-C.1或D.1或-6.设a1=2,数列{1+2a n}是公比为2的等比数列,则a6等于.7.已知等差数列{a n}的公差d≠0,它的第1,5,17项顺次成等比数列,则这个等比数列的公比是.8.某林场的树木每年以25%的增长率增长,则第10年末的树木总量是今年的倍.9.等比数列的前三项和为168,a2-a5=42,求a5,a7的等比中项.10.已知数列{a n}满足a1=,且a n+1=a n+,n∈N*.(1)求证:是等比数列;(2)求数列{a n}的通项公式.等比数列的性质一、等比数列性质的应用1.若{a n}是等比数列,那么()A.数列是等比数列B.数列{}是等比数列C.数列{}是等比数列D.数列{na n}是等比数列2.在等比数列{a n}中,a2 013=8a2 010,则公比q的值为()A.2B.3C.4D.83.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.5B.7C.6D.4二、等差、等比数列的综合问题6.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n-1)C.D.7.数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=.8.已知1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则的值为.9.在四个正数中,前三个成等差数列,和为48,后三个成等比数列,积为8 000.求此四个数.习题1.在等比数列{a n}中,a3a4a5=3,a6a7a8=24,则a9a10a11的值为()A.48B.72C.144D.1922.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=()A.1B.2C.4D.83.已知等比数列{a n}满足a1=3,且4a1,2a2,a3成等差数列,则a3+a4+a5等于()A.33B.84C.72D.1894.等比数列{a n}中,已知a9=-2,则此数列的前17项之积为()A.216B.-216C.217D.-2176.已知数列{a n}是等比数列,公比q>1,且a1+a6=8,a3a4=12,则=.7.在等比数列{a n}中,若a n>0,a1·a100=100,则lg a1+lg a2+lg a3+…+lg a100=.8.公差不为零的等差数列{a n}中,2a3-+2a11=0,数列{b n}是等比数列,且b7=a7,则b6b8=.等比数列的前n项和一、等比数列前n项和公式的应用1.已知等比数列的公比为2,且前5项和为1,那么前10项的和等于()A.31B.33C.35D.372.设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A.S n=2a n-1B.S n=3a n-2C.S n=4-3a nD.S n=3-2a n3.设S n为等比数列{a n}的前n项和,若27a2-a5=0,则等于()A.-27B.10C.27D.804.在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和.若S n=126,则n=.5.设数列{a n}是首项为1,公比为-2的等比数列,则a1+|a2|+a3+|a4|=.二、等比数列前n项和性质的应用6.一个等比数列的前7项和为48,前14项和为60,则前21项和为()A.180B.108C.75D.637.已知数列{a n},a n=2n,则+…+=.8.在等比数列{a n}中,a1+a n=66,a2·a n-1=128,S n=126,求n和q.三、等差、等比数列的综合应用9.已知数列{a n}是以1为首项,2为公差的等差数列,{b n}是以1为首项,2为公比的等比数列,设c n=,T n=c1+c2+…+c n,当T n>2 013时,求n的最小值。
等比数列典型题
等比数列典型题题型一 等比数列的基本量的计算例1 等比数列{a n }的前n 项和为S n .已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ;(2)若a 1-a 3=3,求S n .探究提高 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.等比数列{a n }满足:a 1+a 6=11,a 3·a 4=329,且公比q ∈(0,1).(1)求数列{a n }的通项公式;(2)若该数列前n 项和S n =21,求n 的值.题型二 等比数列的性质及应用例2等比数列{a n }中(1)若已知a 2=4,a 5=-12,求a n ;(2)若a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值.探究提高 在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(1)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( )A .5 2B .7C .6D .4 2(2)已知S n 为等比数列{a n }的前n 项和,且S 3=8,S 6=7,则a 4+a 5+…+a 9=________.题型三 等比数列的判定例3 已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1 (n ≥2),且a n +S n=n .(1)设c n =a n -1,求证:{c n }是等比数列;(2)求数列{b n }的通项公式.探究提高 注意判断一个数列是等比数列的方法,另外第(2)问中要注意验证n =1时是否符合n ≥2时的通项公式,能合并的必须合并.已知数列{a n }的前n 项和S n =2a n +1,求证:{a n }是等比数列,并求出通项公式.题型四 等差与等比数列综合性问题的求解例:(12分)(湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式; (2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.等比数列典型题题型一 等比数列的基本量的计算例1 等比数列{a n }的前n 项和为S n .已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ;(2)若a 1-a 3=3,求S n .思维启迪:(1)由S 1,S 3,S 2成等差数列,列方程求出q .(2)由a 1-a 3=3求出a 1,再由通项和公式求出S n .解 (1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2).由于a 1≠0,故2q 2+q =0. 又q ≠0,从而q =-12.(2)由已知可得a 1-a 1⎝⎛⎭⎫-122=3.故a 1=4.从而S n =4[1-⎝⎛⎭⎫-12n ]1-⎝⎛⎭⎫-12=83⎣⎡⎦⎤1-⎝⎛⎭⎫-12n . 探究提高 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.等比数列{a n }满足:a 1+a 6=11,a 3·a 4=329,且公比q ∈(0,1).(1)求数列{a n }的通项公式;(2)若该数列前n 项和S n =21,求n 的值.解 (1)∵a 3·a 4=a 1·a 6=329,又a 1+a 6=11,故a 1,a 6可看作方程x 2-11x +329=0的两根,又q ∈(0,1),∴a 1=323,a 6=13,∴q 5=a 6a 1=132,∴q =12,∴a n =323·⎝⎛⎭⎫12n -1=13·⎝⎛⎭⎫12n -6.(2)由(1)知S n =643⎝⎛⎭⎫1-12n =21,解得n =6. 题型二 等比数列的性质及应用例2等比数列{a n }中(1)若已知a 2=4,a 5=-12,求a n ;(2)若a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值.思维启迪:注意巧用性质,减少计算.如:对于等比数列{a n },若m +n =p +q (m 、n 、p 、q ∈N *),则a m ·a n =a p ·a q ;若m +n =2p (m ,n ,p ∈N *),则a m ·a n =a 2p . 解 (1)设公比为q ,则a 5a 2=q 3,即q 3=-18,∴q =-12,∴a n =a 5·q n -5=⎝⎛⎭⎫-12n -4. (2)∵a 3a 4a 5=8,又a 3a 5=a 24,∴a 34=8,a 4=2.∴a 2a 3a 4a 5a 6=a 54=25=32.探究提高 在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(1)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( )A .5 2B .7C .6D .4 2(2)已知S n 为等比数列{a n }的前n 项和,且S 3=8,S 6=7,则a 4+a 5+…+a 9=________. 答案 (1)A (2)-78解析 (1)把a 1a 2a 3,a 4a 5a 6,a 7a 8a 9看成一个整体,则由题意,知它们分别是一个等比数列的第1项,第4项和第7项,这里的第4项刚好是第1项与第7项的等比中项.因为数列{a n }的各项均为正数,所以a 4a 5a 6=(a 1a 2a 3)·(a 7a 8a 9)=5×10=5 2.(2)根据等比数列的性质,知S 3,S 6-S 3,S 9-S 6成等比数列,即8,7-8,S 9-7成等比数列,所以(-1)2=8(S 9-7).解得S 9=718.所以a 4+a 5+…+a 9=S 9-S 3=718-8=-78.题型三 等比数列的判定例3 已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1 (n ≥2),且a n +S n=n .(1)设c n =a n -1,求证:{c n }是等比数列;(2)求数列{b n }的通项公式.思维启迪:(1)由a n +S n =n 及a n +1+S n +1=n +1转化成a n 与a n +1的递推关系,再构造数列{a n -1}.(2)由c n 求a n 再求b n .(1)证明 ∵a n +S n =n ,①∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1, ∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列.又a 1+a 1=1,∴a 1=12,∵首项c 1=a 1-1,∴c 1=-12,公比q =12.又c n =a n -1,∴{c n }是以-12为首项,12为公比的等比数列.(2)解 由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n ,∴a n =c n +1=1-⎝⎛⎭⎫12n . ∴当n ≥2时,b n =a n -a n -1=1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12代入上式也符合,∴b n=⎝⎛⎭⎫12n . 探究提高 注意判断一个数列是等比数列的方法,另外第(2)问中要注意验证n =1时是否符合n ≥2时的通项公式,能合并的必须合并.已知数列{a n }的前n 项和S n =2a n +1,求证:{a n }是等比数列,并求出通项公式.证明 ∵S n =2a n +1,∴S n +1=2a n +1+1∴a n +1=S n +1-S n =(2a n +1+1)-(2a n +1)=2a n +1-2a n .∴a n +1=2a n ,又∵S 1=2a 1+1=a 1,∴a 1=-1≠0.又由a n +1=2a n 知a n ≠0,∴a n +1a n=2.∴{a n }是以-1为首项,2为公比的等比数列.∴a n =-1×2n -1=-2n -1 题型四 等差与等比数列综合性问题的求解例:(12分)(湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式; (2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.解(1) 设成等差数列的三个正数分别为a -d ,a ,a +d , 依题意,得a -d +a +a +d =15,解得a =5.[2分] 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d .依题意,有(7-d )(18+d )=100,解得d =2或d =-13(舍去).[4分] 故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.[6分](2)证明 数列{b n }的前n 项和S n =54(1-2n )1-2=5·2n -2-54,即S n +54=5·2n -2.[8分]所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2.因此⎩⎨⎧⎭⎬⎫S n +54是以52为首项,2为公比的等比数列.。
专题三 第1讲 等差数列、等比数列
核心提炼
等差数列、等比数列的基本公式(n∈N*) (1)等差数列的通项公式:an=a1+(n-1)d. (2)等比数列的通项公式:an=a1qn-1. (3)等差数列的求和公式: Sn=na1+ 2 an=na1+nn- 2 1d.
(4)等比数列的求和公式: Sn=a111--qqn=a11--aqnq,q≠1,
1 2 3 4 5 6 7 8 9 10 11 12 13 14
2.(2022·济宁模拟)在等比数列{an}中,a1+a3=1,a6+a8=-32,则aa105+ +aa172
等于
A.-8
B.16
C.32
√D.-32
设等比数列{an}的公比为q, 则a6+a8=(a1+a3)q5=1×q5=-32,所以q5=-32, 故aa105+ +aa172=aa5+5+aa77q5=q5=-32.
∴S14=14a12+a14=14a42+a11>0, S15=15a12+a15=15×2 2a8<0,
∴当Sn>0时,n的最大值为14,D正确.
考点三
等差数列、等比数列的判断
核心提炼
定义法 通项法 中项法
等差数列 an+1-an=d an=a1+(n-1)d 2an=an-1+an+1(n≥2)
是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的
石板数依次为a1,a2,a3,…,a9,设数列{an}为等差数列,它的前n项
1=6
√B.{an}的公差为9
C.a6=3a3
√D.S9=405
设{an}的公差为d.由a4+a6=90, 得a5=45,又a2=18, 联立方程组aa11++d4=d=184,5, 解得ad1==99,, 故 A 错误,B 正确;
等差数列中基本量的计算
例1:已知数列{an}为等差数列 (1)若a1=1,an=-512,sn=-1022,求公差d (2)若a1+a5=19,s5=40,求a10 (3)若s =84,s =460,求a
• 例2:已知数列的前n项和为 2 sn=n +n/2,求这个数列的通项公 式,这个数列是等差数列吗? 如果是,它的首项和公差分别 是什么?
等差数列前n项和公式的应用
• 累加法求an • 例1:已知数列{an},a1=-3, • an+1-an=2n+1,求an
• 例2:已知数列{an}中,a1=0, • an=an-1+3n-1(n>=2),则an=
等差数列前n项和的最值问题
• 例1:等差数列{an}中,设sn为其前 n项和,且a1>0,s3=s5,则当n为多少 时,sn最大?
• 例2:设等差数列{an}中, a3=5,a10=-9,则数列的通项公式 为an=( ),当n=() 时,sn取 得最大值
• 例3:已知等差数列 5,4+2/7 ,3+4/7,· · · 的前n项和为sn,求 使得sn最大的序号n的值
等比数列基本量计算
1
2
除,得
即 2q -5q+2=0,解得 q=2 或 q= .所以
或 q=1.
2= ,
q=2
1+q 5
2
2
q
故 a3=4 或 a3=-4.
10. 已知 {
} 为等比数列, 4
解析 设数列 {
所以 ቐ
+
7
} 的公比为 ,由 ቊ
1
= −8,
3
=−
1
2
或ቊ
1
3
= 1,
所以 ቊ
= −2,
= 2,
2
4.实数数列 1,a,4,b2 为等比数列,则 a=( B ).
A.-2
B.2
C.±2
D.±2 2
2
2
解析由题意得 a =1×4=4,即 a=±2,又 a 与 b 同号,所以 a=2.
5. 在等比数列 {
解析
}中,
4
= −4,
4 与 8 的等比中项 6
=−
8
= −16,则
4
⋅
8
4与
−8
的等比中项为_______.
23 (2018 年全国Ⅲ卷)等比数列{an}中,a1=1,a5=4a3.
(1)求{an}的通项公式;
(2)记 Sn 为{an}的前 n 项和,若 Sm=63,求 m.
解析(1)设{an}的公比为 q,由题设得 an=qn-1.由已知得
q4=4q2,解得 q=0(舍去),q=-2 或 q=2.故 an=(-2)n-1 或 an=2n-1.
A. 12
B. 24
C. 30
解析 由题意 { } 是等比数列,且
3 ) ,即 = 2 , ∴ 6 + 7 + 8 =
等差数列基本量计算
等差数列基本量计算1.等差数列{n a }中,已知1a =31, 254a a +=, 33n a =,则n 为 2.已知等差数列}{n a 中,1,16497==+a a a ,则12a 的值为___________.3.已知等差数列}{n a ,199a a 与是一元二次方程021102=+-x x 的两个实根.则397a a +的值为 .4.若}{n a 与{}n b 都是等差数列,10,15,252211=+==b a b a ,则数列{n n a b +}的前12项的和是 .5.已知等差数列}{n a 的首项为 125,从第10项开始比1大,则公差d 的取值范围是 6.在等差数列}{n a 中,已知32n a n =-,则该数列前20项之和是7.在等差数列}{n a 中,2,31-==d a (d 为公差),则=+++++9997531a a a a a ________.8.在等差数列}{n a 中,35710133()2()24a a a a a ++++=,则此数列前13项的和为9. 数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则n =______________10.已知等差数列{n a }中, 2a +8a =8,则该数列前9项和9S 等于11.已知数列{n a }的前n 项和32+=n s n ,则=n a _____________________12.设n S 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则____________________; 13.等差数列{a n }的前m 项和30,前2m 项和为100,则数列的前3m 项和为_____________ ;14.若一个等差数列前3项的和为34,最后三项的和为146,且所有项的和为390,则这个数列有_________项;。
等比数列及其前n项和知识点讲解+例题讲解(含解析)
等比数列及其前n 项和一、知识梳理1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列.数学语言表达式:a n a n -1=q (n ≥2,q 为非零常数).(2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =2.等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1; 通项公式的推广:a n =a m q n -m .(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和. (1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k , a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n .证明:(1)当q ≠-1且q ≠0时,A a a a a S n n =++++=...321,n n n n n n n n n n n Aq q a q a q a a a a a S S =+++=++++=-+++ (2123212)n n n n n n n n n n n Aq q a q a q a a a a a S S 222221332221223......=+++=++++=-+++所以S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n(2)当q= -1时,<1>、当n 为奇数时,1a S n=,132,0a S S n n ==1120a a S S n n -=-=-, 11230a a S S n n =-=-所以S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n<2>、当n 为偶数时,032===n n n S S S ,S n ,S 2n -S n ,S 3n -S 2n不能构成等比数列小结:1.若数列{a n }为等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n},⎩⎨⎧⎭⎬⎫1an 也是等比数列. 2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0. 3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)等比数列公比q 是一个常数,它可以是任意实数.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 解析 (1)在等比数列中,q ≠0.(2)若a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (3)当a =1时,S n =na .(4)若a 1=1,q =-1,则S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列.答案 (1)× (2)× (3)× (4)×2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ) A.-12B.-2C.2D.12解析 由题意知q 3=a 5a 2=18,即q =12.答案 D3.在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.解析 设该数列的公比为q ,由题意知, 243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81. 答案 27,814.(2019·天津和平区质检)已知等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),则a 7的值为( ) A.2B.4C.92D.6解析 根据等比数列的性质得a 3a 5=a 24,∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2.又∵a 1=1,a 1a 7=a 24=4,∴a 7=4. 答案 B5.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A.32f B.322fC.1225fD.1227f解析 由题意知十三个单音的频率依次构成首项为f ,公比为122的等比数列,设此数列为{a n },则a 8=1227f ,即第八个单音的频率为1227f . 答案 D6.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n )1-2=126,解得n =6.答案 6考点一 等比数列基本量的运算【例1】 (1)(2017·全国Ⅲ卷)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.(2)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.解析 (1)由{a n }为等比数列,设公比为q .由⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3,得⎩⎪⎨⎪⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,② 显然q ≠1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.(2)设数列{a n }首项为a 1,公比为q (q ≠1),则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎨⎧a 1=14,q =2, 所以a 8=a 1q 7=14×27=32.答案 (1)-8 (2)32规律方法 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q 1-q.【训练1】 (1)等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=( ) A.9B.15C.18D.30(2)(2017·北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析 (1)设数列{a n }的公比为q (q >0),则⎩⎪⎨⎪⎧2S 3=2(a 1+a 1q +a 1q 2)=8a 1+3a 1q ,a 1q 3=16, 解得q =2,a 1=2,所以S 4=2(1-24)1-2=30.(2){a n }为等差数列,a 1=-1,a 4=8=a 1+3d =-1+3d ,∴d =3,∴a 2=a 1+d =-1+3=2.{b n }为等比数列,b 1=-1,b 4=8=b 1·q 3=-q 3,∴q =-2,∴b 2=b 1·q =2,则a 2b 2=22=1.答案 (1)D (2)1考点二 等比数列的判定与证明【例2】 已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1, 得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0,所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)解 由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n.由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.【训练2】 (2019·广东省级名校联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n . (1)证明 因为a n =S n -S n -1(n ≥2), 所以S n -2(S n -S n -1)=n -4(n ≥2), 则S n =2S n -1-n +4(n ≥2),所以S n -n +2=2[S n -1-(n -1)+2](n ≥2), 又由题意知a 1-2a 1=-3, 所以a 1=3,则S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2等比数列. (2)解 由(1)知S n -n +2=2n +1, 所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n=4(1-2n )1-2+n (n +1)2-2n =2n +3+n 2-3n -82.考点三 等比数列的性质及应用【例3】 (1)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A.12B.10C.8D.2+log 35(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( ) A.40B.60C.32D.50解析 (1)由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.(2)数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是首项为4,公比为2的等比数列,则S 9-S 6=a 7+a 8+a 9=16,S 12-S 9=a 10+a 11+a 12=32,因此S 12=4+8+16+32=60. 答案 (1)B (2)B【训练3】 (1)(2019·菏泽质检)在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( ) A.-2B.- 2C.± 2D.2(2)(一题多解)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=________.解析 (1)根据根与系数之间的关系得a 3+a 7=-4, a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0, 所以a 3<0,a 7<0,即a 5<0, 由a 3a 7=a 25,得a 5=-a 3a 7=- 2.(2)法一 由等比数列的性质S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3,∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73.法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a (a ≠0),所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a 3a =73.答案 (1)B (2)73数学运算——等差(比)数列性质的应用1.数学运算是指在明析运算对象的基础上,依据运算法则解决数学问题的素养.本系列数学运算主要表现为:理解数列问题,掌握数列运算法则,探究运算思路,求得运算结果.通过对数列性质的学习,发展数学运算能力,促进数学思维发展.2.数学抽象是指能够在熟悉的情境中直接抽象出数学概念和规则,能够在特例的基础上归纳形成简单的数学命题,能够在解决相似的问题中感悟数学的通性通法,体会其中的数学思想.类型1 等差数列两个性质的应用 在等差数列{a n }中,S n 为{a n }的前n 项和: (1)S 2n -1=(2n -1)a n ;等差中项)(2)设{a n }的项数为2n ,公差为d ,则S 偶-S 奇=nd .【例1】 (1)等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________.(2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则数列的公差d =________.解析 (1)由a m -1+a m +1-a 2m =0得2a m -a 2m =0,解得a m =0或2.又S 2m -1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m =38, 显然可得a m ≠0,所以a m =2.代入上式可得2m -1=19,解得m =10.(2)设等差数列的前12项中奇数项和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5. 答案 (1)10 (2)5类型2 等比数列两个性质的应用在等比数列{a n }中,(1)若m +n =p +q (m ,n ,p ,q ∈N *),则a n ·a m =a p ·a q ;(2)当公比q ≠-1时,S n ,S 2n -S n ,S 3n -S 2n ,…成等比数列(n ∈N *).【例2】 (1)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A.6B.5C.4D.3(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )A.18B.-18C.578D.558 解析 (1)数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4=lg(a 4·a 5)4=lg(2×5)4=4.(2)因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18,所以a 7+a 8+a 9=18.答案 (1)C (2)A类型3 等比数列前n 项和S n 相关结论的活用(1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q . 若共有2n 项,则S 偶∶S 奇=q .(2)分段求和:S n +m =S n +q n S m (q 为公比).【例3】 (1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.(2)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________. 解析 (1)由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160, 所以q =S 偶S 奇=-160-80=2. (2)设等比数列{a n }的公比q ,易知S 3≠0.则S 6=S 3+S 3q 3=9S 3,所以q 3=8,q =2.所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,其前5项和为1-⎝ ⎛⎭⎪⎫1251-12=3116.答案 (1)2 (2)3116三、课后练习1.已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T 1>1的n 的最小值为( )A.4B.5C.6D.7 解析 ∵{a n }是各项均为正数的等比数列,且a 2a 4=a 3,∴a 23=a 3,∴a 3=1.又∵q >1,∴a 1<a 2<1,a n >1(n >3),∴T n >T n -1(n ≥4,n ∈N *),T 1<1,T 2=a 1·a 2<1,T 3=a 1·a 2·a 3=a 1a 2=T 2<1,T 4=a 1a 2a 3a 4=a 1<1,T 5=a 1·a 2·a 3·a 4·a 5=a 53=1,T 6=T 5·a 6=a 6>1,故n 的最小值为6. 答案 C 2.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A.(3n -1)2B.12(9n -1)C.9n -1D.14(3n -1)解析 ∵a 1+a 2+…+a n =3n -1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1,∴当n ≥2时,a n =3n -3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列.因此a 21+a 22+…+a 2n =4(1-9n )1-9=12(9n -1). 答案 B 3.(2019·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 25,且S 4+S 12=λS 8,则λ=______.解析 ∵{a n }是等比数列,a 3a 11=2a 25,∴a 27=2a 25,∴q 4=2,∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q, ∴1-q 4+1-q 12=λ(1-q 8),将q 4=2代入计算可得λ=83.答案 834.已知数列{a n }满足a 1=1,a n +1=2a n +λ(λ为常数).(1)试探究数列{a n +λ}是不是等比数列,并求a n ;(2)当λ=1时,求数列{n (a n +λ)}的前n 项和T n . 解 (1)因为a n +1=2a n +λ,所以a n +1+λ=2(a n +λ). 又a 1=1,所以当λ=-1时,a 1+λ=0,数列{a n +λ}不是等比数列, 此时a n +λ=a n -1=0,即a n =1; 当λ≠-1时,a 1+λ≠0,所以a n +λ≠0, 所以数列{a n +λ}是以1+λ为首项,2为公比的等比数列, 此时a n +λ=(1+λ)2n -1,即a n =(1+λ)2n -1-λ.(2)由(1)知a n =2n -1,所以n (a n +1)=n ×2n , T n =2+2×22+3×23+…+n ×2n ,① 2T n =22+2×23+3×24+…+n ×2n +1,② ①-②得:-T n =2+22+23+…+2n -n ×2n +1=2(1-2n )1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n )2n +1-2. 所以T n =(n -1)2n +1+2.。
数列基本量的计算PPT
an=
S1 n=1 Sn-Sn-1n≥2
.
1.等差数列 (1)一般地,如果一个数列从第2项起,每一项与 它的前一项的差等于同一个常数,那么这个数
列就叫等差数列,这个常数叫做等差数列的 ___公__差____,公差通常用字母d表示,公差的表 达式为_a_n_-__a_n_-_1_=__d_(_n_∈__N_*_,__n_≥__2_)_.__
有穷数列:项数有限 按项分类无穷数列:项数无限
按an的增 减性分类
递增数列:对于任何n∈N*,均有an+1>an 递减数列:对于任何n∈N*,均有an+1<an 摆动数列:例如:-1,1,-1,1,…
常数数列:例如:8,8,8,8,…
5.an 与 Sn 的关系
Sn=a1+a2+a3+…+an,
若项数为奇数,还等于中间项的平方,即 a1·an=a2·an-1=a3·an-2=…=a2中. .
思考感悟 G= ab是 a、G、b 成等比数列的什么条件?
提示:G= ab ⇒/ a、G、b 成等比数列, 如 G=0,a=0 或 b=0;a、G、b 成等比数 列⇒/ G= ab,有可能 G=- ab. ∴G= ab是 a、G、b 成等比数列的既不充 分也不必要条件.
前 n 项和公 式 Sn=
__n_a_1___ (q 1)
a1(1 q n )
a1 anq
__1 _ _q__=_____1 _ _q___
(q 1)
相关 名词 等比数列{an}的相关概念及公式
等比 设a、b为任意两个同号的实数,则 中项 a、b的等比中项G=___±__a_b____
2.等比数列的性质 (1)对任意的正整数m、n、p、q,若m+n=p + q 则 _a_m__·a_n_=__a_p_·a_q___. 特 别 地 m + n = 2p 则 ___a_=__a_m_·_a_n._____ (2)有穷等比数列中,与首末两项距离相等的 两项积相等,都等于首末两项的积,特别地,
把握数列概念本质__巧用数列通项特征——2023年高考数列试题赏析
球 的 球 心,由 V 三 棱 锥O-PBC =
。
解 析:由 ∠HDC = ∠FAB =9
0
°,且 点
过
PAD ⊥ 平面 ABCD 。取 AD 的中点为 M ,
过 O 作 底 面 ABCD 的 垂 线
为四 棱 锥 PABCD 的 外 接
平面 PBC 的距离为
可知 AB ⊥ 平面 PAD ,
平面
H、
F、
E、
G 重合,
正方形 ABCD 的中心为 O ,
则 l1 与 l2 的 交 点 O ,即
l2 ,
则四 棱 锥 P9
0
°,
ABCD 的 外 接 球 的 球 心 到
图1
可得球心 O 到平面 PBC 的 距 离 为
V 三 棱 锥P-OBC ,
5
。
5
M 作平 面 PAD 的 垂 线l1 ,取 正 方 形 ABCD
以约分成一次函数的特征。因此,
设 an =t
n,
求 d。
T99 =9
9,
(
解析:
1)由 3
a2 =3
a1 +a3,
S3 +T3 =2
1,
可 得
3(
a1+d)
=3
a1+a1+2
d,
3
a1+3
d+
a1=d,
,
2
6
1
2
=2
1
+
+
a1 a1+d a1+2
d
2
所以 2
解得
d -7
d+3=0,
9
6
d+ =2
专题01 等差数列的基本量的计算(解析版)
第二篇 数列专题01 等差数列的基本量的计算常见考点考点一 等差数列的基本量的计算典例1.记等差数列{}n a 的前n 项和为n S ,设312S =,且1232,,1a a a +成等比数列. 求 (1) a 1和d .(2)求数列{}n a 的前n 项和n S .【答案】(1)11a =,3d =,或18a =,4d =-,(2)23122n S n n =-或2210n S n n =-+【解析】 【分析】(1)由1232,,1a a a +成等比数列,可得22132(1)a a a =+,结合312S =,列出关于1,a d 的方程组,可求出a 1和d .(2)直接利用等差数列的前n 项和公式求解即可 【详解】解:(1)设等差数列{}n a 的公差为d ,因为1232,,1a a a +成等比数列,所以22132(1)a a a =+,即2111()2(21)a d a a d +=++,因为312S =,所以1323122a d ⨯+=,即14a d +=, 所以162(4)(421)d d d =--++,8(4)(5)d d =-+,解得3d =或4d =-, 当3d =时,11a =,当4d =-时,18a =, 所以11a =,3d =,或18a =,4d =-, (2)当11a =,3d =时,2(1)313222n n n S n n n -=+⨯=-, 当18a =,4d =-时,2(1)8(4)2102n n n S n n n -=+⨯-=-+ 【点睛】此题考查了等差数列的通项公式和前n 项和公式,考查计算能力,属于基础题 变式1-1.已知{}n a 是等差数列,其中131a =,公差8d =-, (1)求{}n a 的通项公式. (2)求数列{}n a 前n 项和.【答案】(1)398n a n =-;(2)2354n S n n =-.【解析】 【分析】(1)由等差数列的通项公式可以直接求出; (2)由等差数列的前n 项和公式可以直接求出. 【详解】 (1){}n a 是等差数列,且131a =,8d =-,3118398na n n ;(2)123139835422nn n a a n nS n n .【点睛】本题考查已知等差数列的首项和公差求数列的通项公式和前n 项和,属于基础题. 变式1-2.等差数列{}n a 中,53a =,31223a a +=. (1)求1a ;(2)求通项n a 和前n 项和n S . 【答案】(1)153=5a -;(2)17145n a n =-,2171231010n n n S =-. 【解析】 【分析】(1)解方程组即得1a ;(2)利用公式求解即可. 【详解】 (1)由题得111+435317,,2132355a d a d a d =⎧∴=-=⎨+=⎩.(2)由题得531717=(1)14555n a n n -+-=-.所以前n 项和2531717123(14)2551010n n n n n S =-+-=-. 【点睛】本题主要考查等差数列的通项的基本量的计算,考查等差数列通项的求法和前n 项和的求法,意在考查学生对这些知识的理解掌握水平.变式1-3.已知等差数列{}n a 的前n 项和为n S ,且513a =,535S =. (1)求数列{}n a 的通项公式n a ; (2)求数列{}n a 的前n 项和n S .【答案】(1)32n a n =-(2)23122n S n n =-【解析】 【分析】(1)将已知条件转化为1,a d 的形式,列方程组,解方程组求得1,a d 的值,进而求得数列的通项公式.(2)根据(1)的结论求得数列的前n 项和公式. 【详解】设{}n a 的公差为d ,则由题意得11413545352a d a d +=⎧⎪⎨⨯+=⎪⎩, 解得:11,3a d ==.(1){}n a 的通项公式为()()1113132n a a n d n n =+-=+-=-, 即32n a n =-.(2){}n a 的前n 项和为()()12132312222n n n a a n n S n n ++-===-. 【点睛】本小题主要考查利用基本元的思想求等差数列的基本量1,a d 、通项公式和前n 项和.基本元的思想是在等差数列中有5个基本量1,,,,n n a d a S n ,利用等差数列的通项公式或前n 项和公式,结合已知条件列出方程组,通过解方程组即可求得数列1,a d ,进而求得数列其它的一些量的值.考点二 等差数列前n 项和最值问题典例2.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求公差d 及{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】(1)2d =,29n a n =-;(2)()2416n S n =--,最小值为16-.【解析】(1)设{}n a 的公差为d ,由题意得13315a d +=-,再由17a =-可得2d =,从而可求出{}n a 的通项公式;(2)由(1)得()228416n S n n n =-=--,从而可求出其最小值 【详解】(1)设{}n a 的公差为d ,由题意得13315a d +=-. 由17a =-得2d =.所以{}n a 的通项公式为29n a n =-. (2)由(1)得()228416n S n n n =-=--. 所以4n =时,n S 取得最小值,最小值为16-变式2-1.n S 为等差数列{}n a 的前n 项和,已知71a =,432S =-. (1)求数列{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)213n a n =-;(2)212n n S n =-,6n =时,n S 的最小值为36-.【解析】(1)利用等差数列的通项公式以及前n 项和公式求出1a ,d ,代入通项公式即可求解. (2)利用等差数列的前n 项和公式可得n S ,配方即可求解. 【详解】(1)设{}n a 的公差为d , 由71a =,432S =-,即1161434322a d a d +=⎧⎪⎨⨯+=-⎪⎩,解得1112a d =-⎧⎨=⎩, 所以()11213n a a n d n =+-=-.(2)()221111122n n n S na d n n n n n -=+=-+-=-, ()2212636n S n n n =-=--,所以当6n =时,n S 的最小值为36-.变式2-2.数列{a n }是首项为23,公差为整数的等差数列,且第6项为正,第7项为负. (1)求数列的公差;(2)求前n 项和S n 的最大值. 【答案】(1)4d =-;(2)78 【解析】 【分析】(1)根据670,0a a ><可得d 的范围,再根据d 为整数得到d 的值. (2)根据项的符号特征可得6S 最大. 【详解】(1)由已知,得6152350a a d d =+=+>,7162360a a d d =+=+<.解得232356d -<<-. 又d Z ∈,∴4d =-.(2)∵0d <,∴数列{}n a 是递减数列. 又∵60a >,70a <,∴当6n =时, n S 取得最大值,为()6656234782S ⨯=⨯+⨯-=. 【点睛】一般地,等差数列的前n 项和n S 的最值可以通过等差数列的通项的符号来确定,如果{}n a 满足0m a <,10m a +>,则n S 有最小值且最小值为m S ;如果{}n a 满足0m a >,10m a +<,则n S 有最大值且最大值为m S .变式2-3.已知等差数列{}n a 的前n 项和为n S ,25a =-,612S =-.(1)求{}n a 的通项公式;(2)求n S ,并求当n 取何值时n S 有最小值.【答案】(1)29n a n =-;(2)4. 【解析】 【分析】(1)设{}n a 的公差为d ,构建关于基本量1,a d 的方程组,求出1,a d 的值后可求{}n a 的通项公式. (2)求出n S 的表达式,从而可求当n 取何值时n S 有最小值. 【详解】(1)设{}n a 的公差为d ,由题意得11561512a d a d +=-⎧⎨+=-⎩得17,2a d =-=,所以{}n a 的通项公式为29n a n =-. (2)由(1)得()1228(4)162n n n a a S n n n +==-=--,所以当4n =时,n S 取得最小值,最小值为16-. 【点睛】本题考查等差数列通项公式的求法以及前n 项和的最值,此类问题,可根据题设条件得到关于基本量1,a d 的方程组,求出基本量的值后可讨论与等差数列相关的问题,本题属于基础题.考点三 含绝对值型求和问题典例3.记数列{}n a 中,17a =-,26a =-,()1+1N ,R n n a ka n k +=+∈∈. (1)证明数列{}n a 为等差数列,并求通项公式n a ; (2)记123n n T a a a a =+++⋅⋅⋅+,求n T . 【答案】(1)证明见解析,8,N n a n n +=-∈;(2)2215,821556,82n n n n n n n T -≤-+⎧⎪=⎨>⎪⎪⎪⎩且n +∈N .【解析】 【分析】(1)由已知可得1k =,根据等差数列的定义可证等差数列,进而写出通项公式. (2)由(1)有80a =,讨论8n ≤、8n >分别求n T 即可.(1)∵()11,n n a ka n k ++=+∈∈N R ,17a =-,26a =-, ∴1k =,∴()11n n a a n ++-=∈N ,即数列{}n a 为等差数列,8n a n ∴=-.(2)由(1)知:80a =,8n ≤时,()2121215.2n n n n n T a a a a a a -=++⋯+=-++⋯+=,8n >时,212815..562n n n nT a a a a -=++⋯+⋯+=+.∴2215,821556,82n n n n n n n T -≤-+⎧⎪=⎨>⎪⎪⎪⎩且n +∈N .变式3-1.设等差数列{}n a 的前n 项和为46,16,12n S S S =-=-. (1)求{}n a 的通项公式n a ; (2)求数列{}n a 的前n 项和n T . 【答案】(1)29n a n =-;(2)2*2*8,14832,5n n n n n T n n n n ⎧-≤≤∈=⎨-+≥∈⎩N N 且且. 【解析】 【分析】(1)根据等差数列前n 项和求和公式求出首项和公差,进而求出通项公式;(2)结合(1)求出n S ,再令0n a ≥得出数列的正数项和负数项,进而结合等差数列求和公式求得答案. (1)设等差数列的首项和公差分别为1a 和d ,∴1111434162382254656122a d a d a d a d ⨯⎧+=-⎪+=-⎧⎪⇒⎨⎨+=-⨯⎩⎪+=-⎪⎩,解得:172a d =-⎧⎨=⎩ 所以()71229n a n n =-+-⨯=-. (2)29n a n =-,所以()()2171282n S n n n n n =-+-⨯=-.当02905n a n n ≥⇒-≥⇒≥;当02904n a n n <⇒-<⇒≤,当04n <≤,*n ∈N 时,()212128n n n T a a a a a a n n =++⋅⋅⋅+=-++⋅⋅⋅+=-, 当5n ≥时,()()()21245428216n n n T a a a a a S S n n =-++⋅⋅⋅+++⋅⋅⋅+=-=--⨯-2832n n =-+.综上:2*2*8,14832,5n n n n n T n n n n ⎧-≤≤∈=⎨-+≥∈⎩N N 且且. 变式3-2.已知n S 为数列{}n a 的前n 项和,且28n S n n =-+.(1)求证:数列{}n a 是等差数列;(2)记n n b a =,试求数列{}n b 的前n 项和n T . 【答案】(1)证明见解析;(2)228,4832,5n n n n T n n n ⎧-+≤=⎨-+≥⎩.【解析】 【分析】(1)利用,n n a S 的关系求通项公式,结合等差数列的定义证明结论. (2)由(1)得92,429,5n n n b n x -≤⎧=⎨-≥⎩,讨论n 的范围,应用等差数列前n 项和公式求n T .(1)当2n ≥时,()2218(1)8129n n n a S S n n n n n -⎡⎤=-=-+---+-=-+⎣⎦当1n =时,11187,a S ==-+=也适合上式,故29n a n =-+. 综上,()127292n n a a n n +-=-+--+=-,∴数列{}n a 是以7为首项,2-为公差的等差数列. (2)由(1)知:92,49229,5n n n n b a n n x -≤⎧==-=⎨-≥⎩,当4n ≤时,2128n n n T b b b S n n =++⋯+==-+;当5n ≥时,2212124564(282484)()n n n n T b b b a a a a a a S S n n =++⋯+=++⋯+-++⋯+=-+++-=-⨯2832n n =-+,∴228,4832,5n n n n T n n n ⎧-+≤=⎨-+≥⎩变式3-3.在①()1218,7,1*,n n a a a ka n N k R +=-=-=+∈∈②若{}n a 为等差数列,且376,2a a =-=-③设数列{}n a 的前n 项和为n S ,且()2117*22n nS n n N =-∈.这三个条件中任选一个,补充在下面问题中,并作答(1)求数列{}n a 的通项公式(2)求数列{}n a 的前n 项和为n S 的最小值及n 的值 (3)记123...n n T a a a a =++++,求20T 【答案】(1)9n a n =-(2)当8n =或9n =时,n S 取得最小值为36-. (3)102 【解析】 【分析】(1)选①结合等差数列的定义求得n a ;选②通过求1,a d 来求得n a ;选③利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求得n a .(2)由0n a ≤求得n S 的最小值以及对应n 的值. (3)结合等差数列前n 项和公式求得20T . (1)选①,()1218,7,1*,n n a a a ka n N k R +=-=-=+∈∈,211,781,1a ka k k =+-=-+=,111,1n n n n a a a a ++=+-=,所以数列{}n a 是以18a =-为首项,公差1d =的等差数列,所以9n a n =-. 选②,设等差数列{}n a 的首项为1a ,公差为d ,31171268,1962n a a d a d a n a a d =+=-⎧⇒=-=⇒=-⎨=+=-⎩. 选③,()2117*22n nS n n N =-∈, 当1n =时,18a =-,当2n ≥时,()()1221711171192222n n n a S S n n n n n -=-⎡⎤----⎣-=⎥⎦=-⎢, 当1n =时上式也符合,所以9n a n =-. (2)由90n a n =-≤得9n ≤,所以当8n =或9n =时,n S 最小,且最小值为()87881362⨯⨯-+⨯=-. (3)2011a =,结合(2)可知()2092092092T S S S S S =-+-=-()811202361022-+=⨯-⨯-=.巩固练习练习一 等差数列的基本量的计算1.在等差数列{}n a 中,已知2a ,5a 是一元二次方程219700x x -+=的两个根. (1)求2a ,5a ; (2)求{}n a 的通项公式.【答案】(1)25a =,514a =或214a =,55a = (2)31n a n =-或320n a n =-+ 【解析】【分析】(1)求出方程的根即可.(2)由(1)可解出等差数列的公差即可.(1)因为219700x x -+=,所以5x =或14,所以25a =,514a =;或214a =,55a =.(2)设公差为d ,若25a =,514a =,得52352a a d ,所以通项公式为()2231n a a n d n =+-=-;若214a =,55a =,则52352a a d -==--, 所以通项公式为()22320n a a n d n =+-=-+.故{}n a 的通项公式:31n a n =-或320n a n =-+.2.已知等差数列{}n a ,n S 为其前n 项和,且4152a =-,436S =-. (1)求数列{}n a 的通项公式;(2)若n n S b n =,n T 为数列{}n b 的前n 项和,求n T . 【答案】(1)232n a n =-,*n N ∈;(2)2434n n n T -=,*n N ∈. 【解析】【分析】(1)由已知,结合等差数列前n 项和及通项公式求1a 、d ,写出通项公式即可; (2)由(1)可得222n n b -=,再应用等差数列前n 项和公式求n T . 【详解】(1)由题意,1444()362a a S +==-,可得1212a =-,若公差为d , ∴411532a a d =+=-,故1d =, ∴{}n a 的通项公式123(1)2n a a n d n =+-=-.(2)由(1)得(22)2n n n S -=,则222n n S n b n -==, ∴212 (431124)n n n n T n +++-=-=. 3.已知等差数列{}n a 中,公差22,3d a ==.求:(1)35,a a 的值;(2)该数列的前5项和5S .【答案】(1)355,9a a ==;(2)525S =.【解析】【分析】(1)根据已知条件求得1a ,由此求得35,a a .(2)利用等差数列前n 项和公式求得5S .【详解】(1)依题意21131a a d a =+=⇒=,所以315125,49a a d a a d =+==+=.(2)5151052025S a d =+=+=.4.已知等差数列{}n a 中,11a =,321a a -=.(1)求数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .【答案】(1)n a n =;(2)()12n n n S +=. 【解析】(1)根据题中条件,先得出公差,进而可求出通项公式;(2)根据(1)的结果,由等差数列的求和公式,即可求出结果.【详解】(1)因为等差数列{}n a 中,首项为11a =,公差为321d a a =-=,所以其通项公式为()11n a n n =+-=;(2)由(1)可得,数列{}n a 的前n 项和()()1122n n n a a n n S ++==.练习二 等差数列前n 项和最值问题5.已知数列{}n a 中14n n a a +=-,且113a =.(1)求n a ;(2)求数列{n a }的前n 项和n S 的最大值.【答案】(1)n a =﹣4n +17;(2)28.【解析】【分析】(1)根据等差数列的定义判断{}n a 为等差数列即可求其通项公式;(2)根据等比数列前n 项和的性质即可求其最值.(1)由1n n a a +=﹣4,可知,1n a +﹣n a =﹣4,∴数列{n a }是以13为首项,以﹣4为公差的等差数列,∴n a =13﹣4(n ﹣1)=﹣4n +17;(2)由(1)可知,数列{n a }单调递减,且a 4>0,a 5<0,∴当n =4时,{n a }的前n 项和n S 取得最大值4S =13+9+5+1=28.6.已知数列{an }是一个等差数列,且a 2=11,S 5=45.(1)求{an }的通项an ;(2)求{an }的前n 项和为Sn 的最大值.【答案】(1)an =15-2n(2)49【解析】【分析】(1)由等差数列的性质知a 3=9,d =a 3-a 2=-2,从而写出通项公式;(2)由通项公式知a 7=1>0,a 8=-1<0,从而可求得Sn 的最大值.(1)∵数列{an }等差数列,S 5=45,∴S 5=5a 3=45,∴a 3=9,故d =a 3-a 2=9-11=-2,故an =a 2+(n -2)d =15-2n .(2)∵an =15-2n ,∴a 7=1>0,a 8=-1<0,故当n =7时,Sn 有最大值S 7=7a 4=7×(15-8)=49.7.已知等差数列{}n a 的前n 项和是n S ,210a =,540S =.(1)求10a ;(2)求n S 的最大值,并求对应的项数n .【答案】(1)106a =-;(2)6,7n =时,最大值42.【解析】【分析】(1)根据所给条件求得等差数列的通项公式142n a n =-,代入数值即可得解; (2)由通项公式142n a n =-可知17n ≤≤时,0n a ≥,8n ≥时,0n a <,即可得解.【详解】(1)根据题意设等差数列{}n a 的公差为d ,由53540S a ==,所以38a =,由210a =所以322d a a =-=-,所以112a =,所以1(1)142n a a n d n =+-=-,所以106a =-;(2)由(1)知142n a n =-,当16n ≤≤时,0n a >,特别的70a =,当8n ≥时,0n a <,所以当6,7n =时,()61126652422n S S =⨯+⨯⨯⨯-=,取最大值,最大值42.8.已知数列{}n a 为等差数列,且37a =,53a =.(1)求数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S 的最大值.【答案】(1)132n a n =-;(2)36.【解析】【分析】(1)由已知求出公差,从而可求出数列的通项公式;(2)由(1)得212n S n n =-,然后配方利用二次函数的性质可得答案【详解】解:因为{}n a 为等差数列,令其公差为d ,则由题意得5324a a d -==-,得2d =-,故3(3)7(3)(2)n a a n d n =--⨯=--⨯-132n =-,即{}n a 的通项公式为132n a n =-.(2)由(1)知,111a =, 故21(1)122n n n d S na n n -=+=- 2(6)36n =--+,所以当6n =,n S 的最大值为636S =.练习三 含绝对值型求和问题9.设数列{}n a 的前n 项和为n S , 已知2103n S n n =-+.(1)求数列{}n a 的通项公式;(2)求数列{}n a 的前n 项的和n T .【答案】(1)6,1211,2n n a n n -=⎧=⎨-≥⎩(2)22103,51047,6n n n n T n n n ⎧-+-≤=⎨-+≥⎩【解析】【分析】(1)由11,1,2n nn S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式; (2)化简n a 的表达式,分25n ≤≤、6n ≥两种情况求n T 的表达式,综合即可得解.(1)解:当1n =时,116a S ==-,当2n ≥时,()()()22110311013211n n n a S S n n n n n -⎡⎤=-=-+----+=-⎣⎦. 16a =-不满足211n a n =-,因此,6,1211,2n n a n n -=⎧=⎨-≥⎩. (2) 解:6,1112,25211,6n n a n n n n =⎧⎪=-≤≤⎨⎪-≥⎩. 当25n ≤≤时,()()27112161032n n n T n n +--=+=-+-, 16T =满足2103n T n n =-+-;当6n ≥时,()()()2251211552210472n n n T T n n n +--=+=-+=-+.综上所述,22103,51047,6n n n n T n n n ⎧-+-≤=⎨-+≥⎩. 10.已知数列{}n a 的前n 项和213n S n n =-.(1)求数列{}n a 的通项公式;(2)若n n b a =,求{}n b 的前n 项和n T .【答案】(1)()214n a n n *=-∈N ;(2)2213,71384,7n n n n T n n n ⎧-<=⎨-+⎩. 【解析】【分析】(1)根据题意,可求得当1n =时,1112a S ==-;当2n ≥时,利用1214n n n S S a n --==-,检验得1n =时也满足214n a n =-,从而可得出数列{}n a 的通项公式;(2)由(1)知当7n <时,0n a <,当7n ≥时,0n a ≥,则需要分类讨论,当7n <时,142n n n b a a n ==-=-,从而可知{}n b 是首项为12,公差为-2的等差数列,利用等差数列的前n 项和公式,即可求出n T ;当7n ≥时,化简得出()()1261622n n n T a a a a a T S =----+++=+,结合题意求出n T ;综合两种情况,从而得出{}n b 的前n 项和n T .【详解】(1)当n =1时,1112a S ==-;当2n ≥时,()22113(1)13(1)214n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦,显然1n =时也满足上式,所以()214n a n n *=-∈N .(2)由(1)知()214n a n n *=-∈N ,所以当7n <时,0n a <;当7n ≥时,0n a ≥,①当7n <时,142n n n b a a n ==-=-,则12n n b b +-=-,112b =,所以{}n b 是首项为12,公差为-2的等差数列,所以()12(12142)1322n n n b b n n T n n ++-===-; ②当7n ≥时,1267n n T b b b b b =++++++()()126712612n n n T a a a a a a a a a a =----+++=----+++226284131384n n T T S n n n n =+=+-=-+.综上可得:2213,71384,7n n n n T n n n ⎧-<=⎨-+≥⎩.11.已知等差数列{}n a 的前n 项和为n S ,且364a a +=,55S =-(1)求数列{}n a 的通项公式;(2)若123n n T a a a a =+++⋅⋅⋅+,求10T 的值.【答案】(1)27n a n =-(2)58【解析】【分析】(1)由等差数列的性质和基本量运算求得数列的首项和公差,然后可得通项公式; (2)确定数列项的正负,然后分组求和.(1)因为{}n a 是等差数列,所以15535()552a a S a +===-,31a =-, 又364a a +=,所以64(1)5a =--=,所以6335(1)6d a a =-=--=,2d =,从而1325a a d =-=-,5(1)227n a n n =-+-⨯=-,(2)由(1)3n ≤时,0n a <,4n ≥时,0n a >, 所以123n n T a a a a =+++⋅⋅⋅+(113)7(531)(13513)9582+⨯=+++++++=+=. 12.已知数列{}n a 是等差数列,125a =,12366a a a ++=.(1)求数列{}n a 的通项公式;(2)求数列{}n a 的前17项和17S .【答案】(1)283n a n =-;(2)217.【解析】【分析】(1)由已知条件,求出公差d 即可求解;(2)因为当9n ≤时,0n a ≥,当10n ≥时,0n a <,所以()17191017191017S a a a a a a a a =+++++=++-++,由等差数列求和公式即可求解.【详解】解:(1)因为数列{}n a 是等差数列,设公差为d , 因为12366a a a ++=,125a =, 所以111266a a d a d ++++=, 所以3d =-, 所以()()2513283n a n n =+-⨯-=-; (2)设等差数列{}n a 的前n 项和为n T , 令2830n a n =-≥,解得283n ≤, 所以当9n ≤时,0n a ≥,当10n ≥时,0n a <, 故()17191017191017S a a a a a a a a =+++++=++-++ ()()91792511725232221722T T +-=-=⨯-=.。
§6.2 等差数列
答案 14
解析 解法一:设数列{an}的公差为d, 则a6+a7=2a3+7d=14,又∵a3=0, ∴d=2,∴a7=a3+4d=8, 又a3=a1+2d,∴a1=-4,
∴S7= 7(a1
2
a7
)
= 7 (4
2
8)
=14.
解法二:设数列{an}的公差为d,
则a6+a7=2a3+7d=14,又∵a3=0,
∴d=2,∴a4=a3+d=2.
∴S7=a1+a2+a3+a4+a5+a6+a7=7a4=14.
栏目索引
.
栏目索引
4.(2016江苏,8,5分)已知{an}是等差数列,Sn是其前n项和.若a1+ a22 =-3,S5=10,则a9的值是
.
答案 20
解析 设等差数列{an}的公差为d,则由题设可得
a1 (a1 d )2 3,
1)b]sin
θ= 12 bc
sin
θ
n+ 1 (a-b)csin
2
θ,所以Sn是关于n的一次函数,则{Sn}成等差数列,选A.
栏目索引
2.(2015安徽,13,5分)已知数列{an}中,a1=1,an=an-1+ 12 (n≥2),则数列{an}的前9项和等于
.
答案 27
解析 由题意得{an}为等差数列,且公差d= 12 ,
∵a1=1,∴S9=9×1+ 92 8
× 1 =27.
2
栏目索引
C组 教师专用题组
考点一 等差数列基本量的运算
1.(2014辽宁,9,5分)设等差数列{an}的公差为d.若数列{ 2a1an }为递减数列,则 ( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明: 【解】 (1)证明:Sn-Sn-1+2Sn·Sn-1=0,两边同除 证明 , 1 1 1 1 以 Sn·Sn-1, 得 -S +2=0, S - = , 即 =2(n≥2), ≥ , Sn-1 Sn-1 n n 1 1 1 为首项, 为公差的等差数列. ∴{S }是以 = =2 为首项,2 为公差的等差数列. 是以 S1 a1 n 1 1 (2)由(1)知S = +(n-1)d=2+(n-1)×2=2n, 由 知 - = + - × = , S1 n 1 ∴Sn= . 2n
第5章 章
数 列
2012高考 高考
江苏考纲解读 1.了解数列的概念及数列通项公式的意义. .了解数列的概念及数列通项公式的意义. 2.理解等差数列的概念 , 掌握等差数列的通项公式 .理解等差数列的概念, 与前n项和公式,并能解决简单的实际问题. 与前 项和公式,并能解决简单的实际问题. 项和公式 3.理解等比数列的概念 , 掌握等比数列的通项公式 .理解等比数列的概念, 与前n项和公式,并能解决简单的实际问题. 与前 项和公式,并能解决简单的实际问题. 项和公式
3.数列的表示方法 . 数列的表示方法有_________、 公式法 、 数列的表示方法有 列举法 、__________、 图象法. 图象法. ________ 4.数列的分类 .
有穷数列:项数有限 有穷数列: 按项分类 无穷数列: 无穷数列:项数无限
递减数列:对于任何 ∈N ,均有 <a 按 a 的增 递减数列:对于任何n∈ 均有a 减性分类摆动数列: 例如 :- , 1,- , 1,… 摆动数列:例如:- :-1, ,- ,-1, , 常数数列:例如:8,8,8,8,… 常数数列:例如: , , , ,
为零的等差数列, 项和, 为零的等差数列,Sn 为其前 n 项和,满足 a2+a2=a2+a2,S7=7. 2 3 4 5 (1)求数列 n}的通项公式及前 n 项和 Sn; 求数列{a 的通项公式及前 求数列 amam+1 (2)试求所有的正整数 m, 试求所有的正整数 , 使得 为数列 am+2 {an}中的项. 中的项. 中的项
n * n+1
递增数列:对于任何n∈N*, 均有an+1>an 递增数列: 对于任何 ∈ 均有
n
5.an 与 Sn 的关系 . Sn= a1+ a2+ a3+ …+ an, = ) S1 ( n= 1) an= . ≥ ) Sn- Sn- 1( n≥ 2)
1.等差数列 . (1)一般地,如果一个数列从第 项起,每一项与 一般地, 项起, 一般地 如果一个数列从第2项起 它的前一项的差等于同一个常数, 它的前一项的差等于同一个常数,那么这个数 列就叫等差数列, 列就叫等差数列,这个常数叫做等差数列的 公差 ,公差通常用字母d表示 _________,公差通常用字母 表示,公差的表 表示, an-an-1=d(n∈N*,n≥2). ∈ ≥ . 达式为___________________________ 达式为 -
(3)若 m, n, p, k∈ N* , 且 m+ n= p+ k, 则 若 , , , ∈ + = + , am+an=ap+ak ,其中a _______________,其中 ,a ,a ,a 是数列
m n p k
中 的 项 , 特 别 地 , 当 m + n = 2p 时 , 有 2ap=am+an. _________________ (4)在等差数列中,每隔相同的项抽出来的项按 在等差数列中, 在等差数列中 照原来顺序排列, 照原来顺序排列,构成的新数列仍然是等差数 列.但剩下的项按原顺序构成的数列不一定是 等差数列. 等差数列.
( q ≠ 1)
相关 等比数列{a 的相关概念及公式 等比数列 n}的相关概念及公式 名词 等比 设a、b为任意两个同号的实数,则 为任意两个同号的实数, 、 为任意两个同号的实数 的等比中项G= ± ab 中项 a、b的等比中项 =__________ 、 的等比中项
2.等比数列的性质 等比数列的性质 (1)对任意的正整数 、n、p、q,若m+n=p 对任意的正整数m、 、 、 , 对任意的正整数 + = am·an=ap·aq + q 则 ______________. 特 别 地 m + n = 2p 则 a=am·an. = _______________ (2)有穷等比数列中 , 与首末两项距离相等的 有穷等比数列中, 有穷等比数列中 两项积相等, 都等于首末两项的积, 特别地, 两项积相等 , 都等于首末两项的积 , 特别地 , 若项数为奇数,还等于中间项的平方,即 a1·an=a2·an-1=a3·an-2=…= a2 . . 中 - -
1.数列的定义 . 数列是按__________排成的一列数 排成的一列数, 数列是按 一定次序 排成的一列数,从函数观 点看,数列是定义域为正整数集(或它的有限子 点看 , 数列是定义域为正整数集 或它的有限子 的函数f(n), 当自变量 从 1开始依次取正整 集 )的函数 的函数 , 当自变量n从 开始依次取正整 数时所对应的一列函数值f(1),f(2),…,f(n), 数时所对应的一列函数值 , , , 通常用a ….通常用 n代替 通常用 代替f(n).于是数列的一般形式为 1, .于是数列的一般形式为a a2,…,an,…,简记为 简记为________ {an}. .
相关名词 通项公式
等比数列{a 的相关概念及公式 等比数列 n}的相关概念及公式
- a1qn-1 = an=_______=am·qn-m
前 n 项和公 式
S n=
na1 _______
(q = 1)
a1 (1 − q n ) a1 − an q 1 − q =__________ ______=________ ______=__________ 1− q
思考感悟 G= ab是 a、 、 成等比数列的什么条件? G、 = 是 、 b 成等比数列的什么条件?
提示: = 提示:G= ab ⇒/ a、G、b 成等比数列, 、 、 成等比数列, 如 G=0,a=0 或 b=0;a、G、b 成等比数 = ,= = ;、 、 列⇒/ G= ab,有可能 G=- ab. = , =- ∴G= ab是 a、G、b 成等比数列的既不充 = 是 、 、 分也不必要条件. 分也不必要条件.
【思路分析】 由条件得 a2-a2=a2-a2, 思路分析】 2 5 4 3 利用性质得- 利用性质得-3d(a4+a3)=d(a4+a3),从 = , 而 a4+a3=0.
【解】 (1)设公差为 d,则 a2-a2=a2-a2. 设公差为 , 2 5 4 3 由性质得- 由性质得-3d(a4+a3)=d(a4+a3). = . , = 因为 d≠0,所以 a4+a3=0,即 2a1+5d=0. ≠ , 7×6 × d=7.解得 a1=- , 又由 S7=7 得 7a1+ = 解得 =-5, 2 d=2. =
1.等差数列 n}中,a1= 1,a3+a5=14,其 .等差数列{a 中 , , 前n项和 n=100,则n=________. 项和S 项和列 n}的前 n 项和为 Sn, 且满足 1 an+2Sn·Sn-1=0(n≥2,n∈N),a1=2. ≥ , ∈ , 1 (1)求证:{S }是等差数列; 求证: 是等差数列; 求证 是等差数列 n (2)求 an 的表达式. 求 的表达式.
an-am an - a1 - 列中的项,也可得d= n-1 列中的项,也可得 =________或d=_____. 或 = n-m -
其中n> ,也可以n≤ 但 其中 >m,也可以 ≤m.但am、an必须是数
(4)等差数列的求和公式 由倒序相加法推得 等差数列的求和公式(由倒序相加法推得 等差数列的求和公式 由倒序相加法推得) n(n-1)d ( - ) n(a1+an) ( na1+ . 2 S =______________,S =_________________. 2 ,
2.等差数列的性质 . (1)若公差 > 0, 则此数列为递增数列 ; 若 d 若公差d> , 则此数列为递增数列; 若公差 <0,则此数列为递减数列;若d=0,则此数 ,则此数列为递减数列; = , 列为常数列. 列为常数列. (2)有穷等差数列中,与首末两项距离相等的 有穷等差数列中, 有穷等差数列中 两项和相等,并且等于首末两项之和; 两项和相等 , 并且等于首末两项之和 ; 特别 地,若项数为奇数,还等于中间项的2倍,即 若项数为奇数,还等于中间项的 倍 a1+an=a2+an-1=a3+an-2=…=2a中. - -
n n
思考感悟 若数列{an}的前 项和为 n=an2+bn,能否断定 的前n项和为 若数列 的前 项和为S , 数列{a 是等差数列 反之是否成立? 是等差数列? 数列 n}是等差数列?反之是否成立? 提 示 : 数 列 {an} 的 前 n 项 和 为 Sn = an2 + bn⇔数列 n}是等差数列. 是等差数列. ⇔数列{a 是等差数列
1 =-2S . 当 n≥2 时,an=- n·Sn-1=- ≥ 2n(n-1) ( - ) 1 又 ∵ a1 = , 不 适 合 上 式 , 故 an = 2 1 (n=1), n= ) 2 1 ≥ ) -2n(n-1)(n≥2). ( - )
例2 (2009 年高考江苏卷 设{a }是公差不 年高考江苏卷)设 n 是公差不
(2)等差中项 等差中项 任意两个数a, 有且只有一个等差中项 有且只有一个等差中项, 任意两个数 ,b有且只有一个等差中项,即
a+b + . 2 _________.
(3)等差数列的通项公式 (3)等差数列的通项公式 am+(n-m)d - a1+(n-1)d , - an=______________,an=____________, ,
所以{a 的通项公式为 所以 n}的通项公式为 an=2n-7, n 项和 - , 前 Sn=n2-6n. amam+1 (2m-7)( -5) )(2m- ) - )( (2) . = am + 2 2m-3 - amam+1 (t-4)( -2) )(t- ) - )( 8 令 2m-3=t,则 - =, = =t+ + t t am + 2 -6. 是奇数, 可取的值为±1.当 = 因为 t 是奇数,所以 t 可取的值为 当 t=1 8 m= , t+ 时, =2,+ t -6=3,2×5-7=3 是数列 n = × - = 是数列{a 中的第 5 项;